1
|
Priya SP, Amalraj S, Padmanabhan V, Rahman MM, Chaitanya NCSK, Hashim NT, Prabhu S, Ayyanar M, Gurav S, Ceasar SA, Thiruvengadam R. Evaluating the Antiviral Potential of Polyherbal Formulation ( Kabasura Kudineer) Against Monkeypox Virus: Targeting E5, Poxin, and DNA Polymerase Through Multifaceted Drug Discovery Approaches. Life (Basel) 2025; 15:771. [PMID: 40430198 PMCID: PMC12113122 DOI: 10.3390/life15050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The recent reemergence of the monkeypox pandemic in non-endemic regions has raised serious concerns regarding the possibility of a global outbreak. The study employed various modules of the Schrodinger suite through Maestro V 14.1 for molecular docking, MD simulations, MM-GBSA, and FMO. To explore the drug potential of Kabasura Kudineer against the key proteins of the Mpox virus: E5, poxin, and DNA polymerase, a total of 982 chemical constituents belonging to this herbal formulation were investigated. The molecular docking studies revealed that chlorogenic acid, chebulic acid, rosmarinic acid, and citric acid had high binding affinities for E5, with docking scores of -13.3289, -11.3933, -9.8999, and -9.59471 kcal/mol, respectively. Likewise, caffeic acid, citric acid, and plumbagic acid have good binding affinities for poxin with docking scores of -8.49023, -6.80386 and -5.91719 kcal/mol, respectively. Plumbagic acid and delphinidin have considerable binding affinities for DNA polymerase with docking scores of -7.57867 and -7.55301 kcal/mol, respectively. In the MD simulation, chlorogenic acid, chebulic acid, citric acid, and rosmarinic acid exhibited remarkable stability with strong binding affinities for the E5, poxin and DNA polymerase. We further explored the stability of the E5 complexes by calculating the binding free energy every 20 ns for 100 ns. The ΔG bind values of chlorogenic acid, chebulic acid, and rosmarinic acid were 61.10, 78.14, and 75.49 kcal/mol at 0 ns. Hence, the research suggests that this formulation has antiviral potential against Monkeypox and can be used to inhibit viral replication in hosts and boost the antiviral immune response.
Collapse
Affiliation(s)
- Sivan Padma Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Mohammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Nada Tawfig Hashim
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (V.P.); (M.M.R.); (N.C.C.); (N.T.H.)
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Muniappan Ayyanar
- PG and Research Department of Botany, AVVM Sri Pushpam College (Autonomous) Poondi, Bharathidasan University, Thanjavur 613 503, Tamil Nadu, India;
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji 403 001, Goa, India;
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India;
| | - Rekha Thiruvengadam
- Department of Community Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602 105, Tamil Nadu, India;
| |
Collapse
|
2
|
Duda-Madej A, Viscardi S, Niezgódka P, Szewczyk W, Wińska K. The Impact of Plant-Derived Polyphenols on Combating Efflux-Mediated Antibiotic Resistance. Int J Mol Sci 2025; 26:4030. [PMID: 40362268 PMCID: PMC12071758 DOI: 10.3390/ijms26094030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The global healthcare system is increasingly challenged by the rising prevalence of multidrug-resistant bacteria and the limited therapeutic options for related infections. Efflux-mediated antibiotic resistance represents a significant obstacle, primarily due to the absence of drugs specifically designed to target bacterial efflux pumps. Recent research has identified polyphenols, a broad class of plant-derived organic compounds, as potential inhibitors of efflux pump activity. This review consolidates data on the inhibitory properties of eight widely distributed polyphenols: curcumin, quercetin, luteolin, tannic acid, naringenin, epigallocatechin-3-gallate, ellagic acid, and resveratrol. These compounds have demonstrated the capacity to inhibit efflux pumps, either through direct interference with bacterial protein function or by downregulating the expression of genes encoding pump subunits. Importantly, several polyphenols exhibit synergistic interactions with antibiotics, including colistin, ciprofloxacin, and tetracycline. For instance, quercetin has shown inhibitory potency comparable to that of established efflux pump inhibitors such as verapamil and reserpine. These findings suggest that polyphenols represent promising candidates for the development of novel efflux pump inhibitors. However, further research is required to validate their efficacy and safety and facilitate their translation into clinical applications for combating antibiotic resistance.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Piotr Niezgódka
