1
|
Stoev SD. Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins. Foods 2025; 14:1960. [PMID: 40509491 PMCID: PMC12154201 DOI: 10.3390/foods14111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/28/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
The relationships between mycotoxins content in food commodities or feedstuffs and the foodborne diseases is well known. So far, the available data mainly include chemical methods of mycotoxins decontamination for agricultural commodities or raw materials, including mycotoxin binders. Therefore, the possible use of some natural and cost-effective supplements such as herbs, fungi, microorganisms, or plants with powerful and safe protection against mycotoxin-induced health ailments is the main subject of this review paper. Various antagonistic microorganisms or yeast with fungicidal properties, as well as some herbs or plants that suppress fungal development and the subsequent production of target mycotoxins and/or have protective effect against mycotoxins, are deeply studied in the literature, and practical suggestions are given in this regard. The protection by degradation, biotransformation, or binding of mycotoxins by using natural additives such as herbs or plants to feedstuffs or foods has also been thoroughly investigated and analyzed as a possible approach for ameliorating the target adverse effects of mycotoxins. Possible beneficial dietary changes have also been studied to potentially alleviate mycotoxin toxicity. Practical advice are provided for possible application of the same natural supplements in real-life practice for combating mycotoxin-induced health ailments. Natural feed supplements and bioactive compounds appeared to be safe emerging approaches to preventing health ailments caused by mycotoxins. However, the available data mainly address some in vitro studies, and more in vivo experiments are necessary for introducing such approaches in the real-life practice or industry. Generally, target herbal supplements, antioxidants, or polyenzyme complements could be used as powerful protectors in addition to natural mycotoxin binders. Bioactive agents and enzymatic degradation are reported to be very successful in regard to PAT and OTA, whereas antagonistic microorganisms/fungi/yeasts have a successful application against AFs and PAT-producing fungi.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
2
|
Ábrahám R, Baka E, Al-Nussairawi M, Táncsics A, Farkas M, Nagy I, Kriszt B, Cserháti M. Molecular insights into ochratoxin A biodegradation. Biol Futur 2025:10.1007/s42977-025-00258-2. [PMID: 40374978 DOI: 10.1007/s42977-025-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/08/2025] [Indexed: 05/18/2025]
Abstract
Most of the agricultural products can potentially be exposed to mycotoxins-especially to ochratoxin A (OTA)-, which may cause foodborne diseases such as renal toxicity and notable economic losses worldwide. Biological detoxification is the most promising method to control OTA contamination. To provide a comprehensive understanding, this review summarizes the biodegradation pathways of OTA and discusses microbes capable of degrading OTA and their detoxification strategies. A detailed analysis of potentially useful enzymes for food and feed detoxification will be reported, highlighting specific enzymatic strategies identified in scientific literature. A comparative analysis of the functional capabilities of different OTA hydrolases demonstrates significant variation in degradation efficiency, thus the optimization of these enzymes is essential for the development of effective detoxification strategies. This review underscores the potential of harnessing these microorganisms and their enzymes for mitigating the toxic effects of OTA in contaminated environment and examining the essential requirements that must be met for the successful application of OTA degrading enzyme technology for promoting public health and food safety.
Collapse
Affiliation(s)
- Renáta Ábrahám
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary.
| | - Mohammed Al-Nussairawi
- Department of Clinical and Laboratory Sciences, College of Pharmacy, University of Misan, Amarah, Iraq
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Milán Farkas
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Nagy
- Center of Research and Development, Eszterházy Károly Catholic University, Eger, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Mátyás Cserháti
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
3
|
Sánchez-Arroyo A, Plaza-Vinuesa L, de Las Rivas B, Mancheño JM, Muñoz R. Analysis of the subtype I amidohydrolase responsible for Ochratoxin A degradation in the Sphingomonas genus. Int J Biol Macromol 2025; 306:141720. [PMID: 40043988 DOI: 10.1016/j.ijbiomac.2025.141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Ochratoxin A (OTA) is a mycotoxin that contaminates the agricultural environment, food and feed, leading to substantial economic losses. Among the alpha-proteobacteria, certain strains from the Sphingomonas genus are known to degrade a wide range of naturally occurring and synthetic compounds, including OTA. In this work, type strains for 17 Sphingomonas species were tested for their ability to detoxify OTA in culture. Most of them demonstrated OTA-detoxification capabilities. We observed that all OTA-degrading strains possessed an amidohydrolase homologous to others identified in gamma-proteobacteria. Conversely, strains that did not degrade OTA lacked this enzyme. This strong correlation suggests that the OTA-degrading phenotype exhibited by Sphingomonas cultures is directly linked to the presence of this enzyme. A PCR-based detection method was designed to identify strains possessing the amidohydrolase-encoding gene, marking them as potential OTA-degrading strains. Additionally, the OTA-transforming amidohydrolase from S. dokdonensis DSM 21029T (SdOTA) was identified and biochemically characterized. In silico prediction of the SdOTA structure with AlphaFold, combined with molecular docking simulations, revealed the structural basis of the substrate specificity and insights into the mycotoxin-binding mechanism. The ability Sphingomonas strains to detoxify OTA, coupled with the collection of genes enabling bioremediation, positions them as highly versatile bacteria for pollutant detoxification.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - José Miguel Mancheño
- Instituto de Química-Física Blas Cabrera (IQF), CSIC, Serrano 119, 28006 Madrid, Spain.
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Santos J, Oliveira C, Teixeira F, Venâncio A, Silva C. Enzymatic Degradation of Ochratoxin A: The Role of Ultra-Pure Water. Foods 2025; 14:397. [PMID: 39941990 PMCID: PMC11817770 DOI: 10.3390/foods14030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin, making its removal from food essential for public health. This study examines OTA degradation by porcine pancreatic lipase (PPL) in ultra-pure water versus buffer systems through in vitro assays and molecular modeling. The results show that PPL fully degrades OTA in ultra-pure water within 7 h at 44 °C, whereas only partial degradation occurs in phosphate buffer. After 4 h, PPL in water degrades 91% of OTA, compared to only 12% in buffer. The enzyme's half-life is longer in water (~4 h 4 min) than in phosphate buffer (~2 h 30 min), suggesting better stability in water. Other buffers, including acetate, citrate, and borate, confirmed higher degradation efficiency in low-conductivity, acidic environments similar to ultra-pure water. Additionally, using the model compound p-nitrophenyl octanoate (p-NPO), it was found that p-NPO degrades faster in buffer, likely due to a salting-out effect. Molecular modeling and circular dichroism analysis indicate that PPL's secondary structure in water promotes an ideal conformation for OTA binding. This study suggests ultra-pure water as a greener, sustainable option for reducing mycotoxins in food, with broad industrial applications.
Collapse
Affiliation(s)
- Joana Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.S.); (C.O.); (A.V.)
| | - Constança Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.S.); (C.O.); (A.V.)
