1
|
Akay S, Nazim M, Foroughian R, Kristensen CK, Higazy D, Posselt D, Ciofu O, Yaghmur A. Liquid crystalline coatings loaded with colistin for preventing development of biofilms on orthopedic implants. J Colloid Interface Sci 2025; 687:630-642. [PMID: 39983390 DOI: 10.1016/j.jcis.2025.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The current antibacterial strategies focus on antibiotic therapy and extensive hygienic measures during orthopedic surgery. However, potential development of implant-associated infections remains a persistent clinical challenge. There is, therefore, a growing interest in introducing innovative safe antibacterial strategies for preventing and combating biofilm development on implants. Antibacterial coatings, particularly, are attractive for local delivery of antibacterial agents. We aim in this proof-of-concept study at introducing a novel and translatable implant coating approach, focusing on directed assembly of inverse non-lamellar lyotropic liquid crystalline (LLC) nanostructures on implants for prevention of initial bacterial attachment and biofilm formation through local delivery of the widely used cationic antibiotic colistin (COL). On exposure of dry lipid films deposited on model implants to aqueous solutions of COL prepared at different COL concentrations, a set of LLC coatings based on a commercial distilled monoglyceride product (or glycerol monooleate) were produced. In addition to small-angle X-ray scattering (SAXS) characterization investigations, in vitro studies were conducted for evaluating the antibacterial and antibiofilm properties of the LLC coatings against the Gram-negative bacteria Pseudomonas aeruginosa. The SAXS analysis indicated that all samples are inverse bicontinuous cubic Pn3m phases. Significant COL's antibacterial activity and efficient protection against bacterial adhesion were demonstrated on coating model implants with LLC surface films produced by using aqueous solutions containing COL at concentrations of 50 and 500 µg/mL. On exposure to serum, the detected structural alterations and changes in COL's antibacterial activity are also discussed. This study also highlights the implications of LLC self-assemblies for designing nanostructural coatings on orthopedic implants, which can prevent implant-associated biofilm infections through local delivery of antibacterial agents.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| | - Manija Nazim
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Roudabeh Foroughian
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | | | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Dorthe Posselt
- IMFUFA, FRUSTMI, Department of Science and Environment, Roskilde University 4000 Roskilde, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Pereira GR, Portes AB, Conte CA, Brandão MLL, Spisso BF. Antimicrobial resistance in bacteria from pig production chain: a systematic review and meta-analyses focused on the Brazilian context. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40222024 DOI: 10.1080/10408398.2025.2489531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Pork industry plays an important role in antibiotics consumption, which can lead to antimicrobial resistance (AMR) spread. Hence, monitoring and controlling AMR in swine production chains is essential to reduce the risks to public health. A systematic review protocol was developed to assess AMR in the pig production chain in Brazil, the fourth largest producer and exporter of pork in the world. More than 3000 strains obtained from swine chain had their antibiotic resistance characteristics assessed. Results showed a major attention to the research of swine AMR in Salmonella and Escherichia coli. Resistance against quinolones has been most investigated and high levels of resistance against tetracyclines were observed. Moreover, resistance profiles and determinants against colistin were frequently found. Meta-analyses were performed to estimate the frequency of microorganisms from the World Health Organization (WHO) global priority pathogens list of antibiotic-resistant bacteria. The results showed prevalences ≤ 0.11 of each priority group in Brazilian pork. As far as is known, this is the first research to provide a comprehensive synthesis of available data on AMR in this production chain. It may support the tackling of knowledge gaps and inspire the enhancement of policies to monitoring, controlling, and managing foodborne AMR.
Collapse
Affiliation(s)
- Gracielle Rodrigues Pereira
- Instituto Nacional de Controle de Qualidade em Saúde/Fundação Oswaldo Cruz (INCQS/Fiocruz), Rio de Janeiro, Brazil
| | - Ana Beatriz Portes
- Instituto de Microbiologia Paulo de Góes/Universidade Federal do Rio de Janeiro (IMPG/UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Luiz Lima Brandão
- Instituto de Tecnologia em Imunobiológicos/Fundação Oswaldo Cruz (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade em Saúde/Fundação Oswaldo Cruz (INCQS/Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tang Y, Liu J, Yan J, Xie Z, Zhong L. A novel function of short cationic peptide FP-CATH9 without antimicrobial activity reverses resistance to minocycline in common multidrug-resistant gram-negative bacteria. Microbiol Spectr 2025; 13:e0290824. [PMID: 39998408 PMCID: PMC11960431 DOI: 10.1128/spectrum.02908-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The increase in bacterial resistance to minocycline and other tetracyclines poses a serious threat to global public health. Because the development of new antibiotics has proven problematic, antibiotic sensitization therapy is now an effective coping strategy. While antimicrobial peptides generally exhibit broad-spectrum antibacterial activity and good biocompatibility, naturally truncated portions of antimicrobial peptides (such as snake cathelicidin) often do not exhibit antimicrobial activity, and their function remains unknown. FP-CATH9 is a short cationic peptide derived from FP-CATH (snake cathelicidin antimicrobial peptide) with an amphiphilic α-helical structure and no discernible antibacterial activity. However, FP-CATH9 was previously found to significantly enhance the activity of minocycline against gram-negative bacteria. In the present paper, clinically relevant minocycline-resistant gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were used as test bacteria for antibiotic sensitization screening. The sensitization activity of FP-CATH9 was found to be dose dependent in a double-dilution assay. The synergistic activity of FP-CATH9 on minocycline was subsequently determined using the checkerboard method. An ethidium bromide efflux test revealed that FP-CATH9 caused an accumulation of minocycline in bacteria. Additionally, FP-CATH9 exhibited low hemolytic activity on red blood cells and low cytotoxicity on Raw264.7 cells. In an in vivo model of bacterial infection, FP-CATH9 combined with minocycline exhibited an 80% protective effect on Galleria mellonella larvae infected with multidrug-resistant K. pneumoniae. In summary, FP-CATH9 is a new antibiotic adjuvant that reverses the resistance of gram-negative bacteria to minocycline by increasing intracellular accumulation of minocycline. This finding has broad application potential.IMPORTANCEThe existence of the efflux pump system enables bacteria to expel antibiotics, reduce the concentration of antibiotics in cells, and make antibiotics unable to effectively inhibit or kill bacteria, which is one of the main mechanisms of bacterial resistance to antibiotics. However, some efflux pumps are substrate specific, while others are with a wide range of substrates. In this study, FP-CATH9 as a new antibiotic adjuvant can specifically reverse the resistance of gram-negative bacteria to minocycline by increasing the intracellular accumulation of minocycline in bacteria and provides a new way to solve the increasing problem of bacterial drug resistance.
Collapse
Affiliation(s)
- Yingqi Tang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Economics and Management, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiye Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiani Yan
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lipeng Zhong
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Lin WH, Liou ZW, Lin SM, Yang CY, Lin CF, Chang YF, Lin CN, Chiou MT. Comparison of antimicrobial susceptibility of Glaesserella parasuis from different pig production systems in Taiwan between 2015 and 2020. Porcine Health Manag 2025; 11:15. [PMID: 40102942 PMCID: PMC11921561 DOI: 10.1186/s40813-025-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Glässer's disease, caused by Glaesserella parasuis (G. parasuis), is a widespread bacterial infection in swine that leads to significant economic losses. G. parasuis, a member of the normal microbiota within the Pasteurellaceae family, exhibits horizontal resistance gene exchange and intracellular invasion capabilities, increasing the risk of developing resistant isolates. Accurate antimicrobial therapy is essential for controlling Glässer's disease. The production systems for exotic crossbred pigs and Taiwan black pigs differ considerably. To inform Glässer disease control and monitor antimicrobial resistance, we assessed the antimicrobial susceptibilities of G. parasuis isolates, analyzed them using normalized resistance interpretation (NRI), and compared findings between the two production systems. RESULTS A total of 154 G. parasuis isolates from 106 exotic crossbred pig herds and 48 Taiwan black pig herds were tested against 16 antimicrobial agents between 2015 and 2020. Due to the absence of specific breakpoints for G. parasuis, NRI was utilized to define non-wild-type (non-WT) populations based on minimum inhibitory concentration (MIC) distributions. Non-WT subpopulations of isolates for amoxicillin, ampicillin, ceftiofur, gentamicin, kanamycin, and tiamulin were observed. The highest MIC90 (the concentration at which 90% of isolates were inhibited) was > 256 µg/mL for several antimicrobials, including gentamicin, kanamycin, lincomycin, lincospectin, spectinomycin, and tylosin. In contrast, the lowest MIC90 was observed for ceftiofur (0.5 µg/mL). The MIC values for cephalothin were significantly higher in exotic crossbred pigs than in Taiwan black pigs (p = 0.0016). Conversely, MIC values for florfenicol were significantly higher in Taiwan black pigs than in exotic crossbred pigs (p = 0.003). CONCLUSIONS This study provides the susceptibility profile of G. parasuis isolates for both exotic crossbred pigs and Taiwan black pigs in Taiwan and highlights potential antimicrobial resistance for aminocyclitol, aminoglycosides, beta-lactams, lincosamides, macrolides, and pleuromulin. Ceftiofur, cephalothin, doxycycline, and florfenicol could be most suitable for treating early-stage Glässer's disease. Nonetheless, increased attention should be paid to the responsible use of antimicrobials in light of the growing threat of antimicrobial resistance.
