1
|
Zhang X, Liu X, Xie K, Pan Y, Liu F, Hou F. Effects of different fiber levels of energy feeds on rumen fermentation and the microbial community structure of grazing sheep. BMC Microbiol 2025; 25:180. [PMID: 40165064 PMCID: PMC11956436 DOI: 10.1186/s12866-024-03644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Rumen microbial community structure and stability are very important for ruminant health, growth and development, and livestock product yield. Dietary composition and nutritional structure affect microbial diversity and richness. The purpose of this study was to evaluate the effects of different fiber levels of energy feed on the rumen microflora and fermentation function of grazing sheep in salinized sown pasture, to reveal the response of the main microflora of sheep rumen at the phylum and genus levels to different fiber levels of energy feed and to analyze the internal mechanism to provide a reference for the selection of energy feed and the improvement of the production performance of grazing livestock. RESULTS The fiber level of energy feed affects the rumen fermentation and rumen microbial community structure of grazing sheep. Low-fiber-energy feeds significantly increased the relative abundance of Actinobacteria, while the relative abundances of Cyanobacteria, Ruminococcaceae_UCG_010, Ruminococcaceae_NK4A214_group, and Elusimicrobium significantly decreased, adjusting the relationship between the flora toward cooperation. High-fiber-energy feeds significantly increased the concentration of VFAs, significantly decreased the relative abundances of Proteobacteria, Ruminococcaceae_NK4A214_group and Rikenellaceae_RC9_gut_group, adjusted the relationship between the flora to compete, and promoted the enrichment of metabolic pathways such as "Protein Digestion and Absorption," "Nitrogen Metabolism," "Starch and Sucrose Metabolism," and "Degradation of Other Sugars." CONCLUSIONS Supplementary feeding of high and low fiber energy feeds reduced the pH value of rumen fluid and the richness and diversity of microorganisms in grazing sheep, reduced the relative abundance of some harmful microorganisms, affected the metabolic activities of some fiber-digesting bacteria, regulated the interaction and competition between bacteria, increased the content of volatile fatty acids (VFAs) and the relative abundance of metabolic-related microorganisms in the supplementary feeding group, and enriched the metabolic-related pathways. However, further understand the mechanism of the effect of fiber level on the rumen of sheep, it is necessary to conduct in-depth analysis using research methods such as transcriptomics, proteomics and metabolomics.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xulei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Kaili Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yueting Pan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fuyao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
- , Lanzhou, P. R. China.
| |
Collapse
|
2
|
Tardiolo G, La Fauci D, Riggio V, Daghio M, Di Salvo E, Zumbo A, Sutera AM. Gut Microbiota of Ruminants and Monogastric Livestock: An Overview. Animals (Basel) 2025; 15:758. [PMID: 40076043 PMCID: PMC11899476 DOI: 10.3390/ani15050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The diversity and composition of the gut microbiota are widely recognized as fundamental factors influencing the well-being and productivity of domestic animals. Advancements in sequencing technologies have revolutionized studies in this research field, allowing for deeper insights into the composition and functionality of microbiota in livestock. Ruminants and monogastric animals exhibit distinct digestive systems and microbiota characteristics: ruminants rely on fermentation, while monogastrics use enzymatic digestion, and monogastric animals have simpler stomach structures, except for horses and rabbits, where both processes coexist. Understanding the gut microbiota's impact and composition in both animal types is essential for optimizing production efficiency and promoting animal health. Following this perspective, the present manuscript review aims to provide a comprehensive overview of the gut microbiota in ruminants (such as cattle, sheep, and goats) and monogastric animals (including horses, pigs, rabbits, and chickens).
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Deborah La Fauci
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK;
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Eleonora Di Salvo
- Department of Biomedical, Dental Sciences, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Anna Maria Sutera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
3
|
Gebeyew K, Mi H, Du R, Gao M, Diba D, Tang S, He Z, Tan Z. Wheat straw and alfalfa hay alone or combined in a high-concentrate diet alters microbial-host interaction in the rumen of lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:444-457. [PMID: 40034457 PMCID: PMC11875146 DOI: 10.1016/j.aninu.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/02/2024] [Accepted: 08/23/2024] [Indexed: 03/05/2025]
Abstract
The inclusion of various forages in a normal forage-to-concentrate ratio has widely been reported to reveal the changes that occur in the foregut tissues. However, the mechanism by which the wheat straw, alfalfa hay, or both alter the orchestrated crosstalk of microbiome and host-transcriptome in the rumen of lambs fed a high-concentrate diet is elusive. Sixty-three Hulunbuir lambs were randomly allotted to 3 dietary groups, and each dietary group had 3 pens with 7 lambs. The lambs were fed high-concentrate diets (70%) supplemented with either 30% wheat straw (30S), a mixture of 15% alfalfa hay and 15% wheat straw (30M), or 30% alfalfa hay (30A) over a 2-week adaptation period and a 12-week formal trial. Compared with the 30S and 30A groups, the 30M group had greater (P < 0.05) levels of plasma glucagon-like peptide (GLP-2), interleukin-2 (IL-2). Humoral immunity showed a tendency to increase in the 30M group, as evidenced by the greater levels of plasma immunoglobulins (Ig) A and IgG (P > 0.05). The 16S rRNA result showed that the abundance of Lachnospiraceae (NK3A20 group and unclassified), Olsenella, Shuttleworthia, and Succiniclasticum were enriched in the 30M group. Meanwhile, the abundances of Ruminococcaceae NK4A214 and prevetolla_7 were enriched in 30S and 30A, respectively. The RNA-seq identified 35 shared differentially expressed genes (DEGs) between the "30S vs. 30M" and "30S vs. 30A," enriched in lipid metabolism pathways, including glycerophospholipid and arachidonic acid metabolism. The weighted gene co-expression network analysis results revealed that the expression of genes in the darkred (194 genes) and darkgreen (134 genes) modules showed a strong positive correlation with phenotypic traits and bacterial genera, respectively. The genes in the darkgreen module were involved in carbohydrate, lipid, and amino acid metabolism and showed a wide range of associations with Prevotella_7, Shuttleworthia, and Succiniclasticum, indicating that ruminal microbes might act as a vital driver in the microbiome-host interaction, likely through fermentation of end-products or metabolites. In conclusion, the results indicate that microbiome enrichment in response to feeding wheat straw and alfalfa hay might drive microbiome-host crosstalk to regulate rumen function in lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Diriba Diba
- Department of Animal Sciences, Faculty of Agriculture, Wollega University, Ethiopia
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wolfe AR, Narciso MHPM, Uwiera RRE, Laarman AH. Effects of ruminal short-chain fatty acid concentration and pH on histology, hematology, and inflammation in cannulated Holstein dairy calves. J Dairy Sci 2025; 108:2070-2082. [PMID: 39662804 DOI: 10.3168/jds.2024-25589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Optimizing rumen development is key to preparing calves for weaning; however, it is unclear what effect rumen development has on calf health via ruminal infusion. This study investigated the effects of ruminal short-chain fatty acid (SCFA) concentrations and pH on hematology, gut morphology, and inflammation of liver and rumen tissues in dairy calves. Holstein calves (n = 32) had the rumen cannulated within the first week of life and at wk 2 were blocked by BW and randomly assigned in a 2 × 2 factorial arrangement of treatments. The treatments included 2 different SCFA concentrations (10 vs. 285 mM) and pH levels (5.2 vs. 6.2), yielding 4 treatment groups: low SCFA, low pH (LS-LP); low SCFA, high pH (LS-HP); high SCFA, low pH (HS-LP); and high SCFA, high pH (HS-HP). On wk 3, 5, and 7, calves underwent a 4-h reticulorumen wash procedure with a physiological buffer containing the various treatments. Blood samples were collected weekly after feeding. Rumen biopsies were taken after each infusion, and liver and rumen samples were harvested at necropsy at wk 7. Data were analyzed with repeated measures, using week, SCFA, and pH as fixed effects. Low rumen pH increased respiration rate, but no other changes in clinical parameters were observed. No differences were detected in red blood cells or platelet numbers. Total white blood cell numbers decreased in the LS-LP group from wk 5 to 7 but increased in the HS-LP group along with hemoglobin and the hematocrit during the same period. Cortisol and BHB levels were unchanged by treatment or time, whereas haptoglobin decreased over time regardless of treatment. Calf liver morphology was unaffected by treatment; ruminal tissue changes associated with epithelial cell sloughing tended to increase with low SCFA, and mucosal eosinophil infiltration increased with high SCFA. Gene expression was unchanged by treatment in both rumen (barrier function and inflammation) and liver (inflammation). Overall, the data demonstrate that stress and inflammatory responses can be affected by changing rumen environments. Notably, these changes are transient as values returned to pretreatment baseline levels after a period as short as a week.
Collapse
Affiliation(s)
- A R Wolfe
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - M H P M Narciso
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - R R E Uwiera
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - A H Laarman
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
5
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
6
|
Golder HM, Lean IJ. Invited review: Ruminal acidosis and its definition-A critical review. J Dairy Sci 2024; 107:10066-10098. [PMID: 39218070 DOI: 10.3168/jds.2024-24817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Ruminal acidosis occurs as a continuum of disorders, stemming from ruminal dysbiosis and disorders of metabolism, of varying severity. The condition has a marked temporal dynamic expression, resulting in cases expressing quite different rumen concentrations of VFA, lactic acid, ammonia, and rumen pH over time. Clinical ruminal acidosis is an important condition of cattle and subclinical ruminal acidosis (SRA) is very prevalent in many dairy populations, with estimates between 10% and 26% of cows in early lactation. Estimates of the duration of a case suggest that the lactational incidence of the condition may be as high as 500 cases per 100 cows in the first 100 d of lactation. Historical confusion about the etiology and pathogenesis of ruminal acidosis led to definitions that are not fit for purpose, as acidic ruminal conditions solely characterized by ruminal pH determination at a single point fail to reflect the complexity of the condition. Use of a model based on integrated ruminal measures, including VFA, ammonia, lactic acid, and pH, for evaluating ruminal acidosis is fit for purpose, as indicated by meeting postulates for assessing metabolic disease, but requires a method to simplify application in the field. Although it is likely that this model, which we have termed the Bramley acidosis model (BAM), will be refined, the critical value in the model is that it demonstrates that ruminal acidosis is much more than ruminal pH. Disease, milk yield, and milk composition are more associated with the BAM than rumen pH alone. Two single VFA, propionate and valerate, are sensitive and specific for SRA, especially when compared with rumen pH. Even with the use of such a model, astute evaluations of the condition, whether in experimental or field circumstances, will be aided by ancillary measures that can be used in parallel or in series to enhance diagnosis and interpretation. Sensing methods, including rumination detection, behavior, milk analysis, and passive analysis of rumen function, have the potential to improve the detection of SRA; however, these may advance more rapidly if SRA is defined more broadly than by ruminal pH alone.