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (P.N.); (W.S.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
3
|
Burkard M, Piotrowsky A, Leischner C, Detert K, Venturelli S, Marongiu L. The Antiviral Activity of Polyphenols. Mol Nutr Food Res 2025:e70042. [PMID: 40166854 DOI: 10.1002/mnfr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug-resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double-stranded linear or partially double-stranded circular DNA viruses, negative sense single-stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single-stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin-3-gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Katja Detert
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
da Conceição PJP, Ayusso GM, Carvalho T, Duarte Lima ML, Marinho MDS, Moraes FR, Galán-Jurado PE, González-Santamaría J, Bittar C, Zhang B, Jardim ACG, Rahal P, Calmon MF. In Vitro Evaluation of the Antiviral Activity of Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) Against Mayaro Virus. Viruses 2025; 17:258. [PMID: 40007013 PMCID: PMC11860591 DOI: 10.3390/v17020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The Mayaro virus (MAYV), Togaviridae family, genus Alphavirus, has caused several sporadic outbreaks, affecting countries in the Americas. Currently, there are no licensed drugs against MAYV, requiring the search for effective antiviral compounds. Thus, this study aimed to evaluate the antiviral potential of polyphenol (-)-epigallocatechin-3-gallate (EGCG) against MAYV infection, in vitro. Antiviral assays against MAYV were performed in BHK-21 and Vero E6 cells. In addition, molecular docking was performed with EGCG and the MAYV non-structural and structural proteins. EGCG showed a significant protective effect against MAYV infection in both cell lines. The virucidal assay showed an effect on extracellular viral particles at the entry stage into BHK-21 cells. Finally, it also showed significant inhibition in the post-entry stages of the MAYV replication cycle, acting on the replication of the genetic material and late stages, such as assembly and release. In addition, the MAYV proteins E1 and nsP1 were significantly inhibited by the EGCG treatment in BHK-21 cells. Molecular docking analysis also showed that EGCG could interact with MAYV Capsid and Envelope proteins (E1 and E2). Therefore, this study shows the potential of EGCG as a promising antiviral against MAYV, as it acts on different stages of the MAYV replication cycle.
Collapse
Affiliation(s)
- Pâmela Jóyce Previdelli da Conceição
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Tamara Carvalho
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique (CNRS), 34000 Montpellier, France;
| | - Maria Leticia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Mikaela dos Santos Marinho
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM/UFU, Uberlândia 38405-302, MG, Brazil; (M.d.S.M.); (A.C.G.J.)
| | - Fábio Rogério Moraes
- Physics Department, São Paulo State University—UNESP, São José do Rio Preto 15385-000, SP, Brazil;
| | - Paola Elaine Galán-Jurado
- Grupo de Biología Celular y Molecular de Arbovirus, Departamento de Genómica y Proteómica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City 0816-02593, Panama; (P.E.G.-J.); (J.G.-S.)
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Departamento de Genómica y Proteómica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City 0816-02593, Panama; (P.E.G.-J.); (J.G.-S.)
| | - Cíntia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA;
| | - Bo Zhang
- Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM/UFU, Uberlândia 38405-302, MG, Brazil; (M.d.S.M.); (A.C.G.J.)