Collapse
Grants
- 112AS-2.1.3-AD-U1 Ministry of Agriculture, Taiwan, R.O.C.
- 112AS-2.1.3-AD-U1 Ministry of Agriculture, Taiwan, R.O.C.
- 112AS-2.1.3-AD-U1 Ministry of Agriculture, Taiwan, R.O.C.
- 112AS-2.1.3-AD-U1 Ministry of Agriculture, Taiwan, R.O.C.
- 112AS-2.1.3-AD-U1 Ministry of Agriculture, Taiwan, R.O.C.
Collapse
Affiliation(s)
- Wei-Hao Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| | - Zhu-Wei Liou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Szu-Min Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chuen-Fu Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| |
Collapse
|
5
|
Haenni M, Châtre P, Beyrouthy R, Drapeau A, François P, Madec JY, Bonnet R. No genetic link between E. coli isolates carrying mcr-1 in bovines and humans in France. J Glob Antimicrob Resist 2025; 41:111-116. [PMID: 39756652 DOI: 10.1016/j.jgar.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Colistin is a last-line antibiotic used to treat severe human infections caused by carbapenemase-producing Gram-negative bacteria. In parallel, colistin has massively been used in the veterinary field so that mcr-1-positive E. coli have spread worldwide in livestock, potentially constituting a reservoir of colistin-resistant isolates that can be further transmitted to humans. OBJECTIVES In France, the mcr-1 gene was frequently identified in E. coli of bovine origin. This genomic study assessed whether French human mcr-1-positive E. coli might originate or derive from the bovine reservoir. MATERIAL AND METHODS Human (n = 24) and bovine (n = 127) isolates collected between 2011 and 2019 were included and colistin-resistance was confirmed by MICs. The detection of mcr-1 was performed by PCR. Isolates were short-read whole-genome sequenced and a cgMLST-based phylogeny was constructed. The genetic support of mcr-1 was identified using short-read sequences or Southern blots. RESULTS The mcr-1 gene was carried by a high diversity of genetic backgrounds, among which ST167 and ST10 were the most widespread. No clonally-related isolates between bovines and humans were observed. In bovines, mcr-1 was identified on IncHI2 and IncX4 plasmids and increasingly on the chromosome, while it was also found on IncI2 and p0111 plasmids in humans. CONCLUSION Although similar STs (ST744 and ST88) and plasmid types (IncHI2, IncX4) carried mcr-1, no hypothesis of a transfer from bovines to humans could be supported by the data. Furthermore, the increasing chromosomal location of mcr-1 over time may reflect an animal-specific evolutionary pathway deserving further investigation.
Collapse
Affiliation(s)
- Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Racha Beyrouthy
- Institut National de la Santé et de la Recherche Médicale (UMR 1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Drapeau
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Richard Bonnet
- Institut National de la Santé et de la Recherche Médicale (UMR 1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, Clermont-Ferrand, France; Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
6
|
Li Z, Li Z, Peng Y, Zhang M, Wen Y, Lu X, Kan B. Genomic diversity of mcr-carrying plasmids and the role of type IV secretion systems in IncI2 plasmids conjugation. Commun Biol 2025; 8:342. [PMID: 40025288 PMCID: PMC11873049 DOI: 10.1038/s42003-025-07748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
The rapid dissemination of colistin resistance via mcr-carrying plasmids (pMCRs) poses a significant public health challenge. This study examined the genomic diversity and conjugation mechanisms of pMCRs, with a particular focus on the role of type IV secretion systems (T4SS) in IncI2 plasmids. The 868 complete plasmid sequences revealed various replicon types of pMCRs, with IncI2 as the primary epidemic type, and the co-transfer risk of multidrug resistance genes associated with IncHI2. T4SS was identified in 89.9% of pMCRs, with the T4SS sequence exclusively carried by IncI2 being conserved and typical of the VirB/D4 type, consisting of 12 subunits. Conjugation assays confirmed the essential role of the pilus subunit VirB2 and the significant impact of VirB5P3 on conjugation. This was further validated in the in vivo intra-species competitive conjugation of Escherichia coli. Structural predictions show that a hypervariable region at the C-terminus of the pentameric VirB5 co-evolves in sequence with VirB6, and the conserved N-terminal may act as a potential drug target to inhibit the plasmid transfer channel. This study will deepen the understanding of the pMCR epidemic patterns and provide additional insights for controlling the spread of resistant plasmids.
Collapse
Affiliation(s)
- Zhe Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengke Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Yuanxi Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Al Musaimi O. FDA-Approved Antibacterials and Echinocandins. Antibiotics (Basel) 2025; 14:166. [PMID: 40001410 PMCID: PMC11851826 DOI: 10.3390/antibiotics14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Since 1955, a total of 12 peptide-based drugs with antimicrobial or antifungal properties have received approval from the Food and Drug Administration (FDA). Peptides present a promising opportunity to address serious infections that may be challenging to manage through other means. Peptides exhibit the capability to leverage various mechanisms, and in some cases, multiple mechanisms are employed for this purpose. Despite the initial approval dating back to 1955, the FDA recently approved an echinocandin peptide just last year. The ongoing approvals underscore the significance of peptides in addressing ongoing medical challenges. Approximately 22 peptide therapeutics with an antibacterial and antifungal spectrum are currently undergoing various phases of clinical trials, showing promising results. In this review, antimicrobial and antifungal peptides are analyzed in terms of their chemical structure, indication, mode of action, and development journey, concluding with their arrival in the pharmaceutical market.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Murungi M, Vudriko P, Ndagije HB, Kesi DN, Serwanga A, Rajab K, Manirakiza L, Waswa JP, Kasujja H, Barigye M, Kaweesi D, Akello H, Namugambe J, Kiggundu R, Konduri N. National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021. Antibiotics (Basel) 2025; 14:150. [PMID: 40001394 PMCID: PMC11852167 DOI: 10.3390/antibiotics14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Antimicrobials are crucial for animal health and food security. However, their overuse in animals can lead to the emergence of resistant microorganisms. Antimicrobial resistance (AMR) poses a global public health threat that impacts both animal and human health. The objective of this study was to estimate the antimicrobial consumption (AMC) of veterinary antimicrobials at the national level using import data from January to December 2021, available from the Uganda National Drug Authority (NDA). METHODS The World Organization for Animal Health (WOAH) methodology was applied using the Anatomical Therapeutic Chemical classification codes for veterinary medicines. RESULTS Approximately 88,387.37 kg (88.39 tonnes) of veterinary antimicrobials were consumed in 2021. Parenteral veterinary antimicrobials accounted for 63.8% (56,375.65 kg) and oral veterinary antibacterials accounted for 36.2% (32,011.71 kg). Tetracyclines were the single most consumed veterinary antimicrobial class, accounting for 62.7% of total consumption. Oxytetracycline was the most consumed antibacterial (58.4%), followed by sulphadiazine + trimethoprim (11.1%), penicillin g/dihydrostreptomycin (7.4%), penicillin G procaine + dihydrostreptomycin (6.8%), and tetracycline (3.5%), respectively. Out of all imported veterinary antimicrobials, 76% belonged to the World Health Organization (WHO)'s Highly Important Antimicrobials (HIA) category, 16% to the Critically Important (CIA), and 9% to the Highest Priority Critically Important (HPCIA) categories. Imported colistin accounted for 0.1% of total veterinary consumption. CONCLUSIONS This study contributes to understanding antimicrobial consumption in Uganda's livestock sector and, for the NDA, leaves in place a system for routine surveillance at a national level. We recommend strict regulatory oversight on the importation and use of colistin and macrolides to address AMR.
Collapse
Affiliation(s)
- Marion Murungi
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Kampala P.O. Box 71419, Uganda; (J.P.W.); (H.K.); (D.K.); (R.K.)
| | - Patrick Vudriko
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala P.O. Box 10217, Uganda;
| | - Helen Byomire Ndagije
- National Drug Authority, Kampala P.O. Box 23096, Uganda; (H.B.N.); (D.N.K.); (A.S.); (M.B.)
| | - Diana Nakitto Kesi
- National Drug Authority, Kampala P.O. Box 23096, Uganda; (H.B.N.); (D.N.K.); (A.S.); (M.B.)
| | - Allan Serwanga
- National Drug Authority, Kampala P.O. Box 23096, Uganda; (H.B.N.); (D.N.K.); (A.S.); (M.B.)
| | - Kalidi Rajab
- Department of Pharmacy, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Leonard Manirakiza
- Department of Corporate Planning, Uganda National Bureau of Standards, Kampala, P.O. Box 6329, Uganda;
| | - John Paul Waswa
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Kampala P.O. Box 71419, Uganda; (J.P.W.); (H.K.); (D.K.); (R.K.)
| | - Hassan Kasujja
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Kampala P.O. Box 71419, Uganda; (J.P.W.); (H.K.); (D.K.); (R.K.)
| | - Mark Barigye
- National Drug Authority, Kampala P.O. Box 23096, Uganda; (H.B.N.); (D.N.K.); (A.S.); (M.B.)
| | - Ddembe Kaweesi
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Kampala P.O. Box 71419, Uganda; (J.P.W.); (H.K.); (D.K.); (R.K.)
| | - Harriet Akello
- Department of Pharmaceuticals and Natural Medicines, Ministry of Health, Kampala P.O. Box 7272, Uganda;
| | - Juliet Namugambe
- Faculty of Infectious and Tropical Diseases, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Reuben Kiggundu
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Kampala P.O. Box 71419, Uganda; (J.P.W.); (H.K.); (D.K.); (R.K.)