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Filipe Teixeira
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Armando Venâncio
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.S.); (C.O.); (A.V.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.S.); (C.O.); (A.V.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Guo Y, Fu Y, Chen X, Wang Z, Wang Y, Zhao L. Identification and functional characterization of a novel amidohydrolase involved in ochratoxin A degradation by Acinetobacter baumannii HAU425. Int J Biol Macromol 2024; 282:137403. [PMID: 39521231 DOI: 10.1016/j.ijbiomac.2024.137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin calling for the development of effective strategies for its decontamination. In this study, a highly efficient OTA-degrading bacterium Acinetobacter baumannii HAU425 was isolated from soil with ochratoxin α (OTα) as the degradation product. The identification of OTA hydrolase from strain HAU425 was carried out by combining genome mining with gene cloning and heterologous expression technologies. A novel amidohydrolase Amse was found to show OTA hydrolase activity, which could achieve 93 % OTA degradation in 5 min. Amse shared low amino acid sequence identity (38-43 %) with other previously reported OTA hydrolases. More impressively, Amse retained 72 % of its maximum activity at 20 °C. The deletion of Amse gene did not affect the growth of strain HAU425, but led to 60 % reduction of OTA degradation by the strain. Moreover, the addition of Amse at 5 μg mL-1 could degrade 87 % of 5 ng mL-1 of OTA in grape juice at 20 °C within 3 h, while retaining the quality of grape juice. These findings shed new light on OTA biodegradation mechanism and the utilization of enzymes for detoxifying OTA in fruit products.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoshuang Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Liu R, Huang L, Feng X, Wang D, Gunarathne R, Kong Q, Lu J, Ren X. Unraveling the effective inhibition of α-terpinol and terpene-4-ol against Aspergillus carbonarius: Antifungal mechanism, ochratoxin A biosynthesis inhibition and degradation perspectives. Food Res Int 2024; 194:114915. [PMID: 39232535 DOI: 10.1016/j.foodres.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Aspergillus carbonarius, a common food-contaminating fungus, produces ochratoxin A (OTA) and poses a risk to human health. This study aimed to assess the inhibitory activity of tea tree essential oil and its main components, Terpene-4-ol (T4), α-terpineol (αS), and 3-carene (3C) against A. carbonarius. The study showed αS and T4 were the main antifungal components of tea tree essential oil, which primarily inhibit A. carbonarius growth through cell membrane disruption, reducing antioxidant enzyme activities (catalase, peroxidase, superoxide dismutase) and interrupting the tricarboxylic acid cycle. Furthermore, αS and T4 interacted with enzymes related to OTA biosynthesis. Molecular docking and molecular dynamics show that they bound mainly to P450 with a minimum binding energy of -7.232 kcal/mol, we infered that blocking the synthesis of OTA precursor OTβ. Our hypothesis was preliminarily verified by the detection of key substances in the OTA synthesis pathway. The results of UHPLC-QTOF-MS2 analysis demonstrated that T4 achieved a degradation rate of 43 % for OTA, while αS reached 29.6 %, resulting in final breakdown products such as OTα and phenylalanine. These results indicated that α-terpinol and Terpene-4-ol have the potential to be used as naturally safe and efficient preservatives or active packaging to prevent OTA contamination.
Collapse
Affiliation(s)
- Rong Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lingxuan Huang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rasika Gunarathne
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - QingJun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Jun Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
7
|
Zhang X, Ma X, Dai G, Fu X, Zhou Y. Efficient Secretory Expression and Purification on Three Insoluble Amidohydrolases for Ochratoxin A Hydrolysis by Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16403-16411. [PMID: 39004912 DOI: 10.1021/acs.jafc.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a highly toxic mycotoxin, ochratoxin A (OTA) is widely contaminating agricultural products and has various toxicological effects. Bioenzymes for OTA degradation have shown promising potential for detoxification. Other than the efficient amidohydrolase ADH3 previously, two novel amidohydrolases ADH1 and AMD3 were obtained in this study. During Escherichia coli expression, the expressed protein solubility was very low and will limit future industrial application. Here, high copy number integrations were screened, and the amidohydrolases were efficiently secretory expressed by Pichia pastoris GS115. The protein yields from 1.0 L of fermentation supernatant were 53.5 mg for ADH1, 89.15 mg for ADH3, and 79.5 mg for AMD3. The catalytic efficiency (Kcat/Km) of secretory proteins was 124.95 s-1 mM-1 for ADH3, 123.21 s-1 mM-1 for ADH1, and 371.99 s-1 mM-1 for AMD3. In comparison to E. coli expression, the active protein yields substantially increased 15.78-51.53 times. Meanwhile, two novel amidohydrolases (ADH1 and AMD3) showed much higher activity than ADH3 that produced by secretory expression.
Collapse
Affiliation(s)
- Xuanjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xue Ma
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Guangqing Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaojie Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
- Joint Research Center for Food Nutrition and Health of lHM, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
8
|
Zjalic S, Markov K, Loncar J, Jakopovic Z, Beccaccioli M, Reverberi M. Biocontrol of Occurrence Ochratoxin A in Wine: A Review. Toxins (Basel) 2024; 16:277. [PMID: 38922171 PMCID: PMC11209579 DOI: 10.3390/toxins16060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
Viticulture has been an important economic sector for centuries. In recent decades, global wine production has fluctuated between 250 and almost 300 million hectoliters, and in 2022, the value of wine exports reached EUR 37.6 billion. Climate change and the associated higher temperatures could favor the occurrence of ochratoxin A (OTA) in wine. OTA is a mycotoxin produced by some species of the genera Aspergillus and Penicillium and has nephrotoxic, immunotoxic, teratogenic, hepatotoxic, and carcinogenic effects on animals and humans. The presence of this toxin in wine is related to the type of wine-red wines are more frequently contaminated with OTA-and the geographical location of the vineyard. In Europe, the lower the latitude, the greater the risk of OTA contamination in wine. However, climate change could increase the risk of OTA contamination in wine in other regions. Due to their toxic effects, the development of effective and environmentally friendly methods to prevent, decontaminate, and degrade OTA is essential. This review summarises the available research on biological aspects of OTA prevention, removal, and degradation.
Collapse
Affiliation(s)
- Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Jelena Loncar
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Viseslava 9, 23000 Zadar, Croatia;
| | - Zeljko Jakopovic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.M.); (Z.J.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
9
|
Sánchez-Arroyo A, Plaza-Vinuesa L, de Las Rivas B, Mancheño JM, Muñoz R. Structural and functional analysis of the key enzyme responsible for the degradation of ochratoxin A in the Alcaligenes genus. Int J Biol Macromol 2024; 267:131342. [PMID: 38574921 DOI: 10.1016/j.ijbiomac.2024.131342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The potential to degrade ochratoxin A (OTA), a highly poisonous mycotoxin, was investigated in cultures from Alcaligenes-type strains. Genome sequence analyses from different Alcaligenes species have permitted us to demonstrate a direct, causal link between the gene coding a known N-acyl-L-amino acid amidohydrolase from A. faecalis (AfOTH) and the OTA-degrading activity of this bacterium. In agreement with this finding, we found the gene coding AfOTH in two additional species included in the Alcaligenes genus, namely, A. pakistanensis, and A. aquatilis, which also degraded OTA. Notably, A. faecalis subsp. faecalis DSM 30030T was able to transform OTα, the product of OTA hydrolysis. AfOTH from A. faecalis subsp. phenolicus DSM 16503T was recombinantly over-produced and enzymatically characterized. AfOTH is a Zn2+-containing metalloenzyme that possesses structural features and conserved residues identified in the M20D family of enzymes. AfOTH is a tetramer in solution that shows both aminoacylase and carboxypeptidase activities. Using diverse potential substrates, namely, N-acetyl-L-amino acids and carbobenzyloxy-L-amino acids, a marked preference towards C-terminal Phe and Tyr residues could be deduced. The structural basis for this specificity has been determined by in silico molecular docking analyses. The amidase activity of AfOTH on C-terminal Phe residues structurally supports its OTA and OTB degradation activity.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Blanca de Las Rivas
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera (IQF), CSIC, Serrano 119, 28006 Madrid, Spain.