Collapse
Affiliation(s)
- H M Golder
- Scibus, Camden, NSW 2570 Australia; Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - I J Lean
- Scibus, Camden, NSW 2570 Australia; Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia.
| |
Collapse
|
7
|
Maynez-Perez A, Jahuey-Martínez FJ, Martínez-Quintana JA, Hume ME, Anderson RC, Corral-Luna A, Rodríguez-Almeida FA, Castillo-Castillo Y, Felix-Portillo M. The Rumen Microbiome Composition of Raramuri Criollo and European Cattle in an Extensive System. Microorganisms 2024; 12:2203. [PMID: 39597592 PMCID: PMC11596369 DOI: 10.3390/microorganisms12112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Understanding the relationship between Raramuri Criollo cattle (RC) and their microbial ruminal ecosystem will help identify advantageous characteristics of adapted cattle as alternatives to achieve sustainable beef production systems. Our objective was to characterize the rumen microbiome of RC in comparison to Angus and Hereford breeds (European, E) and the cross between them (E × RC). Ruminal fluid was collected from 63 cows in their second productive cycle after grazing in the same paddock for 45 d, in the dry (n = 28) and rain (n = 35) seasons. DNA from ruminal fluid was isolated for 16s rRNA gene next-generation sequencing. The data were analyzed with QIIME2 and compared against the SILVA 16s rRNA database. Beta diversity was different (p < 0.05) between RC and E in both seasons. A microbial core was represented by the most abundant phyla. Planctomycetes and Spirochaetes represented above 1% in the rain season and below 1% in the dry one, whereas Euryarchaeota was below 1% and around 3%, respectively. LEfSe analysis identified differentiated (p < 0.05) key microbial groups that explain the differences between lineages at different taxonomic levels, reflecting the ability of the rumen ecosystem of RC cattle to adapt to hostile environmental conditions by having microbial groups specialized in the degradation of highly fibrous content.
Collapse
Affiliation(s)
- Adrian Maynez-Perez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Francisco J. Jahuey-Martínez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - José A. Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Michael E. Hume
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Agustín Corral-Luna
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Felipe A. Rodríguez-Almeida
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Yamicela Castillo-Castillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| |
Collapse
|
8
|
Zhang K, Teng Z, Meng Q, Liu S, Yuan L, Fu T, Zhang N, Gao T. Dynamics of Fermentation Parameters and Bacterial Community in Rumen of Calves During Dietary Protein Oscillation. Microorganisms 2024; 12:2123. [PMID: 39597513 PMCID: PMC11596580 DOI: 10.3390/microorganisms12112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Dietary crude protein concentration oscillation can improve the nitrogen utilization efficiency of ruminants. However, little is known about the dynamic changes in microbiota and fermentation in the rumen of calves during the oscillation period. In this study, six calves were fed an oscillating diet at 2-day intervals, including a high-protein diet (HP) and a low-protein diet (LP). The rumen fermentation parameters, plasma urea-N concentration, and rumen bacterial diversity were characterized throughout the oscillation period. The concentrations of volatile fatty acids, NH3-N, and plasma urea-N in rumen changed significantly with an oscillating diet. The abundance of Prevotella_1, Selenomonadales, Succiniclasticum, Clostridiales, Ruminococcaceae, Lachnospiraceae, and Rikenellaceae_RC9_gut_group showed significant changes with diet. Prevotella_1 was positively correlated, and Lachnospiraceae_AC2044_group and Saccharofermentans were negatively correlated with NH3-N. The abundance of Amino Acid Metabolism, Metabolism of Other Amino Acids, and Glycan Biosynthesis and Metabolism pathways, annotated by bacterial functional genes, decreased when the diet changed from HP to LP. The abundance of the Carbohydrate Metabolism pathway increased after the two dietary changes. In conclusion, the plasma urea-N concentration was not as sensitive and quick to adapt to diet changes as the rumen fermentation parameters. Rumen bacteria were responsible for increasing the nitrogen utilization efficiency of calves fed an oscillating diet.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qing Meng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shuai Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liping Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ningning Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
9
|
Guo J, Zhang Z, Guan LL, Zhou M, Yoon I, Khafipour E, Plaizier JC. Postbiotics from Saccharomyces cerevisiae fermentation stabilize rumen solids microbiota and promote microbial network interactions and diversity of hub taxa during grain-based subacute ruminal acidosis (SARA) challenges in lactating dairy cows. Front Microbiol 2024; 15:1409659. [PMID: 39220041 PMCID: PMC11362103 DOI: 10.3389/fmicb.2024.1409659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Background High-yielding dairy cows are commonly fed high-grain rations. However, this can cause subacute ruminal acidosis (SARA), a metabolic disorder in dairy cows that is usually accompanied by dysbiosis of the rumen microbiome. Postbiotics that contain functional metabolites provide a competitive niche for influential members of the rumen microbiome, may stabilize and promote their populations, and, therefore, may attenuate the adverse effects of SARA. Methods This study used a total of 32 rumen-cannulated lactating dairy cows, which were randomly assigned into four treatments: no SCFP (control), 14 g/d Original XPC (SCFPa), 19 g/d NutriTek (SCFPb-1X), and 38 g/d NutriTek (SCFPb-2X) (Diamond V, Cedar Rapids, IA) from 4 weeks before until 12 weeks after parturition. Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% dry matter of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. The DNA of rumen solids digesta was extracted and subjected to V3-V4 16S rRNA gene sequencing. The characteristics of rumen solids microbiota were compared between non-SARA (Pre-SARA1, week 4; Post-SARA1, week 7; and Post-SARA2, weeks 10 and 12) and SARA stages (SARA1/1, SARA1/2, SARA2/1, SARA2/2), as well as among treatments. Results Both SARA challenges reduced the richness and diversity of the microbiota and the relative abundances of the phylum Fibrobacteres. Supplementation with SCFP promoted the growth of several fibrolytic bacteria, including Lachnospiraceae UCG-009, Treponema, unclassified Lachnospiraceae, and unclassified Ruminococcaceae during the SARA challenges. These challenges also reduced the positive interactions and the numbers of hub taxa in the microbiota. The SCFPb treatment increased positive interactions among microbial members of the solids digesta and the number of hub taxa during the SARA and non-SARA stages. The SCFPb-2X treatment prevented changes in the network characteristics, including the number of components, clustering coefficient, modularity, positive edge percentage, and edge density of the microbiota during SARA challenges. These challenges reduced predicted carbohydrate and nitrogen metabolism in microbiota, whereas SCFP supplementation attenuated those reductions. Conclusions Supplementation with SCFP, especially the SCFPb-2X attenuated the adverse effects of grain-based SARA on the diversity and predicted functionality of rumen solids microbiota.
Collapse
Affiliation(s)
- Junfei Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Le Luo Guan
- Department of Agriculture, Food and Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Mi Zhou
- Department of Agriculture, Food and Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA, United States
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jan C. Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Guo J, Zhang Z, Guan LL, Yoon I, Plaizier JC, Khafipour E. Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis (SARA) in lactating dairy cows. J Anim Sci Biotechnol 2024; 15:101. [PMID: 39085941 PMCID: PMC11293205 DOI: 10.1186/s40104-024-01056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Subacute ruminal acidosis (SARA) is a common metabolic disorder of high yielding dairy cows, and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation. This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products (SCFP) on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges. A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition. Treatment groups included a Control diet or diets supplemented with postbiotics (SCFPa, 14 g/d Original XPC; SCFPb-1X, 19 g/d NutriTek; SCFPb-2X, 38 g/d NutriTek, Diamond V, Cedar Rapids, IA, USA). Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% DM of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. Total DNA from rumen liquid samples was subjected to V3-V4 16S rRNA gene amplicon sequencing. Characteristics of rumen microbiota were compared among treatments and SARA stages. RESULTS Both SARA challenges reduced the diversity and richness of rumen liquid microbiota, altered the overall composition (β-diversity), and its predicted functionality including carbohydrates and amino acids metabolic pathways. The SARA challenges also reduced the number of significant associations among different taxa, number of hub taxa and their composition in the microbial co-occurrence networks. Supplementation with SCFP postbiotics, in particular SCFPb-2X, enhanced the robustness of the rumen microbiota. The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges. The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria, including members of Ruminococcaceae and Lachnospiraceae, and also increased the numbers of hub taxa during non-SARA and SARA stages. Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration, and α- and β-diversity metrics in rumen liquid digesta. CONCLUSIONS Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows. Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.
Collapse
Affiliation(s)
- Junfei Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Present Address: College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Le Luo Guan
- Department of Agriculture, Food and Nutrition Department, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA, 52404, United States
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Present Address: Cargill Animal Nutrition, 15407 McGinty Road West, Wayzata, MN, 55391, USA.
| |
Collapse
|
11
|
Fregulia P, Park T, Li W, Cersosimo LM, Zanton GI. Microbial inoculum effects on the rumen epithelial transcriptome and rumen epimural metatranscriptome in calves. Sci Rep 2024; 14:16914. [PMID: 39043743 PMCID: PMC11266570 DOI: 10.1038/s41598-024-65685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Manipulation of the rumen microbial ecosystem in early life may affect ruminal fermentation and enhance the productive performance of dairy cows. The objective of this experiment was to evaluate the effects of dosing three different types of microbial inoculum on the rumen epithelium tissue (RE) transcriptome and the rumen epimural metatranscriptome (REM) in dairy calves. For this objective, 15 Holstein bull calves were enrolled in the study at birth and assigned to three different intraruminal inoculum treatments dosed orally once weekly from three to six weeks of age. The inoculum treatments were prepared from rumen contents collected from rumen fistulated lactating cows and were either autoclaved (control; ARF), processed by differential centrifugation to create the bacterial-enriched inoculum (BE), or through gravimetric separation to create the protozoal-enriched inoculum (PE). Calves were fed 2.5 L/d pasteurized waste milk 3x/d from 0 to 7 weeks of age and texturized starter until euthanasia at 9 weeks of age, when the RE tissues were collected for transcriptome and microbial metatranscriptome analyses, from four randomly selected calves from each treatment. The different types of inoculum altered the RE transcriptome and REM. Compared to ARF, 9 genes were upregulated in the RE of BE and 92 in PE, whereas between BE and PE there were 13 genes upregulated in BE and 114 in PE. Gene ontology analysis identified enriched GO terms in biological process category between PE and ARF, with no enrichment between BE and ARF. The RE functional signature showed different KEGG pathways related to BE and ARF, and no specific KEGG pathway for PE. We observed a lower alpha diversity index for RE microbiome in ARF (observed genera and Chao1 (p < 0.05)). Five microbial genera showed a significant correlation with the changes in host gene expression: Roseburia (25 genes), Entamoeba (two genes); Anaerosinus, Lachnospira, and Succiniclasticum were each related to one gene. sPLS-DA analysis showed that RE microbial communities differ among the treatments, although the taxonomic and functional microbial profiles show different distributions. Co-expression Differential Network Analysis indicated that both BE and PE had an impact on the abundance of KEGG modules related to acyl-CoA synthesis, type VI secretion, and methanogenesis, while PE had a significant impact on KEGGs related to ectoine biosynthesis and D-xylose transport. Our study indicated that artificial dosing with different microbial inocula in early life alters not only the RE transcriptome, but also affects the REM and its functions.