- Centers for Antimicrobial Optimization Network (CAMO-Net), Department of Global Health Security, Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda
| | - Niranjan Konduri
- USAID Medicines, Technologies, and Pharmaceutical Services (MTaPS) Program, Management Sciences for Health, Arlington, VA 22203, USA;
| |
Collapse
|
9
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
10
|
Yadav KS, Pawar S, Datkhile K, Patil SR. Study on the Mobile Colistin Resistance (mcr-1) Gene in Gram-Negative Bacilli in a Rural Tertiary Care Hospital in Western Maharashtra. Cureus 2024; 16:e75569. [PMID: 39803089 PMCID: PMC11724157 DOI: 10.7759/cureus.75569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the mcr-1 gene. The mcr-1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of mcr-1-mediated resistance poses significant challenges for infection control and treatment efficacy. This study aimed to detect and investigate the prevalence of the mcr-1 gene among Gram-negative bacilli isolated from clinical specimens in a rural tertiary care hospital and to analyze the plasmid-mediated mechanisms of colistin resistance. MATERIALS AND METHODS A cross-sectional study was conducted over two years at Krishna Institute of Medical Sciences, Karad. Gram-negative bacilli were isolated from clinical specimens and identified using standard methodology. Antimicrobial susceptibility testing was performed by using the Vitek-2 Compact (bioMerieux, Marcy-l'Étoile, France) method and the colistin-resistance broth microdilution method (BMD). Polymerase chain reaction (PCR) was done for the presence of mcr-1 gene in colistin-resistant isolates. RESULTS Out of 359 Gram-negative bacilli isolates, 93 (25.90%) demonstrated resistance to colistin. Among these resistant strains, the mcr-1 gene was identified in 13 (13.97%) of the isolates. The gene was predominantly found in Pseudomonas aeruginosa (8, 61.53%), followed by Klebsiella pneumoniae (3, 23.07%), Acinetobacter baumannii (2, 15.38%) among the 13 isolates. Out of the various specimens received, mcr-1 gene was found in endotracheal tube (4, 30.76%), urine (4, 30.76%), pus (3, 23.07%), sputum (1, 7.69%), and blood (1, 7.69%). Colistin minimum inhibitory concentration (MIC) value for these resistant isolates ranged from 4 to 16 µg/ml. CONCLUSION The study highlights a significant prevalence of mcr-1 plasmid-mediated colistin resistance gene among Gram-negative bacilli in the hospital. This possibly highlights the frequent misuse of colistin in animal husbandry from this rural area. The findings underscore the importance of monitoring resistance patterns and implementing stringent infection control measures.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Kailas Datkhile
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satish R Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| |
Collapse
|
11
|
Timofeeva AM, Galyamova MR, Krivosheev DM, Karabanov SY, Sedykh SE. Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms 2024; 12:2308. [PMID: 39597696 PMCID: PMC11596788 DOI: 10.3390/microorganisms12112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
This paper presents the findings of a large-scale study on antibiotic resistance in bacteria found in farm animal feces across Russia. The study included 6578 samples of farm animal manure from 13 regions in Russia, with the help of citizen scientists. Molecular and microbiological methods were used to analyze 1111 samples of E. coli. The microbiological analysis focused on culturing the microorganisms present in the fecal samples on selective media for E. coli and evaluating the sensitivity of the bacteria to different antibiotics, including ampicillin, tetracycline, chloramphenicol, cefotaxime, and ciprofloxacin. The molecular analysis involved isolating the genomic DNA of the bacteria and conducting PCR assays to detect the vanA, vanB, and mcr-1 antibiotic resistance genes. The results demonstrated significant differences in antibiotic sensitivity of the samples that are morphologically identical to E. coli from different regions. For example, 98.0% and 82.5% of E. coli and other fecal bacterial isolates from the Omsk and Vologda regions lacked antibiotic resistance genes, while 97.7% of samples from the Voronezh region possessed three resistance genes simultaneously. The phenotypic antibiotic sensitivity test also revealed regional differences. For instance, 98.1% of fecal bacterial samples from cattle in the Udmurt Republic were sensitive to all five antibiotics tested, whereas 92.8% of samples from the Voronezh region showed resistance to all five antibiotics. The high level of antibiotic resistance observed may be attributed to their use in farming practices. The distinctive feature of our research is that comprehensive geographical coverage was achieved by using a citizen science platform. Citizen scientists, specifically students from colleges and universities, were responsible for the collection and initial analysis of samples. The project attracted 3096 student participants, enabling the collection and analysis of a significant number of samples from various locations in Russia.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | | | | | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
12
|
Koller BH, Jania LA, Li H, Barker WT, Melander RJ, Melander C. Adjuvants restore colistin sensitivity in mouse models of highly colistin-resistant isolates, limiting bacterial proliferation and dissemination. Antimicrob Agents Chemother 2024; 68:e0067124. [PMID: 39194205 PMCID: PMC11459950 DOI: 10.1128/aac.00671-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has led to a marked reduction in the effectiveness of many antibiotics, representing a substantial and escalating concern for global health. Particularly alarming is resistance in Gram-negative bacteria due to the scarcity of therapeutic options for treating infections caused by these pathogens. This challenge is further compounded by the rising incidence of resistance to colistin, an antibiotic traditionally considered a last resort for the treatment of multi-drug resistant (MDR) Gram-negative bacterial infections. In this study, we demonstrate that adjuvants restore colistin sensitivity in vivo. We previously reported that the salicylanilide kinase inhibitor IMD-0354, which was originally developed to inhibit the human kinase IKKβ in the NFκB pathway, is a potent colistin adjuvant. Subsequent analog synthesis using an amide isostere approach led to the creation of a series of novel benzimidazole compounds with enhanced colistin adjuvant activity. Herein, we demonstrate that both IMD-0354 and a lead benzimidazole effectively restore colistin susceptibility in mouse models of highly colistin-resistant Klebsiella pneumoniae and Acinetobacter baumannii-induced peritonitis. These novel adjuvants show low toxicity in vivo, significantly reduce bacterial load, and prevent dissemination that could otherwise result in systemic infection.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William T. Barker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
13
|
Mo X, Zhang H, Fan J, Xu L, Fu H, Yue J, Dong K, Luo Q, Wan F. Co-existence of two plasmids harboring transferable resistance-nodulation-division pump gene cluster, tmexCD1-toprJ1, and colistin resistance gene mcr-8 in Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2024; 23:67. [PMID: 39061085 PMCID: PMC11282740 DOI: 10.1186/s12941-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The emergence of plasmid-mediated mobile colistin resistance (mcr) gene poses a great challenge to the clinical application of polymyxins. To date, mcr-1 to mcr-10 have been found in animals, humans, and the environment. Among them, mcr-8 was first identified in Klebsiella pneumoniae (K. pneumoniae) of swine origin, and then mcr-8.1 to mcr-8.5 were successively identified. Notably, K. pneumoniae is the major host of the mcr-8 gene in both animals and humans. This study aims to explore the characteristics of K. pneumoniae strains carrying the mcr-8 gene and tmexCD1-toprJ1 gene cluster and investigate the correlation between these two antibiotic resistance genes. METHODS The isolates from the poultry farms and the surrounding villages were identified by mass spectrometer, and the strains positive for mcr-1 to mcr-10 were screened by polymerase chain reaction (PCR). The size of the plasmid and the antimicrobial resistance genes carried were confirmed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern hybridization, and the transferability of the plasmid was verified by conjugation experiments. Antimicrobial susceptibility testing (AST) and whole genome sequencing (WGS) were used to characterize the strains. RESULTS Two K. pneumoniae isolates (KP26 and KP29) displaying polymyxin resistance were identified as mcr-8 gene carriers. Besides that, tigecycline-resistant gene cluster tmexCD1-toprJ1 was also found on the other plasmid which conferred strain resistance to tigecycline. Through epidemiological analysis, we found that the mcr-8 gene has dispersed globally, circulating in the human, animals, and the environment. Furthermore, our analysis suggests that the coexistence of mcr-8 and tmexCD1-toprJ1 on a single plasmid might evolved through plasmid recombination. CONCLUSIONS Although the mcr-8 and tmexCD1-toprJ1 gene clusters in the two strains of K. pneumoniae in this study were on two different plasmids, they still pose a potential threat to public health, requiring close monitoring and further study.