| | - Rosario Muñoz
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
11
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
12
|
Sánchez-Arroyo A, Plaza-Vinuesa L, Abeijón-Mukdsi MC, de Las Rivas B, Mancheño JM, Muñoz R. A new and promiscuous α/β hydrolase from Acinetobacter tandoii DSM 14970 T inactivates the mycotoxin ochratoxin A. Appl Microbiol Biotechnol 2024; 108:230. [PMID: 38393350 PMCID: PMC10891195 DOI: 10.1007/s00253-024-13073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-β-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/β hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/β hydrolase core composed of a parallel, six-stranded β-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/β hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αβ hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αβ hydrolases are a possible source of new OTA-degrading enzymes.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - María Claudia Abeijón-Mukdsi
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Blanca de Las Rivas
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| | - Rosario Muñoz
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
14
|
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit Rev Food Sci Nutr 2023; 65:1465-1481. [PMID: 38108665 DOI: 10.1080/10408398.2023.2294166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| |
Collapse
|
15
|
Dai L, Niu D, Huang JW, Li X, Shen P, Li H, Xie Z, Min J, Hu Y, Yang Y, Guo RT, Chen CC. Cryo-EM structure and rational engineering of a superefficient ochratoxin A-detoxifying amidohydrolase. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131836. [PMID: 37331057 DOI: 10.1016/j.jhazmat.2023.131836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Ochratoxin A (OTA) is among the most prevalent mycotoxins detected in agroproducts, posing serious threats to human and livestock health. Using enzymes to conduct OTA detoxification is an appealing potential strategy. The recently identified amidohydrolase from Stenotrophomonas acidaminiphila, termed ADH3, is the most efficient OTA-detoxifying enzyme reported thus far and can hydrolyze OTA to nontoxic ochratoxin α (OTα) and L-β-phenylalanine (Phe). To elucidate the catalytic mechanism of ADH3, we solved the single-particle cryo-electron microscopy (cryo-EM) structures of apo-form, Phe- and OTA-bound ADH3 to an overall resolution of 2.5-2.7 Å. The role of OTA-binding residues was investigated by structural, mutagenesis and biochemical analyses. We also rationally engineered ADH3 and obtained variant S88E, whose catalytic activity was elevated by 3.7-fold. Structural analysis of variant S88E indicates that the E88 side chain provides additional hydrogen bond interactions to the OTα moiety. Furthermore, the OTA-hydrolytic activity of variant S88E expressed in Pichia pastoris is comparable to that of Escherichia coli-expressed enzyme, revealing the feasibility of employing the industrial yeast strain to produce ADH3 and its variants for further applications. These results unveil a wealth of information about the catalytic mechanism of ADH3-mediated OTA degradation and provide a blueprint for rational engineering of high-efficiency OTA-detoxifying machineries.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Du Niu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
16
|
Ma W, Fu Y, Zhu S, Xia D, Zhai S, Xiao D, Zhu Y, Dione M, Ben L, Yang L, Wang W. Ochratoxin A induces abnormal tryptophan metabolism in the intestine and liver to activate AMPK signaling pathway. J Anim Sci Biotechnol 2023; 14:125. [PMID: 37684661 PMCID: PMC10486098 DOI: 10.1186/s40104-023-00912-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin widely present in raw food and feed materials and is mainly produced by Aspergillus ochraceus and Penicillium verrucosum. Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder, especially Bacteroides plebeius (B. plebeius) overgrowth. However, whether OTA or B. plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown. This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver. MATERIALS AND METHODS A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups. The control group was given 0.1 mol/L NaHCO3 solution, and the OTA group was given 235 μg/kg body weight OTA for 14 consecutive days. Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics. AMPK-related signaling pathway factors were analyzed by Western blotting and mRNA expression. RESULTS Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intestinal nicotinuric acid levels, the downstream product of tryptophan metabolism, which were significantly negatively correlated with B. plebeius abundance. In contrast, OTA induced a significant increase in indole-3-acetamide levels, which were positively correlated with B. plebeius abundance. Simultaneously, OTA decreased the levels of ATP, NAD+ and dipeptidase in the liver. Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine, anthranilic acid and nicotinic acid. Moreover, OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein. CONCLUSION OTA decreased the level of nicotinuric acid in the intestinal tract, which was negatively correlated with B. plebeius abundance. The abnormal metabolism of tryptophan led to a deficiency of NAD+ and ATP in the liver, which in turn activated the AMPK signaling pathway. Our results provide new insights into the toxic mechanism of OTA, and tryptophan metabolism might be a target for prevention and treatment.
Collapse
Affiliation(s)
- Weiqing Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Daiyang Xia
- School of Marine Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082 China
| | - Shuangshuang Zhai
- College of Animal Science, YangtzeUniversity, Jingzhou, 434025 China
| | - Deqin Xiao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642 China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | | | - Lukuyu Ben
- Int Livestock Res Inst, Nairobi, 00100 Kenya
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
17
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
18
|
Santos J, Castro T, Venâncio A, Silva C. Degradation of ochratoxins A and B by lipases: A kinetic study unraveled by molecular modeling. Heliyon 2023; 9:e19921. [PMID: 37809625 PMCID: PMC10559330 DOI: 10.1016/j.heliyon.2023.e19921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mycotoxins are toxic substances produced by fungi and, frequently, different mycotoxins cooccur in food commodities. Ochratoxin A (OTA) and Ochratoxin B (OTB) may co-occur in a variety of foods, like red wines and wheat, presenting a significant risk of population exposure. In this study, we investigated the potential of five lipases (Candida rugosa Lipase, Candida antarctica B Lipase, Thermomyces lanuginosus Lipase, Amano Lipase A from Aspergillus niger (ANL) and Porcine Pancreas Lipase (PPL)) to hydrolyze OTA and OTB into non-hazardous products. Only ANL and PPL degraded both substrates, however, with varying degrees of efficiency. PPL completely degraded OTB (9 h), but only 43% of OTA (25 h). Molecular simulations indicated a high binding energy of OTA to PPL, that can be explained by the impact of the chlorine group, impairing hydrolysis. ANL was able to completely degrade both mycotoxins, OTA in 3 h and OTB in 10 h. The ANL enzyme showed also high specificity to OTA, however, the activity of this enzyme is not affected by chlorine and hydrolyzes OTA faster than OTB. These two enzymes were found to be able to detoxify co-occurring ochratoxins A and B, making isolated enzymes an alternative to the direct use of microorganisms for mycotoxin mitigation in food.