Collapse
Affiliation(s)
- P Fregulia
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - T Park
- Tansol Park, Department of Animal Science and Technology, Chung-Ang University, Anseong, South Korea
| | - W Li
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA.
| | - L M Cersosimo
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Laura Cersosimo, Brigham and Women's Hospital, Boston, MA, USA
| | - G I Zanton
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
| |
Collapse
|
12
|
Kupczyński R, Pacyga K, Lewandowska K, Bednarski M, Szumny A. Milk Odd- and Branched-Chain Fatty Acids as Biomarkers of Rumen Fermentation. Animals (Basel) 2024; 14:1706. [PMID: 38891752 PMCID: PMC11171151 DOI: 10.3390/ani14111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Cow's milk and dairy products are the primary sources of OBCFAs, which have beneficial health properties. The goal of this study was to identify the factors that influence the content of OBCFAs in cow's milk and to indicate which OBCFAs can serve as biomarkers for fermentation processes. The content of OBCFAs in milk depends on the species of ruminants, with studies showing that this varies between 3.33% (in goat's milk) and 5.02% (in buffalo's milk). These differences also stem from the animals' energy balance, lactation phases, forage-to-concentrate ratio, and the presence of bioactive compounds in feeds, as well as management practices and environmental conditions. The OBCFAs in milk fat mainly come from rumen bacteria, but can also be synthesized de novo in the mammary gland, making them potentially useful noninvasive indicators of rumen fermentation. The concentration of BCFA is lower in colostrum and transitional milk than in full lactation milk. The proportions of total OBCFAs are higher in first- and second-parity cows. The most effective predictors of the biohydrogenation of fatty acids in the rumen are likely C18:2 cis-9, trans-11, iso-C16:0, and iso-C13:0. OBCFAs have been identified as potential biomarkers for rumen function, because their synthesis depends on specific bacteria. Strong predictors of subclinical ruminal acidosis include iso-C14:0, iso-C13:0, and C15:0. The concentration of ∑ OBCFA >C16 in milk is associated with fat mobilization and serves as a significant marker of the energy balance in cows.
Collapse
Affiliation(s)
- Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland; (K.P.); (K.L.)
| | - Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland; (K.P.); (K.L.)
| | - Kamila Lewandowska
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 38c Chelmonskiego St., 50-375 Wroclaw, Poland; (K.P.); (K.L.)
| | - Michał Bednarski
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 47 Grunwaldzki Sq., 50-366 Wroclaw, Poland;
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
13
|
Ma N, Guo J, Li Z, Xu L, Zhang K, Xu T, Chang G, Loor JJ, Shen X. Disturbances of Ruminal Microbiota and Liver Inflammation, Mediated by LPS and Histamine, in Dairy Cows Fed a High-Concentrate Diet. Animals (Basel) 2024; 14:1495. [PMID: 38791713 PMCID: PMC11117260 DOI: 10.3390/ani14101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The ecosystem of ruminal microbiota profoundly affects the health and milk production of dairy cows. High-concentrate diets are widely used in dairy farms and evoke a series of metabolic disorders. Several studies have reported the effects of high-concentrate diets on the ruminal microbiome, while the effect of changes in ruminal microbial flora, induced by high-concentrate diet feeding, on the liver of dairy cows has not been studied before. In this study, 12 mid-lactating Holstein Friesian cows (weight of 455 ± 28 kg; parities of 2.5 ± 0.5; starting milk yield of 31.59 ± 3.2 kg/d; DMI of 21.7 ± 1.1 kg/d; and a DIM at the start of the experiment of 135 ± 28 d) were fitted with ruminal fistulas, as well as with portal and hepatic vein catheters. All cows were randomly divided into 2 groups; then, they fed with low-concentrate diets (LC, concentrate: forage = 40:60) and high-concentrate diets (HC, concentrate: forage = 60:40) for 18 weeks. The forage sources were corn silage and alfalfa hay. After the cows of two groups were euthanized over two consecutive days, ruminal microbiota; the concentration of LPS in the rumen content; cecum content; the levels of blood and histamine in rumen fluid, blood, and the liver; the histopathological status of the rumen and cecum; and the inflammatory response of the liver were assessed in dairy cows under conditions of subacute ruminal acidosis (SARA). These conditions were caused by high-concentrate diet feeding. All data were analyzed using the independent t-test in SPSS. The results showed that high-concentrate diet feeding increased the concentration of LPS and histamine in the rumen and plasma of veins (p < 0.05). The abundance of Bacteroidetes at the phylum level, and of both Bacteroidetes and Saccharibacteria at the genus level, was decreased, while the abundance of Firmicutes at the phylum level and Oscillibacter at the genus level was increased by high-concentrate diet feeding. The decreased pH values of ruminal contents (LC = 6.02, HC = 5.90, p < 0.05) and the increased level of LPS in the rumen (LC = 4.921 × 105, HC = 7.855 × 105 EU/mL, p < 0.05) and cecum (LC = 11.960 × 105, HC = 13.115 × 105 EU/mL, p < 0.01) induced the histopathological destruction of the rumen and cecum, combined with the increased mRNA expression of IL-1β (p < 0.05). The histamine receptor H1R and the NF-κB signaling pathway were activated in the liver samples taken from the HC group. In conclusion, the elevated concentrations of LPS and histamine in the gut may be related to changes in the ruminal microbiota. LPS and histamine induced the inflammatory response in the ruminal epithelium, cecum epithelium, and liver. However, the cause-effect mechanism needs to be proved in future research. Our study offers a novel therapeutic strategy by manipulating ruminal microbiota and metabolism to decrease LPS and histamine release and to improve the health of dairy cows.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Junfei Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Zhenfu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Lei Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Kai Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Tianle Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| |
Collapse
|
14
|
Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress. J Anim Sci Biotechnol 2024; 15:53. [PMID: 38581064 PMCID: PMC10998405 DOI: 10.1186/s40104-024-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Tufarelli V, Puvača N, Glamočić D, Pugliese G, Colonna MA. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals (Basel) 2024; 14:816. [PMID: 38473200 DOI: 10.3390/ani14050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
This review paper provides an in-depth analysis of three critical metabolic diseases affecting dairy cattle such as subacute ruminal acidosis (SARA), ketosis, and hypocalcemia. SARA represents a disorder of ruminal fermentation that is characterized by extended periods of depressed ruminal pH below 5.5-5.6. In the long term, dairy herds experiencing SARA usually exhibit secondary signs of the disease, such as episodes of laminitis, weight loss and poor body condition despite adequate energy intake, and unexplained abscesses usually 3-6 months after an episode of SARA. Depressed milk-fat content is commonly used as a diagnostic tool for SARA. A normal milk-fat test in Holstein dairy cows is >4%, so a milk-fat test of <3% can indicate SARA. However, bulk tank testing of milk fat is inappropriate to diagnose SARA at the herd level, so when >4 cows out of 12 and <60 days in milk are suspected to have SARA it can be considered that the herd has a problem. The rapid or abrupt introduction of fresh cows to high-concentrate diets is the most common cause of SARA. Changes in ruminal bacterial populations when exposed to higher concentrate rations require at least about 3 weeks, and it is recommended that concentrate levels increase by no more than 400 g/day during this period to avoid SARA. Ketosis, a prevalent metabolic disorder in dairy cattle, is scrutinized with a focus on its etiological factors and the physiological changes leading to elevated ketone bodies. In total mix ration-fed herds, an increased risk of mastitis and reduced fertility are usually the first clinical signs of ketosis. All dairy cows in early lactation are at risk of ketosis, with most cases occurring in the first 2-4 weeks of lactation. Cows with a body condition score ≥3.75 on a 5-point scale at calving are at a greater risk of ketosis than those with lower body condition scores. The determination of serum or whole blood acetone, acetoacetate, beta-hydroxybutyrate (BHB) concentration, non-esterified fatty acids (NEFA), and liver biopsies is considered the best way to detect and monitor subclinical ketosis, while urine or milk cowside tests can also be used in on-farm monitoring programs. Concentrations >1.0 mmol/L or 1.4 mmol/L blood or serum BHB are considered diagnostic of subclinical ketosis. The standard threshold used for blood is 1.2 mmol/L, which corresponds to thresholds of 100 mcmol/L for milk and 15 mg/dL for urine. Oral administration of propylene glycol (250-400 g, every 24 h for 3-5 days) is the standard and most efficacious treatment, as well as additional therapy with bolus glucose treatment. Hypocalcemia is a disease of adult dairy cows in which acute hypocalcemia causes acute to peracute, afebrile, flaccid paralysis that occurs most commonly at or soon after parturition. Dairy cows are at considerable risk for hypocalcemia at the onset of lactation, when daily calcium excretion suddenly increases from about 10 g to 30 g per day. Cows with hypocalcemia have a more profound decrease in blood calcium concentration-typically below 5.5 mg/dL. The prevention of parturient paresis has been historically approached by feeding cows low-calcium diets during the dry period. Negative calcium balance triggers calcium mobilization before calving and better equips the cow to respond to the massive calcium needs at the onset of lactation. Calcium intake must be limited to <20 g per day for calcium restriction to be effective. The most practical and proven method for monitoring hypocalcemia is by feeding cows an acidogenic diet for ~3 weeks before calving. Throughout the review, emphasis is placed on the importance of early diagnosis and proactive management strategies to mitigate the impact of these metabolic diseases on dairy cattle health and productivity. The comprehensive nature of this paper aims to serve as a valuable resource for veterinarians, researchers, and dairy farmers seeking a deeper understanding of these prevalent metabolic disorders in dairy cattle.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nikola Puvača
- Laboratory for Food Quality and Toxicology, Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management, University of Business Academy in Novi Sad, 21107 Novi Sad, Serbia
| | - Dragan Glamočić
- Department of Animal Science, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Gianluca Pugliese
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | | |
Collapse
|
16
|
Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Kim HB. Understanding the Diversity and Roles of the Ruminal Microbiome. J Microbiol 2024; 62:217-230. [PMID: 38662310 DOI: 10.1007/s12275-024-00121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.