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Marilia Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| |
Collapse
|
5
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
6
|
Komarudin AG, Adharis A, Sasmono RT. Natural Compounds and Their Analogs as Antivirals Against Dengue Virus: A Review. Phytother Res 2025; 39:888-921. [PMID: 39697048 DOI: 10.1002/ptr.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Dengue virus (DENV) continues to pose a significant global health challenge, causing diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While efforts in vaccine development and antiviral drug discovery are ongoing, effective therapeutic options remain limited. In this review, we highlight natural compounds and the analogs that demonstrated antiviral activity against DENV in in vitro and in vivo studies. Specifically, these studies examine alkaloids, phenolic acids, phenols, flavonoids, terpenoids, and glycosides which have shown potential in inhibiting DENV entry, replication, and reducing the cytokine storm. By focusing on these bioactive compounds and the analogs, a comprehensive overview of their promising roles is provided to advance therapeutic strategies for combating DENV infection.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| | - Azis Adharis
- Department of Chemistry, Faculty of Science and Computer Science, Universitas Pertamina (UPER), Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| |
Collapse
|
7
|
Pourzangiabadi M, Najafi H, Fallah A, Goudarzi A, Pouladi I. Dengue virus: Etiology, epidemiology, pathobiology, and developments in diagnosis and control - A comprehensive review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105710. [PMID: 39732271 DOI: 10.1016/j.meegid.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dengue flavivirus (DENV) is the virus that causes dengue, one of the most dangerous and common viral diseases in humans that are carried by mosquitoes and can lead to fatalities. Every year, there are over 400 million cases of dengue fever worldwide, and 22,000 fatalities. It has been documented in tropical and subtropical climates in over 100 nations. Unfortunately, there is no specific treatment approach, but prevention, adequate awareness, diagnosis in the early stages of viral infection and proper medical care can reduce the mortality rate. The first licensed vaccine for dengue virus (CYD Denvaxia) was quadrivalent, but it is not approved in all countries. The primary barriers to vaccine development include inadequate animal models, inadequate etiology mechanistic studies, and adverse drug events. This study provides current knowledge and a comprehensive view of the biology, production and reproduction, transmission, pathogenesis and diagnosis, epidemiology and control measures of dengue virus.
Collapse
Affiliation(s)
- Masoud Pourzangiabadi
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aida Goudarzi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Yilmaz O, Onder A. The Role of Epigallocatechin Gallate (EGCG) in Treatment and Management of Sexually Transmitted Viral Infections. Infect Disord Drug Targets 2025; 25:e18715265319110. [PMID: 39482915 DOI: 10.2174/0118715265319110240916061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024]
Abstract
Tea is obtained from the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) Kuntze, the most popular and frequently consumed product using a natural beverage worldwide. Some kinds of tea products, such as green tea, black tea, and oolong tea, have assorted flavors depending on the manufacturing techniques. Green tea has been studied for many years for its important beneficial effects, including anticancer, antiobesity, anti-diabetes, anti-inflammatory, neuroprotective, and cardiovascular effects. These effects are primarily associated with tea polyphenols, and regular consumption has been reported to decrease the incidence of some chronic diseases. Current studies support that green tea catechins play an important role in healing and improving the pathology of many diseases. Epigallocatechin-3-gallate (EGCG) is the most a highly found polyphenol in the leaves and is of great interest for its protective role in the prevention of diseases. Therefore, this review presents the efficacy and possible mechanisms of EGCG against sexually transmitted viruses. Moreover, EGCG and its derivatives are recognized as safe bioactive phytochemicals for external and internal use in preventing and treating viral STIs and other concurrent infections. Multidisciplinary studies are essential to discover cheaper, safer, and more effective treatments using EGCG and its derivatives to improve the toxicity and formulations of viral STI medications.
Collapse
Affiliation(s)
- Ozge Yilmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Türkiye
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
9
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Kim EA, Kang N, Heo JH, Park A, Heo SY, Kim HS, Heo SJ. Antiviral Activity of Ecklonia cava Extracts and Dieckol Against Zika Virus. Int J Mol Sci 2024; 25:13694. [PMID: 39769456 PMCID: PMC11728237 DOI: 10.3390/ijms252413694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Ecklonia cava and its major compound dieckol, both natural marine products, possess antioxidant, anti-inflammatory, and metabolic-regulating effects. Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is transmitted by mosquitoes and causes serious illnesses in humans. This study aimed to evaluate the anti-ZIKV potential of Ecklonia cava and dieckol. The antiviral activity of Ecklonia cava extract (ECE), prepared with 80% ethanol, was assessed in ZIKV-infected Vero E6 cells through MTT assay, plaque assay, and quantitative polymerase chain reaction (qPCR), demonstrating no cytotoxicity and a significant reduction in viral titers and ZIKV mRNA levels. In addition, ECE decreased the expression of tumor necrosis factor-α and interferon-induced protein with tetratricopeptide repeats in the ZIKV-infected cells. Dieckol, the primary active compound in ECE, exhibited potent anti-ZIKV activity, with a half maximal inhibitory concentration (IC50), value of 4.8 µM. In silico molecular docking analysis revealed that dieckol forms stable complexes with key ZIKV proteins, including the envelope, NS2B/NS3, and RNA-dependent RNA polymerase (RdRp) protein, exhibiting high binding energies of -438.09 kcal/mol, -1040.51 kcal/mol, and -1043.40 kcal/mol, respectively. Overall, our findings suggest that ECE and dieckol are promising candidates for the development of anti-ZIKV agents.
