1
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Lao J, Chen M, Yan S, Gong H, Wen Z, Yong Y, Jia D, Lv S, Zou W, Li J, Tan H, Yin H, Kong X, Liu Z, Guo F, Ju X, Li Y. Lacticaseibacillus rhamnosus G7 alleviates DSS-induced ulcerative colitis by regulating the intestinal microbiota. BMC Microbiol 2025; 25:168. [PMID: 40133818 PMCID: PMC11938729 DOI: 10.1186/s12866-025-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Ulcerative colitis (UC) is an intestinal disease caused by many factors that seriously harms the health of humans and animals. Probiotics are currently widely used to treat intestinal inflammation; however, different strains are specific, and the functions and effects of different strains are still unclear. In this study, Lacticaseibacillus rhamnosus G7 isolated from herdsmen yogurt was used. The results of the in vitro evaluation revealed that it had good tolerance and safety. In mice with colitis, G7 alleviated weight loss and colon shortening and reduced the DAI score. After G7 treatment, the levels of proinflammatory factors (IL-1β, IL-6 and TNF-α) and histopathological scores decreased, whereas the level of IL-10 increased. In addition, G7 rebalanced the intestinal microbial composition of colitis model mice by increasing the abundance of Faecalibaculum and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, G7 has great potential in the prevention of colitis.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China
| | - Man Chen
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Han Gong
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dan Jia
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuting Lv
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenli Zou
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junmei Li
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huiming Tan
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangying Kong
- Haibei Integrated Service Center for Agriculture and Animal Husbandry, Haibei, Qinghai, 810299, China
| | - Zengyuan Liu
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fucheng Guo
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China.
| | - Youquan Li
- College of Coastal Agricultural Sciences, Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, 518120, China.
| |
Collapse
|
3
|
Gomes P, Laroute V, Beaufrand C, Bézirard V, Aubry N, Liebgott C, Koper JEB, Parent E, Bosco N, Ballet N, Legrain‐Raspaud S, Daveran‐Mingot M, Theodorou V, Cocaign‐Bousquet M, Eutamene H, Mercier‐Bonin M. Postbiotic potential of Lactococcus lactis CNCM I-5388 in alleviating visceral pain in female rat through GABA production: The innovative concept of the "active-GAD bag". FASEB J 2025; 39:e70383. [PMID: 39985303 PMCID: PMC11846017 DOI: 10.1096/fj.202401125rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
Irritable bowel syndrome (IBS) is a multifactorial disorder of the gut-brain axis, characterized by visceral hypersensitivity (VH). Psychobiotics, through GABA synthesis, are good candidates to alleviate gastrointestinal discomfort. Here, we analyzed the GABA-producer Lactococcus lactis CNCM I-5388 as an active-enzyme postbiotic to relieve VH mediated by psychological stress. L. lactis CNCM I-5388 was inactivated by ethanol while maintaining its glutamate decarboxylase (GAD) activity. This EtOH-treated nonviable form was given daily orally for 1, 5, or 10 days to female Wistar rats in comparison with viable L. lactis CNCM I-5388 or vehicle. Visceral sensitivity was measured by electromyography before and after partial restraint stress (PRS). GABA was quantified in the stomach collected from rats and in the gastric compartment of TIM-1 human gut model in fed state. A daily treatment for 5 and 10 days by L. lactis CNCM I-5388 both in its viable and nonviable forms counteracted VH promoted by PRS. However, only viable L. lactis CNCM I-5388 tended to reduce VH after a single administration. After 5-day treatment, only under PRS conditions, the production of GABA within the stomach was enhanced in rats treated with viable or nonviable L. lactis CNCM I-5388. This increase was confirmed by using the TIM-1 human gut model. We found that a postbiotic with an active-GAD enzyme of L. lactis CNCM I-5388, similarly to its viable psychobiotic form, exerts anti-VH properties in an IBS-like rat model. These effects are associated with GABA production in the stomach where the low pH promotes GAD activity.
Collapse
Affiliation(s)
- Pedro Gomes
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Valérie Laroute
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Catherine Beaufrand
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Valérie Bézirard
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Nathalie Aubry
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Chloé Liebgott
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Jonna E. B. Koper
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Elyse Parent
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Nabil Bosco
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Nathalie Ballet
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | | | | | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Muriel Cocaign‐Bousquet
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Hélène Eutamene
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Muriel Mercier‐Bonin
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| |
Collapse
|
4
|
Talat A, Khan AU. From supplements to superbugs: how probiotic patent gaps drive antimicrobial resistance and the CRISPR-Cas solutions. Pharm Pat Anal 2025:1-3. [PMID: 39907302 DOI: 10.1080/20468954.2025.2459592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025]
Affiliation(s)
- Absar Talat
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Söylemez‐Milli N, Ertürkmen P, Alp Baltakesmez D. The Resistance Abilities of Some Bacillus Species to Gastrointestinal Tract Conditions: Whole Genome Sequencing of the Novel Candidate Probiotic Strains Bacillus clausiiBA8 and Bacillus subtilisBA11. Food Sci Nutr 2025; 13:e70018. [PMID: 39911839 PMCID: PMC11795423 DOI: 10.1002/fsn3.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
This study aims to investigate the resistance of potential probiotic Bacillus species to various conditions in the gastrointestinal (GI) tract and their safety characteristics. MALDI-TOF MS identified all tested strains with a good safety score of ≥ 2.0; the strains demonstrated the capacity to pass through the Gl tract, exhibiting a reduction of > 6 log/CFU live cells. Furthermore, they exhibited varying survival rates in an acidic environment (pH 2.0-3.0) and the presence of Ox-Bile (1% w/v) (p < 0.05). Following exposure to pH 3.0 and Ox-Bile, the survival rate of Bacillus spp. ranged between 85.94% and 91.24% and 87.30% and 91.54%, respectively. The results of the in vitro experiments showed that the six Bacillus strains had comparable characteristics (e.g., tolerance to GI track enzyme, auto-aggregation ability) to the reference probiotic strain Lactiplantibacillus plantarum LA15. The auto-aggregation results of the B. clausii BA8 strain, which has demonstrated resistance to GI tract conditions, were also noteworthy. This strain showed 72.32% after 2 h and 74.55% at the end of 5 h. Most suitable for use as probiotic strains B. clausii BA8 and B. subtilis BA11, sequenced via Illumina NovaSeq, showed average nucleotide identity (ANI) values of 98.1% and 97.8%, respectively. The genome annotation of B. clausii and B. subtilis with Prokka revealed 4,498,248-4,215,606 bp genome length, 44%-43% GC content, and 110-26 contigs, respectively. B. clausii BA8 has been comprehensively characterized, is of low risk for human consumption, and has been recommended as a potential probiotic strain. However, further in vivo experimentation is required to confirm these findings.