Collapse
Affiliation(s)
- Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
17
|
Ricci S, Pacífico C, Kreuzer-Redmer S, Castillo-Lopez E, Rivera-Chacon R, Sener-Aydemir A, Rossi G, Galosi L, Biagini L, Schwartz-Zimmermann HE, Berthiller F, Reisinger N, Petri RM, Zebeli Q. Integrated microbiota-host-metabolome approaches reveal adaptive ruminal changes to prolonged high-grain feeding and phytogenic supplementation in cattle. FEMS Microbiol Ecol 2024; 100:fiae006. [PMID: 38281064 PMCID: PMC10858391 DOI: 10.1093/femsec/fiae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity. While we did not find changes in histological evaluations, genes related with epithelial proliferation (IGF-1, IGF-1R, EGFR, and TBP) and ZO-1 were affected by the HG feeding. Integrative analyses allowed us to define the main drivers of difference for the rumen ecosystem in response to a HG diet, identified as ZO-1, MyD88, and genus Prevotella 1. PFA supplementation reduced the concentration of potentially harmful compounds in the rumen (e.g. dopamine and 5-aminovaleric acid) and increased the tolerance of the epithelium toward the microbiota by altering the expression of TLR-2, IL-6, and IL-10. The particle-associated rumen liquid microbiota showed a quicker adaptation potential to prolonged HG feeding compared to the other microenvironments investigated, especially by the end of the experiment.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Nicole Reisinger
- dsm-firmenich,
Animal Health and Nutrition R&D Center, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Renee M Petri
- Agriculture and Agri-Food Canada,
Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, Quebec J1M 0C8, Canada
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
18
|
Cabral LDS, Weimer PJ. Megasphaera elsdenii: Its Role in Ruminant Nutrition and Its Potential Industrial Application for Organic Acid Biosynthesis. Microorganisms 2024; 12:219. [PMID: 38276203 PMCID: PMC10819428 DOI: 10.3390/microorganisms12010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The Gram-negative, strictly anaerobic bacterium Megasphaera elsdenii was first isolated from the rumen in 1953 and is common in the mammalian gastrointestinal tract. Its ability to use either lactate or glucose as its major energy sources for growth has been well documented, although it can also ferment amino acids into ammonia and branched-chain fatty acids, which are growth factors for other bacteria. The ruminal abundance of M. elsdenii usually increases in animals fed grain-based diets due to its ability to use lactate (the product of rapid ruminal sugar fermentation), especially at a low ruminal pH (<5.5). M. elsdenii has been proposed as a potential dietary probiotic to prevent ruminal acidosis in feedlot cattle and high-producing dairy cows. However, this bacterium has also been associated with milk fat depression (MFD) in dairy cows, although proving a causative role has remained elusive. This review summarizes the unique physiology of this intriguing bacterium and its functional role in the ruminal community as well as its role in the health and productivity of the host animal. In addition to its effects in the rumen, the ability of M. elsdenii to produce C2-C7 carboxylic acids-potential precursors for industrial fuel and chemical production-is examined.
Collapse
Affiliation(s)
- Luciano da Silva Cabral
- Department of Animal Science and Rural Extension, Agronomy and Animal Science School, Federal University of Mato Grosso, Cuiabá 780600-900, Mato Grosso, Brazil;
| | - Paul J. Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
Zou B, Long F, Xue F, Chen C, Zhang X, Qu M, Xu L. Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle. Animals (Basel) 2024; 14:313. [PMID: 38275773 PMCID: PMC10812637 DOI: 10.3390/ani14020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The present study investigates the theoretical basis for maintaining normal physiological functions in heat-stressed beef cattle by exploring the effects of niacin supplementation on the permeability of the rumen epithelial cell barrier. Herein, 12 Jinjiang bulls with an average weight of approximately 400 ± 20.0 kg were randomly divided into three groups, thermoneutral (TN), heat-stressed (HS), and heat-stressed niacin-supplemented (HN) groups, with 4 bulls in each group. The experiment spanned 70 days, and the plasma concentrations of D-lactic acid, diamine oxidase (DAO), lipopolysaccharides (LPSs), and inflammatory cytokines were analyzed. Additionally, we assessed the gene expression of tight junction proteins to understand the effect of niacin supplementation on heat-stressed beef cattle. Our results revealed that heat stress significantly increased the D-lactic acid and LPS levels in beef cattle plasma on days 30 and 45 of the experiment (p < 0.05). Moreover, it led to a significant rise in DAO levels on day 30 (p < 0.05). Niacin supplementation significantly reduced the LPS levels on day 30 (p < 0.05). Heat stress significantly elevated the plasma concentrations of inflammatory cytokines interleukin-1β (IL-1β), IL-2, IL-6, and tumor necrosis factor-α (TNF-α) (p < 0.05), while reducing the IL-4 concentration (p < 0.05). However, niacin supplementation effectively mitigated the concentrations of these inflammatory factors by reducing IL-1β, IL-2, IL-6, and TNF-α concentrations and increasing IL-4 concentrations. The mRNA expressions of tight junction proteins zonula occluden-1 (ZO-1), claudin-1, claudin-4, and claudin-7 were significantly downregulated (p < 0.05) in the HS group compared to those in the TN group, and those of ZO-1 and occludin were significantly upregulated (p < 0.05) in the HN group compared to those in the HS group. Notably, no significant differences were observed in ruminal papillae length and width among the studied groups (p > 0.05). Our findings indicate that heat stress adversely impacted the tight junction structure of the rumen epithelium, leading to a significant reduction in the expression of tight junction protein mRNA. Consequently, heat stress impaired the rumen mucosal barrier function, resulting in increased intestinal permeability. The mechanism underlying this effect may be associated with the decreased expression of tight junction protein genes in the rumen epithelial cells. However, niacin supplementation mitigated the detrimental effects of heat stress on intestinal permeability in beef cattle and increased the expression of tight junction protein genes in the rumen epithelium, thereby effectively protecting the rumen barrier in heat-stressed beef cattle. These results highlight the potential of nicotinic acid as a protective agent against the negative impacts of heat stress on intestinal integrity in beef cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (B.Z.); (F.L.); (F.X.); (C.C.); (X.Z.); (M.Q.)
| |
Collapse
|
20
|
Jiang Q, Galvão MC, Thanh LP, Aboragah AA, Mauck J, Gionbelli MP, Alhidary IA, McCann JC, Loor JJ. Short-term feed restriction induces inflammation and an antioxidant response via cystathionine-β-synthase and glutathione peroxidases in ruminal epithelium from Angus steers. J Anim Sci 2024; 102:skae257. [PMID: 39215655 PMCID: PMC11465371 DOI: 10.1093/jas/skae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Decreased intake is induced by stressors such as parturition, transportation, dietary transitions, and disease. An important function of one-carbon metabolism (OCM) is to produce the antioxidant glutathione to help reduce oxidative stress. Although various components of OCM are expressed in the bovine rumen and small intestine, the relationship between reduced feed intake, OCM, and antioxidant mechanisms in gut tissues is unknown. This study aimed to assess alterations in immune and antioxidant pathways in ruminal epithelium due to acute feed restriction (FR). Seven group-housed ruminally cannulated Angus steers (663 ± 73 kg body weight, 2 yr old) had ad libitum access to a finishing diet (dry-rolled corn, corn silage, modified wet distiller's grains) during 15 d of a pre-FR period (PRE). Subsequently, steers were moved to a metabolism barn with tie stalls and individually fed at 25% of estimated intake in PRE for 3 d (FR period, FRP). This was followed by 15 d of recovery (POST) during which steers had ad libitum access to the same diet as in PRE and FRP. Plasma and ruminal tissue biopsies were collected during each period. Plasma free fatty acid and IL1-β concentrations were higher (P ≤ 0.03) in FRP than PRE or POST. The mRNA abundance of the proinflammatory genes tumor necrosis factor, toll-like receptor 2 (TLR2), and TLR4 in the ruminal epithelium peaked (P < 0.05) at FRP and remained higher at POST. These responses agreed with the higher (P < 0.05) abundance of phosphorylated (p)-MAPK (an inflammation activator) and p-EEF2 (translational repressor) in FRP than PRE and POST. Although ruminal glutathione peroxidase (GPX) enzyme activity did not increase at FRP compared with PRE and POST, protein abundance of GPX1 and GPX3 along with the antioxidant response regulator NFE2L2 were highest (P < 0.01), and the activity of cystathionine-beta synthase tended (P = 0.06) to be highest during FR. Although FR had minimal negative effects on tissue integrity-related genes (only filamin A was downregulated), it led to a systemic inflammatory response and triggered inflammation and antioxidant mechanisms within the ruminal epithelium. Thus, deploying anti-inflammatory and antioxidant mechanisms via molecules that feed into OCM (e.g., dietary methyl donors such as methionine, choline, betaine, and folate) could potentially counteract the stressors associated with FR.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Matheus C Galvão
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Lam Phuoc Thanh
- Faculty of Animal Sciences, Can Tho University, Ninh Kieu, Can Tho, Vietnam
| | - Ahmad A Aboragah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - John Mauck
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
21
|
Silvestre AM, Souza JM, Millen DD. Adoption of adaptation protocols and feed additives to improve performance of feedlot cattle. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2023.2191679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Antonio M. Silvestre
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Johnny M. Souza
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| | - Danilo D. Millen
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| |
Collapse
|
22
|
Sarmikasoglou E, Sumadong P, Roesch LF, Halima S, Hikita C, Watanabe T, Faciola A. Effects of monensin and cashew nut-shell extract on bacterial community composition in a dual-flow continuous culture system. Transl Anim Sci 2023; 8:txad148. [PMID: 38221956 PMCID: PMC10787353 DOI: 10.1093/tas/txad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 μM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.