Collapse
Affiliation(s)
- Xiaofen Mo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Hui Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Junfeng Fan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junpeng Yue
- The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaixuan Dong
- The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Fen Wan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
14
|
García-Díez J, Moura D, Grispoldi L, Cenci-Goga B, Saraiva S, Silva F, Saraiva C, Ausina J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach-A Systematic Review and Meta-Analysis. Vet Sci 2024; 11:315. [PMID: 39057999 PMCID: PMC11281391 DOI: 10.3390/vetsci11070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella spp. pose a global threat as a leading cause of foodborne illnesses, particularly prevalent in the European Union (EU), where it remains the second cause of foodborne outbreaks. The emergence of antimicrobial resistance (AMR) in Salmonella spp. has become a critical concern, complicating treatment strategies and escalating the risk of severe infections. The study focuses on large and small ruminants, identifying a prevalence of Salmonella spp. in slaughterhouses and revealing varied AMR rates across antimicrobial families throughout a meta-analysis. Also, comparison with AMR in human medicine was carried out by a systematic review. The results of the present meta-analysis displayed a prevalence of Salmonella spp. in large and small ruminants at slaughterhouses of 8.01% (8.31%, cattle; 7.04%, goats; 6.12%, sheep). According to the AMR of Salmonella spp., 20, 14, and 13 out of 62 antimicrobials studied were classified as low (<5%), high (>5% but <10%), and very high (>10%), respectively. Salmonella spp. did not display AMR against aztreonam, mezlocillin, ertapenem, meropenem, cefoxitin, ceftazidime, levofloxacin, tilmicosin, linezolid, fosfomycin, furazolidone, quinupristin, trimethoprim and spectinomycin. In contrast, a prevalence of 100% of AMR has been described against ofloxacin, lincomycin, and cloxacillin. In the context of the main antibiotics used in the treatment of human salmonellosis, azithromycin was shown to have the highest resistance among Salmonella spp. isolates from humans. Regarding cephalosporins, which are also used for the treatment of salmonellosis in humans, the prevalence of Salmonella spp. resistance to this class of antibiotics was similar in both human and animal samples. Concerning quinolones, despite a heightened resistance profile in Salmonella spp. isolates from ruminant samples, there appears to be no discernible compromise to the efficacy of salmonellosis treatment in humans since lower prevalences of AMR in Salmonella spp. isolated from human specimens were observed. Although the resistance of Salmonella spp. indicates some degree of concern, most antibiotics are not used in veterinary medicine. Thus, the contribution of cattle, sheep and goats to the rise of antibiotic resistance of Salmonella spp. and its potential impact on public health appears to be relatively insignificant, due to their low prevalence in carcasses and organs. Nevertheless, the observed low prevalence of Salmonella spp. in ruminants at slaughterhouse and the correspondingly low AMR rates of Salmonella spp. to key antibiotics employed in human medicine do not indicate that ruminant livestock poses a substantial public health risk concerning the transmission of AMR. Thus, the results observed in both the meta-analysis and systematic review suggests that AMR is not solely attributed to veterinary antibiotic use but is also influenced by factors such as animal health management (i.e., biosecurity measures, prophylactic schemes) and human medicine.
Collapse
Affiliation(s)
- Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Dina Moura
- Divisão de Intervenção de Alimentação e Veterinária de Vila Real e Douro Sul, Direção de Serviços de Alimentação e Veterinária da Região Norte, Direção Geral de Alimentação e Veterinária, Lugar de Codessais, 5000 Vila Real, Portugal;
| | - Luca Grispoldi
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
| | - Beniamino Cenci-Goga
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - Sónia Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipe Silva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Cristina Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Ausina
- Social Psychology and Methodology Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Cui XD, Liu XK, Ma XY, Li SH, Zhang JK, Han RJ, Yi KF, Liu JH, Pan YS, He DD, Hu GZ, Zhai YJ. Restoring colistin sensitivity in colistin-resistant Salmonella and Escherichia coli: combinatorial use of berberine and EDTA with colistin. mSphere 2024; 9:e0018224. [PMID: 38738873 PMCID: PMC11332338 DOI: 10.1128/msphere.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024] Open
Abstract
The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.
Collapse
Affiliation(s)
- Xiao-die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-kang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-yuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuai-hua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun-kai Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rong-jia Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kai-fang Yi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jian-hua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ya-jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
17
|
El Riz A, Tchoumi Neree A, Mousavifar L, Roy R, Chorfi Y, Mateescu MA. Metallo-Glycodendrimeric Materials against Enterotoxigenic Escherichia coli. Microorganisms 2024; 12:966. [PMID: 38792795 PMCID: PMC11124148 DOI: 10.3390/microorganisms12050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10-2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10-4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria-polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal-mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.
Collapse
Affiliation(s)
- Aly El Riz
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Armelle Tchoumi Neree
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
| | - Younes Chorfi
- Department of Veterinary Biomedicine Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada; (A.T.N.); (Y.C.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada; (A.E.R.); (L.M.); (R.R.)
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
18
|
Alvarez L, Carhuaricra D, Palomino-Farfan J, Calle S, Maturrano L, Siuce J. Genomic Profiling of Multidrug-Resistant Swine Escherichia coli and Clonal Relationship to Human Isolates in Peru. Antibiotics (Basel) 2023; 12:1748. [PMID: 38136782 PMCID: PMC10740509 DOI: 10.3390/antibiotics12121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The misuse of antibiotics is accelerating antimicrobial resistance (AMR) in Escherichia coli isolated from farm animals. The genomes of ten multidrug-resistant (MDR) E. coli isolates from pigs were analyzed to determine their sequence types, serotypes, virulence, and AMR genes (ARGs). Additionally, the relationship was evaluated adding all the available genomes of Peruvian E. coli from humans using the cgMLST + HierCC scheme. Two aEPEC O186:H11-ST29 were identified, of which H11 and ST29 are reported in aEPEC isolates from different sources. An isolate ETEC-O149:H10-ST100 was identified, considered a high-risk clone that is frequently reported in different countries as a cause of diarrhea in piglets. One ExPEC O101:H11-ST167 was identified, for which ST167 is an international high-risk clone related to urinary infections in humans. We identified many ARGs, including extended-spectrum β-lactamase genes, and one ETEC harboring the mcr-1 gene. CgMLST + HierCC analysis differentiated three clusters, and in two, the human isolates were grouped with those of swine in the same cluster. We observed that Peruvian swine MDR E. coli cluster with Peruvian E. coli isolates from healthy humans and from clinical cases, which is of great public health concern and evidence that AMR surveillance should be strengthened based on the One Health approach.
Collapse
Affiliation(s)
- Luis Alvarez
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Dennis Carhuaricra
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Joel Palomino-Farfan
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Sonia Calle
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| | - Lenin Maturrano
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (D.C.); (L.M.)
| | - Juan Siuce
- Laboratory of Veterinary Bacteriology and Mycology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 15021, Peru; (L.A.); (J.P.-F.); (S.C.)
| |
Collapse
|
19
|
do Valle Barroso M, da Silva JS, Moreira SM, Sabino YNV, Rocha GC, Moreira MAS, Bazzolli DMS, Mantovani HC. Antimicrobial Resistance Profiles of Multidrug-Resistant Enterobacteria Isolated from Feces of Weaned Piglets. Curr Microbiol 2023; 81:40. [PMID: 38103072 DOI: 10.1007/s00284-023-03556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Nosocomial infections caused by multidrug-resistant enterobacteria have become a major challenge in global public health. Previous studies have indicated that use of antibiotics in livestock production chains is linked to the rising threat of antibiotic resistance in humans. In this study, we aimed to evaluate the distribution of genes encoding resistance to tetracycline, β-lactams, and colistin in multidrug-resistant enterobacteria isolated from feces of weaned pigs. Ninety-four enterobacteria isolates were submitted to antibiotic susceptibility test by minimum inhibitory concentration (MIC). In addition, we performed conjugation experiments to verify if plasmid-bearing isolates containing the mcr-1 gene could transfer their resistance determinant to a colistin-sensitive recipient strain. Our results demonstrated a positive association between the detection of antibiotic resistance genes in enterobacteria and the phenotypic resistance profiles of the bacterial isolates. At least one of the extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaTEM, or bla SHV) and tetA was found among most bacterial genera analyzed. In addition, results revealed that the mcr-1 gene can be transferred from E. coli UFV-627 isolate to an F- recipient (Escherichia coli K12) by conjugation. Our findings support the hypothesis that swine represents an important reservoir of antibiotic resistance genes and suggest that horizontal transfer mechanisms (e.g., conjugation) may mediate the spread of these genes in the swine gastrointestinal tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
20
|
Shahzad S, Willcox MDP, Rayamajhee B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene ( mcr) among Pathogens of Clinical Significance. Antibiotics (Basel) 2023; 12:1597. [PMID: 37998799 PMCID: PMC10668746 DOI: 10.3390/antibiotics12111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
The global rise in antibiotic resistance in bacteria poses a major challenge in treating infectious diseases. Polymyxins (e.g., polymyxin B and colistin) are last-resort antibiotics against resistant Gram-negative bacteria, but the effectiveness of polymyxins is decreasing due to widespread resistance among clinical isolates. The aim of this literature review was to decipher the evolving mechanisms of resistance to polymyxins among pathogens of clinical significance. We deciphered the molecular determinants of polymyxin resistance, including distinct intrinsic molecular pathways of resistance as well as evolutionary characteristics of mobile colistin resistance. Among clinical isolates, Acinetobacter stains represent a diversified evolution of resistance, with distinct molecular mechanisms of intrinsic resistance including naxD, lpxACD, and stkR gene deletion. On the other hand, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are usually resistant via the PhoP-PhoQ and PmrA-PmrB pathways. Molecular evolutionary analysis of mcr genes was undertaken to show relative relatedness across the ten main lineages. Understanding the molecular determinants of resistance to polymyxins may help develop suitable and effective methods for detecting polymyxin resistance determinants and the development of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Shakeel Shahzad
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | | |
Collapse
|
21
|
Subramani P, Menichincheri G, Pirolo M, Arcari G, Kudirkiene E, Polani R, Carattoli A, Damborg P, Guardabassi L. Genetic background of neomycin resistance in clinical Escherichia coli isolated from Danish pig farms. Appl Environ Microbiol 2023; 89:e0055923. [PMID: 37787538 PMCID: PMC10617424 DOI: 10.1128/aem.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023] Open
Abstract
Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.
