1
|
de Almeida ALT, da Costa IPS, Garcia MDDN, da Silva MAN, Lazzaro YG, de Filippis AMB, Nogueira FDB, Barreto-Vieira DF. Oropouche Virus: Isolation and Ultrastructural Characterization from a Human Case Sample from Rio de Janeiro, Brazil, Using an In Vitro System. Viruses 2025; 17:373. [PMID: 40143301 PMCID: PMC11946457 DOI: 10.3390/v17030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban areas, with transmission involving sylvatic and urban cycles. This study focuses on the characterization of an OROV isolate from a human clinical sample collected in the state of Rio de Janeiro, a non-endemic region in Brazil, highlighting ultrastructural and morphological aspects of the viral replicative cycle in Vero cells. OROV was isolated in Vero cell monolayers which, following viral inoculation, exhibited marked cytopathic effects (CPEs), mainly represented by changes in cell morphology, including membrane protrusions and vacuolization, as well as cell death. Studies by transmission electron microscopy (TEM) revealed significant ultrastructural changes, such as apoptosis, intense remodeling of membrane-bound organelles and signs of rough endoplasmic reticulum and mitochondrial stress. Additionally, the formation of specialized cytoplasmic vacuoles and intra- and extracellular vesicles emphasized trafficking and intercellular communication as essential mechanisms in OROV infection. RT-qPCR studies confirmed the production of viral progeny in high titers, corroborating the efficiency of this experimental model. These findings contribute to a better understanding of the cytopathogenic mechanisms of OROV infection and the contribution of cellular alterations in OROV morphogenesis.
Collapse
Affiliation(s)
- Ana Luisa Teixeira de Almeida
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| | - Igor Pinto Silva da Costa
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| | - Maycon Douglas do Nascimento Garcia
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| | - Marcos Alexandre Nunes da Silva
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| | - Yasmim Gonçalves Lazzaro
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| | - Ana Maria Bispo de Filippis
- Laboratory of Arboviruses and Hemorrhagic Viruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.M.B.d.F.); (F.d.B.N.)
| | - Fernanda de Bruycker Nogueira
- Laboratory of Arboviruses and Hemorrhagic Viruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.M.B.d.F.); (F.d.B.N.)
| | - Debora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (M.D.d.N.G.); (M.A.N.d.S.); (Y.G.L.)
| |
Collapse
|
2
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2025; 35:129-140. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
3
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
5
|
Elste J, Saini A, Mejia-Alvarez R, Mejía A, Millán-Pacheco C, Swanson-Mungerson M, Tiwari V. Significance of Artificial Intelligence in the Study of Virus-Host Cell Interactions. Biomolecules 2024; 14:911. [PMID: 39199298 PMCID: PMC11352483 DOI: 10.3390/biom14080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
A highly critical event in a virus's life cycle is successfully entering a given host. This process begins when a viral glycoprotein interacts with a target cell receptor, which provides the molecular basis for target virus-host cell interactions for novel drug discovery. Over the years, extensive research has been carried out in the field of virus-host cell interaction, generating a massive number of genetic and molecular data sources. These datasets are an asset for predicting virus-host interactions at the molecular level using machine learning (ML), a subset of artificial intelligence (AI). In this direction, ML tools are now being applied to recognize patterns in these massive datasets to predict critical interactions between virus and host cells at the protein-protein and protein-sugar levels, as well as to perform transcriptional and translational analysis. On the other end, deep learning (DL) algorithms-a subfield of ML-can extract high-level features from very large datasets to recognize the hidden patterns within genomic sequences and images to develop models for rapid drug discovery predictions that address pathogenic viruses displaying heightened affinity for receptor docking and enhanced cell entry. ML and DL are pivotal forces, driving innovation with their ability to perform analysis of enormous datasets in a highly efficient, cost-effective, accurate, and high-throughput manner. This review focuses on the complexity of virus-host cell interactions at the molecular level in light of the current advances of ML and AI in viral pathogenesis to improve new treatments and prevention strategies.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Akash Saini
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA;
| | - Rafael Mejia-Alvarez
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Armando Mejía
- Departamento de Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - Cesar Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Michelle Swanson-Mungerson
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| |
Collapse
|
6
|
Hu HT, Nishimura T, Kawana H, Dante RAS, D’Angelo G, Suetsugu S. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front Cell Dev Biol 2024; 12:1422227. [PMID: 39035026 PMCID: PMC11257967 DOI: 10.3389/fcell.2024.1422227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Extracellular vesicles (EVs) are crucial for transferring bioactive materials between cells and play vital roles in both health and diseases. Cellular protrusions, including filopodia and microvilli, are generated by the bending of the plasma membrane and are considered to be rigid structures facilitating various cellular functions, such as cell migration, adhesion, and environment sensing. Compelling evidence suggests that these protrusions are dynamic and flexible structures that can serve as sources of a new class of EVs, highlighting the unique role they play in intercellular material transfer. Cytonemes are specialized filopodia protrusions that make direct contact with neighboring cells, mediating the transfer of bioactive materials between cells through their tips. In some cases, these tips fuse with the plasma membrane of neighboring cells, creating tunneling nanotubes that directly connect the cytosols of the adjacent cells. Additionally, virus particles can be released from infected cells through small bud-like of plasma membrane protrusions. These different types of protrusions, which can transfer bioactive materials, share common protein components, including I-BAR domain-containing proteins, actin cytoskeleton, and their regulatory proteins. The dynamic and flexible nature of these protrusions highlights their importance in cellular communication and material transfer within the body, including development, cancer progression, and other diseases.
Collapse
Affiliation(s)
- Hooi Ting Hu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Kawana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Rachelle Anne So Dante
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Gisela D’Angelo
- Institut Curie, PSL Research University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
7
|
Andrieu J, Valade M, Lebideau M, Bretelle F, Mège JL, Wurtz N, Mezouar S, La Scola B, Baudoin JP. Pan-microscopic examination of monkeypox virus in trophoblasts cells reveals new insights into virions release through filopodia-like projections. J Med Virol 2024; 96:e29620. [PMID: 38647027 DOI: 10.1002/jmv.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Vertical transmission has been described following monkeypox virus (MPXV) infection in pregnant women. The presence of MPXV has been reported in the placenta from infected women, but whether pathogens colonize placenta remains unexplored. We identify trophoblasts as a target cell for MPXV replication. In a pan-microscopy approach, we decipher the specific infectious cycle of MPXV and inner cellular structures in trophoblasts. We identified the formation of a specialized region for viral morphogenesis and replication in placental cells. We also reported infection-induced cellular remodeling. We found that MPXV stimulates cytoskeleton reorganization with intercellular extensions for MPXV cell spreading specifically to trophoblastic cells. Altogether, the specific infectious cycle of MPXV in trophoblast cells and these protrusions that were structurally and morphologically similar to filopodia reveal new insights into the infection of MPXV.