Collapse
Affiliation(s)
- Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
| | - Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
| | - Hyun-Soo Kim
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (E.-A.K.); (N.K.); (J.-H.H.); (A.P.); (S.-Y.H.)
- Department of Marine Biology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Lingua G, Chaves AG, Aguilar JJ, Martinez F, Gomez TI, Rucci KA, Torres LE, Ancín-Azpilicueta C, Esparza I, Jiménez-Moreno N, Contigiani M, Nuñez Montoya S, Konigheim BS. Antiviral Potential and Chemical Composition of Wild Baccharis crispa Spreng. Populations (Asteraceae) from Córdoba, Argentina: Perspective on Population Variability. PLANTS (BASEL, SWITZERLAND) 2024; 13:3077. [PMID: 39519995 PMCID: PMC11548641 DOI: 10.3390/plants13213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Medicinal plants have been explored worldwide as potential alternatives for the prevention and treatment of different diseases, including viral infections. Baccharis crispa Spreng. (Asteraceae) is a native medicinal species widely used in South America. Given the influence of genetic and environmental factors on secondary metabolites biosynthesis and accumulation, this study aimed to evaluate the in vitro antiviral activity of four wild populations of B. crispa from Córdoba, Argentina, and assess the variability in their bioactivity and chemical composition. The cytotoxicity of chloroform, ethanol, and aqueous extracts from aerial parts was evaluated by the neutral red uptake method. Antiviral and virucidal activity against herpes simplex virus type 1 (HSV-1) and chikungunya virus (CHIKV) were assessed via plaque-forming unit (PFU) reduction assay. Phytochemical analyses of the extracts were conducted using HPLC-ESI- MS/MS. The Puesto Pedernera population showed the strongest antiviral activity, with inhibition rates of 82% for CHIKV and 79% against HSV-1, as well as potent virucidal effects, reducing PFU formation by up to 5 logarithms for both viruses. Remarkably, ethanol extract exhibited the least toxicity and strongest inhibitory activity. Villa del Parque population was inactive. We identified 38 secondary metabolites, predominantly phenolic acids (12) and flavonoids (18), in varying proportions. Delphinidin and delphinidin-3-glucoside are described for the first time in the species. Differences in phytochemical profiles were observed among extract types and populations. Key phenolic compounds showed moderate positive correlations with the evaluated bioactivities, emphasizing the complexity of phytochemical properties and interactions. These results highlight the therapeutic potential of B. crispa extracts against viral infections and underscore the importance of considering the geographical source of plant material in bioactivity evaluations.
Collapse
Affiliation(s)
- Giuliana Lingua
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Ana Guadalupe Chaves
- Cátedra de Genética, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Av. Valparaíso S/N Ciudad Universitaria, Córdoba X5000HUA, Argentina; (A.G.C.); (L.E.T.)
| | - Juan Javier Aguilar
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
| | - Florencia Martinez
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Tomás Isaac Gomez
- Dpto. de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Edificio de Ciencias 2, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (T.I.G.); (S.N.M.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Kevin Alen Rucci
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Lorena E. Torres
- Cátedra de Genética, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Av. Valparaíso S/N Ciudad Universitaria, Córdoba X5000HUA, Argentina; (A.G.C.); (L.E.T.)
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (C.A.-A.); (I.E.); (N.J.-M.)
- Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Marta Contigiani
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
| | - Susana Nuñez Montoya
- Dpto. de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Edificio de Ciencias 2, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (T.I.G.); (S.N.M.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Brenda S. Konigheim
- Instituto de Virología “Dr. J. M. Vanella”-Argentina, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo S/N, Ciudad Universitaria, Córdoba X5000HUA, Argentina; (G.L.); (J.J.A.); (F.M.); (K.A.R.); (M.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
12
|
Teixeira BN, Albernaz FP, Oliveira AC, Gomes AMO, Carvalho VL, Carvalho CAM. Inhibitory activity of Euterpe oleracea Mart. fruit extract in West Nile virus infection. Microb Pathog 2024; 197:107075. [PMID: 39447664 DOI: 10.1016/j.micpath.2024.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
West Nile virus (WNV) is a neurovirulent arbovirus whose epidemic capacity is enhanced by the wide occurrence of competent vectors and susceptible avian amplifying hosts. In this study, we investigated the antiviral potential of Euterpe oleracea Mart. fruit extract (EoFE) in WNV infection of monkey kidney (Vero) cell cultures. A chromatographic authentication of the extract revealed a typical two-peak fingerprint attributable to the major anthocyanins of the fruit. As assessed by plaque assays in Vero cells, the extract showed a significant concentration-dependent antiviral effect when present throughout the infection procedure, reaching a maximum inhibition of 66.8 % at 2 mg/mL without significant cytotoxicity or direct action on virus particles. A time-of-addition assay revealed that this anti-WNV effect was mostly exerted after virus entry, as incubation of Vero cells with EoFE before or during virus addition resulted in a nonsignificant decrease of infection efficiency. These results demonstrated a promising potential of EoFE in inhibiting WNV infection that can be further explored as an antiviral strategy.
Collapse
Affiliation(s)
- Bruna N Teixeira
- Center for Biological and Health Sciences, University of Pará State, Travessa Perebebuí 2623, Belém, 66095-662, Brazil
| | - Fabiana P Albernaz
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Andréa C Oliveira
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Andre Marco O Gomes
- Leopoldo de Meis Institute of Medical Biochemistry, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Valéria L Carvalho
- Section for Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Ananindeua, 67030-000, Brazil
| | - Carlos Alberto M Carvalho
- Center for Biological and Health Sciences, University of Pará State, Travessa Perebebuí 2623, Belém, 66095-662, Brazil; Section for Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Ananindeua, 67030-000, Brazil.
| |
Collapse
|
13
|
Longobardi C, Damiano S, Ferrara G, Esposito R, Montagnaro S, Florio S, Ciarcia R. Green tea extract reduces viral proliferation and ROS production during Feline Herpesvirus type-1 (FHV-1) infection. BMC Vet Res 2024; 20:374. [PMID: 39175036 PMCID: PMC11340149 DOI: 10.1186/s12917-024-04227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Feline Herpesvirus type-1 (FHV-1) is a worldwide spread pathogen responsible for viral rhinotracheitis and conjunctivitis in cats that, in the most severe cases, can lead to death. Despite the availability of a variety of antiviral medications to treat this illness, mainly characterized by virostatic drugs that alter DNA replication, their use is often debated. Phytotherapeutic treatments are a little-explored field for FHV-1 infections and reactivations. In this scenario, natural compounds could provide several advantages, such as reduced side effects, less resistance and low toxicity. The purpose of this study was to explore the potential inhibitory effects of the green tea extract (GTE), consisting of 50% of polyphenols, on FHV-1 infection and reactive oxygen species (ROS) production. RESULTS Crandell-Reese feline kidney (CRFK) cells were treated with different doses of GTE (10-400 µg/mL) during the viral adsorption and throughout the following 24 h. The MTT and TCID50 assays were performed to determine the cytotoxicity and the EC50 of the extract, determining the amounts of GTE used for the subsequent investigations. The western blot assay showed a drastic reduction in the expression of viral glycoproteins (i.e., gB and gI) after GTE treatment. GTE induced not only a suppression in viral proliferation but also in the phosphorylation of Akt protein, generally involved in viral entry. Moreover, the increase in cell proliferation observed in infected cells upon GTE addition was supported by enhanced expression of Bcl-2 and Bcl-xL anti-apoptotic proteins. Finally, GTE antioxidant activity was evaluated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) and total antioxidant capacity (TAC) assays. The ROS burst observed during FHV-1 infection was mitigated after GTE treatment, leading to a reduction in the oxidative imbalance. CONCLUSIONS Although further clinical trials are necessary, this study demonstrated that the GTE could potentially serve as natural inhibitor of FHV-1 proliferation, by reducing viral entry. Moreover, it is plausible that the extract could inhibit apoptosis by modulating the intrinsic pathway, thus affecting ROS production.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy.