Collapse
Affiliation(s)
- Nursel Söylemez‐Milli
- Scientific Industrial and Technological Application and Research CenterBolu Abant Izzet Baysal UniversityBoluTurkey
| | - Pelin Ertürkmen
- Department of Food Processing, Vocational School of Burdur Food, Agriculture and LivestockBurdurMehmet Akif Ersoy UniversityBurdurTurkey
| | - Duygu Alp Baltakesmez
- Department of Gastronomy and Culinary Arts, School of Tourism and Hospitality ManagementArdahan UniversityArdahanTurkey
| |
Collapse
|
6
|
Vertillo Aluisio G, Mezzatesta ML, Cafiso V, Scuderi R, Stefani S, Santagati M. Cell-free supernatant of Lactobacillus gasseri 1A-TV shows a promising activity to eradicate carbapenem-resistant Klebsiella pneumoniae colonization. Front Cell Infect Microbiol 2024; 14:1471107. [PMID: 39628665 PMCID: PMC11613640 DOI: 10.3389/fcimb.2024.1471107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Background The use of beneficial bacteria like Lactobacillus spp. is a potential innovative approach to fight antibiotic-resistant pathogens. Klebsiella pneumoniae is one of the most concerning multi drug-resistant (MDR) pathogens, and its ability to colonize the human gut is considered to be the main reason for recurrent infections in critically ill patients. Methods In this study, Lactobacillus gasseri 1A-TV, already described for its probiotic activity, was characterized at the genomic level. Moreover, its cell-free supernatant (CFS) was tested for antimicrobial activity against extended-spectrum β-lactamase (ESBL)- and carbapenemase (KPC)-producing K. pneumoniae clinical isolates. Results Whole-genome sequencing showed that the L. gasseri 1A-TV genome was of 2,018,898 bp in size with 34.9% GC content, containing 1,937 putative protein coding sequences, 55 tRNA, and 4 rRNA detected by RAST and classified in 20 functional groups by Cluster of Orthologous Genes (COG). BAGEL4 (BActeriocin GEnome minimal tooL) and the antiSMASH 7.0 pipeline identified two bacteriocin biosynthetic gene clusters (BBGCs), namely, BBGC1 that comprises two class IIc bacteriocins including gassericin A-like bacteriocin, and BBGC2 carrying the class III bacteriocin helveticin J. Strikingly, 1A-TV CFS inhibited the growth of all K. pneumoniae isolates only after 8 h of incubation, showing a bactericidal effect at 24 h and interfering, even at lower concentrations, with the biofilm production of biofilm-producer strains independently of a bactericidal effect. NMR analysis of CFS identified and quantified several metabolites involved in carbohydrate metabolism and amino acid metabolism, and organic acids like ethanol, lactate, acetate, and succinate. Finally, in vitro assays of 1A-TV showed significant co-aggregation effects against carbapenem-resistant K. pneumoniae, namely, strains 1, 2, 3, and 7. Conclusions Our findings highlight the antimicrobial activity of 1A-TV as a probiotic candidate or its CFS as a natural bioproduct active against MDR K. pneumoniae strains, underlining the importance of novel therapeutic strategies for prevention and control of ESBL- and carbapenemase-producing K. pneumoniae colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Santagati
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| |
Collapse
|
7
|
Ali MS, Lee EB, Quah Y, Sayem SAJ, Abbas MA, Suk K, Lee SJ, Park SC. Modulating effects of heat-killed and live Limosilactobacillus reuteri PSC102 on the immune response and gut microbiota of cyclophosphamide-treated rats. Vet Q 2024; 44:1-18. [PMID: 38682319 PMCID: PMC11060015 DOI: 10.1080/01652176.2024.2344765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
In the present study, we investigated the potential immunomodulatory effects of heat-killed (hLR) and live Limosilactobacillus reuteri PSC102 (LR; formerly Lactobacillus reuteri PSC102) in RAW264.7 macrophage cells and Sprague-Dawley rats. RAW264.7 murine macrophage cells were stimulated with hLR and LR for 24 h. Cyclophosphamide (CTX)-induced immunosuppressed Sprague-Dawley rats were orally administered with three doses of hLR (L-Low, M-Medium, and H-High) and LR for 3 weeks. The phagocytic capacity, production of nitric oxide (NO), and expression of cytokines in RAW264.7 cells were measured, and the different parameters of immunity in rats were determined. hLR and LR treatments promoted phagocytic activity and induced the production of NO and the expression of iNOS, TNF-α, IL-1β, IL-6, and Cox-2 in macrophage cells. In the in vivo experiment, hLR and LR treatments significantly increased the immune organ indices, alleviated the spleen injury, and ameliorated the number of white blood cells, granulocytes, lymphocytes, and mid-range absolute counts in immunosuppressive rats. hLR and LR increased neutrophil migration and phagocytosis, splenocyte proliferation, and T lymphocyte subsets (CD4+, CD8+, CD45RA+, and CD28+). The levels of immune factors (IL-2, IL-4, IL-6, IL-10, IL-12A, TNF-α, and IFN-γ) in the hLR and LR groups were upregulated compared with those in the CTX-treatment group. hLR and LR treatments could also modulate the gut microbiota composition, thereby increasing the relative abundance of Bacteroidetes and Firmicutes but decreasing the level of Proteobacteria. hLR and LR protected against CTX-induced adverse reactions by modulating the immune response and gut microbiota composition. Therefore, they could be used as potential immunomodulatory agents.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Tao B, Li X, Li X, Lu K, Song K, Mohsen M, Li P, Wang L, Zhang C. Derivatives of postbiotics (cell wall constituents) from Bacillus subtilis (LCBS1) relieve soybean meal-induced enteritis in bullfrog (Aquarana catesbeianus). Int J Biol Macromol 2024; 279:135359. [PMID: 39244121 DOI: 10.1016/j.ijbiomac.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Soybean meal (SM) serves as a primary alternative to fish meal in aquafeeds. However, a high-SM diet may result in intestinal injury. Our previous study demonstrated the probiotic effects of heat-inactivated Bacillus subtilis (LCBS1) on bullfrogs (Aquarana catesbeianus) fed a high-SM diet, probably attributed to the bioactive constituent of cell wall. Therefore, in this study, the main constituents of cell wall from LCBS1, including peptidoglycan (PGN), lipoteichoic acid (LTA), cell wall protein (CWP), and whole cell wall (WCW), were extracted and added to a high-SM (~55 %) diet to investigate their probiotic effects on bullfrogs and reveal the possible mechanisms. The results indicated that bullfrogs fed the LTA of LCBS1 showed the highest weight gain, feed efficiency, and protein efficiency ratio. Additionally, the LTA of LCBS1 could activate the humoral immunity and modulate intestinal microbiota. It might activate JAK2-STAT3 and MAPK-ERK pathways, as well as up-regulate tlr5 gene to promote intestinal cell proliferation, thereby alleviating jejunal injury. The WCW of LCBS1 effectively increased the growth performance of bullfrogs by improving the humoral immunity, enhancing intestinal barrier function, and alleviating intestinal inflammatory response. The PGN and CWP of LCBS1 could stimulate the humoral immunity and enhance intestinal barrier function, but had no significant effect on the growth performance of bullfrogs. In conclusion, the LTA might be the primary bioactive constituent of heat-inactivated LCBS1, with the beneficial effects of promoting intestinal cell proliferation and enhancing intestinal barrier function, therefore alleviating the intestinal injury induced by SM on bullfrogs. This study establishes a theoretical basis for the efficient utilization of plant proteins by the application of postbiotics additive in aquafeed, which further saves the feed costs and promotes development of economically sustainable aquaculture.
Collapse
Affiliation(s)
- Bingyi Tao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinyuan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Peng Li
- North American Renderers Association, Alexandria, VA, USA
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
9
|
Amigh P, Ahmadi Y, Mohkam M, Shokri D. Antimicrobial Potential of Probiotic Strains From Bulgarian Cheese and Shallot Yogurt Against Staphylococcus saprophyticus. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2978083. [PMID: 39445209 PMCID: PMC11496581 DOI: 10.1155/2024/2978083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
The escalating incidence of hospital infections due to antibiotic resistance necessitates the identification of alternative therapeutic agents such as probiotics. This study was designed to isolate and evaluate the efficacy of probiotics against Staphylococcus saprophyticus, a prevalent etiological agent of urinary tract infections (UTIs). A total of 100 S. saprophyticus strains were isolated from clinical samples and subjected to antibiotic susceptibility testing via the disc diffusion method. Concurrently, probiotic bacteria were isolated from Bulgarian cheese and shallot yogurt, and their antibacterial activity against S. saprophyticus strains was assessed. The inhibitory potential of probiotic supernatants was evaluated using microtiter plate assays, with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determined at a 1/2 dilution. Cytotoxicity was evaluated using the MTT assay, and high-performance liquid chromatography (HPLC) was employed to analyze the concentrations of organic acids produced by the probiotics. The results revealed that all S. saprophyticus strains were resistant to tetracycline and doxycycline but susceptible to other antibiotics. Lactobacillus rhamnosus strains M and B demonstrated notable antibacterial and antibiofilm activity against S. saprophyticus isolates. These probiotics exhibited susceptibility to most antibiotics and lacked virulence factors, suggesting their safety for therapeutic use. The organic acids produced by the probiotics were identified as lactic acid, acetic acid, and formic acid. In conclusion, L. rhamnosus strains M and B exhibit potent antimicrobial properties against S. saprophyticus, indicating their potential as therapeutic agents for UTIs. Further research is warranted to validate these findings and explore the possibility of these probiotics in clinical applications.
Collapse
Affiliation(s)
- Pardis Amigh
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Yasaman Ahmadi
- Department of Microbiology, Kish International Branch of Islamic Azad University, Kish, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dariush Shokri
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Yu Y, Zhou M, Sadiq FA, Hu P, Gao F, Wang J, Liu A, Liu Y, Wu H, Zhang G. Comparison of the effects of three sourdough postbiotics on high-fat diet-induced intestinal damage. Food Funct 2024; 15:9053-9069. [PMID: 39162079 DOI: 10.1039/d4fo02948h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
There is significant interest in using postbiotics as an intervention strategy to address obesity. This study assesses the efficacy of postbiotics derived from different sourdough strains (Lactiplantibacillus plantarum LP1, LP25, and Pediococcus pentosaceus PP18) in mitigating intestinal injury in zebrafish fed on a high-fat diet. We screened postbiotics for their anti-colon cancer cell effects and compared various preparation methods applied to live bacterial strains, including heat-killing at different temperatures, pH adjustments, and ultraviolet radiation exposure. Heat-killing at 120 °C proved to be the most effective preparation method. A marked variation in health effects was observed in the heat-killed microbial cells, as evidenced by their hydrophobicity and self-aggregation ability. A five-week high-fat dietary intervention study in zebrafish demonstrated that diets supplemented with 108 CFU g-1 K-LP25 significantly attenuated weight gain and body fat, along with reductions in FASN, Leptin, and SREBF1 mRNA expression. However, diets supplemented with 107 CFU g-1 K-PP18 only reduced Leptin and SREBF1 mRNA expression. K-PP18 was more effective at mitigating gut barrier damage, promoting colonic Occludin, ZO-1, and Claudin-1 levels. Additionally, K-LP25 supplementation markedly downregulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, reducing intestinal inflammation. Supplementation with K-LP1 and K-PP18 increased the abundance of Acinetobacter spp., whereas K-LP25 increased the abundance of Cetobacterium and Plesiomonas. Collectively, these findings suggest that inactivated strains confer protective effects against high-fat diet-induced intestinal damage in zebrafish, with variation observed across different species. Studying the effects of sourdough-derived postbiotics on gut health may open new avenues for dietary interventions to manage gut-related diseases.