Collapse
Affiliation(s)
- Prabha Subramani
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Gaia Menichincheri
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Gabriele Arcari
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Riccardo Polani
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Berger PI, Hermanns S, Kerner K, Schmelz F, Schüler V, Ewers C, Bauerfeind R, Doherr MG. Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels. Porcine Health Manag 2023; 9:49. [PMID: 37885038 PMCID: PMC10601234 DOI: 10.1186/s40813-023-00343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. RESULTS Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1-3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1-29.1%) of sampled pens and in 37.4% (95% CI 27.9-47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0-39.1%) of the pens and 53.5% (95% CI 44.4-63.6%) of the farms sampled. CONCLUSIONS Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease.
Collapse
Affiliation(s)
- Pia I Berger
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| | - Steffen Hermanns
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | | | | | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Marcus G Doherr
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Uehara A, Maekawa M, Nakagawa K. Enhanced intestinal barrier function as the mechanism of antibiotic growth promoters in feed additives. Biosci Biotechnol Biochem 2023; 87:1381-1392. [PMID: 37704399 DOI: 10.1093/bbb/zbad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Antibiotic growth promoters (AGPs) are a cost-effective tool for improving livestock productivity. However, antimicrobial-resistant bacteria have emerged, and the search for alternatives to AGPs has consequently intensified. To identify these alternatives without the risk of the emergence of antimicrobial resistance, it is important to determine the mechanism of action of AGPs and, subsequently, search for compounds with similar properties. We investigated the antimicrobial and anti-inflammatory activities and intestinal barrier function of several AGPs using epithelial and immune cells. At the minimum administered dose of antibiotics, which effectively function as a growth promoter, the mechanism of action is to enhance the intestinal barrier function, but not the antimicrobial activity as determined using Dunnett's test (n = 3, P < .05). Inflammatory response was dependent on the combination of antibiotics (100 µmol/L) and immune cells. The results suggest that future studies should screen for nonantibiotic compounds that ameliorate intestinal barrier function.
Collapse
Affiliation(s)
- Akinori Uehara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mayumi Maekawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazuki Nakagawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| |
Collapse
|
24
|
Beaumont M, Lencina C, Fève K, Barilly C, Le-Normand L, Combes S, Devailly G, Boudry G. Disruption of the primocolonizing microbiota alters epithelial homeostasis and imprints stem cells in the colon of neonatal piglets. FASEB J 2023; 37:e23149. [PMID: 37671857 DOI: 10.1096/fj.202301182r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
The gut microbiota plays a key role in the postnatal development of the intestinal epithelium. However, the bacterial members of the primocolonizing microbiota driving these effects are not fully identified and the mechanisms underlying their long-term influence on epithelial homeostasis remain poorly described. Here, we used a model of newborn piglets treated during the first week of life with the antibiotic colistin in order to deplete specific gram-negative bacteria that are transiently dominant in the neonatal gut microbiota. Colistin depleted Proteobacteria and Fusobacteriota from the neonatal colon microbiota, reduced the bacterial predicted capacity to synthetize lipopolysaccharide (LPS), and increased the concentration of succinate in the colon. The colistin-induced disruption of the primocolonizing microbiota was associated with altered gene expression in the colon epithelium including a reduction of toll-like receptor 4 (TLR4) and lysozyme (LYZ). Our data obtained in porcine colonic organoid cell monolayers suggested that these effects were not driven by the variation of succinate or LPS levels nor by a direct effect of colistin on epithelial cells. The disruption of the primocolonizing microbiota imprinted colon epithelial stem cells since the expression of TLR4 and LYZ remained lower in organoids derived from colistin-treated piglet colonic crypts after several passages when compared to control piglets. Finally, the stable imprinting of LYZ in colon organoids was independent of the H3K4me3 level in its transcription start site. Altogether, our results show that disruption of the primocolonizing gut microbiota alters epithelial innate immunity in the colon and imprints stem cells, which could have long-term consequences for gut health.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Katia Fève
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| |
Collapse
|
25
|
Gadar K, de Dios R, Kadeřábková N, Prescott TAK, Mavridou DAI, McCarthy RR. Disrupting iron homeostasis can potentiate colistin activity and overcome colistin resistance mechanisms in Gram-Negative Bacteria. Commun Biol 2023; 6:937. [PMID: 37704838 PMCID: PMC10499790 DOI: 10.1038/s42003-023-05302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative priority pathogen that can readily overcome antibiotic treatment through a range of intrinsic and acquired resistance mechanisms. Treatment of carbapenem-resistant A. baumannii largely relies on the use of colistin in cases where other treatment options have been exhausted. However, the emergence of resistance against this last-line drug has significantly increased amongst clinical strains. In this study, we identify the phytochemical kaempferol as a potentiator of colistin activity. When administered singularly, kaempferol has no effect on growth but does impact biofilm formation. Nonetheless, co-administration of kaempferol with sub-inhibitory concentrations of colistin exposes bacteria to a metabolic Achilles heel, whereby kaempferol-induced dysregulation of iron homeostasis leads to bacterial killing. We demonstrate that this effect is due to the disruption of Fenton's reaction, and therefore to a lethal build-up of toxic reactive oxygen species in the cell. Furthermore, we show that this vulnerability can be exploited to overcome both intrinsic and acquired colistin resistance in clinical strains of A. baumannii and E. coli in vitro and in the Galleria mellonella model of infection. Overall, our findings provide a proof-of-principle demonstration that targeting iron homeostasis is a promising strategy for enhancing the efficacy of colistin and overcoming colistin-resistant infections.
Collapse
Affiliation(s)
- Kavita Gadar
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Rubén de Dios
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
- John Ring LaMontagne Centre for Infectious Diseases, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronan R McCarthy
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
26
|
Boonyasiri A, Brinkac LM, Jauneikaite E, White RC, Greco C, Seenama C, Tangkoskul T, Nguyen K, Fouts DE, Thamlikitkul V. Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014-2017. BMC Infect Dis 2023; 23:556. [PMID: 37641085 PMCID: PMC10464208 DOI: 10.1186/s12879-023-08539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.
Collapse
Affiliation(s)
- Adhiratha Boonyasiri
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Lauren M Brinkac
- J. Craig Venter Institute, Rockville, MD, 20850, USA
- Noblis, Reston, VA, 20191, USA
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | | | - Chris Greco
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | | | - Kevin Nguyen
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand.
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
27
|
Somogyi Z, Mag P, Simon R, Kerek Á, Makrai L, Biksi I, Jerzsele Á. Susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis Isolated from Pigs in Hungary between 2018 and 2021. Antibiotics (Basel) 2023; 12:1298. [PMID: 37627719 PMCID: PMC10451952 DOI: 10.3390/antibiotics12081298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) has been a major animal health, welfare, and economic problem in Hungary; therefore, great emphasis should be put on both the prevention and control of this complex disease. As antibacterial agents are effective tools for control, antibiotic susceptibility testing is indispensable for the proper implementation of antibacterial therapy and to prevent the spread of resistance. The best method for this is to determine the minimum inhibitory concentration (MIC) by the broth microdilution method. In our study, we measured the MIC values of 164 Actinobacillus pleuropneumoniae, 65 Pasteurella multocida, and 118 Streptococcus suis isolates isolated from clinical cases against the following antibacterial agents: amoxicillin, ceftiofur, cefquinome, oxytetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, tulathromycin, lincomycin, tiamulin, florfenicol, colistin, enrofloxacin, and sulfamethoxazole-trimethoprim. Outstanding efficacy against A. pleuropneumoniae isolates was observed with ceftiofur (100%) and tulathromycin (100%), while high levels of resistance were observed against cefquinome (92.7%) and sulfamethoxazole-trimethoprim (90.8%). Ceftiofur (98.4%), enrofloxacin (100%), florfenicol (100%), and tulathromycin (100%) were found to be highly effective against P. multocida isolates, while 100% resistance was detected against the sulfamethoxazole-trimethoprim combination. For the S. suis isolates, only ceftiofur (100%) was not found to be resistant, while the highest rate of resistance was observed against the sulfamethoxazole-trimethoprim combination (94.3%). An increasing number of studies report multi-resistant strains of all three pathogens, making their monitoring a high priority for animal and public health.