Collapse
Affiliation(s)
- Joana Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tarsila Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Armando Venâncio
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, 4800-058, Guimarães, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, 4800-058, Guimarães, Portugal
| |
Collapse
|
19
|
Detoxification impacts of dietary probiotic and prebiotic supplements against aflatoxins: an updated knowledge. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
The widespread prevalence of food pollutants seriously threatens human and animal health. Mycotoxins are secondary metabolites primarily formed by toxigenic fungal genera, including Aspergillus, Penicillium, Fusarium, and Alternaria, demonstrating one of the principal pollutants in diets or feed products. Mycotoxin contamination in food can harm health, including stunted development, immune system suppression, infertility, vomiting, and gastrointestinal and cancerous conditions. These effects can occur both acutely and chronically. The complex food chain can be contaminated with mycotoxins at any point, including during harvest, industrial processing, shipping, or storage, putting the food sector under societal pressure owing to the waste generated by infected goods. One of the biological controls of mycotoxin is provided by probiotics and prebiotics, controlled as foods and dietary supplements made of bacteria or yeast. Aflatoxin's bioavailability and gastrointestinal absorption can be reduced using various probiotics and prebiotics.
Collapse
|
20
|
Toxicokinetics of a Single Oral Dose of OTA on Dezhou Male Donkeys. Toxins (Basel) 2023; 15:toxins15020088. [PMID: 36828403 PMCID: PMC9959279 DOI: 10.3390/toxins15020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Ochratoxin (OTA) is widely present in a wide range of foods and feeds, causing adverse effects on animals and humans. This study aims to explore the toxicokinetics of OTA-contaminated materials on the Dezhou male donkey. Donkeys received a single orally dose of 2500 μg OTA/kg BW, obtained from Aspergillus ochraceus culture material. The concentrations of OTA in plasma collected at 0, 5, 10, 15, 20, 30, 45 min, and at 1, 1.5, 2, 3, 6, 9, 12, 24, 48, 72, 96 and 120 h were detected by HPLC. OTA eliminated in urine and feces were quantified at 6-h intervals up to 24 h and then at 4-h intervals up to 120 h. The results suggested that the maximum concentration of OTA in plasma was observed at 12 h after administration, with a mean value of 10.34 μg/mL. The total excretion in both urine and feces was about 10% of the intake until 120 h.
Collapse
|
21
|
Yang SA, Rhee KH, Yoo HJ, Pyo MC, Lee KW. Ochratoxin A induces endoplasmic reticulum stress and fibrosis in the kidney via the HIF-1α/miR-155-5p link. Toxicol Rep 2023; 10:133-145. [PMID: 36714464 PMCID: PMC9879730 DOI: 10.1016/j.toxrep.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Ochratoxin A (OTA) is a ubiquitous fungal toxin found in agricultural products and foods that is toxic to both humans and animals. OTA mainly affects kidney, but the mechanisms underlying OTA-induced nephrotoxicity remain not fully understood. MicroRNA (miRNA) is involved in key cellular processes. The toxic mechanism and regulatory effects of miRNAs on OTA toxicity in kidney, and particularly the role of HIFα-1/miR-155-5p on OTA-caused ER stress and fibrosis, were investigated in this study. OTA induced hypoxia-like conditions such as ER stress and fibrosis in HK-2 cells and renal tissues via modulating HIF-1α, which was followed by regulation of ER stress-related proteins (GRP78 and ATF-4), as well as fibrosis-related markers (fibronectin, α-SMA, and E-cadherin). Notably, a total of 62 miRNAs showed significant differential expression in kidney of OTA-treated mice. Under OTA exposure, HIF-1α enhanced miR-155-5p expression, causing ER stress and fibrosis in HK-2 cells. HIF-1α knockdown decreased OTA-induced miR-155-5p expression as well as ER stress and fibrotic responses, whereas miR-155-5p overexpression restored this. Our data suggest that OTA enhances ER stress and fibrosis in the kidney through upregulating the HIF-1α/miR-155-5p link.
Collapse
Affiliation(s)
- Seon Ah Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Kyu Hyun Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| |
Collapse
|
22
|
Ismaiel AA, Mohamed HH, El-Sayed MT. Biodegradation of ochratoxin A by endophytic Trichoderma koningii strains. World J Microbiol Biotechnol 2023; 39:53. [PMID: 36564607 PMCID: PMC9789014 DOI: 10.1007/s11274-022-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus spp. and Penicillium spp. that causes a threat to food safety and human health. Fungal biodegradation might be a promising strategy for reducing the OTA contamination in the future. In this study, the ability of Trichoderma koningii strains to degrade OTA produced by Aspergillus niger T2 (MW513392.1) isolated from tomato seeds was investigated. Among T. koningii strains tested, three strains; AUMC11519, AUMC11520 and AUMC11521 completely eliminated OTA from the culture medium, while AUMC11522 strain eliminated only 41.82% of OTA. OTα-amide, 3-phenylpropionic acid, OTα and phenylalanine were assayed as degradation products by FTIR analysis and LC-MS/MS spectra. Carboxypeptidase A (CPA) was found responsible for OTA degradation when a metal ion chelator, EDTA, was added to cell free supernatants of the three effective strains. OTA detoxification by T. koningii could present new prospective strategies for a possible application in food commodities intoxicated with ochratoxin.
Collapse
Affiliation(s)
- Ahmed A. Ismaiel
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Hala H. Mohamed
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Manal T. El-Sayed
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
23
|
Yang Q, Dhanasekaran S, Ngea GLN, Tian S, Li B, Zhang H. Unveiling ochratoxin a controlling and biodetoxification molecular mechanisms: Opportunities to secure foodstuffs from OTA contamination. Food Chem Toxicol 2022; 169:113437. [PMID: 36165818 DOI: 10.1016/j.fct.2022.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Anarchic growth of ochratoxin A (OTA) producing fungi during crop production, prolonged storage, and processing results in OTA contamination in foodstuffs. OTA in food exacerbates the risk of health and economic problems for consumers and farmers worldwide. Although the toxic effects of OTA on human health have not been well established, comprehensive preventive and remedial measures will be essential to eliminate OTA from foodstuffs. Strict regulations, controlling OTA at pre- or post-harvest stage, and decontamination of OTA have been adopted to prevent human and animal OTA exposure. Biological control of OTA and bio-decontamination are the most promising strategies due to their safety, specificity and nutritional value. This review addresses the current understanding of OTA biodegradation mechanisms and recent developments in OTA control and bio-decontamination strategies. Additionally, this review analyses the strength and weaknesses of different OTA control methods and the contemporary approaches to enhance the efficiency of biocontrol agents. Overall, this review will support the implementation of new strategies to effectively control OTA in food sectors. Further studies on efficacy-related issues, production issues and cost-effectiveness of OTA biocontrol are to be carried out to improve the knowledge, develop improved delivery technologies and safeguard the durability of OTA biocontrol approaches.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, PO. Box. 7236, Douala-Bassa, Cameroon
| | - Shiping Tian
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China
| | - Boqiang Li
- Institute of Botany, Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing, 100093, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
24
|
Zheng R, Qing H, Ma Q, Huo X, Huang S, Zhao L, Zhang J, Ji C. A Newly Isolated Alcaligenes faecalis ANSA176 with the Capability of Alleviating Immune Injury and Inflammation through Efficiently Degrading Ochratoxin A. Toxins (Basel) 2022; 14:toxins14080569. [PMID: 36006231 PMCID: PMC9415193 DOI: 10.3390/toxins14080569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most prevalent mycotoxins that threatens food and feed safety. Biodegradation of OTA has gained much attention. In this study, an Alcaligenes faecalis strain named ANSA176, with a strong OTA-detoxifying ability, was isolated from donkey intestinal chyme and characterized. The strain ANSA176 could degrade 97.43% of 1 mg/mL OTA into OTα within 12 h, at 37 °C. The optimal levels for bacterial growth were 22–37 °C and pH 6.0–9.0. The effects of ANSA176 on laying hens with an OTA-contaminated diet were further investigated. A total of 36 laying hens were assigned to three dietary treatments: control group, OTA (250 µg/kg) group, and OTA + ANSA176 (6.2 × 108 CFU/kg diet) group. The results showed that OTA decreased the average daily feed intake (ADFI) and egg weight (EW); meanwhile, it increased serum alanine aminopeptidase (AAP), leucine aminopeptidase (LAP), β2-microglobulin (β2-MG), immunoglobulin G (IgG), tumor necrosis factor-α (TNF-α), and glutathione reductase (GR). However, the ANSA176 supplementation inhibited or attenuated the OTA-induced damages. Taken together, OTA-degrading strain A. faecalis ANSA176 was able to alleviate the immune injury and inflammation induced by OTA.