Collapse
Affiliation(s)
- Jonatane Andrieu
- Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio-culturelle, Droit, Éthique et Santé, Aix-Marseille University, Marseille, France
| | - Margaux Valade
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
| | - Marion Lebideau
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
| | - Florence Bretelle
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
- Département de gynécologie et d'obstétrique, Gynépole, La Conception, AP-HM, Marseille, France
| | - Jean-Louis Mège
- Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio-culturelle, Droit, Éthique et Santé, Aix-Marseille University, Marseille, France
- Laboratoire d'Immunologie, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Nathalie Wurtz
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
| | - Soraya Mezouar
- Centre National de la Recherche Scientifique, Établissement Français du Sang, Anthropologie bio-culturelle, Droit, Éthique et Santé, Aix-Marseille University, Marseille, France
| | - Bernard La Scola
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
| | - Jean-Pierre Baudoin
- Institut Recherche Développement, Assistance Publique-Hôpitaux de Marseille, Microbe, Evolution, Phylogeny Infection, Aix-Marseille University, Marseille, France
| |
Collapse
|
8
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
9
|
Kim C, Robitaille M, Christodoulides J, Ng Y, Raphael M, Kang W. Hs27 fibroblast response to contact guidance cues. Sci Rep 2023; 13:21691. [PMID: 38066191 PMCID: PMC10709656 DOI: 10.1038/s41598-023-48913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Contact guidance is the phenomena of how cells respond to the topography of their external environment. The morphological and dynamic cell responses are strongly influenced by topographic features such as lateral and vertical dimensions, namely, ridge and groove widths and groove depth ([Formula: see text], respectively). However, experimental studies that independently quantify the effect of the individual dimensions as well as their coupling on cellular function are still limited. In this work, we perform extensive parametric studies in the dimensional space-well beyond the previously studied range in the literature-to explore topographical effects on morphology and migration of Hs27 fibroblasts via static and dynamic analyses of live cell images. Our static analysis reveals that the [Formula: see text] is most significant, followed by the [Formula: see text]. The fibroblasts appear to be more elongated and aligned in the groove direction as the [Formula: see text] increases, but their trend changes after 725 nm. Interestingly, the cell shape and alignment show a very strong correlation regardless of [Formula: see text]. Our dynamic analysis confirms that directional cell migration is also strongly influenced by the [Formula: see text], while the effect of the [Formula: see text] and [Formula: see text] is statistically insignificant. Directional cell migration, as observed in the static cell behavior, shows the statistically significant transition when the [Formula: see text] is 725 nm, showing the intimate links between cell morphology and migration. We propose possible scenarios to offer mechanistic explanations of the observed cell behavior.
Collapse
Affiliation(s)
- C Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Robitaille
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | | | - Y Ng
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Raphael
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | - W Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
10
|
Sasivimolrattana T, Bhattarakosol P. Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells. Front Cell Infect Microbiol 2023; 13:1301859. [PMID: 38076455 PMCID: PMC10704452 DOI: 10.3389/fcimb.2023.1301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Zhang Y, Zhang X, Li Z, Zhao W, Yang H, Zhao S, Tang D, Zhang Q, Li Z, Liu H, Li H, Li B, Lappalainen P, Xu T, Cui Z, Jiu Y. Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. Sci Bull (Beijing) 2023; 68:2210-2224. [PMID: 37661543 DOI: 10.1016/j.scib.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the subcellular structural remodeling to invade multiple organs and cell types. Here, we unveil how SARS-CoV-2 boosts and utilizes filopodia to enter the target cells by real-time imaging. Using SARS-CoV-2 single virus-like particle (VLP) tracking in live cells and sparse deconvolution algorithm, we uncover that VLPs utilize filopodia to reach the entry site in two patterns, "surfing" and "grabbing", which avoid the virus from randomly searching on the plasma membrane. Moreover, combining mechanical simulation, we elucidate that the formation of virus-induced filopodia and the retraction speed of filopodia depend on cytoskeleton dynamics and friction resistance at the substrate surface caused by loading-virus gravity, respectively. Further, we discover that the entry process of SARS-CoV-2 via filopodia depends on Cdc42 activity and actin-associated proteins fascin, formin, and Arp2/3. Together, our results highlight that the spatial-temporal regulation of actin cytoskeleton by SARS-CoV-2 infection makes filopodia as a highway for virus entry and potentiates it as an antiviral target.
Collapse
Affiliation(s)
- Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hui Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daijiao Tang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zonghong Li
- Guangzhou Laboratory, Guangzhou 510005, China
| | | | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Liu D, Pan L, Zhai H, Qiu HJ, Sun Y. Virus tracking technologies and their applications in viral life cycle: research advances and future perspectives. Front Immunol 2023; 14:1204730. [PMID: 37334362 PMCID: PMC10272434 DOI: 10.3389/fimmu.2023.1204730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Viruses are simple yet highly pathogenic microorganisms that parasitize within cells and pose serious threats to the health, economic development, and social stability of both humans and animals. Therefore, it is crucial to understand the dynamic mechanism of virus infection in hosts. One effective way to achieve this is through virus tracking technology, which utilizes fluorescence imaging to track the life processes of virus particles in living cells in real-time, providing a comprehensively and detailed spatiotemporal dynamic process and mechanism of virus infection. This paper provides a broad overview of virus tracking technology, including the selection of fluorescent labels and virus labeling components, the development of imaging microscopes, and its applications in various virus studies. Additionally, we discuss the possibilities and challenges of its future development, offering theoretical guidance and technical support for effective prevention and control of the viral disease outbreaks and epidemics.
Collapse
Affiliation(s)
| | | | | | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
13
|
Schepis A, Kumar S, Kappe SHI. Malaria parasites harness Rho GTPase signaling and host cell membrane ruffling for productive invasion of hepatocytes. Cell Rep 2023; 42:111927. [PMID: 36640315 DOI: 10.1016/j.celrep.2022.111927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Plasmodium sporozoites are the motile forms of the malaria parasites that infect hepatocytes. The initial invasion of hepatocytes is thought to be actively driven by sporozoites, but host cell processes might also play a role. Sporozoite invasion triggers a host plasma membrane invagination that forms a vacuole around the intracellular parasite, which is critical for subsequent intracellular parasite replication. Using fast live confocal microscopy, we observed that the initial interactions between sporozoites and hepatocytes induce plasma membrane ruffles and filopodia extensions. Importantly, we find that these host cell processes facilitate invasion and that Rho GTPase signaling, which regulates membrane ruffling and filopodia extension, is critical for productive infection. Interestingly, sporozoite cell traversal stimulates these processes, suggesting that it increases hepatocyte susceptibility to productive infection. Our study identifies host cell signaling events involved in plasma membrane dynamics as a critical host component of successful malaria parasite infection of hepatocytes.