Collapse
Affiliation(s)
- Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Réka Simon
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - László Makrai
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary
| | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary;
- SCG Diagnostics Ltd., HU-2437 Délegyháza, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Str. 2., H-1078 Budapest, Hungary; (P.M.); (R.S.); (Á.K.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
28
|
Jakubec M, Rylandsholm FG, Rainsford P, Silk M, Bril'kov M, Kristoffersen T, Juskewitz E, Ericson JU, Svendsen JSM. Goldilocks Dilemma: LPS Works Both as the Initial Target and a Barrier for the Antimicrobial Action of Cationic AMPs on E. coli. Biomolecules 2023; 13:1155. [PMID: 37509189 PMCID: PMC10377513 DOI: 10.3390/biom13071155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan).
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Fredrik G Rylandsholm
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Mitchell Silk
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Maxim Bril'kov
- Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Tone Kristoffersen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Johanna U Ericson
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - John Sigurd M Svendsen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
29
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
31
|
Perdomo A, Webb HE, Bugarel M, Friedman CR, Francois Watkins LK, Loneragan GH, Calle A. First Known Report of mcr-Harboring Enterobacteriaceae in the Dominican Republic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5123. [PMID: 36982034 PMCID: PMC10049167 DOI: 10.3390/ijerph20065123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Colistin is a last-resort antibiotic used to treat infections caused by multidrug-resistant Gram-negative bacteria. People with a history of travel to the Dominican Republic have become sick with pathogenic bacteria carrying the mobile colistin resistance gene, mcr-1, during and after traveling. This investigation aimed to identify mcr genes in Enterobacteriaceae isolated from food animal sources in the Dominican Republic. Three hundred and eleven samples were tested, from which 1354 bacterial isolates were obtained. Real-time PCR tests showed that 70.7% (220 out of 311) of the samples and 3.2% (44 out of 1354) of the isolates tested positive for the mcr gene. All RT-PCR presumptive mcr-positive isolates (n = 44) and a subset (n = 133) of RT-PCR presumptive mcr-negative isolates were subjected to whole-genome sequencing. WGS analysis showed that 39 isolates carried the mcr gene, with 37 confirmed as positive through RT-PCR and two as negative. Further, all of the mcr-positive genomes were identified as Escherichia coli and all contained a IncX4 plasmid replicon. Resistant determinants for other antibiotics important for human health were found in almost all isolates carrying mcr genes.
Collapse
Affiliation(s)
- Angela Perdomo
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79409, USA
| | - Hattie E. Webb
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Marie Bugarel
- Division of Research and Development Resources, BioMérieux, 69795 Lyon, France
| | - Cindy R. Friedman
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Louise K. Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Guy H. Loneragan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79409, USA
| | - Alexandra Calle
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79409, USA
| |
Collapse
|
32
|
Neomycin resistance in clinical Escherichia coli from Danish weaner pigs is associated with recent neomycin use and presence of F4 or F18 fimbriaes. Prev Vet Med 2023; 212:105852. [PMID: 36689897 DOI: 10.1016/j.prevetmed.2023.105852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Neomycin is a first-choice antibiotic for treatment of porcine enteritis caused by enterotoxigenic Escherichia coli (ETEC), but little is known about factors influencing resistance to this drug. The aims of this study were to assess antimicrobial resistance and virulence in 325 E. coli isolates obtained in 2020 from various infections in pigs, and to identify factors associated with neomycin resistance development. Susceptibility to 16 antimicrobial agents was determined by broth microdilution, and occurrence of ETEC-associated virulence factors was screened by PCR and hemolysis on blood agar. Univariate and multivariate logistic regression analyses were performed to determine if age group, virulence factors, or antibiotic use (neomycin and other antibiotics) were associated with neomycin resistance. STa, STb, LT, F4, and F18 were detected in 14%, 37%, 26%, 21% and 23% of the isolates, respectively. Resistance was low for antimicrobials of high public health importance (1.5% for cefotaxime, 1% for colistin and no fluoroquinolone resistance) but high for drugs used for treatment of ETEC enteritis (e.g. 20% for neomycin). Isolates with the ETEC pathotype were significantly associated with the weaner age group and intestinal/fecal origin. Multivariate analysis showed that recent neomycin use and presence of F4 or F18 were significantly associated with neomycin resistance amongst isolates from weaners. These results prove an association between neomycin resistance and use at the farm level. Further research is warranted to determine why neomycin resistance was associated with F4 and F18, and whether neomycin use may co-select for virulent strains.
Collapse
|
33
|
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents 2023; 61:106713. [PMID: 36640846 DOI: 10.1016/j.ijantimicag.2023.106713] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes - Agence Nationale de Sécurité Sanitaire, Université de Lyon, Lyon, France
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC 20005, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
34
|
Treilles M, Châtre P, Drapeau A, Madec JY, Haenni M. Spread of the mcr-1 colistin-resistance gene in Escherichia coli through plasmid transmission and chromosomal transposition in French goats. Front Microbiol 2023; 13:1023403. [PMID: 36687643 PMCID: PMC9846274 DOI: 10.3389/fmicb.2022.1023403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Colistin-resistance widely disseminated in food-producing animals due to decades of colistin use to treat diarrhea. The plasmid-borne mcr-1 gene has been extensively reported from bovine, swine and chicken worldwide, but smaller productions such as the goat farming sector were much less surveyed. Methods We looked for colistin-resistant isolates presenting plasmid-borne genes of the mcr family in both breeding (n=80) and fattening farms (n=5). Localization of the mcr-1 gene was performed using Southern blot analysis coupled to short-read and long-read sequencing. Results Only the mcr-1 gene was identified in 10% (8/80) of the breeding farms and four over the five fattening farms. In total, 4.2% (65/1561) of the animals tested in breeding farms and 60.0% (84/140) of those tested in fattening farms presented a mcr-1-positive E. coli. The mcr-1 gene was located either on the chromosome (32.2%) or on IncX4 (38.9%) and IncHI2 (26.8%) plasmids. As expected, both clonal expansion and plasmidic transfers were observed in farms where the mcr-1 gene was carried by plasmids. Tn6330 transposition was observed in the chromosome of diverse E. coli sequence types within the same farm. Discussion Our results show that the mcr-1 gene is circulating in goat production and is located either on plasmids or on the chromosome. Evidence of Tn6330 transposition highlighted the fact that chromosomal insertion does not impair the transmission capability of the mcr-1 gene. Only strict hygiene and biosecurity procedures in breeding farms, as well as a prudent use of antibiotics in fattening farms, can avoid such complex contamination pathways.
Collapse
Affiliation(s)
- Michaël Treilles
- Laboratoire d’Analyse Qualyse, Champdeniers Saint-Denis, France,Association Régionale de Prévention contre la résistance aux Antimicrobiens, Champdeniers Saint Denis, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France,*Correspondence: Marisa Haenni, ✉
| |
Collapse
|
35
|
Al-Eitan L, Sendyani S, Alnimri M. Applications of the One Health concept: Current Status in the Middle East. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023. [DOI: 10.1016/j.jobb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
36
|
Hassen B, Hammami S, Hassen A, Abbassi MS. Molecular mechanisms and clonal lineages of colistin-resistant bacteria across the African continent: a scoping review. Lett Appl Microbiol 2022; 75:1390-1422. [PMID: 36000241 DOI: 10.1111/lam.13818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Colistin (also known as polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest number of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region.
Collapse
Affiliation(s)
- B Hassen
- Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
| | - S Hammami
- IRESA, School of Veterinary Medicine of Sidi-Thabet, University of Manouba, Ariana, Tunis, Tunisia
| | - A Hassen
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| | - M S Abbassi
- Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
37
|
do V Barroso M, da Silva JS, Moreira SM, Sabino YNV, Rocha GC, Moreira MAS, Bazzolli DMS, Mantovani HC. Selection of Multidrug-Resistant Enterobacteria in Weaned Pigs and Its Association With In-feed Subtherapeutic Combination of Colistin and Tylosin. Curr Microbiol 2022; 79:349. [PMID: 36209304 DOI: 10.1007/s00284-022-03053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
In-feed antibiotics are administered to piglets to improve performance and production efficiency. However, the use of growth promoters in the swine industry can select for multidrug-resistant (MDR) bacteria. Here, we evaluate the resistance profile of enterobacteria isolated from fecal samples of weaned pigs (21-35 days) fed or not with antibiotics (colistin and tylosin) and investigated the piglets gut microbiota in both groups. Six hundred and eighteen bacterial cultures were isolated from the control group (CON; n = 384) and antibiotic-fed pigs (ATB; n = 234). All isolates were tested for resistance to 12 antibiotics belonging to six distinct antibiotic classes. Isolates were highly resistant to ampicillin (90%; n = 553), amoxicillin (85%; n = 525), and tetracycline (81%; n = 498). A significant increase (P < 0.05) in resistance to cephalexin, kanamycin, doxycycline, and colistin was observed for bacteria from the ATB group. Piglets allocated in the ATB and CON groups shared similar intestinal microbiota, as revealed by alpha- and beta-diversity analyses. Our findings demonstrate that colistin and tylosin contribute to select MDR enterobacteria in weaned piglets. The high frequency of antibiotic resistance among isolates from the CON group suggests that environmental sources (e.g., fecal contents, aerosols, soil, water, food) also represent a potential reservoir of multidrug-resistant enterobacteria in pig production systems.