Collapse
|
25
|
Isoenzyme N-Acyl-l-Amino Acid Amidohydrolase NA Increases Ochratoxin A Degradation Efficacy of Stenotrophomonas sp. CW117 by Enhancing Amidohydrolase ADH3 Stability. Microbiol Spectr 2022; 10:e0220522. [PMID: 35924842 PMCID: PMC9430628 DOI: 10.1128/spectrum.02205-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin mainly produced by toxicogenic strains of Aspergillus spp. and seriously contaminates foods and feedstuffs. OTA detoxification strategies are significant to food safety. A superefficient enzyme ADH3 to OTA hydrolysis was isolated from the difunctional strain Stenotrophomonas sp. CW117 in our previous study. Here, we identified a gene N-acyl-l-amino acid amidohydrolase NA, which is an isoenzyme of ADH3. However, it is not as efficient a hydrolase as ADH3. The kinetic constant showed that the catalytic efficiency of ADH3 (Kcat/Km = 30,3938 s-1 · mM-1) against OTA was 29,113 times higher than that of NA (Kcat/Km = 10.4 s-1 · mM-1), indicating that ADH3 was the overwhelming superior detoxifying gene in CW117. Intriguingly, when gene na was knocked out from the CW117 genome, degradation activity of the Δna mutant was significantly reduced at the first 6 h, suggesting that the two enzymes might have an interactive effect on OTA transformation. Gene expressions and Western blotting assay showed that the Δna mutant and wild-type CW117 showed similar adh3 expression levels, but na deficiency decreased ADH3 protein level in CW117. Collectively, isoenzyme NA was identified as a factor that improved the stability of ADH3 in CW117 but not as a dominant hydrolase for OTA transformation. IMPORTANCE Ochratoxin A (OTA) is a potent mycotoxin mainly produced by toxicogenic strains of Aspergillus spp. and seriously contaminates foods and feedstuffs. Previous OTA detoxification studies mainly focused on characterizations of degradation strains and detoxifying enzymes. Here, we identified a gene N-acyl-l-amino acid amidohydrolase NA from strain CW117, which is an isoenzyme of the efficient detoxifying enzyme ADH3. Isoenzyme NA was identified as a factor that improved the stability of ADH3 in CW117 and, thus, enhanced the degradation activity of the strain. This is the first study on an isoenzyme improving the stability of another efficient detoxifying enzyme in vivo.
Collapse
|
26
|
Fungal control in foods through biopreservation. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
28
|
Luo H, Wang G, Chen N, Fang Z, Xiao Y, Zhang M, Gerelt K, Qian Y, Lai R, Zhou Y. A Superefficient Ochratoxin A Hydrolase with Promising Potential for Industrial Applications. Appl Environ Microbiol 2022; 88:e0196421. [PMID: 34788069 PMCID: PMC8788665 DOI: 10.1128/aem.01964-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
As the most seriously controlled mycotoxin produced by Aspergillus spp. and Penicillium spp., ochratoxin A (OTA) results in various toxicological effects and widely contaminates agro-products. Biological detoxification is the highest priority regarding OTA in food and feed industry, but currently available detoxification enzymes have relatively low effectiveness in terms of time and cost. Here we show a superefficient enzyme, ADH3, identified from Stenotrophomonas acidaminiphila that has a strong ability to transform OTA into nontoxic ochratoxin-α by acting as an amidohydrolase. Recombinant ADH3 (1.2 μg/mL) completely degrades 50 μg/L OTA within 90 s, while the other most efficient OTA hydrolases available take several hours. The kinetic constant showed that rADH3 (Kcat/Km) catalytic efficiency was 56.7 to 35,000 times higher than those of previous hydrolases rAfOTase, rOTase, and commercial carboxypeptidase A (CPA). Protein structure-based assay suggested that ADH3 has a preference for hydrophobic residues to form a larger hydrophobic area than other detoxifying enzymes at the cavity of the catalytic sites, and this structure allows OTA easier access to the catalytic sites. In addition, ADH3 shows considerable temperature adaptability to exert hydrolytic function at the temperature down to 0°C or up to 70°C. Collectively, we report a superefficient OTA detoxifying enzyme with promising potential for industrial applications. IMPORTANCE Ochratoxin A (OTA) can result in various toxicological effects and widely contaminates agro-products and feedstuffs. OTA detoxifications by microbial strains and bio-enzymes are significant to food safety. Although previous studies showed OTA could be transformed through several pathways, the ochratoxin-α pathway is recognized as the most effective one. However, the most currently available enzymes are not efficient enough. Here, a superefficient hydrolase, ADH3, which can completely transform 50 μg/L OTA into ochratoxin-α within 90 s was screened and characterized. The hydrolase ADH3 shows considerable temperature adaptability (0 to 70°C) to exert the hydrolytic function. Findings of this study supplied an efficient OTA detoxifying enzyme and predicted the superefficient degradation mechanism, laying a foundation for future industrial applications.