Collapse
Affiliation(s)
- Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
14
|
Abstract
Filopodia are fingerlike membrane protrusions extended by cells to sense their environment. Filopodia are widely used by migrating cells in vivo and directly contribute to several physiological processes and diseases. Due to the essential roles of filopodia in sensing the extracellular environment, there is a need to characterize their composition and ultrastructure further. This chapter highlights FiloMap, an image analysis pipeline that utilizes Fiji and R to map the localization of proteins within filopodia from microscopy images. I provide step-by-step protocols on (a) setting up FiloMap in Fiji and R, (b) extracting line intensity profiles from filopodia stainings in Fiji, (c) further analyzing line intensity profiles in R, and (d) creating filopodia maps to compare the localization of multiple proteins within filopodia. Notably, while FiloMap was written to analyze filopodia, the analysis pipeline described here can also analyze and compile any line intensity profiles.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland. .,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Botet-Carreras A, Marimon MB, Millan-Solsona R, Aubets E, Ciudad CJ, Noé V, Montero MT, Domènech Ò, Borrell JH. On the uptake of cationic liposomes by cells: From changes in elasticity to internalization. Colloids Surf B Biointerfaces 2023; 221:112968. [DOI: 10.1016/j.colsurfb.2022.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
16
|
Tu Y, Pal K, Austin J, Wang X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr Biol 2022; 32:4386-4396.e3. [PMID: 36084647 PMCID: PMC9613586 DOI: 10.1016/j.cub.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|
18
|
Dabie bandavirus Nonstructural Protein Interacts with Actin to Induce F-Actin Rearrangement and Inhibit Viral Adsorption and Entry. J Virol 2022; 96:e0078822. [PMID: 35862701 PMCID: PMC9327694 DOI: 10.1128/jvi.00788-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dabie bandavirus (DBV) is an emerging Bandavirus that causes multiorgan failure with a high fatality rate in humans. While many viruses can manipulate the actin cytoskeleton to facilitate viral growth, the regulation pattern of the actin cytoskeleton and the molecular mechanisms involved in DBV entry into the host cells remain unclear. In this study, we demonstrate that expression of nonstructural protein (NSs) or infection with DBV induces actin rearrangement, which presents a point-like distribution, and this destruction is dependent on inclusion bodies (IBs). Further experiments showed that NSs inhibits viral adsorption by destroying the filopodium structure. In addition, NSs also compromised the viral entry by inhibiting clathrin aggregation on the cell surface and capturing clathrin into IBs. Furthermore, NSs induced clathrin light chain B (CLTB) degradation through the K48-linked ubiquitin proteasome pathway, which could negatively regulate clathrin-mediated endocytosis, inhibiting the viral entry. Finally, we confirmed that this NSs-induced antiviral mechanism is broadly applicable to other viruses, such as enterovirus 71 (EV71) and influenza virus, A/PR8/34 (PR8), which use the same clathrin-mediated endocytosis to enter host cells. In conclusion, our study provides new insights into the role of NSs in inhibiting endocytosis and a novel strategy for treating DBV infections. IMPORTANCEDabie bandavirus (DBV), a member of the Phenuiviridae family, is a newly emerging tick-borne pathogen that causes multifunctional organ failure and even death in humans. The actin cytoskeleton is involved in various crucial cellular processes and plays an important role in viral life activities. However, the relationship between DBV infection and the actin cytoskeleton has not been described in detail. Here, we show for the first time the interaction between NSs and actin to induce actin rearrangement, which inhibits the viral adsorption and entry. We also identify a key mechanism underlying NSs-induced entry inhibition in which NSs prevents clathrin aggregation on the cell surface by hijacking clathrin into the inclusion body and induces CLTB degradation through the K48-linked ubiquitination modification. This paper is the first to reveal the antiviral mechanism of NSs and provides a theoretical basis for the search for new antiviral targets.
Collapse
|
19
|
The Process of Filopodia Induction during HPV Infection. Viruses 2022; 14:v14061150. [PMID: 35746622 PMCID: PMC9231133 DOI: 10.3390/v14061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Human Papillomavirus 16 (HPV16) infects mucosal and epithelial cells and has been identified as a high-risk HPV type that is an etiologic agent of human cancers. The initial infectious process, i.e., the binding of the virus particle and its entry into the host cell, has been studied extensively, although it is not fully understood. There is still a gap in understanding the steps by which the virus is able to cross the plasma membrane after receptor binding. In this study, we demonstrate that after HPV16 comes into contact with a plasma membrane receptor, there are cytoskeletal changes resulting in an increase of filopodia numbers. This increase in filopodia numbers was transient and was maintained during the first two hours after virus addition. Our data show that there is a statistically significant increase in infection when filopodia numbers are increased by the addition of drug and virus simultaneously, and a decrease in virus infection when filopodia formation is inhibited. We describe that HPV16 binding results in the activation of Cdc42 GTPase that in turn results in an increase in filopodia. siRNA directed at Cdc42 GTPase resulted in a statistically significant reduction of infection and a corresponding lack of filopodia induction.
Collapse
|
20
|
Couteaudier M, Montange T, Njouom R, Bilounga-Ndongo C, Gessain A, Buseyne F. Plasma antibodies from humans infected with zoonotic simian foamy virus do not inhibit cell-to-cell transmission of the virus despite binding to the surface of infected cells. PLoS Pathog 2022; 18:e1010470. [PMID: 35605011 PMCID: PMC9166401 DOI: 10.1371/journal.ppat.1010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2023] Open
Abstract
Zoonotic simian foamy viruses (SFV) establish lifelong infection in their human hosts. Despite repeated transmission of SFV from nonhuman primates to humans, neither transmission between human hosts nor severe clinical manifestations have been reported. We aim to study the immune responses elicited by chronic infection with this retrovirus and previously reported that SFV-infected individuals generate potent neutralizing antibodies that block cell infection by viral particles. Here, we assessed whether human plasma antibodies block SFV cell-to-cell transmission and present the first description of cell-to-cell spreading of zoonotic gorilla SFV. We set-up a microtitration assay to quantify the ability of plasma samples from 20 Central African individuals infected with gorilla SFV and 9 uninfected controls to block cell-associated transmission of zoonotic gorilla SFV strains. We used flow-based cell cytometry and fluorescence microscopy to study envelope protein (Env) localization and the capacity of plasma antibodies to bind to infected cells. We visualized the cell-to-cell spread of SFV by real-time live imaging of a GFP-expressing prototype foamy virus (CI-PFV) strain. None of the samples neutralized cell-associated SFV infection, despite the inhibition of cell-free virus. We detected gorilla SFV Env in the perinuclear region, cytoplasmic vesicles and at the cell surface. We found that plasma antibodies bind to Env located at the surface of cells infected with primary gorilla SFV strains. Extracellular labeling of SFV proteins by human plasma samples showed patchy staining at the base of the cell and dense continuous staining at the cell apex, as well as staining in the intercellular connections that formed when previously connected cells separated from each other. In conclusion, SFV-specific antibodies from infected humans do not block cell-to-cell transmission, at least in vitro, despite their capacity to bind to the surface of infected cells. Trial registration: Clinical trial registration: www.clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03225794/. Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. Simian foamy viruses (SFVs) can be transmitted to humans, in whom they establish persistent infection, as have the simian viruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 (HIV-1) and human T lymphotropic virus type 1 (HTLV-1). Such cross-species transmission of SFV is ongoing in many parts of the world where humans have contact with nonhuman primates. We previously showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. These antiviral antibodies can inhibit cell-free virus entry. However, SFV efficiently spread from one cell to another. Here, we demonstrate that plasma antibodies do not block such cell-to-cell transmission, despite their capacity to bind to the surface of infected cells. In addition, we document for the first time the cell-to-cell spread of primary zoonotic gorilla SFV.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Dubey S, Jaiswal B, Gupta A. TIP60 acts as a regulator of genes involved in filopodia formation and cell migration during wound healing. J Biol Chem 2022; 298:102015. [PMID: 35525269 PMCID: PMC9249863 DOI: 10.1016/j.jbc.2022.102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex phenomenon that requires coordination of numerous molecular and cellular changes to facilitate timely and efficient repair of the damaged tissue. Although many of these molecular pathways have been detailed, others remain to be elucidated. In the present work, we show for the first time, roles for the acetyltransferase TIP60 and nuclear receptor transcription factor PXR in this process, participating in wound healing by altering actin dynamics and cellular motility. We found that in response to wound-injury, TIP60 induces rapid formation of filopodia at the wounded cell front, leading to enhanced cell migration and faster closure of the wound. Further, qPCR analysis revealed heightened expression of Cdc42 and ROCK1 genes, key regulators involved in filopodia formation and actin reorganization, exclusively in TIP60-PXR-expressing cells upon wound-induction. We also performed ChIP assays to confirm the context-specific binding of TIP60 on the ROCK1 promoter and demonstrated that the TIP60 chromodomain is essential for loading of the TIP60–PXR complex onto the chromatin. Results from immunoprecipitation assays revealed that during the wounded condition, TIP60 alters the chromatin microenvironment by specifically acetylating histones H2B and H4, thereby modulating the expression of target genes. Overall, findings of this study show that TIP60 is a novel regulator of the wound healing process by regulating the expression of wound repair-related genes.