Collapse
Affiliation(s)
- Yujuan Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Min Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Pengli Hu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Feng Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Juanxia Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Aowen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
11
|
Dong H, Ren X, Song Y, Zhang J, Zhuang H, Peng C, Zhao J, Shen J, Yang J, Zang J, Li D, Gupta TB, Guo D, Li Z. Assessment of Multifunctional Activity of a Postbiotic Preparation Derived from Lacticaseibacillus paracasei Postbiotic-P6. Foods 2024; 13:2326. [PMID: 39123515 PMCID: PMC11312004 DOI: 10.3390/foods13152326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Postbiotics possess various functional activities, closely linked to their source bacterial strains and preparation methods. Therefore, the functional activities of postbiotics need to be evaluated through in vitro and in vivo methods. This study aims to prepare a postbiotic and explore its antihemolytic, anti-inflammatory, antioxidant, and antibacterial activities. Specifically, a postbiotic preparation named PostbioP-6 was prepared by intercepting 1-5 kDa of Lacticaseibacillus paracasei Postbiotic-P6 fermentation broth. The results demonstrate that PostbioP-6 exhibited notable biological activities across multiple assays. It showed significant antihemolytic activity, with a 4.9-48.1% inhibition rate at 10-50% concentrations. Anti-inflammatory effects were observed both in vitro, where 8-40% PostbioP-6 was comparable to 259.1-645.4 μg/mL diclofenac sodium, and in vivo, where 3.5 and 4.0 μL/mL PostbioP-6 significantly reduced neutrophil counts in inflamed zebrafish (p < 0.05). Antioxidant properties were evident through increased reducing power (OD700 increased from 0.279 to 2.322 at 1.25-12.5% concentrations), DPPH radical scavenging activity (38.9-92.4% scavenging rate at 2.5-50% concentrations), and hydroxyl radical scavenging activity (4.66-10.38% scavenging rate at 0.5-4% concentrations). Additionally, PostbioP-6 demonstrated antimicrobial activity against two Gram-positive bacteria, eight Gram-negative bacteria, and one fungus. Furthermore, PostbioP-6 significantly inhibited the increase in peroxide value and malondialdehyde content in cookies, highlighting its potential application in food preservation. In conclusion, we prepared a novel postbiotic, termed PostbioP-6, which proved to have prominent anti-hemolytic, anti-inflammatory, antioxidant, and broad-spectrum antimicrobial activities. The multifunctional properties of PostbioP-6 position it as a potentially effective functional food supplement or preservative. In the future, further research is necessary to elucidate the precise mechanisms of action, identify the active components, and validate its biological activities in animal models or clinical trials.
Collapse
Affiliation(s)
- Hui Dong
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Xianpu Ren
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Yaxin Song
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Jingwen Zhang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Haonan Zhuang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
| | - Chuantao Peng
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Jinshan Zhao
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Jinhong Zang
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| | - Day Li
- Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North 4474, New Zealand; (D.L.); (T.B.G.)
| | - Tanushree B. Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch, Palmerston North 4474, New Zealand; (D.L.); (T.B.G.)
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200000, China; (J.S.); (J.Y.); (D.G.)
| | - Zhaojie Li
- School of Food Science and Engineering, Qingdao Agriculture University, Qingdao 266000, China; (H.D.); (X.R.); (Y.S.); (J.Z.); (H.Z.); (C.P.); (J.Z.); (J.Z.)
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
12
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
13
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
14
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
15
|
Ananda N, Suniarti DF, Bachtiar EW. The antimicrobial effect of Limosilactobacillus reuteri as probiotic on oral bacteria: A scoping review. F1000Res 2024; 12:1495. [PMID: 38434653 PMCID: PMC10905032 DOI: 10.12688/f1000research.139697.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Dysbiosis among oral microbial community in the oral cavity can lead to several oral diseases. Probiotic therapy is known to correct these imbalances. Limosilactobacillus reuteri is one of the most studied strains of probiotics and can control oral microbiota through reuterin, a wide-spectrum antimicrobial agent. The objective of this review was to evaluate the effect of the antimicrobial activity of Limosilactobacillus reuteri on the oral bacteria of humans. This review used PubMed, Scopus, EMBASE, ScienceDirect, and Google Scholar databases as bibliographic resources. Studies with matching keywords were analyzed and screened with PRISMA-ScR recommendations. Sixteen articles were selected for this review, which included a total of 832 patients. Based on this review, Limosilactobacillus reuteri has a strong antibacterial effect against Streptococcus mutans in healthy individuals but is not effective against Lactobacillus. Additionally, it has a significant antibacterial effect against Porphiromonas gingivalis in patients with periodontitis, although its effectiveness is not stable in patients with peri-implant infections. Furthermore, Limosilactobacillus reuterihas varying results against other bacteria, indicating the need for further extensive research to ensure its efficacy.
Collapse
Affiliation(s)
- Nissia Ananda
- Dental Department, Universitas Indonesia Hospital, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Dewi Fatma Suniarti
- Department of Oral Biology, Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
16
|
Shen H, Wang T, Dong W, Sun G, Liu J, Peng N, Zhao S. Metagenome-assembled genome reveals species and functional composition of Jianghan chicken gut microbiota and isolation of Pediococcus acidilactic with probiotic properties. MICROBIOME 2024; 12:25. [PMID: 38347598 PMCID: PMC10860329 DOI: 10.1186/s40168-023-01745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Chickens are one of the most widely farmed animals worldwide and play a crucial role in meat and egg production. Gut microbiota is essential for chickens' health, disease, growth, and egg production. However, native chickens such as Jianghan chickens have better meat and egg production quality than centralized chickens, their intestinal microbial diversity is richer, and the potential gut microbial resources may bring health benefits to the host. RESULTS The bacterial species composition in the gut microbiota of Jianghan chickens is similar to that of other chicken breeds, with Phocaeicola and Bacteroides being the most abundant bacterial genera. The LEfSe analysis revealed significant differences in species composition and functional profiles between samples from Jingzhou and the other three groups. Functional annotation indicated that the gut microbiota of Jianghan chickens were dominated by metabolic genes, with the highest number of genes related to carbohydrate metabolism. Several antibiotic resistance genes (ARGs) were found, and the composition of ARGs was similar to that of factory-farmed chickens, suggesting that antibiotics were widely present in the gut microbiota of Jianghan chickens. The resistance genes of Jianghan chickens are mainly carried by microorganisms of the Bacteroidota and Bacillota phylum. In addition, more than 829 isolates were selected from the microbiota of Jianghan chickens. Following three rounds of acid and bile tolerance experiments performed on all the isolated strains, it was determined that six strains of Pediococcus acidilactici exhibited consistent tolerance. Further experiments confirmed that three of these strains (A4, B9, and C2) held substantial probiotic potential, with P. acidilactici B9 displaying the highest probiotic potential. CONCLUSIONS This study elucidates the composition of the intestinal microbiota and functional gene repertoire in Jianghan chickens. Despite the absence of antibiotic supplementation, the intestinal microbial community of Jianghan chickens still demonstrates a profile of antibiotic resistance genes similar to that of intensively reared chickens, suggesting resistance genes are prevalent in free-ranging poultry. Moreover, Jianghan and intensively reared chickens host major resistance genes differently, an aspect seldom explored between free-range and pastured chickens. Furthermore, among the 829 isolates, three strains of P. acidilatici exhibited strong probiotic potential. These findings provide insights into the unique gut microbiota of Jianghan chickens and highlight potential probiotic strains offering benefits to the host. Video Abstract.