Collapse
Affiliation(s)
- Han Luo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Nan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
| | - Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Khishigjargal Gerelt
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Yingying Qian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
29
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
30
|
Qing H, Huo X, Huang S, Zhao L, Zhang J, Ji C, Ma Q. Bacillus subtilis ANSB168 Producing d-alanyl-d-alanine Carboxypeptidase Could Alleviate the Immune Injury and Inflammation Induced by Ochratoxin A. Int J Mol Sci 2021; 22:ijms222112059. [PMID: 34769489 PMCID: PMC8584730 DOI: 10.3390/ijms222112059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is toxic to animals and threatens food safety through residues in animal tissues. A novel degrading strain Bacillus subtilis ANSB168 was isolated and further investigated. We cloned d-alanyl-d-alanine carboxypeptidase DacA and DacB from ANSB168 and over-expressed them in Escherichia coli Rosetta (DE3). Then, we characterized the OTA degradation mechanism of DacA and DacB, which was degrading OTA into OTα. A total of 45 laying hens were divided into three equal groups. The control group was fed basal feed, and other groups were administered with OTA (250 μg/kg of feed). A freeze-dried culture powder of ANSB168 (3 × 107 CFU/g, 2 kg/T of feed) was added to one of the OTA-fed groups for 28 days from day one of the experiment. We found that OTA significantly damaged the kidney and liver, inducing inflammation and activating the humoral immune system, causing oxidative stress in the layers. The ANSB168 bioproduct was able to alleviate OTA-induced kidney and liver damage, relieving OTA-induced inflammation and oxidative stress. Overall, DacA and DacB derived from ANSB168 degraded OTA into OTα, while the ANSB168 bioproduct was able to alleviate damages induced by OTA in laying hens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiugang Ma
- Correspondence: ; Tel.: +86-10-6273-2774
| |
Collapse
|
31
|
Genome mining reveals the genes of carboxypeptidase for OTA-detoxification in Bacillus subtilis CW14. Int J Biol Macromol 2021; 186:800-810. [PMID: 34284053 DOI: 10.1016/j.ijbiomac.2021.07.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Bacillus subtilis CW14, isolated from fresh elk droppings in Beijing Zoo, is a Gram-positive, conferred Generally Recognized as Safe (GRAS) bacterium with the capacity of ochratoxin A (OTA) detoxification. The genome sequence of the CW14 strain showed a size of 4,287,522 bp with 44.06% GC content. It was predicted many putative enzymes involved in degrading mycotoxin by analyzing the signal peptides and the transmembrane regions. Nine extracellular enzymes were predicted relating to OTA detoxification, including four D-Ala-D-Ala carboxypeptidases, two hydrolases, two amidases, and one lactamase. Indeed, two of the carboxypeptidase genes dacA and dacB, expressed in Escherichia coli, were verified contributing to OTA detoxification. DacA and OTA were mixed incubated for 24 h, and the degradation rate reached 71.3%. After purification, the concentration of recombinant DacA protein was 0.5 mg/mL. Bacillus subtilis CW14 and its carboxypeptidases may be used as OTA detoxification agents in food and feed industry production.
Collapse
|
32
|
Qian Y, Zhang X, Fei Q, Zhou Y. Comments on the ochratoxin A degradation mechanism by Lysobacter sp. CW239 - Wei Wei et al. (2020). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117063. [PMID: 33857714 DOI: 10.1016/j.envpol.2021.117063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
This is a research comment on the ochratoxin A (OTA) degradation mechanism by Lysobacter sp. CW239 regarding the previous publication in Environmental Pollution (Wei et al., 2020). Three possible degradation mechanisms were discussed in the referred publication, but without definite evidences, it was not clear which one worked actually. Here, the gene cp4 deficient mutant CW239Δcp4 was successfully constructed, and the carboxypeptidase CP4 role on OTA degradation in strain CW239 was validated in vivo. As a result, the mutant CW239Δcp4 without gene cp4 showed less than 10% reduction of 24 hrs degradation ratio compared to wide-type strain CW239. After the gene cp4 complemented to CW239Δcp4, the complementary strain (+)cp4 recovered the degradation ability to wide-type. The validation result indicated that the third degradation mechanism (i.e., OTA is degraded by joint action of multiple enzymes in CW239) proposed previous (Wei et al., 2020) was correct route for the degradation strain. This commentary was significant to the following studies on the pollutant detoxify strains with similar degradation characters between identified enzyme and the host strain.
Collapse
Affiliation(s)
- Yingying Qian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Xuanjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Qingru Fei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China.
| |
Collapse
|
33
|
Cosme F, Inês A, Silva D, Filipe-Ribeiro L, Abrunhosa L, Nunes FM. Elimination of ochratoxin A from white and red wines: Critical characteristics of activated carbons and impact on wine quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
El-Desouky TA. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon 2021; 7:e06209. [PMID: 33659741 PMCID: PMC7892916 DOI: 10.1016/j.heliyon.2021.e06209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Plants are one of a prefect source of natural effective compounds that have antimicrobial, and other activities. This study investigated the activity of the aqueous extract for three wild edible plants (Sonchus oleraceus, Cichorium pumilum, and Portulaca oleracea) at three concentrations (1.5, 2.5 and 5 mg/ml) as antifungal and antitoxigenic. Many functional groups such as alcohols, phenols, alkanes and alkenes, etc were appeared in aqueous extracts by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Where an extract of Portulaca oleracea gave a greater total phenolic and flavonoids were 210.4 ± 1.15 and 36.7 ± 0.79 mg/mL, respectively, followed by Sonchus oleraceus (192.3 ± 2.11 mg/mL) and Cichorium pumilum (186.4 ± 2.18 mg/mL). The results indicated that increasing the concentration of the extract, the area of inhibition zone increased with all treatments, where the highest inhibition zone was observed using 5 mg/ml for Portulaca oleracea extract was 17.1 ± 1.7, 26.5 ± 1.5 and 22.8.±2.3 mm against Aspergillus flavus, Aspergillus ochraceus and Aspergillus parasiticus, respectively, while the lowest antifungal activity was marked with Cichorium pumilum extract with all tested fungi. The results have also indicated that the aqueous extract has inhibited formed of aflatoxin B1 (AFB1) and ochratoxin A (OTA), where the percentages of inhibition AFB1 were 78.03, 68.8 and 81.7% after treated yeast extract sucrose (YES) media by 5 mg crude extract for extract Sonchus oleraceus, Cichorium pumilum and Portulaca oleracea, respectively. In contrast, the inhibitory effect against OTA at the same concentration was 77.5, 72.3, and 85.2% in the same order for plants. Finally, these plants provide an aqueous extract that contains many effective compounds that enable to play the role of antifungal and antitoxigenic.
Collapse
Affiliation(s)
- Tarek A. El-Desouky
- Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
35
|
Xiong L, Peng M, Zhao M, Liang Z. Truncated Expression of a Carboxypeptidase A from Bovine Improves Its Enzymatic Properties and Detoxification Efficiency of Ochratoxin A. Toxins (Basel) 2020; 12:E680. [PMID: 33137913 PMCID: PMC7692142 DOI: 10.3390/toxins12110680] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary metabolite produced mainly by Penicillium spp. and Aspergillus spp. and commonly found in foodstuffs and feedstuffs. Carboxypeptidase A (CPA) can hydrolyze OTA into the non-toxic product ochratoxin α, with great potential to realize industrialized production and detoxify OTA in contaminated foods and feeds. This study constructed a P. pastoris expression vector of mature CPA (M-CPA) without propeptide and signal peptide. The results showed that the degradation rate of OTA by M-CPA was up to 93.36%. Its optimum pH was 8, the optimum temperature was 40 °C, the value of Km was 0.126 mmol/L, and the maximum reaction rate was 0.0219 mol/min. Compared with commercial CPA (S-CPA), the recombinant M-CPA had an improve stability, for which its optimum temperature increased by 10 °C and stability at a wide range pH, especially at pH 3-4 and pH 11. M-CPA could effectively degrade OTA in red wine. M-CPA has the potential for industrial applications, such as can be used as a detoxification additive for foods and feeds.