Collapse
Affiliation(s)
- Shraddha Dubey
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Bharti Jaiswal
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India.
| |
Collapse
|
22
|
Chang K, Majmudar H, Tandon R, Volin MV, Tiwari V. Induction of Filopodia During Cytomegalovirus Entry Into Human Iris Stromal Cells. Front Microbiol 2022; 13:834927. [PMID: 35450284 PMCID: PMC9018114 DOI: 10.3389/fmicb.2022.834927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Many viruses exploit thin projections of filopodia for cell entry and cell-to-cell spread. Using primary cultures of human iris stromal (HIS) cells derived from human eye donors, we report a significant increase in filopodia formation during human cytomegalovirus (HCMV) infection. Using confocal microscopy, we observed a large number of virions being frequently associated along the filopodia prior to cell infection. Depolymerization of actin filaments resulted in a significant inhibition of HCMV entry into HIS cell. Our results further revealed that the transient expression of HCMV envelope glycoprotein B (gB) triggers the induction of the filopodial system. Since gB is known to bind the diverse chains of heparan sulfate (HS), a comparative study was performed to evaluate the gB-mediated filopodial induction in cells expressing either wild-type HS and/or 3-O sulfated HS (3-OS HS). We found that cells co-expressing HCMV gB together with the 3-O sulfotranseferase-3 (3-OST-3) enzyme had a much higher and robust filopodia induction compared to cells co-expressing gB with wild-type HS. The above results were further verified by pre-treating HIS cells with anti-3-OS HS (G2) peptide and/or heparinase-I before challenging with HCMV infection, which resulted in a significant loss in the filopodial counts as well as decreased viral infectivity. Taken together, our findings highlight that HCMV entry into HIS cells actively modulates the actin cytoskeleton via coordinated actions possibly between gB and the 3-OS HS receptor to influence viral infectivity.
Collapse
Affiliation(s)
- Kenneth Chang
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Hardik Majmudar
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael V Volin
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, College of Graduate Studies, Chicago College of Osteopathic Medicine, and Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
23
|
Jaldin-Fincati J, Moussaoui S, Gimenez MC, Ho CY, Lancaster CE, Botelho R, Ausar F, Brookes R, Terebiznik M. Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages. Mol Microbiol 2022; 117:1173-1195. [PMID: 35344242 PMCID: PMC9321756 DOI: 10.1111/mmi.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Aluminum salts have been successfully utilized as adjuvants to enhance the immunogenicity of vaccine antigens since the 1930s. However, the cellular mechanisms behind the immune adjuvanticity effect of these materials in antigen‐presenting cells are poorly understood. In this study, we investigated the uptake and trafficking of aluminum oxy‐hydroxide (AlOOH), in RAW 264.7 murine and U‐937 human macrophages‐like cells. Furthermore, we determined the impact that the adsorption to AlOOH particulates has on the trafficking of a Bordetella pertussis vaccine candidate, the genetically detoxified pertussis toxin (gdPT). Our results indicate that macrophages internalize AlOOH by constitutive macropinocytosis assisted by the filopodial protrusions that capture the adjuvant particles. Moreover, we show that AlOOH has the capacity to nonspecifically adsorb IgG, engaging opsonic phagocytosis, which is a feature that may allow for more effective capture and uptake of adjuvant particles by antigen‐presenting cells (APCs) at the site of vaccine administration. We found that AlOOH traffics to endolysosomal compartments that hold degradative properties. Importantly, while we show that gdPT escapes degradative endolysosomes and traffics toward the retrograde pathway, as reported for the wild‐type pertussis toxin, the adsorption to AlOOH diverts gdPT to traffic to the adjuvant’s lysosome‐type compartments, which may be key for MHC‐II‐driven antigen presentation and activation of CD4+ T cell. Thus, our findings establish a direct link between antigen adsorption to AlOOH and the intracellular trafficking of antigens within antigen‐presenting cells and bring to light a new potential mechanism for aluminum adjuvancy. Moreover, the in‐vitro single‐cell approach described herein provides a general framework and tools for understanding critical attributes of other vaccine formulations.
Collapse
Affiliation(s)
- Javier Jaldin-Fincati
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Serene Moussaoui
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Maria Cecilia Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Cheuk Y Ho
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Charlene E Lancaster
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Roberto Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Fernando Ausar
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Roger Brookes
- BioProcess Research and Development, Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario M3R 3T4, Canada
| | - Mauricio Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
24
|
Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells. J Virol 2022; 96:e0184621. [PMID: 35285687 PMCID: PMC9006885 DOI: 10.1128/jvi.01846-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is the mosquito-borne enveloped flavivirus that causes microcephaly in neonates. While real-time imaging plays a critical role in dissecting viral biology, no fluorescent, genetically engineered ZIKV for single-particle tracking is currently available.
Collapse
|
25
|
SARS-CoV-2: Ultrastructural Characterization of Morphogenesis in an In Vitro System. Viruses 2022; 14:v14020201. [PMID: 35215794 PMCID: PMC8879486 DOI: 10.3390/v14020201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed—such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.
Collapse
|
26
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
27
|
Actin Polymerization Is Required for Filopodia Formation Supporting HSV-1 Entry into Activated T Cells. Curr Microbiol 2021; 79:23. [PMID: 34905091 DOI: 10.1007/s00284-021-02716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Enhanced HSV-1 production is found in activated T-lymphocytes, but the mechanism is still unknown. In this paper, the HSV-1 entry step in CD3+CD4-CD8-Jurkat T lymphocytes was investigated. Observation under electron microscopy revealed the level of filopodia formation on the surface of activated Jurkat cells was significantly higher than that of non-activated Jurkat cells especially after adding HSV-1 for 15 min. A significant increase of actin protein was demonstrated in HSV-1 infected, activated Jurkat cells compared to HSV-1 infected, non-activated Jurkat cells. After the cells were treated with 2.5 and 5 µg/mL cytochalasin D, an inhibitor of actin polymerization that causes depolymerization of actin's filamentous form, the actin protein was decreased significantly, resulting in an absence of filopodia formation. In summary, this is the first study revealing that HSV-1 induced filopodia formation through actin polymerization in activated T cells similar to epithelial, mucosal and neuronal cells. This phenomenon supported the virus entry resulting to increased yield of HSV-1 production.