Collapse
Affiliation(s)
- Efstathios Sarmikasoglou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Phussorn Sumadong
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
- Department of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Luiz Fernando Roesch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32603 FL, USA
| | - Sultana Halima
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Chie Hikita
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Tomonori Watanabe
- Product Development Department, SDS Biotech K.K., Tokyo 101-0022, Japan
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, 32611 FL, USA
| |
Collapse
|
23
|
Liang Z, Zhang J, Ahmad AA, Han J, Gharechahi J, Du M, Zheng J, Wang P, Yan P, Salekdeh GH, Ding X. Forage lignocellulose is an important factor in driving the seasonal dynamics of rumen anaerobic fungi in grazing yak and cattle. Microbiol Spectr 2023; 11:e0078823. [PMID: 37707448 PMCID: PMC10581131 DOI: 10.1128/spectrum.00788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peng Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
24
|
Kaur H, Kaur G, Gupta T, Mittal D, Ali SA. Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production. BIOLOGY 2023; 12:1200. [PMID: 37759599 PMCID: PMC10525894 DOI: 10.3390/biology12091200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Collapse
Affiliation(s)
- Harpreet Kaur
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - Taruna Gupta
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Deepti Mittal
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Kim HW, Kim NK, Thompson J, de Jesus M, Rehberger J, Rehberger T, Smith AH, Mackie RI. Effects of dosing non-toxigenic Clostridia on the bacterial populations and immunological responses in the intestinal tract of lactating dairy cows. Front Microbiol 2023; 14:1107964. [PMID: 37415814 PMCID: PMC10321773 DOI: 10.3389/fmicb.2023.1107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Understanding the effects of dosing non-toxigenic Clostridia to cows is rare and has received little attention so far. In the present study, a total of eight lactating dairy cows were divided in two groups: control (n = 4) or Clostridia challenged (oral supplementation of five diverse strains of Paraclostridium bifermentans, n = 4). Bacterial communities were analyzed by qPCR and next-generation sequencing (NGS) in the buccal mucosa as well as digesta and mucosal samples of the gastrointestinal (GI) tract from rumen to rectum (10 compartments), as well as fecal samples. Transcriptomic analysis of barrier and immune-related gene expression was performed on rumen, jejunum, and liver samples. We observed increased microbial populations with the Clostridial challenge in the buccal tissues and the proximal GI tract (forestomach), correlating with Clostridial loads in the feed. Otherwise, there were no significant differences in microbial populations (p > 0.05) throughout the distal part of the GI tract. The NGS approach, however, revealed that the Clostridial challenge changed the relative abundance of gut and fecal microbiota. In particular, in the challenge group, no Bifidobacterium was observed in the mucosa-associated microbiota and abundance of Pseudomonadota increased in the feces. These results indicated potential adverse effects of Clostridia to cow health. In general, immune responses to the Clostridial challenge were weak. However, transcriptional analysis revealed the down-regulation of junction adhesion molecule encoding gene (-1.44 of log2 fold-change), which might impact intestinal permeability.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Na Kyung Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jesse Thompson
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | - Josh Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | - Thomas Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | - Roderick Ian Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
26
|
Andersen TO, Altshuler I, Vera-Ponce de León A, Walter JM, McGovern E, Keogh K, Martin C, Bernard L, Morgavi DP, Park T, Li Z, Jiang Y, Firkins JL, Yu Z, Hvidsten TR, Waters SM, Popova M, Arntzen MØ, Hagen LH, Pope PB. Metabolic influence of core ciliates within the rumen microbiome. THE ISME JOURNAL 2023:10.1038/s41396-023-01407-y. [PMID: 37169869 DOI: 10.1038/s41396-023-01407-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Collapse
Affiliation(s)
- Thea O Andersen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ianina Altshuler
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juline M Walter
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Emily McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Kate Keogh
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Cécile Martin
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Laurence Bernard
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zongjun Li
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Jiang
- Center for Ruminant Genetics and Evolution, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sinead M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County, Meath, Ireland
| | - Milka Popova
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genes-Champanelle, France
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
27
|
Golder HM, LeBlanc SJ, Duffield T, Rossow HA, Bogdanich R, Hernandez L, Block E, Rehberger J, Smith AH, Thomson J, Lean IJ. Characterizing ruminal acidosis risk: A multiherd, multicountry study. J Dairy Sci 2023; 106:3155-3175. [PMID: 36894423 DOI: 10.3168/jds.2022-22571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/19/2022] [Indexed: 03/09/2023]
Abstract
A multicenter observational study was conducted on early lactation Holstein cows (n = 261) from 32 herds from 3 regions (Australia, AU; California, CA; and Canada, CAN) to characterize their risk of acidosis into 3 groups (high, medium, or low) using a discriminant analysis model previously developed. Diets ranged from pasture supplemented with concentrates to total mixed ration (nonfiber carbohydrates = 17 to 47 and neutral detergent fiber = 27 to 58% of dry matter). Rumen fluid samples were collected <3 h after feeding and analyzed for pH, and ammonia, d- and l-lactate, and volatile fatty acid (VFA) concentrations. Eigenvectors were produced using cluster and discriminant analysis from a combination of rumen pH, and ammonia, d-lactate, and individual VFA concentrations and were used to calculate the probability of the risk of ruminal acidosis based on proximity to the centroid of 3 clusters. Bacterial 16S ribosomal DNA sequence data were analyzed to characterize bacteria. Individual cow milk volume, fat, protein, and somatic cell count values were obtained from the closest herd test to the rumen sampling date (median = 1 d before rumen sampling). Mixed model analyses were performed on the markers of rumen fermentation, production characteristics, and the probability of acidosis. A total of 26.1% of the cows were classified as high risk for acidosis, 26.8% as medium risk, and 47.1% as low risk. Acidosis risk differed among regions with AU (37.2%) and CA (39.2%) having similar prevalence of high-risk cows and CAN only 5.2%. The high-risk group had rumen phyla, fermentation, and production characteristics consistent with a model of acidosis that reflected a rapid rate of carbohydrate fermentation. Namely, acetate to propionate ratio (1.98 ± 0.11), concentrations of valerate (2.93 ± 0.14 mM), milk fat to protein ratio (1.11 ± 0.047), and a positive association with abundance of phylum Firmicutes. The medium-risk group contains cows that may be inappetant or that had not eaten recently or were in recovery from acidosis. The low-risk group may represent cattle that are well fed with a stable rumen and a slower rumen fermentation of carbohydrates. The high risk for acidosis group had lower diversity of bacteria than the other groups, whereas CAN had a greater diversity than AU and CA. Rumen fermentation profile, abundance of ruminal bacterial phyla, and production characteristics of early lactation dairy cattle from 3 regions were successfully categorized in 3 different acidosis risk states, with characteristics differing between acidosis risk groups. The prevalence of acidosis risk also differed between regions.
Collapse
Affiliation(s)
- H M Golder
- Scibus, Camden, NSW, Australia, 2570; Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia, 2570
| | - S J LeBlanc
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - T Duffield
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - H A Rossow
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare 93274
| | - R Bogdanich
- Cross Street Veterinary Clinic, Tulare, CA 93274
| | - L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - E Block
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - J Rehberger
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - A H Smith
- Arm & Hammer Animal and Food Production, Princeton, NJ 08540
| | - J Thomson
- Department of Animal and Range Sciences, Montana State University, Bozeman 59717
| | - I J Lean
- Scibus, Camden, NSW, Australia, 2570; Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia, 2570.
| |
Collapse
|
28
|
Choi H, Mun D, Ryu S, Kwak MJ, Kim BK, Park DJ, Oh S, Kim Y. Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:652-663. [PMID: 37332276 PMCID: PMC10271931 DOI: 10.5187/jast.2022.e124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 04/24/2024]
Abstract
The rumen fluids contain a wide range of bacteria, protozoa, fungi, and viruses. The various ruminal microorganisms in the rumen provide nutrients by fermenting the forage they eat. During metabolic processes, microorganisms present in the rumen release diverse vesicles during the fermentation process. Therefore, in this study, we confirmed the function of rumen extracellular vesicles (EVs) and their interaction with the host. We confirmed the structure of the rumen EVs by transmission electron microscope (TEM) and the size of the particles using nanoparticle tracking analysis (NTA). Rumen EVs range in size from 100 nm to 400 nm and are composed of microvesicles, microparticles, and ectosomes. Using the Caenorhabditis elegans smart animal model, we verified the interaction between the host and rumen EVs. Exposure of C. elegans to rumen EVs did not significantly enhance longevity, whereas exposure to the pathogenic bacteria Escherichia coli O157:H7 and Staphylococcus aureus significantly increased lifespan. Furthermore, transcriptome analysis showed gene expression alterations in C. elegans exposed to rumen EVs, with significant changes in the metabolic pathway, fatty acid degradation, and biosynthesis of cofactors. Our study describes the effect of rumen EV interactions with the host and provides novel insights for discovering biotherapeutic agents in the animal industry.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Bum-Keun Kim
- Korea Food Research Institute, Wanju 55365, Korea
| | | | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Bandarupalli VVK, St-Pierre B. Metagenomics-Based Analysis of Candidate Lactate Utilizers from the Rumen of Beef Cattle. Microorganisms 2023; 11:microorganisms11030658. [PMID: 36985231 PMCID: PMC10054779 DOI: 10.3390/microorganisms11030658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In ruminant livestock production, ruminal acidosis is an unintended consequence of the elevated dietary intake of starch-rich feedstuffs. The transition from a state of subacute acidosis (SARA) to acute acidosis is due in large part to the accumulation of lactate in the rumen, which is a consequence of the inability of lactate utilizers to compensate for the increased production of lactate. In this report, we present the 16S rRNA gene-based identification of two bacterial operational taxonomic units (OTUs), Bt-01708_Bf (89.0% identical to Butyrivibrio fibrisolvens) and Bt-01899_Ap (95.3% identical to Anaerococcus prevotii), that were enriched from rumen fluid cultures in which only lactate was provided as an exogenous substrate. Analyses of in-silico-predicted proteomes from metagenomics-assembled contigs assigned to these candidate ruminal bacterial species (Bt-01708_Bf: 1270 annotated coding sequences, 1365 hypothetical coding sequences; Bt-01899_Ap: 871 annotated coding sequences, 1343 hypothetical coding sequences) revealed genes encoding lactate dehydrogenase, a putative lactate transporter, as well as pathways for the production of short chain fatty acids (formate, acetate and butyrate) and for the synthesis of glycogen. In contrast to these shared functions, each OTU also exhibited distinct features, such as the potential for the utilization of a diversified set of small molecules as substrates (Bt-01708_Bf: malate, quinate, taurine and polyamines) or for the utilization of starch (Bt-01899_Ap: alpha-amylase enzymes). Together, these results will contribute to the continued characterization of ruminal bacterial species that can metabolize lactate into distinct subgroups based on other metabolic capabilities.
Collapse
Affiliation(s)
- Venkata Vinay Kumar Bandarupalli
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- GenMark Diagnostics, 5964 La Place Ct, Carlsbad, CA 92008, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
30
|
Nikvand AA, Nouri M, Gharibi D, Rakhshandeh R. Population shifts in some faeces and rumen bacteria profiles and subsequent blood LPS and lactate concentrations in lambs in the early period of subacute ruminal acidosis. Vet Med Sci 2023; 9:891-898. [PMID: 36286253 PMCID: PMC10029879 DOI: 10.1002/vms3.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND It is known that ruminal acidosis can induce harmal population shifts in some ruminal bacteria profiles. However, there is little information related to alterations in faecal and ruminal bacterial communities and relevant serum lipopolysaccharide (LPS) in sheep with subacute ruminal acidosis (SARA). OBJECTIVES This study aimed to investigate alterations in the defined faecal and ruminal bacteria profiles and serum LPS and blood lactate concentrations in lambs with empirically induced SARA. METHODS Fifteen lambs were served and undergone to induce SARA during a 7-day period. Faecal and ruminal samples were taken to measure the pH and to perform the bacteriological works at 0 (just before induction), 8, 9, and 10 days of the challenge. Blood samples were collected to determine the serum LPS and lactate levels. The rumen and faecal samples were cultured to specify colony-forming units (CFU) for Escherichia coli, Streptococcus Group D (SGD), and lactic acid bacteria (LAB). RESULTS Serum LPS value had no significant increase in the affected lambs with SARA. Significant increasing trends were observed in faecal E. coli and LAB populations (p < 0.01). Rumen bacteriology revealed a rising trend for LAB and a falling trend for SGD populations (p < 0.01). CONCLUSION Unlike cattle, LPS appears to be of minor importance in the pathogenesis of SARA in sheep. The increased ruminal and faecal LAB (4.00 × 107 CFU/ml or g) are proposed as valuable biomarkers for improving nutritional strategy and screening SARA in lambs.