Collapse
Affiliation(s)
- Hongye Shen
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tinghui Wang
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Dong
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Sciences, Hubei Normal University, Huangshi, 435000, China
| | - Guoping Sun
- Hubei Poder Biotechnology Co., Ltd, Huangshi, 435000, China
| | - Jun Liu
- Hubei Poder Biotechnology Co., Ltd, Huangshi, 435000, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Altavas PJD, Amoranto MBC, Kim SH, Kang DK, Balolong MP, Dalmacio LMM. Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Access Microbiol 2024; 6:000715.v4. [PMID: 38361650 PMCID: PMC10866033 DOI: 10.1099/acmi.0.000715.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Micro-organisms belonging to the Lactobacillus genus complex are often used for oral consumption and are generally considered safe but can exhibit pathogenicity in rare and specific cases. Therefore, screening and understanding genetic factors that may contribute to pathogenicity can yield valuable insights regarding probiotic safety. Limosilactobacillus mucosae LM1, Lactiplantibacillus plantarum SK151, Lactiplantibacillus plantarum BS25, Limosilactobacillus fermentum SK152 and Lactobacillus johnsonii PF01 are current probiotics of interest; however, their safety profiles have not been explored. The genome sequences of LM1, SK151, SK152 and PF01 were downloaded from the NCBI GenBank, while that of L. plantarum BS25 was newly sequenced. These genomes were then annotated using the Rapid Annotation using Subsystem Technology tool kit pipeline. Subsequently, a command line blast was performed against the Virulence Factor Database (VFDB) and the Comprehensive Antibiotic Resistance Database (CARD) to identify potential virulence factors and antibiotic resistance (AR) genes. Furthermore, ResFinder was used to detect acquired AR genes. The query against the VFDB identified genes that have a role in bacterial survivability, platelet aggregation, surface adhesion, biofilm formation and immunoregulation; and no acquired AR genes were detected using CARD and ResFinder. The study shows that the query strains exhibit genes identical to those present in pathogenic bacteria with the genes matched primarily having roles related to survival and surface adherence. Our results contribute to the overall strategies that can be employed in pre-clinical safety assessments of potential probiotics. Gene mining using whole-genome data, coupled with experimental validation, can be implemented in future probiotic safety assessment strategies.
Collapse
Affiliation(s)
- Patrick Josemaria d.R Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Mia Beatriz C. Amoranto
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Sang Hoon Kim
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Marilen P. Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| |
Collapse
|
18
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
19
|
Falzone L, Lavoro A, Candido S, Salmeri M, Zanghì A, Libra M. Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024; 16:2397874. [PMID: 39229962 PMCID: PMC11376418 DOI: 10.1080/19490976.2024.2397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology 'G.F. Ingrassia', University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Xie J, Li Q, Nie S. Bacterial extracellular vesicles: An emerging postbiotic. Trends Food Sci Technol 2024; 143:104275. [DOI: 10.1016/j.tifs.2023.104275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Kaszab E, Laczkó L, Kardos G, Bányai K. Antimicrobial resistance genes and associated mobile genetic elements in Lactobacillales from various sources. Front Microbiol 2023; 14:1281473. [PMID: 38045025 PMCID: PMC10690630 DOI: 10.3389/fmicb.2023.1281473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Lactobacillales are commonly used in food products and as probiotics in animal and human medicine. Despite being generally recognized as safe, lactic acid bacteria may harbor a variety of antimicrobial resistance genes (ARGs), which may be transferable to human or veterinary pathogens, thus, may pose veterinary and public health concerns. This study investigates the resistome of Lactobacillales. A total of 4,286 whole-genome sequences were retrieved from NCBI RefSeq database. We screened ARGs in whole genome sequences and assessed if they are transmissible by plasmid transfer or by linkage to integrative mobile genetic elements. In the database, 335 strains were found to carry at least one ARG, and 194 strains carried at least one potentially transferable ARG. The most prevalent transferable ARG were tetM and tetW conferring antibiotic resistance to tetracycline. This study highlights the importance of the One Health concept by demonstrating the potential for Lactobacillales, commonly used in food products, to serve as reservoirs and vectors for ARGs.
Collapse
Affiliation(s)
- Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary
| | - Levente Laczkó
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Conservation Biology Research Group, Debrecen, Hungary
| | - Gábor Kardos
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Veterinary Medical Research Institute, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
23
|
Li S, Yang H, Jin Y, Hao Q, Liu S, Ding Q, Yao Y, Yang Y, Ran C, Wu C, Li S, Cheng K, Hu J, Liu H, Zhang Z, Zhou Z. Dietary cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis improved liver and gut health, and gut microbiota homeostasis of zebrafish fed with high-fat diet. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109139. [PMID: 37821002 DOI: 10.1016/j.fsi.2023.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Postbiotics have the ability to improve host metabolic disorders and immunity. In order to explore whether the postbiotics SWFC (cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis) repaired the adverse effects caused by feeding of high-fat diet (HFD), zebrafish were selected as the experimental animal and fed for 6 weeks, with dietary HFD as the control group, and HFD containing 0.3 g/kg and 0.4 g/kg SWFC as the treatment groups. The results indicated that addition of SWFC in the diet at a level of 0.3 and 0.4 g/kg didn't affect the growth performance of zebrafish (P > 0.05). Supplementation of dietary SWFC0.3 relieved lipid metabolism disorders through significant increasing in the expression of pparα and cpt1, and decreasing the expression of cebpα, pparγ, acc1 and dgat-2 genes (P < 0.05). Moreover, the content of triacylglycerol was markedly lower in the liver of zebrafish grouped under SWFC0.3 (P < 0.05). Dietary SWFC0.3 also improved the antioxidant capacity via increasing the expression level of ho-1, sod and gstr genes, and significant inducing malondialdehyde content in the liver of zebrafish (P < 0.05). Besides, dietary SWFC0.3 also notably improved the expression level of lysozyme, c3a, defbl1 and defbl2 (P < 0.05). The expression level of pro-inflammatory factors (nf-κb, tnf-α, and il-1β) were significantly decreased and the expression level of anti-inflammatory factor (il-10) was markedly increased in the postbiotics 0.3 g/kg group (P < 0.05). Feeding with SWFC0.3 supplemented diet for 6 weeks improved the homeostasis of gut microbiota and increased the survival rate of zebrafish after challenged with Aeromonus veronii Hm091 (P < 0.01). It was worth noting that the positive effect of dietary SWFC at a level of 0.3 g/kg was considerably better than that of 0.4 g/kg. This may imply that the effectiveness and use of postbiotics is limited by dosage.
Collapse
Affiliation(s)
- Shenghui Li
- Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding Nutrition, College of Life Science, Huzhou University, Huzhou, 313000, China; China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ya Jin
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shubin Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Kunpeng Institute of Modern Agriculture of Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528225, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenglong Wu
- Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding Nutrition, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Kaimin Cheng
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, China
| | - Jun Hu
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, China
| | - Hongliang Liu
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Kunpeng Institute of Modern Agriculture of Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528225, China.
| |
Collapse
|
24
|
Wang L, Hu M, Liu R, Xi S, Cheng M, Bao Y, Wang N, Dong Y. Development and analysis of a universal label-free micro/nano component for three-channel detection of silver ions, mercury ions, and tetracycline. Anal Chim Acta 2023; 1276:341606. [PMID: 37573104 DOI: 10.1016/j.aca.2023.341606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
In this paper, an enzyme-free and label-free fluorescent nanomodule is proposed for rapid, simple and sensitive detection of Ag+, Hg2+ and tetracycline (TC). The strategy is cleverly designed to enable multiple-purpose detection with as little as 31 nt of ssDNA. Both the embedded dye SYBR Green I and the nanomaterial graphene oxide (GO) are able to distinguish single-stranded DNA from double-stranded DNA; thus, the combination of the two instead of using traditional molecular beacon (MB)-labeled fluorophores and quencher groups can effectively reduce the cost of experiments while efficiently reducing the background noise. Performance testing experiments confirmed the stability and selectivity of the platform; the limits of detection (LODs) of Ag+ and Hg2+ were 1.41 nM and 1.79 nM, respectively, and the detection range were within the WHO standards. In addition, only some base sequences in the flexible functional domain of the nanoloop needed to be programmed to build a universal platform, which was feasible using TC as a target. Therefore, the designed nanomodule has the potential to detect various types of targets, such as antibiotics, proteins, and target genes, and has broad application prospects in environmental monitoring, food testing, and disease diagnosis.