Collapse
|
28
|
Ni H, Papoian GA. Membrane-MEDYAN: Simulating Deformable Vesicles Containing Complex Cytoskeletal Networks. J Phys Chem B 2021; 125:10710-10719. [PMID: 34461720 DOI: 10.1021/acs.jpcb.1c02336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plasma membrane defines the shape of the cell and plays an indispensable role in bridging intra- and extracellular environments. Mechanochemical interactions between plasma membrane and cytoskeleton are vital for cell biomechanics and mechanosensing. A computational model that comprehensively captures the complex, cell-scale cytoskeleton-membrane dynamics is still lacking. In this work, we introduce a triangulated membrane model that accounts for the membrane's elastic properties, as well as for membrane-filament steric interactions. The corresponding force-field was incorporated into the active biological matter simulation platform, MEDYAN ("mechanochemical dynamics of active networks"). Simulations using the new model shed light on how actin filament bundling affects generation of tubular membrane protrusions. In particular, we used membrane-MEDYAN simulations to investigate protrusion initiation and dynamics while varying geometries of filament bundles, membrane rigidities and local G-Actin concentrations. We found that the bundles' protrusion propensities sensitively depend on the synergy between bundle thickness and inclination angle at which the bundle approaches the membrane. The new model paves the way for simulations of biological systems involving intricate membrane-cytoskeleton interactions, such as those occurring at the leading edge and the cortex, eventually helping to uncover the fundamental principles underlying the active matter organization in the vicinity of the membrane.
Collapse
Affiliation(s)
- Haoran Ni
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Garegin A Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
29
|
Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H. Proteomes, kinases and signalling pathways in virus-induced filopodia, as potential antiviral therapeutics targets. Rev Med Virol 2021; 31:1-9. [PMID: 33314425 PMCID: PMC7883202 DOI: 10.1002/rmv.2202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Abdulhadi Sale Kumurya
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Jamilu Abubakar Bala
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
- Virology UnitDepartment of Pathology and MicrobiologyFaculty of Veterinary MedicineUniversity Putra MalaysiaSelangorMalaysia
| | - Hassan Yahaya
- Department of Medical Microbiology and ParasitologyFaculty of Medicine and Health ScienceUniversity Putra MalaysiaSelangorMalaysia
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Hayatu Saidu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| |
Collapse
|
30
|
Tiwari V, Koganti R, Russell G, Sharma A, Shukla D. Role of Tunneling Nanotubes in Viral Infection, Neurodegenerative Disease, and Cancer. Front Immunol 2021; 12:680891. [PMID: 34194434 PMCID: PMC8236699 DOI: 10.3389/fimmu.2021.680891] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The network of tunneling nanotubes (TNTs) represents the filamentous (F)-actin rich tubular structure which is connected to the cytoplasm of the adjacent and or distant cells to mediate efficient cell-to-cell communication. They are long cytoplasmic bridges with an extraordinary ability to perform diverse array of function ranging from maintaining cellular physiology and cell survival to promoting immune surveillance. Ironically, TNTs are now widely documented to promote the spread of various pathogens including viruses either during early or late phase of their lifecycle. In addition, TNTs have also been associated with multiple pathologies in a complex multicellular environment. While the recent work from multiple laboratories has elucidated the role of TNTs in cellular communication and maintenance of homeostasis, this review focuses on their exploitation by the diverse group of viruses such as retroviruses, herpesviruses, influenza A, human metapneumovirus and SARS CoV-2 to promote viral entry, virus trafficking and cell-to-cell spread. The later process may aggravate disease severity and the associated complications due to widespread dissemination of the viruses to multiple organ system as observed in current coronavirus disease 2019 (COVID-19) patients. In addition, the TNT-mediated intracellular spread can be protective to the viruses from the circulating immune surveillance and possible neutralization activity present in the extracellular matrix. This review further highlights the relevance of TNTs in ocular and cardiac tissues including neurodegenerative diseases, chemotherapeutic resistance, and cancer pathogenesis. Taken together, we suggest that effective therapies should consider precise targeting of TNTs in several diseases including virus infections.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Greer Russell
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Ananya Sharma
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Abstract
Macrophages are one of the major targets of Human Immunodeficiency virus 1 (HIV-1) and play crucial roles in viral dissemination and persistence during AIDS progression. Here, we reveal the dynamic podosome-mediated entry of HIV-1 into macrophages. Inhibition of podosomes prevented HIV-1 entry into macrophages, while stimulation of podosome formation promoted viral entry. Single-virus tracking revealed the temporal and spatial mechanism of the dynamic podosome-mediated viral entry process. The core and ring structures of podosomes played complex roles in viral entry. The HIV coreceptor, CCR5, was recruited to form specific clusters at the podosome ring, where it participated in viral entry. The podosome facilitated HIV-1 entry with a rotation mode triggered by dynamic actin. Our discovery of this novel HIV-1 entry route into macrophages, mediated by podosomes critical for cell migration and tissue infiltration, provides a new view of HIV infection and pathogenesis, which may assist in the development of new antiviral strategies.IMPORTANCEMacrophages are motile leukocytes and play critical roles in HIV-1 infection and AIDS progression. Podosomes, as small dynamic adhesion microdomains driven by the dynamic actin cytoskeleton, are mainly involved in cell migration of macrophages. Herein, we found that HIV-1 uses dynamic podosomes to facilitate its entry into macrophages. Single-virus imaging coupled with drug assays revealed the mechanism underlying the podosome-mediated route of HIV-1 entry into macrophages, including the dynamic relationship between the viral particles and the podosome core and ring structures, the CCR5 coreceptor. The dynamic podosome-mediated entry of HIV-1 into macrophages will be very significant for HIV-1 pathogenesis, especially for viral dissemination via macrophage migration and tissue infiltration. Thus, we report a novel HIV-1 entry route into macrophages mediated by podosomes, which extends our understanding of HIV infection and pathogenesis.
Collapse
|
32
|
Goodman KE, Hare JT, Khamis ZI, Hua T, Sang QXA. Exposure of Human Lung Cells to Polystyrene Microplastics Significantly Retards Cell Proliferation and Triggers Morphological Changes. Chem Res Toxicol 2021; 34:1069-1081. [PMID: 33720697 DOI: 10.1021/acs.chemrestox.0c00486] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microplastics in the environment produced by decomposition of globally increasing waste plastics have become a dominant component of both water and air pollution. To examine the potential toxicological effects of microplastics on human cells, the cultured human alveolar A549 cells were exposed to polystyrene microplastics (PS-MPs) of 1 and 10 μm diameter as a model of the environmental contaminants. Both sizes caused a significant reduction in cell proliferation but exhibited little cytotoxicity, as measured by the maintenance of cell viabilities determined by trypan blue staining and by Calcein-AM staining. The cell viabilities did not drop below 93% even at concentrations of PS-MPs as high as 100 μg/mL. Despite these high viabilities, further assays revealed a population level decrease in metabolic activity parallel in time with a dramatic decrease in proliferation rate in PS-MP exposed cells. Furthermore, phase contrast imaging of live cells at 72 h revealed major changes in the morphology of cells exposed to microplastics, as well as the uptake of multiple 1 μm PS-MPs into the cells. Confocal fluorescent microscopy at 24 h of exposure confirmed the incorporation of 1 μm PS-MPs. These disturbances at the proliferative and cytoskeletal levels of human cells lead us to propose that airborne polystyrene microplastics may have toxicologic consequences. This is the first report of exposure of human cells to an environmental contaminant resulting in the dual effects of inhibition of cell proliferation and major changes in cell morphology. Our results make clear that human exposure to microplastic pollution has significant consequence and potential for harm to humans.