Collapse
Affiliation(s)
- Ali Abbas Nikvand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Nouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Darioush Gharibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rahman Rakhshandeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
31
|
Ravelo AD, Arce-Cordero JA, Lobo RR, Liu T, Jeong KC, Faciola A. Effects of partially replacing dietary corn with sugars in a dual-flow continuous culture system on the ruminal microbiome. Transl Anim Sci 2023; 7:txad011. [PMID: 36815134 PMCID: PMC9940699 DOI: 10.1093/tas/txad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to evaluate the effects of feeding sugars as a replacement for starch on the ruminal microbiome using a dual-flow continuous culture system. Four periods of 10 days each were conducted with 8 fermenters in a 4 × 4 replicated Latin square design. Treatments included: 1) control with corn-CON, 2) molasses-MOL, 3) untreated condensed whey permeate-CWP, and 4) CWP treated with a caustic agent-TCWP as a partial substitute for corn. Sugars were defined as the water-soluble carbohydrates (WSC) concentration. Diets were formulated by replacing 4% of the diet DM in the form of starch from corn with the sugars in byproducts. Microbial samples for DNA analysis were collected from the solid and liquid effluent containers at 3, 6, and 9 h after feeding. Bacterial community composition was analyzed with sequencing the V4 region of the 16S rRNA gene using Illumina MiSeq platform. Data were analyzed with R 4.1.3 packages vegan, lmer, and ggplot to determine the effects of treatment on the relative abundance of taxa in the solid and liquid fractions, as well as the correlation of Acetate: Propionate ratio and pH to taxa relative abundance. Treatments did not affect alpha or beta diversity. At the phylum level the relative abundance of Proteobacteria was increased in CON compared to sugars in the solid fraction. In the liquid fraction, Firmicutes had greater relative abundance in sugar treatments while Bacteroidota and Spirochaetota were present in lower relative abundance in CWP. For solid and liquid samples, the family Lachnospiraceae had greater relative abundance in sugar treatments compared to CON. The decreased relative abundance of Christensenellaceae and Rikenellaceae paired with the greater relative abundance of Selenomonadaceae in CWP could help explain greater propionate molar proportion and decreased ruminal pH previously observed for this treatment. The genera Olsenella a lactic acid-producing bacterium, had the greatest relative abundance in MOL. Incorporating TCWP or MOL as a partial replacement for starch was more conservative of fibrolytic bacterial taxa compared to CWP. Additionally, TCWP did not increase bacterial taxa associated with synthesis of lactate as compared to MOL. Overall, replacing starch with sugars is mostly conservative of the ruminal microbiome; however, changes observed coincide with differences observed in acetate and propionate proportions and ruminal pH.
Collapse
Affiliation(s)
- Anay D Ravelo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Jose A Arce-Cordero
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA,Escuela de Zootecnia, Universidad de Costa Rica, San Jose, 11501-2060, Costa Rica
| | - Richard R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ting Liu
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kwang C Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
32
|
Chang X, Liu D, Lambo MT. Nanofiber could deliver lactic acid bacteria to the intestine of ruminant in vitro experiment. J Anim Physiol Anim Nutr (Berl) 2023; 107:165-172. [PMID: 34726311 DOI: 10.1111/jpn.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
This study investigates the use of nanofiber microcapsules produced by electrostatic spinning as a carrier for the delivery of lactic acid bacteria (LAB) to the intestine of ruminants. We hypothesized that the LAB encapsulated into nanofiber microcapsules can be delivered to a ruminant's intestinal tract with little effect on the rumen fermentation and related bacteria. The in vitro experiment included three treatments: control group; 0.01g Lactobacillus acidophilus NCFM (L. acidophilus NCFM) encapsulated in nanofiber microcapsules by electrostatic spinning group (ELAN, 2.0 × 1011 CFU/g); and 0.01g L. acidophilus NCFM powder group (LANP, 2.0 × 1011 CFU/g), each incubated with 30 ml of buffer rumen fluid for 48h to determine the effect on rumen fermentation, then the abundance of L. acidophilus NCFM in the intestine was estimated using the modified in vitro three-step procedure. Treatment responses were statistically analysed using one-way ANOVA. The results showed that compared to the control, the ELAN group had a significant increase in pH (p < 0.05), while the LANP group had a non-significant decrease in pH (p > 0.05). LANP and ELAN groups had no significant influence on total volatile fatty acid and individual volatile fatty acids (p > 0.05), apart from isobutyric acid of both groups, which reduced (p < 0.05). ELAN group had a decreasing trend of gas production and dry matter digestion, while the LANP group increased them significantly (p < 0.05). During the 16h and 48h rumen incubation, compared with control, there was no significant change in all bacteria in the ELAN group (p > 0.05), while the LANP group increased the relative abundance levels of S. bovis, S. ruminantium, M. elsdenii, F. succinogenes, B. fibrisolvens, Lactobacillus, L. acidophilus NCFM (p < 0.05). In the intestinal part, compared with control, the relative abundance of L. acidophilus NCFM in the ELAN group increased significantly (p < 0.05), while the result was not observed in the LANP group. We concluded based on our findings that L. acidophilus NCFM could be protected by nanofiber microcapsules and delivered to the intestinal site with little influence on the rumen fermentation and bacterial community, suggesting nanofiber microcapsules prepared by electrospinning technology could be used as a carrier for rumen-protected study.
Collapse
Affiliation(s)
- Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agriculture University, Harbin, Heilongjiang, China
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agriculture University, Harbin, Heilongjiang, China.,College of Science, Northeast Agriculture University, Harbin, Heilongjiang, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agriculture University, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Sun H, Zhao F, Hou F, Jin Y, Zhang X, Ma Y, Zhang Y, Fan Y, Yang Z, Wang H. Influences of naringin supplementation on ruminal fermentation, inflammatory response, antioxidant capacity and bacterial community in high-concentrate diet of fattening goats. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hua Sun
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fangfang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fuyin Hou
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Yaqian Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinzhao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaotin Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiqing Yang
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Hongrong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals (Basel) 2022; 12:ani12223211. [PMID: 36428439 PMCID: PMC9686964 DOI: 10.3390/ani12223211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The fruit of Nitraria tangutorum (FNT) is reputed to possess medicinal properties; however, its effect on sheep (Ovis aries) is unknown. The aim of this study was to fill this gap. In a 3 × 3 Latin square design, six 12-month-old rumen-fistulated Hu rams (56.2 ± 8.26 kg; mean ± SD) were penned individually and offered one of three levels of FNT, namely, 0 g/d (control; CON), 16 g/d (N16), and 48 g/d (N48). The concentration of serum immunoglobulin G increased linearly (p = 0.03) with an increasing intake of FNT. The serum concentration of β-hydroxybutyrate in the N48 group was lower than in the CON group (p = 0.01) and decreased linearly with increasing FNT (p = 0.001). The concentration of serum lactate dehydrogenase tended to decrease (p = 0.07) linearly with an increase in FNT intake, while the concentration of glucose did not differ among groups (p = 0.14) but displayed a quadratic curve with an increase in FNT (p = 0.05). The rumen concentration of lipase decreased linearly with increasing FNT (p = 0.04). The rumen fermentation variables were not affected by FNT. The FNT intake increased the abundance of beneficial ruminal bacteria, such as Lachnoclostridium, Rhodocyclaceae, and Candidatus Arthromitus. Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, Olsenella, Lachnospiraceae_NK3A20_group, and Quinella were the dominant bacterial genera in all treatments. We conclude that FNT can improve immunity and increase the relative abundance of beneficial ruminal bacteria in sheep.
Collapse
|
35
|
He B, Fan Y, Wang H. Lactate uptake in the rumen and its contributions to subacute rumen acidosis of goats induced by high-grain diets. Front Vet Sci 2022; 9:964027. [PMID: 36204287 PMCID: PMC9530351 DOI: 10.3389/fvets.2022.964027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rumen acidosis is the consequence of feeding rapidly fermentable grain diets and it is considered the most common nutritional disorder in intensive feeding ruminants. Due to that mechanism of catabolism and transformation is driven by multi-factors, the role of ruminal lactate and its contribution to subacute rumen acidosis has not been well defined yet. The aim of this study is to evaluate the effects of SARA on the production, absorption, circulation, and transformation of lactate in the rumen. In this study, rumen samples were collected from 12 adult Saanen goats (44.5 ± 4.6 kg BW) equipped with permanent rumen cannula to measure rumen fermentation parameters, organic acids production, microbial profiles, and blood indicators to identify the occurrence of SARA. To further investigate the change in the disappearance rate of ruminal lactate, rumen fluid was collected and a batch culture was performed. The results showed that the clearance rate of ruminal lactate was accelerated by SARA, and the concentration of the ruminal lactate pool was stable. In addition, the rumen liquid dilution rate and the rumen liquid flow rate under the SARA condition of goats were lower than that in normal conditions. The ruminal lactate flow rate had no difference throughout the process of fermentation. However, in vitro data showed that the disappearance of lactate was reduced in SARA. By measuring the conversion of sodium L-[3-13C]-lactate in batch culture, it was found that the percentage of lactate converted to propionate was significantly lower in the SARA treatment and 16.13% more lactate converted to butyrate under SARA condition. However, the percentage of lactate transformed into acetate and butyrate was significantly increased in the SARA treatment than that of control. The relative population of total protozoa count in SARA was significantly reduced, while the relative population of Lactobacillus fermentum, Streptococcus bovis, Butyrivibrio fibrisolvens, Megasphaera elsdenii, and Selenomonas ruminantium in the SARA treatment was significantly induced (p < 0.05). It is concluded that the transformation of lactate into butyrate may promote the development of SARA. These findings provide some references to the diet formulation for preventing SARA.
Collapse
|
36
|
Na SW, Guan LL. Understanding the role of rumen epithelial host-microbe interactions in cattle feed efficiency. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:41-53. [PMID: 35647325 PMCID: PMC9117530 DOI: 10.1016/j.aninu.2022.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/23/2022] [Accepted: 04/10/2022] [Indexed: 12/22/2022]
Abstract
Feed efficiency is one of the economically important traits for the cattle industry that affects profit (feed costs) and the environment (production of manure and methane). Due to that feed efficiency is driven by multi-factors, mechanisms contributing to the animal to animal variation in this trait have not been well defined, limiting the development of precision feeding strategies to improve the herd production efficiency. Rumen microbial fermentation and volatile fatty acids (VFA) production have been recently reported to be associated with cattle feed efficiency, however the roles of rumen epithelial function in feed efficiency are less studied although the rumen epithelium has an important function in VFA absorption and metabolism which can affect host feed efficiency. Rumen epithelium is colonized with a diverse microbial population, termed epimural microbiota, which has proposed functions in tissue development, barrier and inflammation, urea transport, and oxygen scavenging, suggesting that they can affect rumen epithelial functions and subsequently cattle feed efficiency. Especially, prospective functions of epimural microbiota, enhanced rumen immunity and increased rumen epithelial thickness, might contribute to less nutritional requirement for tissue recuperation. Thus, the understanding of the functions of rumen epithelium, epimural microbiota, and rumen epithelial host-microbe interactions is essential to identify their roles in contributing to feed efficiency. In this review, we will focus on to date research findings on the structure of rumen epithelium, epimural microbiota, and epithelial host-microbe interactions together with their functions and how these are associated with feed efficiency, aiming to provide insights on future directions to study rumen epithelial host-microbe interactions and improve the rumen functions in cattle.