Collapse
Affiliation(s)
- Luhui Wang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Mengyang Hu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Rong Liu
- College of Computer Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Sunfan Xi
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Meng Cheng
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Yangyinchun Bao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Na Wang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Yafei Dong
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China; College of Computer Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China.
| |
Collapse
|
25
|
Mousa WK, Mousa S, Ghemrawi R, Obaid D, Sarfraz M, Chehadeh F, Husband S. Probiotics Modulate Host Immune Response and Interact with the Gut Microbiota: Shaping Their Composition and Mediating Antibiotic Resistance. Int J Mol Sci 2023; 24:13783. [PMID: 37762089 PMCID: PMC10531388 DOI: 10.3390/ijms241813783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The consortium of microbes inhabiting the human body, together with their encoded genes and secreted metabolites, is referred to as the "human microbiome." Several studies have established a link between the composition of the microbiome and its impact on human health. This impact spans local gastrointestinal inflammation to systemic autoimmune disorders and neurodegenerative diseases such as Alzheimer's and Autism. Some of these links have been validated by rigorous experiments that identify specific strains as mediators or drivers of a particular condition. Consequently, the development of probiotics to compensate for a missing beneficial microbe(s) has advanced and become popular, especially in the treatment of irritable bowel diseases and to restore disrupted gut flora after antibiotic administration. The widespread use of probiotics is often advocated as a natural ecological therapy. However, this perception is not always accurate, as there is a potential for unexpected interactions when administering live microbial cultures. Here, we designed this research to explore the intricate interactions among probiotics, the host, and microbes through a series of experiments. Our objectives included assessing their immunomodulatory effects, response to oral medications, impact on microbial population dynamics, and mediation of antibiotic resistance. To achieve these goals, we employed diverse experimental protocols, including cell-based enzyme -linked immunosorbent assay (ELISA), antibiotic susceptibility testing, antimicrobial activity assays, computational prediction of probiotic genes responsible for antibiotic resistance, polymerase chain reaction (PCR)-based validation of predicted genes, and survival assays of probiotics in the presence of selected oral medications. Our findings highlight that more than half of the tested probiotics trigger an inflammatory response in the Caco-2 cell line, are influenced by oral medications, exhibit antibacterial activity, and possess genes encoding antimicrobial resistance. These results underscore the necessity for a reevaluation of probiotic usage and emphasize the importance of establishing regulations to govern probiotic testing, approval, and administration.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Dana Obaid
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Fadia Chehadeh
- Anschutz Medical Campus, Colorado School of Public Health, University of Colorado, Aurora, CO 173364, USA;
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA;
| |
Collapse
|
26
|
Maher JM, Drouillard JS, Baker AN, de Aguiar Veloso V, Kang Q, Kastner JJ, Gragg SE. Impact of the Probiotic Organism Megasphaera elsdenii on Escherichia coli O157:H7 Prevalence in Finishing Cattle. J Food Prot 2023; 86:100133. [PMID: 37479183 DOI: 10.1016/j.jfp.2023.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Feedlot cattle commonly shed the foodborne pathogen Escherichia coli O157:H7 in their feces. Megasphaera elsdenii (ME), a lactic acid-utilizing bacterium, is commonly administered to cattle to avoid lactate accumulation in the rumen and to control ruminal acidosis. The impact of administering ME on foodborne pathogen prevalence, specifically E. coli O157:H7, has not been explored. The purpose of this study was to quantify E. coli O157:H7 prevalence in finishing cattle administered ME. Cattle (n = 448) were assigned to treatments in a randomized complete block design with repeated measurements over two sampling periods. Treatments were arranged as a 2 × 2 factorial containing: ruminally protected lysine (RPL; included for a complementary study) fed at 0% or 0.45% of diet dry matter; with or without ME. Freeze-dried ME was administered as an oral drench (1 × 1010 CFU/steer on day one) and then top dressed onto basal diets (1 × 107 CFU/steer) daily thereafter. Rectoanal mucosal swabs (RAMS) were obtained from animals before harvest to determine the E. coli O157:H7 prevalence. The inclusion of RPL (P = 0.2136) and ME (P = 0.5012) did not impact E. coli O157:H7 prevalence, and RPL was not included in any significant interactions (P > 0.05). A significant interaction was observed between ME and sampling period (P = 0.0323), indicating that the effect of ME on E. coli O157:H7 prevalence varied over the sampling period. A diet containing ME reduced the odds of E. coli O157:H7 prevalence by 50% during sampling period 1 (8.0% and 14.7% for cattle with and without ME, respectively) and increased the odds by 23% during sampling period 2 (10.8% and 8.9% for cattle with and without ME, respectively). Administering ME in cattle diets did not impact E. coli O157:H7 in feedlot cattle. This is the first study to investigate the use of ME as a preharvest food safety intervention in cattle, and additional research is necessary to determine the efficacy.
Collapse
Affiliation(s)
- Joshua M Maher
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - James S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Adrian N Baker
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Vanessa de Aguiar Veloso
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Qing Kang
- Department of Statistics, Kansas State University, 1116 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Justin J Kastner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, 1620 Denison Avenue, Manhattan, KS 66506, USA
| | - Sara E Gragg
- Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA.
| |
Collapse
|
27
|
Tamés H, Sabater C, Margolles A, Ruiz L, Ruas-Madiedo P. Production of GABA in milk fermented by Bifidobacterium adolescentis strains selected on the bases of their technological and gastrointestinal performance. Food Res Int 2023; 171:113009. [PMID: 37330847 DOI: 10.1016/j.foodres.2023.113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
There is an increasing interest in producing foods enriched in gamma-aminobutyric acid (GABA), due to their purported health promoting attributes. GABA is the main inhibitor neurotransmitter of the central nervous system, and several microbial species are capable to produce it through decarboxylation of glutamate. Among them, several lactic acid bacteria species have been previously investigated as an appealing alternative to produce GABA enriched foods via microbial fermentation. In this work we report for the first time an investigation into the possibility of utilizing high GABA-producing Bifidobacterium adolescentis strains as a mean to produce fermented probiotic milks naturally enriched in GABA. To this end, in silico and in vitro analyses were conducted in a collection of GABA-producing B. adolescentis strains, with the main goal to scrutinize their metabolic and safety traits, including antibiotic resistance patterns, as well as their technological robustness and performance to survive a simulated gastrointestinal passage. One of the strains, IPLA60004, exhibited better survival to lyophilization and cold storage (for up to 4 weeks at 4 °C), as well as survival to gastrointestinal passage, as compared to the other strains under investigation. Besides, the elaboration of milk drinks fermented with this strain, yielded products with the highest GABA concentration and viable bifidobacterial cell counts, achieving conversion rates of the precursor, monosodium glutamate (GMS), up to 70 %. To our knowledge, this is the first report on the elaboration of GABA enriched milks through fermentation with B. adolescentis.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
28
|
Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci 2023; 18:468-477. [PMID: 37842520 PMCID: PMC10568962 DOI: 10.4103/1735-5362.383703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Lactobacillus, the most popular probiotic, has recently gained more attention because it is a potential reservoir of antibiotic resistance. This review summarized and discussed the phenotypic-genotypic characteristics of antibiotic resistance. Experimental approach Google Scholar, PubMed, Web of Science, and Scopus were searched up to February 2022. The inclusion criteria were all studies testing antibiotic resistance of probiotic Lactobacillus strains present in human food supplementation and all human/animal model studies in which transferring antibiotic-resistant genes from Lactobacillus strains to another bacterium were investigated. Findings/Results Phenotypic and genotypic characterization of Lactobacillus probiotics showed that the most antibiotic resistance was against protein synthesis inhibitors (fourteen studies, 87.5%) and cell wall synthesis inhibitors (ten studies, 62.5%). Nine of these studies reported the transfer of antibiotic resistance from Lactobacillus probiotic as donor species to pathogenic bacteria and mostly used in vitro methods for resistance gene transfer. Conclusion and implications The transferability of resistance genes such as tet and erm in Lactobacillus increases the risk of spreading antibiotic resistance. Further studies need to be conducted to evaluate the potential spread of antibiotic resistance traits via probiotics, especially in elderly people and newborns.
Collapse
Affiliation(s)
- Ali Shahali
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
29
|
Fusco A, Savio V, Chiaromonte A, Alfano A, D’Ambrosio S, Cimini D, Donnarumma G. Evaluation of Different Activity of Lactobacillus spp. against Two Proteus mirabilis Isolated Clinical Strains in Different Anatomical Sites In Vitro: An Explorative Study to Improve the Therapeutic Approach. Microorganisms 2023; 11:2201. [PMID: 37764044 PMCID: PMC10534642 DOI: 10.3390/microorganisms11092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Between these, bacterial prostatitis is believed to be the leading cause of recurrent UTIs in men under 50 years of age and is often unresponsive to antibiotic treatment. Proteus mirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterization. Lactobacillus spp. are an important component of the human microbiota and occur in large quantities in foods. Probiotics are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. In addition to their ability to produce antimicrobial metabolites, they have immunomodulatory activity and do not cause side effects. For this reason, the combination of probiotic microorganisms and conventional drugs was considered. The aim of this work was to select the most active Lactobacillus strains against two clinical isolates of P. mirabilis on bladder and prostatic epithelium, potentially exploitable to improve the clinical management of UTIs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| | | | | | | | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| |
Collapse
|
30
|
Asif A, Afzaal M, Shahid H, Saeed F, Ahmed A, Shah YA, Ejaz A, Ghani S, Ateeq H, Khan MR. Probing the functional and therapeutic properties of postbiotics in relation to their industrial application. Food Sci Nutr 2023; 11:4472-4484. [PMID: 37576043 PMCID: PMC10420781 DOI: 10.1002/fsn3.3465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Functional foods are gaining significant research attention of researchers due to their health-endorsing properties due to their bioactive components either living cells (probiotics) or nonviable cells (prebiotics). The term "postbiotic" specifies the soluble substances, such as enzymes, peptides, teichoic acids, muropeptides derived from peptidoglycans, polysaccharides, cell surface proteins, and organic acids, that are secreted by living bacteria or released after bacterial lysis. Due to various signaling molecules which may have antioxidant, immunomodulatory, antiinflammatory, antihypertensive, and antiproliferative activities, postbiotics offer great potential to be used in pharmaceutical, food, and nutraceutical industries, to promote health and ailment prevention. This recent review is a landmark of information relevant to the production of postbiotics along with salient features to use in various fields ranging from food to immunomodulation and selective and effective therapy. It also puts forward the concept that postbiotics are way more effective than probiotics in the veterinary, food as well as medical field which ultimately helps in reducing the disease burden along with human health.