Collapse
Affiliation(s)
- Kerestin E Goodman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joan T Hare
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
33
|
Dubich T, Dittrich A, Bousset K, Geffers R, Büsche G, Köster M, Hauser H, Schulz TF, Wirth D. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J Mol Med (Berl) 2021; 99:425-438. [PMID: 33484281 PMCID: PMC7900040 DOI: 10.1007/s00109-020-02020-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.
Collapse
Affiliation(s)
- Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Dittrich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristine Bousset
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Guntram Büsche
- Hematopathology Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence REBIRTH (EXC 62), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
34
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
35
|
Jarsch IK, Gadsby JR, Nuccitelli A, Mason J, Shimo H, Pilloux L, Marzook B, Mulvey CM, Dobramysl U, Bradshaw CR, Lilley KS, Hayward RD, Vaughan TJ, Dobson CL, Gallop JL. A direct role for SNX9 in the biogenesis of filopodia. J Cell Biol 2020; 219:151579. [PMID: 32328641 PMCID: PMC7147113 DOI: 10.1083/jcb.201909178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia.
Collapse
Affiliation(s)
- Iris K Jarsch
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan R Gadsby
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Annalisa Nuccitelli
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Julia Mason
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hanae Shimo
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ludovic Pilloux
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bishara Marzook
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Claire M Mulvey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ulrich Dobramysl
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Charles R Bradshaw
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tristan J Vaughan
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Claire L Dobson
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Jennifer L Gallop
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Gözen I, Dommersnes P. Biological lipid nanotubes and their potential role in evolution. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2843-2862. [PMID: 33224439 PMCID: PMC7666715 DOI: 10.1140/epjst/e2020-000130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The membrane of cells and organelles are highly deformable fluid interfaces, and can take on a multitude of shapes. One distinctive and particularly interesting property of biological membranes is their ability to from long and uniform nanotubes. These nanoconduits are surprisingly omnipresent in all domains of life, from archaea, bacteria, to plants and mammals. Some of these tubes have been known for a century, while others were only recently discovered. Their designations are different in different branches of biology, e.g. they are called stromule in plants and tunneling nanotubes in mammals. The mechanical transformation of flat membranes to tubes involves typically a combination of membrane anchoring and external forces, leading to a pulling action that results in very rapid membrane nanotube formation - micrometer long tubes can form in a matter of seconds. Their radius is set by a mechanical balance of tension and bending forces. There also exists a large class of membrane nanotubes that form due to curvature inducing molecules. It seems plausible that nanotube formation and functionality in plants and animals may have been inherited from their bacterial ancestors during endosymbiotic evolution. Here we attempt to connect observations of nanotubes in different branches of biology, and outline their similarities and differences with the aim of providing a perspective on their joint functions and evolutionary origin.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318 Norway
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315 Norway
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 412 96 Sweden
| | - Paul Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
37
|
Abstract
Most severe cases with COVID-19, especially those with pulmonary failure, are not a consequence of viral burden and/or failure of the 'adaptive' immune response to subdue the pathogen by utilizing an adequate 'adaptive' immune defense. Rather it is a consequence of immunopathology, resulting from imbalanced innate immune response, which may not be linked to pathogen burden at all. In fact, it might be described as an autoinflammatory disease. The Kawasaki-like disease seen in children with SARS-CoV-2 exposure might be another example of similar mechanism.
Collapse
Affiliation(s)
- Chaim Oscar Jacob
- Department of Medicine, Division of Rheumatology and Immunology, Keck School of Medicine, University of Southern California, 2110 Zonal Ave, HMR 705 Los Angeles, CA, USA.
| |
Collapse
|
38
|
DnaJA4 is involved in responses to hyperthermia by regulating the expression of F-actin in HaCaT cells. Chin Med J (Engl) 2020; 134:456-462. [PMID: 32925288 PMCID: PMC7909315 DOI: 10.1097/cm9.0000000000001064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Hyperthermia in combination with DnaJA4-knockout (KO) obviously affects the anti-viral immunity of HaCaT cells. The mechanisms of this process are not yet fully explored. However, it is known that DnaJA4 interacts with actin cytoskeleton after hyperthermia. Our aim was to investigate the effects of DnaJA4 on F-actin in HaCaT cells following hyperthermia. Methods Wild-type (WT) and DnaJA4-KO HaCaT cells were isolated at either 37°C (unheated) or 44°C (hyperthermia) for 30 min followed by testing under conditions of 37°C and assessing at 6, 12, and 24 h after hyperthermia. The cytoskeleton was observed with immunofluorescence. Flow cytometry and Western blotting were used to detect the expression of F-actin and relevant pathway protein. Results DnaJA4-KO and hyperthermia changed the cytoskeleton morphology of HaCaT cells. F-actin expression levels were elevated in DnaJA4-KO cells compared with WT cells (6364.33 ± 989.10 vs. 4272.67 ± 918.50, P < 0.05). In response to hyperthermia, F-actin expression levels of both WT and DnaJA4-KO cells showed a tendency to decrease followed by an obvious recovery after hyperthermia (WT cells: unheated vs. 6 h after hyperthermia or 24 h after hyperthermia: 0.34 ± 0.02 vs. 0.24 ± 0.01, 0.31 ± 0.01, P < 0.001, P < 0.05; DnaJA4-KO cells: unheated vs. 6 h after hyperthermia or 24 h after hyperthermia: 0.44 ± 0.01 vs. 0.30 ± 0.01, 0.51 ± 0.02, P < 0.001, P < 0.01). WT cells restored to baseline levels observed in the unheated condition, while DnaJA4-KO cells exceeded baseline levels in the recovery. As the upstream factors of F-actin, a similar profile in rho-associated serine/threonine kinase 1 (ROCK 1) and RhoA expressions was observed after hyperthermia. While E-cadherin expression was decreased in response to hyperthermia, it was increased in DnaJA4-KO cells compared with WT cells. Conclusions Hyperthermia affects the expression levels of F-actin in HaCaT cells. DnaJA4 knockout increases the expression of F-actin in HaCaT cells after hyperthermia. DnaJA4 regulates the expressions of F-actin and the related pathway proteins in response to hyperthermia in HaCaT cells.