Collapse
Affiliation(s)
- Lu Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.X.); (M.P.); (M.Z.)
| | - Mengxue Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.X.); (M.P.); (M.Z.)
| | - Meng Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.X.); (M.P.); (M.Z.)
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.X.); (M.P.); (M.Z.)
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
36
|
Loi M, Paciolla C, Logrieco AF, Mulè G. Plant Bioactive Compounds in Pre- and Postharvest Management for Aflatoxins Reduction. Front Microbiol 2020; 11:243. [PMID: 32226415 PMCID: PMC7080658 DOI: 10.3389/fmicb.2020.00243] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites produced by Aspergillus spp., known for their hepatotoxic, carcinogenic, and mutagenic activity in humans and animals. AF contamination of staple food commodities is a global concern due to their toxicity and the economic losses they cause. Different strategies have been applied to reduce fungal contamination and AF production. Among them, the use of natural, plant-derived compounds is emerging as a promising strategy to be applied to control both Aspergillus spoilage and AF contamination in food and feed commodities in an integrated pre- and postharvest management. In particular, phenols, aldehydes, and terpenes extracted from medicinal plants, spices, or fruits have been studied in depth. They can be easily extracted, they are generally recognized as safe (GRAS), and they are food-grade and act through a wide variety of mechanisms. This review investigated the main compounds with antifungal and anti-aflatoxigenic activity, also elucidating their physiological role and the different modes of action and synergies. Plant bioactive compounds are shown to be effective in modulating Aspergillus spp. contamination and AF production both in vitro and in vivo. Therefore, their application in pre- and postharvest management could represent an important tool to control aflatoxigenic fungi and to reduce AF contamination.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Antonio F. Logrieco
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| |
Collapse
|
37
|
Wei W, Qian Y, Wu Y, Chen Y, Peng C, Luo M, Xu J, Zhou Y. Detoxification of ochratoxin A by Lysobacter sp. CW239 and characteristics of a novel degrading gene carboxypeptidase cp4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113677. [PMID: 31843237 DOI: 10.1016/j.envpol.2019.113677] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA) is a potent mycotoxin that frequently contaminates agro-products and threatens food safety. A highly efficient OTA degrading strain Lysobacter sp. CW239 was isolated, and the OTA degradation characteristics were investigated. A novel OTA degrading gene carboxypeptidase cp4 was successfully cloned and characterized from CW239. The heterologous recombinant was constructed by gene cp4 and expression vector pET-32a(+) and overexpressed by E. coli BL21 CodonPlus™ (DE3). The recombinant protein rCP4 was purified, and the OTA-degrading activity was evaluated. Although OTA was efficiently degraded by CW239 (24-h degradation ratio of 86.2%), the 24-h OTA degradation ratio for rCP4 was only 36.8% at fairly high concentration (0.25 mg/mL) protein. The degraded product was obtained by immune affinity column (IAC) and determined by mass spectrometry (MS), and the degraded product was the less toxic ochratoxin α (OTα). Based on the serial investigations of this study, OTA might be simultaneously co-degraded by CP4 and another unknown degrading agent in that degrading strain.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Quality and Safety of Agro-products (in prepared), Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingying Qian
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China
| | - Yanbo Wu
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China
| | - Ying Chen
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China
| | - Cheng Peng
- State Key Laboratory for Quality and Safety of Agro-products (in prepared), Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Junfeng Xu
- State Key Laboratory for Quality and Safety of Agro-products (in prepared), Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yu Zhou
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China.
| |
Collapse
|
38
|
Selenium Yeast Alleviates Ochratoxin A-Induced Apoptosis and Oxidative Stress via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in the Kidneys of Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4048706. [PMID: 32148649 PMCID: PMC7053478 DOI: 10.1155/2020/4048706] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the protective effect and mechanism of yeast selenium (Se-Y) on ochratoxin- (OTA-) induced nephrotoxicity of chickens. A total of 80 one-day-old healthy chickens were randomly divided into 4 equal groups: control, OTA (50 μg/kg OTA), Se-Y (0.4 mg/kg Se-Y), and OTA+Se-Y (50 μg/kg OTA+0.4 mg/kg Se-Y). In the OTA chickens, differences in body weight, kidney coefficient, biochemical histological analysis, antioxidant capability, and the expression levels of the PI3K/AKT and Nrf2/Keap1 signaling pathway-related genes were observed. The levels of total superoxide dismutase (T-SOD), antioxidant capacity (T-AOC), catalase (CAT), and glutathione (T-GSH) significantly decreased, but the malondialdehyde (MDA) level of the kidneys significantly increased in the OTA treatment group. More importantly, treatment with Se-Y improved the antioxidant enzyme activities within the kidneys of chickens exposed to OTA. In addition, administration of OTA resulted in apoptosis and was associated with decreased expression of AKT, PI3K, and Bcl-2, which in turn enhanced expression of Caspase3, Bax, and P53. However, Se-Y improved the antioxidant defense system through activation of the Nrf2/Keap1 signaling pathway. Gene expression of Nrf2 and its target genes (HO-1, GSH-px, GLRX2, MnSOD, and CAT) was downregulated following OTA exposure. Conversely, Se-Y treatment resulted in a significant upregulation of the same genes. Besides, significant downregulations of protein expression of HO-1, CAT, MnSOD, Nrf2, and Bcl-2 and a significant upregulation of Caspase3 and Bax levels were observed after contaminated with OTA. Notably, OTA-induced apoptosis and oxidative damage in the kidney of chickens were reverted back to normal level in the OTA+Se-Y group. Taken together, the data suggest that Se-Y alleviates OTA-induced nephrotoxicity in chickens, possibly through the activation of the PI3K/AKT and Nrf2/Keap1 signaling pathways.
Collapse
|
39
|
Zhai SS, Ruan D, Zhu YW, Li MC, Ye H, Wang WC, Yang L. Protective effect of curcumin on ochratoxin A-induced liver oxidative injury in duck is mediated by modulating lipid metabolism and the intestinal microbiota. Poult Sci 2020; 99:1124-1134. [PMID: 32036964 PMCID: PMC7587726 DOI: 10.1016/j.psj.2019.10.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin has antioxidant functions, regulates the intestinal microbial composition, and alleviates mycotoxin toxicity. The present study aimed to explore whether curcumin could alleviate ochratoxin A (OTA)-induced liver injury via the intestinal microbiota. A total of 720 mixed-sex 1-day-old White Pekin ducklings were randomly assigned into 4 groups: CON (control group, without OTA), OTA (fed a diet with 2 mg/kg OTA), CUR (ducks fed a diet with 400 mg/kg curcumin), and OTA + CUR (2 mg/kg OTA plus 400 mg/kg curcumin). Each treatment consisted of 6 replicates and 30 ducklings per replicate. Treatment lasted for 21 D. Results were analyzed by a two-tailed Student t test between 2 groups. Our results demonstrated that OTA treatment had the highest serum low-density lipoprotein (LDL) level among 4 groups. Compared with OTA group, OTA + CUR decreased serum LDL level (P < 0.05). OTA decreased liver catalase (CAT) activity in ducks (P < 0.05), while addition of curcumin in OTA group increased liver CAT activity (P < 0.05). 16S ribosomal RNA sequencing suggested that curcumin increased the richness indices (ACE index) and diversity indices (Simpson index) compared with OTA group (P < 0.05) and recovered the OTA-induced alterations in composition of the intestinal microbiota. Curcumin supplementation relieved the decreased abundance of butyric acid producing bacteria, including blautia, butyricicoccus, and butyricimonas, induced by OTA (P < 0.05). OTA also significantly influenced the metabolism of the intestinal microbiota, such as tryptophan metabolism and glyceropholipid metabolism. Curcumin could alleviate the upregulation of oxidative stress pathways induced by OTA. OTA treatment also increased SREBP-1c expression (P < 0.05). The curcumin group had the lowest expression of FAS and PPARG mRNA (P < 0.05) and the highest expression of NRF2 and HMOX1 mRNA. These results indicated that curcumin could alleviate OTA-induced oxidative injury and lipid metabolism disruption by modulating the cecum microbiota.