Collapse
Affiliation(s)
- Sang Weon Na
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Effects of Barley Starch Level in Diet on Fermentation and Microflora in Rumen of Hu Sheep. Animals (Basel) 2022; 12:ani12151941. [PMID: 35953930 PMCID: PMC9367498 DOI: 10.3390/ani12151941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
This study aimed to explore the effects of different levels of barley starch instead of corn starch on the rumen fermentation and microflora when feeding a corn-based diet to Hu sheep. Thirty-two male Hu sheep equipped with permanent rumen fistulas were selected and fed in individual metabolic cages. All sheep were randomly divided into four groups (eight sheep in each group) and fed with four diets containing a similar starch content, but from different starch sources, including 100% of starch derived from corn (CS), 33% of starch derived from barley + 67% of starch derived from corn (33 BS), 67% of starch derived from barley + 33% of starch derived from corn (67 BS) and 100% of starch derived from barley (100 BS). The experimental period included a 14 d adaptation period and a 2 d continuous data collection period. The results showed that the molar proportions of acetate, isobutyrate, butyrate and isovalerate and the ratio of acetate to propionate in the 67 BS and 100 BS groups decreased compared with the CS and 33 BS groups (p < 0.001), while the molar proportions of propionate and valerate increased (p < 0.001). The combination of 33% barley starch and 67% corn starch in the diet improved the production of TVFAs (p = 0.007). The OTUs and Shannon indexes of the CS and 33 BS groups were higher than the 67 BS and 100 BS groups (p < 0.001), and the Chao1 and Ace indexes were higher than the 100 BS group (p < 0.05). In addition, the 33 BS group had increased the relative abundances of Bacteroidetes, Prevotella and Ruminococcus and the abundances of Fibrobacter succinogenes, Ruminococcus flavefaciens, Streptococcus bovis, Selenomonas ruminantium and Prevotella brevis relative to the CS group (p < 0.05). These results indicate that the substitution of 33% of the CS with BS did not change the rumen fermentation pattern relative to the CS group, and increased the richness and diversity of the rumen microbes in Hu sheep compared with other two starch substitute groups.
Collapse
|
38
|
Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed at characterizing changes in rumen bacteria abundance and fermentation profiles by artificial saliva (AS) pH, and at evaluating the potential modulatory role of Aspergillus oryzae culture (AOC) in a rumen simulation technique (RUSITEC) system. The treatment included high AS pH (pH 6.8) or low AS pH (pH 5.5) according to the McDougall’s method, and low AS pH was sustained by changing the composition of the AS (NaHCO3 from 9.8 to 1.96 g/L, Na2HPO4 from 9.3 to 1.86 g/L). In low AS pH condition, the diets contained either 0% AOC, 1.25% AOC, or 2.5% AOC. Therefore, there are four treatments: (1) high AS pH, 0% AOC (HASP); (2) low AS pH, 0% AOC (AOC0); (3) low AS pH, 1.25% AOC (AOC1); (4) low AS pH, 2.5% AOC (AOC2), respectively. The experimental diets were supplemented with 16 g basic diets with the forage to concentrate ratio of 40:60. The experiments were conducted two independent 13 days, with 9 days adaption periods and 4 days sample collection. The results showed that low AS pH decreased the degradabilites of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), which occurred due to a decreased abundance of fibrolytic Ruminococcus albus (p < 0.001). The total concentration of volatile fatty acid (VFA) and proportion of propionate were decreased in the low AS pH (p = 0.026) and tended to increase the molar proportion of butyrate (p = 0.086) and the ratio of acetate to propionate (p = 0.088). The abundances of phylum Firmicutes (p = 0.065) and Proteobacteria (p = 0.063) tended to be greater in low AS pH group than high AS pH group. Low AS pH increased the abundance of phylum Actinobacteria (p = 0.002) compared to the high AS pH and decreased the abundances of phylum Spirochaetes (p = 0.032). Compared with the high AS pH, low AS pH increased the abundances of Prevotella (p = 0.003), Pseudoscardovia (p = 0.001), Mitsuokella (p = 0.005), and Dialister (p = 0.047), and decreased the abundances of Olivibacter (p = 0.026), Ruminobacter (p = 0.025), Treponema (p = 0.037), and Sphaerochaeta (p = 0.027) at genus level. Under a severe SARA in RUSITEC, supplementation of 2.5% AOC increased OM degradability, the copy numbers of Selenomonas ruminantium and Fibrobacter succinogenes. These findings indicate that the reduction AS pH at 5.5 caused a strong shift in bacterial composition in rumen. In addition, the addition of AOC in diets increased the growth rate of certain rumen bacteria that digest fiber or utilize lactate under SARA condition in RUSITEC system.
Collapse
|
39
|
Li J, Lian H, Zheng A, Zhang J, Dai P, Niu Y, Gao T, Li M, Zhang L, Fu T. Effects of Different Roughages on Growth Performance, Nutrient Digestibility, Ruminal Fermentation, and Microbial Community in Weaned Holstein Calves. Front Vet Sci 2022; 9:864320. [PMID: 35903131 PMCID: PMC9315432 DOI: 10.3389/fvets.2022.864320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the effects of feeding with different forage sources and starter concentrations on growth performance, nutrient digestibility, ruminal fermentation, and the microbial community in weaned Holstein calves. A total of 54 Holstein calves (body weight (BW) = 77.50 ± 5.07 kg; age = 70 ± 2.54 days) were assigned to 1 of 3 treatment groups (n = 18/group) that were offered diets with different forages: (1) peanut vine (PV), (2) oat hay (OH), or (3) an alfalfa hay + oat hay combination (alfalfa hay:oat hay =1:1, AO). Starter and forage intakes were recorded daily, while BW and growth parameters were assessed at 15-day intervals. The apparent digestibility of nutrients was determined. Ruminal fluid samples were collected and used to detect relevant indicators. A difference was observed for the forage × age interaction for all feed, nutrient intake, BW, ADG, and body structure parameters (P < 0.05). The final BW, average daily feed intake (ADFI), and average daily gain of the PV calves were higher than those of calves from the other groups (P < 0.05). The ruminal propionate concentration evidently increased in calves of the AO group (P < 0.05). The abundances of Rikenellaceae_RC9_gut_group and Shuttleworthia showed distinct responses to feeding with different forages (P < 0.05) at the genus level. The relative abundance of Shuttleworthia was negatively related to rumen pH and acid detergent fiber digestibility (P < 0.05) and strongly positively related to propionate concentration (P < 0.01). A positive correlation was found between Ruminococcus_1 abundance and butyrate concentration and neutral detergent fiber digestibility (P < 0.05). The relative abundances of Succiniclasticum and Prevotella_7 were negatively related to butyrate concentration (P < 0.05). In conclusion, there was an interaction between the factors (forage × age). The peanut vine used as a forage source promoted a higher starter concentrate intake compared to other diets and increased with the calves' age. The growth performance and rumen bacterial community of the calves were further improved. These results indicate that peanut vine can be used as the main source of forage in the diets of weaned calves.
Collapse
Affiliation(s)
- Jichao Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongxia Lian
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Airong Zheng
- Henan Forage Feeding Technology Extension Station, Zhengzhou, China
| | - Jiangfan Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Dai
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yan Niu
- Henan Forage Feeding Technology Extension Station, Zhengzhou, China
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liyang Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Liyang Zhang
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Tong Fu
| |
Collapse
|
40
|
Rumen sampling methods bias bacterial communities observed. PLoS One 2022; 17:e0258176. [PMID: 35511785 PMCID: PMC9070869 DOI: 10.1371/journal.pone.0258176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/10/2022] [Indexed: 01/04/2023] Open
Abstract
The rumen is a complex ecosystem that plays a critical role in our efforts to improve feed efficiency of cattle and reduce their environmental impacts. Sequencing of the 16S rRNA gene provides a powerful tool to survey the bacterial and some archaeal. Oral stomach tubing a cow to collect a rumen sample is a rapid, cost-effective alternative to rumen cannulation for acquiring rumen samples. In this study, we determined how sampling method (oral stomach tubing vs cannulated grab sample), as well as rumen fraction type (liquid vs solid), bias the bacterial and archaeal communities observed. Liquid samples were further divided into liquid strained through cheesecloth and unstrained. Fecal samples were also collected to determine how these differed from the rumen sample types. The abundance of major archaeal communities was not different at the family level in samples acquired via rumen cannula or stomach tube. In contrast to the stable archaeal communities across sample type, the bacterial order WCHB1-41 (phylum Kiritimatiellaeota) was enriched in both liquid strained and unstrained samples as well as the family Prevotellaceae as compared to grab samples. However, these liquid samples had significantly lower abundance of Lachnospiraceae compared with grab samples. Solid samples strained of rumen liquid most closely resembled the grab samples containing both rumen liquid and solid particles obtained directly from the rumen cannula; therefore, inclusion of particulate matter is important for an accurate representation of the rumen bacteria. Stomach tube samples were the most variable and were most representative of the liquid phase. In comparison with a grab sample, stomach tube samples had significantly lower abundance of Lachnospiraceae, Fibrobacter and Treponema. Fecal samples did not reflect the community composition of the rumen, as fecal samples had significantly higher relative abundance of Ruminococcaceae and significantly lower relative abundance of Lachnospiraceae compared with grab samples.
Collapse
|
41
|
Kheirandish P, Petri RM, Sener-Aydemir A, Schwartz-Zimmermann HE, Berthiller F, Zebeli Q, Pacífico C. Characterization of Microbial Intolerances and Ruminal Dysbiosis Towards Different Dietary Carbohydrate Sources Using an in vitro Model. J Appl Microbiol 2022; 133:458-476. [PMID: 35396778 PMCID: PMC9545568 DOI: 10.1111/jam.15573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to characterize the critical points for determining the development of dysbiosis associated with feed intolerances and ruminal acidosis. METHODS AND RESULTS A metabologenomics approach was used to characterize dynamic microbial and metabolomics shifts using the rumen simulation technique (RUSITEC) by feeding native cornstarch (ST), chemically-modified cornstarch (CMS), or sucrose (SU). SU and CMS elicited the most drastic changes as rapidly as 4 h after feeding. This was accompanied by a swift accumulation of D-lactate, and the decline of benzoic and malonic acid. A consistent increase in Bifidobacterium and Lactobacillus as well as a decrease in fibrolytic bacteria was observed for both CMS and ST after 24 h, indicating intolerances within the fiber degrading populations. However, an increase in Lactobacillus was already evident in SU after 8 h. An inverse relationship between Fibrobacter and Bifidobacterium was observed in ST. In fact, Fibrobacter was positively correlated with several short-chain fatty acids (SCFA), while Lactobacillus was positively correlated with lactic acid, hexoses, hexose-phosphates, pentose phosphate pathway (PENTOSE-P-PWY) and heterolactic fermentation (P122-PWY). CONCLUSIONS The feeding of sucrose and modified starches, followed by native cornstarch, had a strong disruptive effect in the ruminal microbial community. Feed intolerances were shown to develop at different rates based on the availability of glucose for ruminal microorganisms. SIGNIFICANCE OF THE STUDY These results can be used to establish patterns of early dysbiosis (biomarkers) and develop strategies for preventing undesirable shifts in the ruminal microbial ecosystem.