Collapse
Affiliation(s)
- Marlon do V Barroso
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana S da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Sofia M Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Yasmin N V Sabino
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gabriel C Rocha
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria A S Moreira
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Denise M S Bazzolli
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil. .,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
38
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
39
|
Occurrence and Biological Cost of mcr-1-Carrying Plasmids Co-harbouring Beta-Lactamase Resistance Genes in Zoonotic Pathogens from Intensive Animal Production. Antibiotics (Basel) 2022; 11:antibiotics11101356. [PMID: 36290014 PMCID: PMC9598650 DOI: 10.3390/antibiotics11101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Colistin is classified as a high-priority critical antimicrobial by the World Health Organization (WHO). A better understanding of the biological cost imposed by mcr-plasmids is paramount to comprehending their spread and may facilitate the decision about the ban of colistin in livestock. This study aimed to assess the prevalence of mcr and ESBL genes from 98 Escherichia coli and 142 Salmonella enterica isolates from food-producing animals and the impact of the mcr-1 acquisition on bacterial fitness. Only mcr-1 was identified by multiplex PCR (mcr-1 to mcr-10) in 15.3% of E. coli. Colistin MICs ranged between 8−32 mg/L. In four isolates, blaTEM-1, blaCTX-M-1, and blaCTX-M-15 co-existed with mcr-1. The IncH12, IncHI1, IncP, IncN, and IncI plasmids were transferred by conjugation to E. coli J53 at frequencies of 10−7 to 10−2 cells/recipient. Growth kinetics assays showed that transconjugants had a significantly lower growth rate than the recipient (p < 0.05), and transconjugants’ average growth rate was higher in the absence than in the presence of colistin (1.66 versus 1.32 (p = 0.0003)). Serial transfer assay during 10 days demonstrated that plasmid retention ranged from complete loss to full retention. Overall, mcr-1-bearing plasmids impose a fitness cost, but the loss of plasmids is highly variable, suggesting that other factors beyond colistin pressure regulate the plasmid maintenance in a bacterial population, and colistin withdrawal will not completely lead to a decrease of mcr-1 levels.
Collapse
|
40
|
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet Sci 2022; 9:480. [PMID: 36136696 PMCID: PMC9503504 DOI: 10.3390/vetsci9090480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Soufi
- Department of Microbiology, Faculty of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (BVBGR)-LR11ES31, Higher Institute for Biotechnology, University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia
| | - Schlasiva Cenatus
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|
41
|
Ambrosio CMS, Alvim ID, Wen C, Gómez Expósito R, Aalvink S, Contreras Castillo CJ, Da Gloria EM, Smidt H. Exploring the effect of a microencapsulated citrus essential oil on in vitro fermentation kinetics of pig gut microbiota. Front Microbiol 2022; 13:952706. [PMID: 36106076 PMCID: PMC9465239 DOI: 10.3389/fmicb.2022.952706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Essential oils (EOs) have emerged as a potential alternative to antibiotics in pig breeding due to their antimicrobial properties. Citrus EOs, a common by-product of the orange juice industry, can be an interesting alternative from a financial perspective due to their huge offer in the global market. Thus, the effect of a citrus EO, and specifically different formulations of Brazilian Orange Terpenes (BOT), on pig gut microbiota was evaluated by means of an in vitro fermentation model simulating different sections of the pig gut (stomach, ileum, and colon). Treatments consisted in: BOT in its unprotected form (BOT, 1.85 and 3.70 mg/mL), microencapsulated BOT (MBOT, 3.50 and 7.00 mg/mL), colistin (2 μg/mL), and a control. BOT and MBOT altered in a similar way the total bacterial 16S rRNA gene copies in the stomach only from 18 h of incubation onwards, and no metabolite production in terms of short-chain fatty acids (SCFAs) was detected. In ileal and colonic fermentations, BOT and MBOT affected ileal and colonic microbiota in terms of total bacterial 16S rRNA gene copies, reduced phylogenetic diversity, and altered composition (p < 0.05) as evidenced by the significant reduction of certain bacterial taxa. However, more pronounced effects were found for MBOT, indicating its higher antimicrobial effects compared to the unprotected BOT, and suggesting that the antibacterial efficiency of the unprotected BOT was probably enhanced by microencapsulation. Furthermore, MBOT stimulated lactate production in ileal fermentations and greatly stimulated overall SCFA production in colonic fermentations. This indicates that besides the shifts in ileal and colonic microbiota by the delivered EO (BOT), the wall material of microcapsules (chitosan/modified starch) might have worked as an additional carbon source with prebiotic functioning, stimulating growth and metabolic activity (SCFAs) of colonic bacteria.
Collapse
Affiliation(s)
- Carmen M. S. Ambrosio
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Carmen M. S. Ambrosio
| | - Izabella D. Alvim
- Technology Center of Cereal and Chocolate, Institute of Food Technology (ITAL), São Paulo, Brazil
| | - Caifang Wen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Ruth Gómez Expósito
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S. A., Lausanne, Switzerland
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Carmen J. Contreras Castillo
- Department of Agri-Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, São Paulo, Brazil
| | - Eduardo M. Da Gloria
- Department of Biological Science, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, São Paulo, Brazil
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Hauke Smidt
| |
Collapse
|
42
|
Co-occurrence of mcr-2 and mcr-3 genes on chromosome of multidrug-resistant Escherichia coli isolated from healthy individuals in Thailand. Int J Antimicrob Agents 2022; 60:106662. [PMID: 36007781 DOI: 10.1016/j.ijantimicag.2022.106662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
The aim of this study was to characterize three strains of colistin-resistant E. coli isolated from feces samples of healthy individuals in Thailand. The three strains, namely, SY_EC03, SY_EC07, and SY_EC10 were identified as ST165, ST1602, and ST34. All isolates exhibited multidrug-resistant phenotype, which is mediated by accumulation of various antimicrobial resistance genes. SY_EC03 contained mcr-1.1 while SY_EC07 co-harbored mcr-2.3 and mcr-3.4, and SY_EC10 co-harbored mcr-1.1 and mcr-3.5. Genomic analysis revealed that mcr-1.1 of the two strains were located on IncI2 plasmid with genetic environment of ISApl1-mcr-1.1-PAP2, which is a composite transposon Tn6330 with single-ended. Regarding mcr-2.3, the gene was identified within the composite transposon of ISKpn71-mcr-2.3-ISSpu2-ISKpn71, which was located on a novel mobile genetic element (MGE) that was integrated into the chromosome by phage integrase. For mcr-3.4 and mcr-3.5, the genes were confirmed to locate on the chromosome by S1-PFGE/DNA hybridization. Hence, to the best of our knowledge, this is the first report on co-occurrence of mcr-2 and mcr-3 on chromosome of E. coli. More interestingly, mcr-2 was found to locate on a novel MGE, which had never been described. In addition, we also report the co-occurrence of plasmidic mcr-1.1 and chromosomal mcr-3.5 which is extremely rare. Since all these bacteria were isolated from healthy individuals and the identified STs have been found in a variety of origins, all these clones may serve as reservoir for horizontal and vertical transmission of mcr genes. Strategic action plans to control and prevent the spread of mcr genes are urgently needed.