Collapse
Affiliation(s)
- Abrar Asif
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Hina Shahid
- Women Medical OfficerDistrict Head Quarters (DHQ) Hospital VehariVehariPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
31
|
Dini I, Mancusi A. Weight Loss Supplements. Molecules 2023; 28:5357. [PMID: 37513229 PMCID: PMC10384751 DOI: 10.3390/molecules28145357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Being overweight or obese can predispose people to chronic diseases and metabolic disorders such as cardiovascular illnesses, diabetes, Alzheimer's disease, and cancer, which are costly public health problems and leading causes of mortality worldwide. Many people hope to solve this problem by using food supplements, as they can be self-prescribed, contain molecules of natural origin considered to be incapable of causing damage to health, and the only sacrifice they require is economic. The market offers supplements containing food plant-derived molecules (e.g., primary and secondary metabolites, vitamins, and fibers), microbes (probiotics), and microbial-derived fractions (postbiotics). They can control lipid and carbohydrate metabolism, reduce appetite (interacting with the central nervous system) and adipogenesis, influence intestinal microbiota activity, and increase energy expenditure. Unfortunately, the copious choice of products and different legislation on food supplements worldwide can confuse consumers. This review summarizes the activity and toxicity of dietary supplements for weight control to clarify their potentiality and adverse reactions. A lack of research regarding commercially available supplements has been noted. Supplements containing postbiotic moieties are of particular interest. They are easier to store and transport and are safe even for people with a deficient immune system.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
32
|
Ndlela LL, Schroeder P, Genthe B, Cruzeiro C. Removal of Antibiotics Using an Algae-Algae Consortium ( Chlorella protothecoides and Chlorella vulgaris). TOXICS 2023; 11:588. [PMID: 37505554 PMCID: PMC10383683 DOI: 10.3390/toxics11070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
The intensive use of antibiotics (for human, veterinary, and agricultural purposes) has steadily increased over the last 30 years. Large amounts of antibiotic residues are released into aquatic systems, mostly due to inefficient wastewater treatment. Conventional wastewater treatments are not designed to remove emerging contaminants (such as antibiotics) from wastewater. Therefore, algae treatment (phycoremediation) has emerged as a promising choice for cost-effective, eco-friendly, and sustainable wastewater treatment. For this reason, we investigated the removal performance of a well-established algal consortia (Chlorella protothecoides and Chlorella vulgaris) used in passive wastewater treatment ponds (Mosselbay, South Africa). Five antibiotics (sulfamethoxazole, amoxicillin, trimethoprim, ofloxacin, and clarithromycin) were selected for their ubiquity and/or low removal efficiency in conventional wastewater treatment plants (WWTPs). For each antibiotic, two concentrations were used: one environmentally relevant (10 ppb) and another 10 times higher (100 ppb), tested in triplicate and collected at two-time points (7 and 10 days). The algae remained viable over the exposure period (which is similar to the retention time within maturation ponds) and exhibited the capacity to remove sulfamethoxazole (77.3% ± 3.0 and 46.5% ± 5.3) and ofloxacin (43.5% ± 18.9 and 55.1% ± 12.0) from samples spiked with 10 and 100 ppb, respectively. This study demonstrates the potential and innovation of algal remediation for contaminants in a developing country context, where minimal infrastructure is available.
Collapse
Affiliation(s)
- Luyanda L Ndlela
- Natural Resources and the Environment Division, Council for Scientific and Industrial Research, Stellenbosch 7599, South Africa
| | - Peter Schroeder
- Unit Environmental Simulation, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Bettina Genthe
- Natural Resources and the Environment Division, Council for Scientific and Industrial Research, Stellenbosch 7599, South Africa
| | - Catarina Cruzeiro
- Unit Environmental Simulation, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
33
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
34
|
Martiz RM, Kumari V. B. C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P. A, Ramu R. Inhibition of carbohydrate hydrolyzing enzymes by a potential probiotic Levilactobacillus brevis RAMULAB49 isolated from fermented Ananas comosus. Front Microbiol 2023; 14:1190105. [PMID: 37389344 PMCID: PMC10303921 DOI: 10.3389/fmicb.2023.1190105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
35
|
Katsumata S, Hayashi Y, Oishi K, Tsukahara T, Inoue R, Obata A, Hirooka H, Kumagai H. Effects of liquefied sake lees on growth performance and faecal and blood characteristics in Japanese Black calves. Animal 2023; 17:100873. [PMID: 37399705 DOI: 10.1016/j.animal.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
Collapse
Affiliation(s)
- S Katsumata
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| | - Y Hayashi
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - K Oishi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - T Tsukahara
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Kyoto 610-0231, Japan
| | - R Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - A Obata
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - H Hirooka
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - H Kumagai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Khaleghi M, Khorrami S, Jafari-Nasab T. Pediococcus acidilactici isolated from traditional cheese as a potential probiotic with cytotoxic activity against doxorubicin-resistant MCF-7 cells. 3 Biotech 2023; 13:170. [PMID: 37188290 PMCID: PMC10169992 DOI: 10.1007/s13205-023-03597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
The considerable flexibility of cancerous cells to escape from chemical and biological drugs makes it clear that much is to be done to control and eliminate such cells. Probiotic bacteria, in this regard, have shown promising performance. In this study, we isolated and characterized lactic acid bacteria from traditional cheese. Then we evaluated their activity against doxorubicin-resistant MCF-7 cells (MCF-7/DOX) through MTT assay, Annexin V/PI protocol, real-time PCR, and western blotting. Among the isolates, one strain with more than 97% similarity with Pediococcus acidilactici showed considerable probiotics properties. Low pH, high bile salts, and NaCl could not significantly affect this strain while it was susceptible to antibiotics. Also, it had a potent antibacterial activity. Besides, the cell-free supernatant of this strain (CFS) significantly reduced the viability of MCF-7 and MCF-7/DOX cancerous cells (to about 10% and 25%, respectively), while it was safe for normal cells. Also, we found that CFS could regulate the Bax/Bcl-2 at mRNA and protein levels to induce apoptosis in drug-resistant cells. We determined 75% early apoptosis, 10% late apoptosis, and 15% necrosis in the cells treated with the CFS. These findings can accelerate the development of probiotics as promising alternative treatments to overcome drug-resistant cancers.
Collapse
Affiliation(s)
- Moj Khaleghi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sadegh Khorrami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Tayebeh Jafari-Nasab
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
37
|
García-Reyes RA, García-Cancino A, Arrevillaga-Boni G, Espinoza-Monje M, Gutiérrez-Zamorano C, Arrizon J, González-Avila M. Identification and Characterization of Probiotic Lactiplantibacillus plantarum BI-59.1 Isolated from tejuino and Its Capacity to Produce Biofilms. Curr Microbiol 2023; 80:220. [PMID: 37204589 DOI: 10.1007/s00284-023-03319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
Tejuino is a popular and traditional beverage consumed in north and western of Mexico, due to its biological properties, it is considered a natural source of probiotics. Nevertheless, few studies have been performed on Tejuino microbiota. In this work, the probiotic potential of the tejuino isolated Lactiplantibacillus plantarum BI-59.1 strain was investigated. Its effectiveness was compared with a commercial Lactobacillus spp and identified by 16S rDNA sequence homology. Lactiplantibacillus plantarum BI-59.1 strain showed probiotic properties, i.e., production of antimicrobial compounds (lactic acid and presence of plantaricin A gene), inhibition of entero-pathogens by planktonic cells and metabolites (Salmonella enterica serovar Typhimurium inhibition to HT29-MTX adhesion), biofilm formation, bacterial adhesion (HT29-MTX, 3.96 CFU/cell), and tolerance to stimulated gastrointestinal conditions (tolerance to pH 3 and bile salts). The strain was gamma hemolytic, susceptible to most antibiotics and negative for gelatinase production; thus, the Lactiplantibacillus. plantarum BI-59.1 strain is suitable for its use as a probiotic for nutraceutical or pharmaceutical formulations.