Collapse
|
39
|
Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y. Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer's disease. Crit Rev Microbiol 2020; 46:381-396. [PMID: 32715819 DOI: 10.1080/1040841x.2020.1794789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown. Of note, HSV-1 manipulates the activity of cofilin-1 to ensure their efficient infection in neuron cells. Cofilin-1, the main regulator of actin cytoskeleton reorganization, is implicating for the plastic of dendritic spines and axon regeneration of neuronal cells. Moreover, dysfunction of cofilin-1 is observed in most AD patients, as well as in mice with AD and ageing. Further, inhibition of cofilin-1 activity ameliorates the host cognitive impairment in an animal model of AD. Together, dysregulation of cofilin-1 led by HSV-1 infection is a potential link between HSV-1 and AD. Herein, we critically summarize the role of cofilin-1-mediated actin dynamics in both HSV-1 infection and AD, respectively. We also propose several hypotheses regarding the connecting roles of cofilin-1 dysregulation in HSV-1 infection and AD. Our review provides a foundation for future studies targeting individuals carrying HSV-1 in combination with cofilin-1 to promote a more individualised approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yun Wang
- Department of Obstetrics and gynecology, The First affiliated hospital of Jinan University, Guangzhou, PR China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yuan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| |
Collapse
|
40
|
Differential Growth Characteristics of Crimean-Congo Hemorrhagic Fever Virus in Kidney Cells of Human and Bovine Origin. Viruses 2020; 12:v12060685. [PMID: 32630501 PMCID: PMC7354505 DOI: 10.3390/v12060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.
Collapse
|
41
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
42
|
Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D, Pelletier R, Zijlstra A, Ponik SM, Weaver AM. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat Commun 2020; 11:2092. [PMID: 32350252 PMCID: PMC7190671 DOI: 10.1038/s41467-020-15747-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles called exosomes affect multiple autocrine and paracrine cellular phenotypes. Understanding the function of exosomes requires a variety of tools, including live imaging. Our previous live-cell reporter, pHluorin-CD63, allows dynamic subcellular monitoring of exosome secretion in migrating and spreading cells. However, dim fluorescence and the inability to make stably-expressing cell lines limit its use. We incorporated a stabilizing mutation in the pHluorin moiety, M153R, which now exhibits higher, stable expression in cells and superior monitoring of exosome secretion. Using this improved construct, we visualize secreted exosomes in 3D culture and in vivo and identify a role for exosomes in promoting leader-follower behavior in 2D and 3D migration. Incorporating an additional non-pH-sensitive red fluorescent tag allows visualization of the exosome lifecycle, including multivesicular body (MVB) trafficking, MVB fusion, exosome uptake and endosome acidification. This reporter will be a useful tool for understanding both autocrine and paracrine roles of exosomes.
Collapse
Affiliation(s)
- Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ariana von Lersner
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge Guerrero
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan S Krystofiak
- Vanderbilt University Cell Imaging Shared Resource, Nashville, TN, USA
| | - David Inman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Roxanne Pelletier
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andries Zijlstra
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
43
|
Ingle NP, Hexum JK, Reineke TM. Polyplexes Are Endocytosed by and Trafficked within Filopodia. Biomacromolecules 2020; 21:1379-1392. [PMID: 32118406 DOI: 10.1021/acs.biomac.9b01610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The improvement of nonviral gene therapies relies to a large extent on understanding many fundamental physical and biological properties of these systems. This includes interactions of synthetic delivery systems with the cell and mechanisms of trafficking delivery vehicles, which remain poorly understood on both the extra- and intracellular levels. In this study, the mechanisms of cellular internalization and trafficking of polymer-based nanoparticle complexes consisting of polycations and nucleic acids, termed polyplexes, have been observed in detail at the cellular level. For the first time evidence has been obtained that filopodia, actin projections that radiate out from the surface of cells, serve as a route for the direct endocytosis of polyplexes. Confocal microscopy images demonstrated that filopodia on HeLa cells detect external polyplexes and extend into the extracellular milieu to internalize these particles. Polyplexes are observed to be internalized into membrane-bound vesicles (i.e., clathrin-coated pits and caveolae) directly within filopodial projections and are subsequently transported along actin to the main cell body for potential delivery of the nucleic acids to the nucleus. The kinetics and speed of polyplex trafficking have also been measured. The polyplex-loaded vesicles were also discovered to traffic between two cells within filopodial bridges. These findings provide novel insight into the early events of cellular contact with polyplexes through filopodial-based interactions in addition to endocytic vesicle trafficking-an important fundamental discovery to enable advancement of nonviral gene editing, nucleic acid therapies, and biomedical materials.
Collapse
Affiliation(s)
- Nilesh P Ingle
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Jiang Y, Wang L, Zhang P, Liu X, Di H, Yang J, Liu SL, Pang DW, Liu D. Chemoenzymatic Labeling of Extracellular Vesicles for Visualizing Their Cellular Internalization in Real Time. Anal Chem 2020; 92:2103-2111. [PMID: 31876137 DOI: 10.1021/acs.analchem.9b04608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are intercellular communicators that are heavily implicated in diverse pathological processes. However, it is poorly understood how EVs interact with recipient cells due to the lack of appropriate tracking techniques. Here, we report a robust chemoenzymatic labeling technique for visualizing the internalization process of EVs into target cells in real time. This method uses phospholipase D (PLD) to catalyze the in situ exchange of choline by alkyne in the native EV phosphatidylcholine. Subsequent alkyne-azide click chemistry allows conjugation of Cy5 dyes for visualizing EVs internalization by confocal fluorescence microscopy. The fluorescent labeling of EVs was accomplished in an efficient and biocompatible way, without affecting both the morphology and biological activity of EVs. We applied this chemoenzymatic labeling strategy to monitor the cellular uptake of cancer cell-derived EVs in real time and to further reveal multiple internalization mechanisms. This robust, biocompatible labeling strategy provides an essential tool for EV-related studies ranging from chemical biology to drug delivery.
Collapse
Affiliation(s)
- Ying Jiang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Lei Wang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Pengjuan Zhang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Xuehui Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Shu-Lin Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dai-Wen Pang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| |
Collapse
|
45
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
46
|
Furnon W, Fender P, Confort MP, Desloire S, Nangola S, Kitidee K, Leroux C, Ratinier M, Arnaud F, Lecollinet S, Boulanger P, Hong SS. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses 2019; 11:v11100901. [PMID: 31569658 PMCID: PMC6832617 DOI: 10.3390/v11100901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.
Collapse
Affiliation(s)
- Wilhelm Furnon
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Pascal Fender
- Institut de Biologie Structurale, CNRS UMR 5075, 38042 Grenoble, France.
| | - Marie-Pierre Confort
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sophie Desloire
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sawitree Nangola
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Kuntida Kitidee
- Center for Research & Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Caroline Leroux
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Maxime Ratinier
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Frédérick Arnaud
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Sylvie Lecollinet
- UMR-1161 Virology, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL on Equine Diseases, 94704 Maisons-Alfort, France.
| | - Pierre Boulanger
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Saw-See Hong
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, Cedex 13, 75654 Paris, France.
| |
Collapse
|
47
|
Snape N, Li D, Wei T, Jin H, Lor M, Rawle DJ, Spann KM, Harrich D. The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virol J 2018; 15:182. [PMID: 30477508 PMCID: PMC6260765 DOI: 10.1186/s12985-018-1091-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Cellular protein eukaryotic translation elongation factor 1A (eEF1A) is an actin binding protein that plays a role in the formation of filamentous actin (F-actin) bundles. F-Actin regulates multiple stages of respiratory syncytial virus (RSV) replication including assembly and budding. Our previous study demonstrated that eEF1A knock-down significantly reduced RSV replication. Here we investigated if the eEF1A function in actin bundle formation was important for RSV replication and release. To investigate this, eEF1A function was impaired in HEp-2 cells by either knock-down of eEF1A with siRNA, or treatment with an eEF1A inhibitor, didemnin B (Did B). Cell staining and confocal microscopy analysis showed that both eEF1A knock-down and treatment with Did B resulted in disruption of cellular stress fiber formation and elevated accumulation of F-actin near the plasma membrane. When treated cells were then infected with RSV, there was also reduced formation of virus-induced cellular filopodia. Did B treatment, similarly to eEF1A knock-down, reduced the release of infectious RSV, but unlike eEF1A knock-down, did not significantly affect RSV genome replication. The lower infectious virus production in Did B treated cells also reduced RSV-induced cell death. In conclusion, the cellular factor eEF1A plays an important role in the regulation of F-actin stress fiber formation required for RSV assembly and release.