Collapse
|
43
|
Pissetti C, de Freitas Costa E, Zenato KS, de Itapema Cardoso MR. Critically Important Antimicrobial Resistance Trends in Salmonella Derby and Salmonella Typhimurium Isolated from the Pork Production Chain in Brazil: A 16-Year Period. Pathogens 2022; 11:pathogens11080905. [PMID: 36015026 PMCID: PMC9414203 DOI: 10.3390/pathogens11080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Knowledge about antimicrobial resistance in Salmonella is relevant due to its importance in foodborne diseases. We gathered data obtained over 16 years in the southern Brazilian swine production chain to evaluate the temporal evolution of halo for carbapenem, and the MIC for third-generation cephalosporins, fluoroquinolone, and polymyxin in 278 Salmonella Derby and Typhimurium isolates. All antimicrobial resistance assays were performed in accordance with EUCAST. To assess the diameter halo, we used a mixed linear model, and to assess the MIC, an accelerated failure time model for interval-censored data using an exponential distribution was used. The linear predictor of the models comprised fixed effects for matrix, serovar, and the interaction between year, serovar, and matrix. The observed halo diameter has decreased for ertapenem, regardless of serovars and matrices, and for the serovar Typhimurium it has decreased for three carbapenems. The MIC for ciprofloxacin and cefotaxime increased over 16 years for Typhimurium, and for Derby (food) it decreased. We did not find evidence that the MIC for colistin, ceftazidime, ciprofloxacin (Derby), or cefotaxime (food Typhimurium and animal Derby) has changed over time. This work gave an overview of antimicrobial resistance evolution from an epidemiological point of view and observed that using this approach can increase the sensitivity and timeliness of antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Caroline Pissetti
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
- Correspondence:
| | - Eduardo de Freitas Costa
- Department of Epidemiology, Bio-Informatics and Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Karoline Silva Zenato
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Department of Preventive Veterinary Medicine, Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
44
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
45
|
Thymol as an Adjuvant to Restore Antibiotic Efficacy and Reduce Antimicrobial Resistance and Virulence Gene Expression in Enterotoxigenic Escherichia coli Strains. Antibiotics (Basel) 2022; 11:antibiotics11081073. [PMID: 36009942 PMCID: PMC9404878 DOI: 10.3390/antibiotics11081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
The continuous spread of antimicrobial resistance is endangering the efficient control of enterotoxigenic Escherichia coli (ETEC), which is mainly responsible for post-weaning diarrhea onset in piglets. Thymol, the key constituent of thyme essential oil, is already used in animal nutrition for its antimicrobial action. The aim of this study was to investigate the potential adjuvant effect of thymol to re-establish antibiotic efficacy against highly resistant ETEC field strains. Secondly, we evaluated the modulation of virulence and antibiotic resistance genes. Thymol showed the capacity to control ETEC growth and, when combined with ineffective antibiotics, it increased their antimicrobial power. In particular, it showed significant effects when blended with colistin and tetracycline, suggesting that the adjuvant effects rely on the presence of complementary mechanisms of action between molecules, or the absence of resistance mechanisms that inactivate antibiotics and target sites. Furthermore, our findings demonstrate that, when added to antibiotics, thymol can help to further downregulate several virulence and antibiotic resistance genes, offering new insights on the potential mechanisms of action. Therefore, in a one-health approach, our study supports the beneficial effects of combining thymol with antibiotics to restore their efficacy, together with the possibility of targeting gene expression as a pioneering approach to manage ETEC pathogenicity.
Collapse
|
46
|
Tang B, Wang J, Zheng X, Chang J, Ma J, Wang J, Ji X, Yang H, Ding B. Antimicrobial resistance surveillance of Escherichia coli from chickens in the Qinghai Plateau of China. Front Microbiol 2022; 13:885132. [PMID: 35935206 PMCID: PMC9354467 DOI: 10.3389/fmicb.2022.885132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial resistance (AMR) may lead to worldwide epidemics through human activities and natural transmission, posing a global public safety threat. Colistin resistance mediated by the mcr-1 gene is the most prevalent among animal-derived Escherichia coli, and mcr-1-carrying E. coli have been frequently detected in central-eastern China. However, animal-derived E. coli with AMR and the prevalence of mcr-1 in the Qinghai Plateau have been rarely investigated. Herein, 375 stool samples were collected from 13 poultry farms in Qinghai Province and 346 E. coli strains were isolated, of which eight carried mcr-1. The AMR rates of the E. coli strains to ampicillin, amoxicillin/clavulanic acid, and tetracycline were all above 90%, and the resistance rates to ciprofloxacin, cefotaxime, ceftiofur, and florfenicol were above 70%. Multidrug-resistant strains accounted for 95.66% of the total isolates. Twelve E. coli strains showed colistin resistance, from which a total of 46 AMR genes and 36 virulence factors were identified through whole-genome sequencing. The mcr-1 gene resided on the IncHI2, IncI2-type and IncY-type plasmids, and mcr-1 was located in the nikA-nikB-mcr-1-pap2 gene cassette (three strains) or the pap2-mcr-1-ISApl1 structure (one strain). Completed IncI2-type plasmid pMCR4D31–3 sequence (62,259 bp) revealed that it may cause the horizontal transmission of mcr-1 and may increase the risk of its spread through the food chain. Taken together, the AMR of chicken-derived E. coli in the plateau is of concern, suggesting that it is very necessary for us to strengthen the surveillance in various regions under the background of one health.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Biao Tang,
| | - Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Chang
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baoan Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Baoan Ding,
| |
Collapse
|
47
|
Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics (Basel) 2022; 11:antibiotics11070940. [PMID: 35884193 PMCID: PMC9311582 DOI: 10.3390/antibiotics11070940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the study was to determine the prevalence of ESBL/AmpC-producing Escherichia (E.) coli and to investigate their on-farm distribution on an exemplary dairy farm. For this purpose, sample sizes were calculated, and fecal samples were collected from cattle of all ages and analyzed for the presence of ESBL/AmpC-E. coli using selective media supplemented with cefotaxime. These antibiotic-resistant bacteria were detected in 22.5% of the samples tested. The prevalence was highest in the calf age group, in which 100% of the collected fecal samples were positive. With increasing age, the prevalence decreased in the other sample groups. While ESBL/AmpC E. coli could still be detected in young stock (15%) and breeding heifers (5%), no resistant pathogens could be detected in adult animals. Whole-genome sequencing of the ESBL/AmpC-E. coli isolates revealed, first, that all isolates were ESBL producers (CTX-M-1 and CTX-M-15) and, second, that ST362, which is known as a biofilm producer, was dominant in the calves (85%, n = 17). Based on these results and the evaluation of a questionnaire, possible causes for the occurrence of ESBL/AmpC-E. coli were discussed and recommendations for the reduction in transmission were formulated. Unlike most German dairy farms, no waste milk feeding was apparent; therefore, factors reducing ESBL/AmpC-E. coli are primarily related to an improvement in hygiene management to prevent biofilms, e.g., in nipple buckets, but also to question the use of antibiotics, e.g., in the treatment of diarrheic calves.
Collapse
|
48
|
Hu Z, Chen X, Wang Z, Guo G, Xu Z, Zhou Q, Wei X, Liu Y, Zhou L, Tan Z, Zhang W. Whole-genome Analyses of APEC carrying mcr-1 in some coastal areas of China from 2019 to 2020. J Glob Antimicrob Resist 2022; 30:370-376. [DOI: 10.1016/j.jgar.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
|
49
|
Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front Cell Infect Microbiol 2022; 12:882236. [PMID: 35782127 PMCID: PMC9248837 DOI: 10.3389/fcimb.2022.882236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- *Correspondence: Piyatip Khuntayaporn,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Casagrande Proietti P, Musa L, Stefanetti V, Orsini M, Toppi V, Branciari R, Blasi F, Magistrali CF, Capomaccio S, Kika TS, Franciosini MP. mcr-1-Mediated Colistin Resistance and Genomic Characterization of Antimicrobial Resistance in ESBL-Producing Salmonella Infantis Strains from a Broiler Meat Production Chain in Italy. Antibiotics (Basel) 2022; 11:antibiotics11060728. [PMID: 35740135 PMCID: PMC9220226 DOI: 10.3390/antibiotics11060728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to evaluate phenotypically and genotypically the colistin susceptibility of 85 Salmonella Infantis strains isolated in Italy from the broiler production chain, and to apply a whole-genome approach for the determination of genes conferring antimicrobial resistance (AMR). All isolates were tested by the broth microdilution method to evaluate the colistin minimum inhibitory concentrations (MICs). A multiplex PCR was performed in all isolates for the screening of mcr-1, mcr-2, mcr-3 mcr-4, mcr-5 genes and whole-genome sequencing (WGS) of six S. Infantis was applied. Three out of 85 (3.5%) S. Infantis strains were colistin resistant (MIC values ranged from 4 to 8 mg/L) and mcr-1 positive. The mcr-1.1 and mcr-1.2 variants located on the IncX4 plasmid were detected in three different colistin-resistant isolates. The two allelic variants showed identical sequences. All six isolates harbored blaCTXM-1, aac(6′)-Iaa and gyrA/parC genes, mediating, respectively, beta-lactam, aminoglycoside and quinolone resistance. The pESI-megaplasmid carrying tet(A) (tetracycline resistance), dfrA1, (trimethoprim resistance) sul1, (sulfonamide resistance) and qacE (quaternary ammonium resistance) genes was found in all isolates. To our knowledge, this is the first report of the mcr-1.2 variant described in S. Infantis isolated from broilers chickens. Our results also showed a low prevalence of colistin- resistance, probably due to a reduction in colistin use in poultry. This might suggest an optimization of biosecurity control both on farms and in slaughterhouses.
Collapse
Affiliation(s)
- Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
- Correspondence:
| | - Laura Musa
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | | | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Francesca Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Tana Shtylla Kika
- Faculty of Veterinary Medicine, Agricultural University of Tirana, 1029 Tirana, Albania;
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| |
Collapse
|