Collapse
Affiliation(s)
- Rudy Antonio García-Reyes
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Gerardo Arrevillaga-Boni
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Cristian Gutiérrez-Zamorano
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Chacabuco, 4030000, Concepción, Bío-Bío, Chile
| | - Javier Arrizon
- Industrial Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Marisela González-Avila
- Ex-Vivo Digestion Laboratory, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Applied Technology in Jalisco (CIATEJ), Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
38
|
Rashid M, Narang A, Thakur S, Jain SK, Kaur S. Therapeutic and prophylactic effects of oral administration of probiotic Enterococcus faecium Smr18 in Salmonella enterica-infected mice. Gut Pathog 2023; 15:23. [PMID: 37208771 DOI: 10.1186/s13099-023-00548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Salmonella enterica serotype Typhi causes chronic enteric fever known as typhoid. Prolonged treatment regimen used for the treatment of typhoid and indiscriminate use of antibiotics has led to the emergence of resistant strains of S. enterica that has further increased the severity of the disease. Therefore, alternative therapeutic agents are urgently required. In this study, probiotic and enterocin-producing bacteria Enterococcus faecium Smr18 was compared for both its prophylactic and therapeutic efficacy in S. enterica infection mouse model. E. faecium Smr18 possessed high tolerance to bile salts and simulated gastric juice, as treatment for 3 and 2 h resulted in 0.5 and 0.23 log10 reduction in the colony forming units, respectively. It exhibited 70% auto aggregation after 24 h of incubation and formed strong biofilms at both pH 5 and 7. Oral administration of E. faecium in BALB/c mice infected with S. enterica significantly (p < 0.05) reduced the mortality of the infected mice and prevented the weight loss in mice. Administration of E. faecium prior to infection inhibited the translocation of S. enterica to liver and spleen, whereas, its administration post-infection completely cleared the pathogen from the organs within 8 days. Further, in both pre- and post-E. faecium-treated infected groups, sera levels of liver enzymes were restored back to normal; whereas the levels of creatinine, urea and antioxidant enzymes were significantly (p < 0.05) reduced compared to the untreated-infected group. E. faecium Smr18 administration significantly increased the sera levels of nitrate by 1.63-fold and 3.22-fold in pre- and post-administration group, respectively. Sera levels of interferon-γ was highest (tenfold) in the untreated-infected group, whereas the levels of interleukin-10 was highest in the post-infection E. faecium-treated group thereby indicating the resolution of infection in the probiotic-treated group, plausibly due to the increased production of reactive nitrogen intermediates.
Collapse
Affiliation(s)
- Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
39
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
40
|
Uezen JD, Ficoseco CA, Fátima Nader-Macías ME, Vignolo GM. Identification and characterization of potential probiotic lactic acid bacteria isolated from pig feces at various production stages. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:127-145. [PMID: 37020571 PMCID: PMC10069149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 04/07/2023]
Abstract
Lactic acid bacteria (LAB) were isolated, identified, and characterized from pig feces at various growth stages and feed rations in order to be used as probiotic feed additives. Lactic acid bacteria numbers ranged from 7.10 ± 1.50 to 9.40 log CFUs/g for growing and lactating pigs, respectively. Isolates (n = 230) were identified by (GTG)5-polymerase chain reaction and partial sequence analysis of 16S rRNA. Major LAB populations were Limosilactobacillus reuteri (49.2%), Pediococcus pentosaceus (20%), Lactobacillus amylovorus (11.4%), and L. johnsonii (8.7%). In-vitro assays were performed, including surface characterization and tolerance to acid and bile salts. Several lactobacilli exhibited hydrophobic and aggregative characteristics and were able to withstand gastrointestinal tract conditions. In addition, lactobacilli showed starch- and phytate-degrading ability, as well as antagonistic activity against Gram-negative pathogens and the production of bacteriocin-like inhibitory substances. When resistance or susceptibility to antibiotics was evaluated, high phenotypic resistance to ampicillin, gentamicin, kanamycin, streptomycin, and tetracycline and susceptibility towards clindamycin and chloramphenicol was observed in the assayed LAB. Genotypic characterization showed that 5 out of 15 resistance genes were identified in lactobacilli; their presence did not correlate with phenotypic traits. Genes erm(B), strA, strB, and aadE conferring resistance to erythromycin and streptomycin were reported among all lactobacilli, whereas tet(M) gene was harbored by L. reuteri and L. amylovorus strains. Based on these results, 6 probiotic LAB strains (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T, and L. johnsonii S92R) can be selected to explore their potential as direct feed additives to promote swine health and replace antibiotics.
Collapse
Affiliation(s)
- José D Uezen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - Cecilia Aristimuño Ficoseco
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - María E Fátima Nader-Macías
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Pharmabiotic Department, Batalla de Chacabuco 145 (CP: T4000ILC). San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
41
|
Park SJ, Sharma A, Lee HJ. Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. Int J Mol Sci 2023; 24:6414. [PMID: 37047387 PMCID: PMC10095054 DOI: 10.3390/ijms24076414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Overweight and obesity are significant global public health concerns that are increasing in prevalence at an alarming rate. Numerous studies have demonstrated the benefits of probiotics against obesity. Postbiotics are the next generation of probiotics that include bacteria-free extracts and nonviable microorganisms that may be advantageous to the host and are being increasingly preferred over regular probiotics. However, the impact of postbiotics on obesity has not been thoroughly investigated. Therefore, the goal of this review is to gather in-depth data on the ability of postbiotics to combat obesity. Postbiotics have been reported to have significant potential in alleviating obesity. This review comprehensively discusses the anti-obesity effects of postbiotics in cellular, animal, and clinical studies. Postbiotics exert anti-obesity effects via multiple mechanisms, with the major mechanisms including increased energy expenditure, reduced adipogenesis and adipocyte differentiation, suppression of food intake, inhibition of lipid absorption, regulation of lipid metabolism, and regulation of gut dysbiosis. Future research should include further in-depth studies on strain identification, scale-up of postbiotics, identification of underlying mechanisms, and well-defined clinical studies. Postbiotics could be a promising dietary intervention for the prevention and management of obesity.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
42
|
Optimization of Therapy and the Risk of Probiotic Use during Antibiotherapy in Septic Critically Ill Patients: A Narrative Review. Medicina (B Aires) 2023; 59:medicina59030478. [PMID: 36984479 PMCID: PMC10056847 DOI: 10.3390/medicina59030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Optimizing the entire therapeutic regimen in septic critically ill patients should be based not only on improving antibiotic use but also on optimizing the entire therapeutic regimen by considering possible drug–drug or drug–nutrient interactions. The aim of this narrative review is to provide a comprehensive overview on recent advances to optimize the therapeutic regimen in septic critically ill patients based on a pharmacokinetics and pharmacodynamic approach. Studies on recent advances on TDM-guided drug therapy optimization based on PK and/or PD results were included. Studies on patients <18 years old or with classical TDM-guided therapy were excluded. New approaches in TDM-guided therapy in septic critically ill patients based on PK and/or PD parameters are presented for cefiderocol, carbapenems, combinations beta-lactams/beta-lactamase inhibitors (piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam), plazomicin, oxazolidinones and polymyxins. Increased midazolam toxicity in combination with fluconazole, nephrotoxic synergism between furosemide and aminoglycosides, life-threatening hypoglycemia after fluoroquinolone and insulin, prolonged muscle weakness and/or paralysis after neuromuscular blocking agents and high-dose corticosteroids combinations are of interest in critically ill patients. In the real-world practice, the use of probiotics with antibiotics is common; even data about the risk and benefits of probiotics are currently spares and inconclusive. According to current legislation, probiotic use does not require safety monitoring, but there are reports of endocarditis, meningitis, peritonitis, or pneumonia associated with probiotics in critically ill patients. In addition, probiotics are associated with risk of the spread of antimicrobial resistance. The TDM-guided method ensures a true optimization of antibiotic therapy, and particular efforts should be applied globally. In addition, multidrug and drug–nutrient interactions in critically ill patients may increase the likelihood of adverse events and risk of death; therefore, the PK and PD particularities of the critically ill patient require a multidisciplinary approach in which knowledge of clinical pharmacology is essential.