Collapse
Affiliation(s)
- Natale Snape
- Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Ting Wei
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Daniel J. Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Qld, St. Lucia, 4072 Australia
| | - Kirsten M. Spann
- School of Biomedical Science and Institute of Health and Biomedical Innovation at the Centre for Children’s Health Research, Queensland University of Technology, Qld, Brisbane, 4101 Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| |
Collapse
|
48
|
Kaltenbach DD, Jaishankar D, Hao M, Beer JC, Volin MV, Desai UR, Tiwari V. Sulfotransferase and Heparanase: Remodeling Engines in Promoting Virus Infection and Disease Development. Front Pharmacol 2018; 9:1315. [PMID: 30555321 PMCID: PMC6282075 DOI: 10.3389/fphar.2018.01315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
An extraordinary binding site generated in heparan sulfate (HS) structures, during its biosynthesis, provides a unique opportunity to interact with multiple protein ligands including viral proteins, and therefore adds tremendous value to this master molecule. An example of such a moiety is the sulfation at the C3 position of glucosamine residues in HS chain via 3-O sulfotransferase (3-OST) enzymes, which generates a unique virus-cell fusion receptor during herpes simplex virus (HSV) entry and spread. Emerging evidence now suggests that the unique patterns in HS sulfation assist multiple viruses in invading host cells at various steps of their life cycles. In addition, sulfated-HS structures are known to assist in invading host defense mechanisms and initiating multiple inflammatory processes; a critical event in the disease development. All these processes are detrimental for the host and therefore raise the question of how HS-sulfation is regulated. Epigenetic modulations have been shown to be implicated in these reactions during HSV infection as well as in HS modifying enzyme sulfotransferases, and therefore pose a critical component in answering it. Interestingly, heparanase (HPSE) activity is shown to be upregulated during virus infection and multiple other diseases assisting in virus replication to promote cell and tissue damage. These phenomena suggest that sulfotransferases and HPSE serve as key players in extracellular matrix remodeling and possibly generating unique signatures in a given disease. Therefore, identifying the epigenetic regulation of OST genes, and HPSE resulting in altered yet specific sulfation patterns in HS chain during virus infection, will be a significant a step toward developing potential diagnostic markers and designing novel therapies.
Collapse
Affiliation(s)
- Dominik D Kaltenbach
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Dinesh Jaishankar
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Meng Hao
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Jacob C Beer
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
49
|
Young LE, Latario CJ, Higgs HN. Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly. J Cell Sci 2018; 131:131/21/jcs220814. [PMID: 30373894 DOI: 10.1242/jcs.220814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Filopodia are actin-dependent finger-like structures that protrude from the plasma membrane. Actin filament barbed-end-binding proteins localized to filopodial tips are key to filopodial assembly. Two classes of barbed-end-binding proteins are formins and Ena/VASP proteins, and both classes have been localized to filopodial tips in specific cellular contexts. Here, we examine the filopodial roles of the FMNL formins and Ena/VASP proteins in U2OS cells. FMNL3 suppression reduces filopodial assembly by 90%, and FMNL3 is enriched at >95% of filopodial tips. Suppression of VASP or Mena (also known as ENAH) reduces filopodial assembly by >75%. However, VASP and Mena do not display consistent filopodial tip localization, but are enriched in focal adhesions (FAs). Interestingly, >85% of FMNL3-containing filopodia are associated with FAs. Two situations increase Ena/VASP filopodial localization: (1) expression of myosin-X, and (2) actively spreading cells. In spreading cells, filopodia often mark sites of nascent adhesions. Interestingly, VASP suppression in spreading cells causes a significant increase in adhesion assembly at filopodial tips. This work demonstrates that, in U2OS cells, Ena/VASP proteins play roles in filopodia beyond those at filopodial tips.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lorna E Young
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Casey J Latario
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| |
Collapse
|
50
|
Dubois F, Jean-Jacques B, Roberge H, Bénard M, Galas L, Schapman D, Elie N, Goux D, Keller M, Maille E, Bergot E, Zalcman G, Levallet G. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Commun Signal 2018; 16:66. [PMID: 30305100 PMCID: PMC6180646 DOI: 10.1186/s12964-018-0276-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND By allowing intercellular communication between cells, tunneling nanotubes (TNTs) could play critical role in cancer progression. If TNT formation is known to require cytoskeleton remodeling, key mechanism controlling their formation remains poorly understood. METHODS The cells of human bronchial (HBEC-3, A549) or mesothelial (H2452, H28) lines are transfected with different siRNAs (inactive, anti-RASSF1A, anti-GEFH1 and / or anti-Rab11). At 48 h post-transfection, i) the number and length of the nanotubes per cell are quantified, ii) the organelles, previously labeled with specific tracers, exchanged via these structures are monitored in real time between cells cultured in 2D or 3D and in normoxia, hypoxia or in serum deprivation condition. RESULTS We report that RASSF1A, a key-regulator of cytoskeleton encoded by a tumor-suppressor gene on 3p chromosome, is involved in TNTs formation in bronchial and pleural cells since controlling proper activity of RhoB guanine nucleotide exchange factor, GEF-H1. Indeed, the GEF-H1 inactivation induced by RASSF1A silencing, leads to Rab11 accumulation and subsequent exosome releasing, which in turn contribute to TNTs formation. Finally, we provide evidence involving TNT formation in bronchial carcinogenesis, by reporting that hypoxia or nutriment privation, two almost universal conditions in human cancers, fail to prevent TNTs induced by the oncogenic RASSF1A loss of expression. CONCLUSIONS This finding suggests for the first time that loss of RASSF1A expression could be a potential biomarker for TNTs formation, such TNTs facilitating intercellular communication favoring multistep progression of bronchial epithelial cells toward overt malignancy.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Bastien Jean-Jacques
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Hélène Roberge
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France
| | - Magalie Bénard
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Damien Schapman
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Nicolas Elie
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Didier Goux
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Maureen Keller
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Elodie Maille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service de Pneumologie, CHU de Caen, F-14033, Caen, France
| | - Gérard Zalcman
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France.,Service d'oncologie thoracique, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France. .,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France. .,Service D'Anatomie et Cytologie Pathologique, Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, CHU de Caen, Avenue de la côte de Nacre, 14032, Caen, France.
| |
Collapse
|