Collapse
Affiliation(s)
- Parisa Kheirandish
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Renee Maxine Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Canada
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
42
|
Pitta D, Indugu N, Narayan K, Hennessy M. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows. J Dairy Sci 2022; 105:8569-8585. [DOI: 10.3168/jds.2021-21466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
|
43
|
Arce-Cordero J, Fan P, Monteiro H, Dai X, Jeong K, Faciola A. Effects of choline chloride on the ruminal microbiome at 2 dietary neutral detergent fiber concentrations in continuous culture. J Dairy Sci 2022; 105:4128-4143. [DOI: 10.3168/jds.2021-21591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 01/04/2023]
|
44
|
Yang H, Heirbaut S, Jeyanathan J, Jing X, De Neve N, Vandaele L, Fievez V. Subacute ruminal acidosis phenotypes in periparturient dairy cows differ in ruminal and salivary bacteria and in the in vitro fermentative activity of their ruminal microbiota. J Dairy Sci 2022; 105:3969-3987. [DOI: 10.3168/jds.2021-21115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023]
|
45
|
Gao Z, Li Y, Xu C, Luo D, Qiu Q, Pan K, Xiong X, Qu M, Ouyang K. Niacin mitigates rumen epithelial damage in vivo by inhibiting rumen epithelial cell apoptosis on a high concentrate diet. Vet Res Commun 2022; 46:699-709. [PMID: 35076856 DOI: 10.1007/s11259-022-09885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
To investigate the effects of niacin on rumen fermentation, rumen epithelial antioxidant activity, and rumen epithelial cell apoptosis on high concentrate (HC) diets, nine male Hu sheep were randomly fed one of three diets: low concentrate diet (LC; concentrate: forage (C:F) = 20:80, high concentrate diet (HC; C:F = 80:20), and HCN diet (HC diet + niacin at 800 mg/kg diet air-dry matter). Compared with the LC group, the HC group had a lower rumen pH, higher volatile fatty acids and lactic acid in the rumen, reduced activity of antioxidant enzymes and total antioxidant capacity, and increased malondialdehyde content in the rumen epithelium (P < 0.05). Rumen epithelial papilla morphology was decreased, and apoptosis-related indicators and serum inflammatory cytokines were increased in the HC group over the LC group (P < 0.05). Compared with the HC diet, the HCN diet increased rumen pH, rumen epithelium antioxidant capacity, and rumen epithelial papilla morphology, decreased rumen lactate content, serum inflammatory cytokines, and apoptosis-related indicators (P < 0.05). Therefore, adding 800 mg/kg niacin helped protect against rumen epithelial damage by avoiding drastic changes in the rumen environment and improved rumen epithelial antioxidant capacity to inhibit rumen epithelial cell apoptosis in sheep on a HC diet.
Collapse
Affiliation(s)
- Zhen Gao
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Dan Luo
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
46
|
Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:331-340. [PMID: 35024470 PMCID: PMC8718735 DOI: 10.1016/j.aninu.2021.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Subacute ruminal acidosis (SARA) represents one of the most important digestive disorders in intensive dairy farms, and dairy cows are individually different in the severity of SARA risk. The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA. In the present study, 12 cows were initially enrolled in the experiment. Based on average ruminal pH, 4 cows with the lowest ruminal pH were assigned to the susceptible group (SUS, pH = 5.76, n = 4) and 4 cows with the highest ruminal pH assigned to the tolerant group (TOL, pH = 6.10, n = 4). Rumen contents from susceptible (SUS, n = 4) and tolerant (TOL, n = 4) dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches (16S and 18S rRNA gene sequencing and metabolome). The results showed that despite being fed the same diet, SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids (VFA) and propionate than TOL cows (P < 0.05). No significant differences were observed in dry matter intake, milk yield, and other milk compositions between the SUS and TOL groups (P > 0.05). The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups (P = 0.01). More specifically, the relative abundance of starch-degrading bacteria (Prevotella spp.) was greater (P < 0.05), while the proportion of fiber-degrading bacteria (unclassified Ruminococcaceae spp., Ruminococcus spp., Papillibacter, and unclassified Family_XIII) was lower in the rumen of SUS cows compared with TOL cows (P < 0.05). Community analysis of protozoa showed that there were no significant differences in the diversity, richness, and community structure (P > 0.05). Metabolomics analysis revealed that the concentrations of organic acids (such as lactic acid), biogenic amines (such as histamine), and bacterial degradation products (such as hypoxanthine) were significantly higher in the SUS group compared to the TOL group (P < 0.05). These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity, in particular propionate. This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA. Overall, these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.
Collapse
|
47
|
Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022; 12:metabo12010060. [PMID: 35050182 PMCID: PMC8781654 DOI: 10.3390/metabo12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/25/2022] Open
Abstract
Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.
Collapse
|
48
|
McManus N, Holmes SM, Louis EE, Johnson SE, Baden AL, Amato KR. The gut microbiome as an indicator of habitat disturbance in a Critically Endangered lemur. BMC Ecol Evol 2021; 21:222. [PMID: 34915861 PMCID: PMC8680155 DOI: 10.1186/s12862-021-01945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Habitat disturbance affects the biology and health of animals globally. Understanding the factors that contribute to the differential responses of animals to habitat disturbance is critical for conservation. The gut microbiota represents a potential pathway through which host responses to habitat disturbance might be mediated. However, a lack of quantitative environmental data in many gut microbiome (GM) studies of wild animals limits our ability to pinpoint mechanisms through which habitat disturbance affects the GM. Here, we examine the impact of anthropogenic habitat disturbance on the diet and GM of the Critically Endangered black-and-white ruffed lemur (Varecia variegata editorum). We collected fecal samples and behavioral data from Varecia occupying habitats qualitatively categorized as primary forest, moderately disturbed forest, and heavily disturbed forest. RESULTS Varecia diet and GM composition differed substantially across sites. Dietary richness predicted GM richness across sites, and overall GM composition was strongly correlated to diet composition. Additionally, the consumption of three specific food items positively correlated to the relative abundances of five microbial strains and one microbial genus across sites. However, diet did not explain all of the GM variation in our dataset, and differences in the GM were detected that were not correlated with diet, as measured. CONCLUSIONS Our data suggest that diet is an important influence on the Varecia GM across habitats and thus could be leveraged in novel conservation efforts in the future. However, other factors such as contact with humans should also be accounted for. Overall, we demonstrate that quantitative data describing host habitats must be paired with GM data to better target the specific mechanisms through which environmental change affects the GM.
Collapse
Affiliation(s)
- Nicolette McManus
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Sheila M Holmes
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo, Omaha, NE, 68107, USA
| | - Steig E Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, NY, 10065, USA.
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, USA.
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
49
|
Chen Q, Wu C, Yao Z, Cai L, Ni Y, Mao S, Zhao R. Whole transcriptome analysis of RNA expression profiles reveals the potential regulating action of long noncoding RNA in lactating cows fed a high concentrate diet. ACTA ACUST UNITED AC 2021; 7:1315-1328. [PMID: 34786504 PMCID: PMC8567331 DOI: 10.1016/j.aninu.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in the dairy farming industry which is usually caused by an excessive amount of high concentrate diet. SARA not only threatens animal welfare but also leads to economic losses in the farming industry. The liver plays an important role in the distribution of nutritional substances and metabolism; however, a high concentrate diet can cause hepatic metabolic disorders and liver injury. Recently, noncoding RNA has been considered as a critical regulator of hepatic disease, however, its role in the bovine liver is limited. In this study, 12 mid-lactating dairy cows were randomly assigned to a control (CON) group (40% concentrate of dry matter, n = 6) and a SARA group (60% concentrate of dry matter, n = 6). After 21 d of treatment, all cows were sacrificed, and liver tissue samples were collected. Three dairy cows were randomly selected from the CON and SARA groups respectively to perform whole transcriptome analysis. More than 20,000 messenger RNA (mRNA), 10,000 long noncoding RNA (lncRNA), 3,500 circular RNA (circRNA) and 1,000 micro RNA (miRNA) were identified. Furthermore, 43 mRNA, 121 lncRNA and 3 miRNA were differentially expressed, whereas no obvious differentially expressed circRNA were detected between the 2 groups. Gene Ontology (GO) annotation revealed that the differentially expressed genes were mainly enriched in oxidoreductase activity, stress, metabolism, the immune response, cell apoptosis, and cell proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the deferentially expressed genes were highly enriched in the phosphatidylinositol 3 kinase (PI3K)-serine/threonine kinase (AKT) signaling pathway (P < 0.05). According to KEGG pathway analysis, the differentially expressed lncRNA (DElncRNA) target genes were mainly related to proteasomes, peroxisomes, and the hypoxia-inducible factor-1 signaling pathway (P < 0.005). Further bioinformatics and integrative analyses revealed that the lncRNA were strongly correlated with mRNA; therefore, it is reasonable to speculate that lncRNA potentially play important roles in the liver dysfunction induced by SARA. Our study provides a valuable resource for future investigations on the mechanisms of SARA to facilitate an understanding of the importance of lncRNA, and offer functional RNA information.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Astragalus membranaceus Alters Rumen Bacteria to Enhance Fiber Digestion, Improves Antioxidant Capacity and Immunity Indices of Small Intestinal Mucosa, and Enhances Liver Metabolites for Energy Synthesis in Tibetan Sheep. Animals (Basel) 2021; 11:ani11113236. [PMID: 34827968 PMCID: PMC8614378 DOI: 10.3390/ani11113236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Astragalus membranaceus is a widely used traditional Chinese herb that has been used by humans for hundreds of years. The Qinghai-Tibetan plateau (QTP) is regarded as one of the remaining ‘Green’ places in the world. With the fast-developing intensive livestock production, sustainable and environmentally-friendly practices are required urgently on the QTP. In the current study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT) to reduce the use of chemical veterinary drugs and antibiotics, and to examine the effect on rumen bacteria, the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue, and the liver metabolome responses. Abstract Natural, non-toxic feed additives can potentially replace chemical medications and antibiotics that are offered sheep to improve performance. In the present study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT), a traditional herb used widely in China. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9-month-old) were assigned randomly to one of four levels of supplementary AMT: 0 g/kg (A0), 20 g/kg (A20), 50 g/kg (A50) and 80 g/kg (A80) dry matter intake (DMI). The A50 and A80 groups increased the diversity of rumen bacteria on d 14 and the relative abundances of fiber decomposing bacteria. Supplementary AMT upregulated the metabolism of vitamins, nucleotides, amino acids and glycan, and downregulated the metabolism of lipids and carbohydrates. In addition, supplementary AMT enriched rumen bacteria for drug resistance, and reduced bacteria incurring cell motility. In general, AMT supplementation increased the concentrations of catalase (CAT), superoxide dismutase (SOD) total antioxidant capacity (T-AOC) and secretory immunoglobulin A (sIgA) in the small intestinal mucosa and CAT and SOD in meat tissue. The liver tissue metabolome response showed that AMT in the A80 lambs compared to the A0 lambs upregulated the metabolites for energy synthesis. It was concluded that supplementary A. membranaceus increased the relative abundances of fiber decomposing bacteria and improved the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue in Tibetan sheep.
Collapse
|