Collapse
Affiliation(s)
- S S Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y W Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - M C Li
- Dayitongchuang Biotech Co., Ltd., Tianjin 300000, China
| | - H Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - W C Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - L Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Wang W, Zhai S, Xia Y, Wang H, Ruan D, Zhou T, Zhu Y, Zhang H, Zhang M, Ye H, Ren W, Yang L. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. MICROBIOME 2019; 7:151. [PMID: 31779704 PMCID: PMC6883682 DOI: 10.1186/s40168-019-0761-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a widespread mycotoxin and induces liver inflammation to human and various species of animals. The intestinal microbiota has critical importance in liver inflammation; however, it remains to know whether intestinal microbiota mediates the liver inflammation induced by OTA. Here, we treated ducklings with oral gavage of OTA (235 μg/kg body weight) for 2 weeks. Then, the microbiota in the cecum and liver were analyzed with 16S rRNA sequencing, and the inflammation in the liver was analyzed. To explore the role of intestinal microbiota in OTA-induced liver inflammation, intestinal microbiota was cleared with antibiotics and fecal microbiota transplantation was conducted. RESULTS Here, we find that OTA treatment in ducks altered the intestinal microbiota composition and structure [e.g., increasing the relative abundance of lipopolysaccharides (LPS)-producing Bacteroides], and induced the accumulation of LPS and inflammation in the liver. Intriguingly, in antibiotic-treated ducks, OTA failed to induce these alterations in the liver. Notably, with the fecal microbiota transplantation (FMT) program, in which ducks were colonized with intestinal microbiota from control or OTA-treated ducks, we elucidated the involvement of intestinal microbiota, especially Bacteroides, in liver inflammation induced by OTA. CONCLUSIONS These results highlight the role of gut microbiota in OTA-induced liver inflammation and open a new window for novel preventative or therapeutic intervention for mycotoxicosis.
Collapse
Affiliation(s)
- Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangshuang Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Ting Zhou
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, N1G 5C9, Canada
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Zhang H, Zhang Y, Yin T, Wang J, Zhang X. Heterologous Expression and Characterization of A Novel Ochratoxin A Degrading Enzyme, N-acyl-L-amino Acid Amidohydrolase, from Alcaligenes faecalis. Toxins (Basel) 2019; 11:toxins11090518. [PMID: 31489931 PMCID: PMC6784128 DOI: 10.3390/toxins11090518] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) is a well-known, natural contaminant in foods and feeds because of its toxic effects, such as nephrotoxicity in various animals. Recent studies have revealed that Alcaligenes faecalis could generate enzymes to efficiently degrade OTA to ochratoxin α (OTα) in vitro. In an effort to obtain the OTA degrading mechanism, we purified and identified a novel degrading enzyme, N-acyl-L-amino acid amidohydrolase (AfOTase), from A. faecalis DSM 16503 via mass spectrometry. The same gene of the enzyme was also encountered in other A. faecalis strains. AfOTase belongs to peptidase family M20 and contains metal ions at the active site. In this study, recombination AfOTase was expressed and characterized in Escherichia coli. The molecular mass of recombinant rAfOTase was approximately 47.0 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited a wide temperature range (30-70 °C) and pH adaptation (4.5-9.0) and the optimal temperature and pH were 50 °C and 6.5, respectively.
Collapse
Affiliation(s)
- Honghai Zhang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yunpeng Zhang
- Academy of State, Administration of Grain, Beijing 100032, China.
| | - Tie Yin
- Academy of State, Administration of Grain, Beijing 100032, China.
| | - Jing Wang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaolin Zhang
- Beijing Key Laboratory of Nutrition and Health and Food Safety, COFCO Nutrition and Health Institute, Beijing 102209, China.
| |
Collapse
|
42
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
43
|
Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019; 160:12-22. [DOI: 10.1016/j.toxicon.2019.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 02/03/2019] [Indexed: 01/22/2023]
|
44
|
Chen W, Li C, Zhang B, Zhou Z, Shen Y, Liao X, Yang J, Wang Y, Li X, Li Y, Shen XL. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front Microbiol 2018; 9:1386. [PMID: 29997599 PMCID: PMC6028724 DOI: 10.3389/fmicb.2018.01386] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a toxic secondary fungal metabolite that widely takes place in various kinds of foodstuffs and feeds. Human beings and animals are inevitably threatened by OTA as a result. Therefore, it is necessary to adopt various measures to detoxify OTA-contaminated foods and feeds. Biological detoxification methods, with better safety, flavor, nutritional quality, organoleptic properties, availability, and cost-effectiveness, are more promising than physical and chemical detoxification methods. The state-of-the-art research advances of OTA biodetoxification by degradation, adsorption, or enzymes are reviewed in the present paper. Researchers have discovered a good deal of microorganisms that could degrade and/or adsorb OTA, including actinobacteria, bacteria, filamentous fungi, and yeast. The degradation of OTA to non-toxic or less toxic OTα via the hydrolysis of the amide bond is the most important OTA biodegradation mechanism. The most important influence factor of OTA adsorption capacity of microorganisms is cell wall components. A large number of microorganisms with good OTA degradation and/or adsorption ability, as well as some OTA degradation enzymes isolated or cloned from microorganisms and animal pancreas, have great application prospects in food and feed industries.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Boyang Zhang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zheng Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yingbin Shen
- Department of Food Science and Engineering, School of Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Liao
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jieyeqi Yang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Food Quality and Safety, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, China
| | - Yuzhe Li
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiao L. Shen
- School of Public Health, Zunyi Medical University, Zunyi, China
- Experimental Teaching Demonstration Center for Preventive Medicine of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Sheikh-Zeinoddin M, Khalesi M. Biological detoxification of ochratoxin A in plants and plant products. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1452264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Liew WPP, Mohd-Redzwan S. Mycotoxin: Its Impact on Gut Health and Microbiota. Front Cell Infect Microbiol 2018; 8:60. [PMID: 29535978 PMCID: PMC5834427 DOI: 10.3389/fcimb.2018.00060] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
Collapse
Affiliation(s)
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
47
|
Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins (Basel) 2017; 9:E111. [PMID: 28338601 PMCID: PMC5408185 DOI: 10.3390/toxins9040111] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/13/2023] Open
Abstract
Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
- Department of Economics, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Vania C Liuzzi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|