Collapse
|
43
|
Feng L, Gu J, Guo L, Mu G, Tuo Y. Safety evaluation and application of lactic acid bacteria and yeast strains isolated from Sichuan broad bean paste. Food Sci Nutr 2023; 11:940-952. [PMID: 36789042 PMCID: PMC9922144 DOI: 10.1002/fsn3.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Broad bean paste is one of the most popular characteristic traditional fermented bean products in China, which is prepared by mixed fermentation of a variety of microorganisms, among which lactic acid bacteria and yeast played an important role in the improvement of the fermented broad bean paste quality. However, the traditional open-air fermentation of broad bean paste brought some risks of harmful microorganisms. In this study, the safety and fermentation ability of lactic acid bacteria and yeast strains isolated from traditional broad bean paste was evaluated. The results showed that the protease activity of the strain Lactobacillus plantarum DPUL-J5 (366.73 ± 9.00 U/L) and Pichia kudriavzevii DPUY-J5 (237.18 ± 10.93 U/L) were the highest. Both strains produced little biogenic amines, and did not exhibit α-hemolytic activity or antibiotic resistance for some of the antibiotics most used in human medicine. Furthermore, the broad bean paste fermentation involving DPUL-J5 and DPUY-J5 was beneficial for accumulating higher total acid (1.69 ± 0.01 g/100 g), amino-acid nitrogen (0.85 ± 0.03 g/100 g), and more volatile flavor compounds, meanwhile, reducing the levels of biogenic amines and aflatoxin B1. Therefore, this study provided a new strategy to improve the safety and quality of traditional broad bean paste.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Jinhong Gu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Linjie Guo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Guangqing Mu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Yanfeng Tuo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
44
|
Daneshazari R, Rabbani Khorasgani M, Hosseini-Abari A. Preliminary in vitro assessment of probiotic properties of Bacillus subtilis GM1, a spore forming bacteria isolated from goat milk. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:65-73. [PMID: 37378382 PMCID: PMC10291520 DOI: 10.22099/ijvr.2023.43891.6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/29/2023]
Abstract
Background Species of the Bacillus genus have a long history of use in biotechnology. Some Bacillus strains have recently been identified for food applications and industrial as safe bacteria, which mostly have been recognized as probiotic strains. Aims The primary purpose of the current study was to evaluate the probiotic characteristics of Bacillus subtilis strains isolated and identified from the goat milk samples. Methods After sampling from 40 goat milk and cultivation, suspected colonies were subjected to biochemical and molecular identification. Then, the confirmed isolate was assessed for in vitro probiotic tests, including hemolysis and lecithinase properties, bile salt, acid, and artificial gastric juice resistance, antioxidant activity, antibiotics susceptibility, enterotoxin genes detection, and attachment capacity to the HT-29 cells. Results Among 11 suspected isolates evaluated, only one isolate was identified as B. subtilis. In vitro tests for this strain showed similar results to other probiotic strains. The B. subtilis strain was susceptible to various antibiotics. The enterotoxin genes were not detected based on PCR assay. Concerning its probiotic characteristics assessment, especially tolerance to bile salts and acidic conditions, the Bacillus strain could have the potential to consider as a probiotic. Conclusion Goat milk can be recommended as a source of Bacillus isolates. Also, the isolated strain showed high adaptability to the gastrointestinal environment, relatively equal percentages of adhesion properties, and some safety aspects, having the potential to be considered as an appropriate probiotic.
Collapse
Affiliation(s)
- R Daneshazari
- Ph.D. Student in Microbiology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - M Rabbani Khorasgani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - A Hosseini-Abari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
45
|
Bahaddad SA, Almalki MHK, Alghamdi OA, Sohrab SS, Yasir M, Azhar EI, Chouayekh H. Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics Antimicrob Proteins 2023; 15:1-16. [PMID: 35092567 PMCID: PMC8799964 DOI: 10.1007/s12602-022-09909-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/18/2023]
Abstract
Antibiotic growth promoters have been utilized for long time at subtherapeutic levels as feed supplements in monogastric animal rations. Because of their side-effects such as antibiotic resistance, reduction of beneficial bacteria in the gut, and dysbiosis, it is necessary to look for non-therapeutic alternatives. Probiotics play an important role as the key substitutes to antibacterial agents due to their many beneficial effects on the monogastric animal host. For instance, enhancement of the gut microbiota balance can contribute to improvement of feed utilization efficiency, nutrients absorption, growth rate, and economic profitability of livestock. Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host." They are available in diverse forms for use as feed supplements. Their utilization as feed additives assists in good digestion of feed ingredients and hence, making the nutrients available for promoting growth. Immunity can also be enhanced by supplementing probiotics to monogastrics diets. Moreover, probiotics can help in improving major meat quality traits and countering a variety of monogastric animals infectious diseases. A proper selection of the probiotic strains is required in order to confer optimal beneficial effects. The present review focuses on the general functional, safety, and technological screening criteria for selection of ideal Bacillus probiotics as feed supplements as well as their mechanism of action and beneficial effects on monogastric animals for improving production performance and health status.
Collapse
Affiliation(s)
- Shifa A Bahaddad
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Meshal H K Almalki
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
46
|
Probiotics and Postbiotics as the Functional Food Components Affecting the Immune Response. Microorganisms 2022; 11:microorganisms11010104. [PMID: 36677396 PMCID: PMC9862734 DOI: 10.3390/microorganisms11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The food market is one of the most innovative segments of the world economy. Recently, among consumers there is a forming trend of a healthier lifestyle and interest in functional foods. Products with positive health properties are a good source of nutrients for consumers' nutritional needs and reduce the risk of metabolic diseases such as diabetes, atherosclerosis, or obesity. They also seem to boost the immune system. One of the types of functional food is "probiotic products", which contain viable microorganisms with beneficial health properties. However, due to some technical difficulties in their development and marketing, a new alternative has started to be sought. Many scientific studies also point to the possibility of positive effects on human health, the so-called "postbiotics", the characteristic metabolites of the microbiome. Both immunobiotics and post-immunobiotics are the food components that affect the immune response in two ways: as inhibition (suppressing allergies and inflammation) or as an enhancement (providing host defenses against infection). This work's aim was to conduct a literature review of the possibilities of using probiotics and postbiotics as the functional food components affecting the immune response, with an emphasis on the most recently published works.
Collapse
|
47
|
Lee HJ, Lee JB, Park SY, Choi IS, Lee SW. Antimicrobial activity of dominant Ligilactobacillus animalis strains in healthy canine feces and their probiotic potential. FEMS Microbiol Lett 2022; 369:6847740. [PMID: 36434780 DOI: 10.1093/femsle/fnac115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
The number of companion animals living with humans has continually increased over the last few decades, and so has the interest of owners and stakeholders in the animal food and probiotics industry. Currently, the probiotic bacteria added to the feed of companion animals predominantly originate from the lactic acid bacteria (LAB) used for humans; however, there are differences between the microbiota of humans and that of their companion animals. This study aimed to determine the dominant LAB in dog feces and investigate their functional properties. Ligilactobacillus animalis (formerly called Lactobacillus animalis) was identified as the dominant lactic acid bacterium in dog feces. It displayed various inhibitory effects against pathogenic and enteropathogenic bacteria. This finding suggests that Ligilactobacillus animalis can potentially be used in novel probiotics or as a food additive for dogs.
Collapse
Affiliation(s)
- Hong-Jae Lee
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
48
|
D'Auria E, Acunzo M, Salvatore S, Grazi R, Agosti M, Vandenplas Y, Zuccotti G. Biotics in atopic diseases: state of the art and future perspectives. Minerva Pediatr (Torino) 2022; 74:688-702. [PMID: 36149096 DOI: 10.23736/s2724-5276.22.07010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prevalence of allergic diseases has growing in recent decades, being a significant burden for patients and their families. Different environmental factors, acting in early life, can significantly affect the timing and diversity of bacterial colonization and the immune system development. Growing evidence points to a correlation between early life microbial perturbation and development of allergic diseases. Besides, changes in the microbiota in one body site may influence other microbiota communities at distance by different mechanisms, including microbial-derived metabolites, mainly the short chain fatty acids (SCFA). Hence, there has been an increasing interest on the role of "biotics" (probiotics, prebiotics, symbiotics and postbiotics) in shaping dysbiosis and modulating allergic risk. Systemic type 2 inflammation is emerging as a common pathogenetic pathway of allergic diseases, intertwining communication with the gut mcirobiota. The aim of this review was to provide an update overview of the current knowledge of biotics in prevention and treatment of allergic diseases, also addressing research gaps which need to be filled.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Roberta Grazi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Yvan Vandenplas
- KidZ Health Castle, Free University of Brussels, Brussels, Belgium
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Mehra Y, Rajesh NG, Viswanathan P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
Affiliation(s)
- Yogita Mehra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
50
|
Gill VJS, Soni S, Shringarpure M, . A, Bhardwaj S, Yadav NK, Patel A, Patel A. Gut Microbiota Interventions for the Management of Obesity: A Literature Review. Cureus 2022; 14:e29317. [PMID: 36161997 PMCID: PMC9484223 DOI: 10.7759/cureus.29317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota (GM) has been recognized as an important factor in the development of metabolic diseases such as obesity; it has been reported that the composition of the GM differs in obese and lean subjects, suggesting that microbiota dysbiosis can contribute to changes in body weight. Dysbiosis occurs due to an imbalance in the composition of gut bacteria, changes in the metabolic process, or changes in the distribution of microbiota within the gut. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT). Microbial manipulation may help with preventing or treating weight gain and associated comorbidities. Approaches to this may range from dietary manipulation, which is suitable to treat the individual’s microflora, to probiotics, prebiotics, synbiotics, and fecal microbiota transplant (FMT).
Collapse
|