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| |
Collapse
|
14
|
Gomes M, Zuchi IDP, Pavi CP, Fongaro G, da Silva IT, Pezzini BR. Skin- and Eco-Friendly Hand Sanitizer: A Novel Composition of Natural Extracts to Prevent the Spread of Respiratory Viruses. AAPS PharmSciTech 2024; 25:98. [PMID: 38714600 DOI: 10.1208/s12249-024-02808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Respiratory diseases caused by viruses are a serious global health threat. Although the use of hand sanitizers containing alcohol and synthetic antiseptic agents is recognized as an effective, simple, and low-cost measure to combat viral transmission, they can harm human health and the environment. Thus, this work aimed to study the efficacy of combining Camellia sinensis and Chamomilla recutita extracts in a skin- and eco-friendly leave-on hand sanitizer to prevent the spread of respiratory viruses. An oil-in-water emulsion containing C. recutita oily extract (5.0%), C. recutita glycolic extract (0.2%) and C. sinensis glycolic extract (5.0%) showed virucidal activity against HAdV-2 (respiratory virus) and two surrogate viruses of SARS-CoV-2 (HSV-1 and MVH-3), showing great potential to prevent the spread of respiratory viruses. These natural extracts combined are also promising to combat a broad spectrum of other viruses, in the form of antiseptic mouthwashes or throat sprays, surface disinfectants, and veterinary products, among others. Complementally, the developed hand sanitizer demonstrated efficacy against bacteria and fungus.
Collapse
Affiliation(s)
- Marina Gomes
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isabella Dai Prá Zuchi
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Catielen Paula Pavi
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Izabella Thaís da Silva
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bianca Ramos Pezzini
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
15
|
Borgo J, Wagner MS, Laurella LC, Elso OG, Selener MG, Clavin M, Bach H, Catalán CAN, Bivona AE, Sepúlveda CS, Sülsen VP. Plant Extracts and Phytochemicals from the Asteraceae Family with Antiviral Properties. Molecules 2024; 29:814. [PMID: 38398567 PMCID: PMC10891539 DOI: 10.3390/molecules29040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Asteraceae (Compositae), commonly known as the sunflower family, is one of the largest plant families in the world and includes several species with pharmacological properties. In the search for new antiviral candidates, an in vitro screening against dengue virus (DENV) was performed on a series of dichloromethane and methanolic extracts prepared from six Asteraceae species, including Acmella bellidioides, Campuloclinium macrocephalum, Grindelia pulchella, Grindelia chiloensis, Helenium radiatum, and Viguiera tuberosa, along with pure phytochemicals isolated from Asteraceae: mikanolide (1), eupatoriopicrin (2), eupahakonenin B (3), minimolide (4), estafietin (5), 2-oxo-8-deoxyligustrin (6), santhemoidin C (7), euparin (8), jaceidin (9), nepetin (10), jaceosidin (11), eryodictiol (12), eupatorin (13), and 5-demethylsinensetin (14). Results showed that the dichloromethane extracts of C. macrocephalum and H. radiatum and the methanolic extracts prepared from C. macrocephalum and G. pulchella were highly active and selective against DENV-2, affording EC50 values of 0.11, 0.15, 1.80, and 3.85 µg/mL, respectively, and SIs of 171.0, 18.8, >17.36, and 64.9, respectively. From the pool of phytochemicals tested, compounds 6, 7, and 8 stand out as the most active (EC50 = 3.7, 3.1, and 6.8 µM, respectively; SI = 5.9, 6.7, and >73.4, respectively). These results demonstrate that Asteraceae species and their chemical constituents represent valuable sources of new antiviral molecules.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Mariel S. Wagner
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Piso 4, Buenos Aires C1428EGA, Argentina;
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Orlando G. Elso
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 3, Buenos Aires C1428EGA, Argentina
| | - Mariana G. Selener
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - María Clavin
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Hernán Bach
- Instituto Nacional de Tecnología Agropecuaria (INTA) Gobernador Guillermo Udaondo 1695 Estación Experimental Agropecuaria Área Metropolitana de Buenos Aires, EEA AMBA Udaondo, Villa Udaondo B1713AAW, Buenos Aires Province, Argentina;
| | - César A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán T4000INI, Tucumán Province, Argentina;
| | - Augusto E. Bivona
- Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires C1113AAD, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1121ABG, Argentina
| | - Claudia S. Sepúlveda
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Int. Güiraldes 2160, Piso 4, Buenos Aires C1428EGA, Argentina
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| |
Collapse
|
16
|
Dinata R, Nisa N, Arati C, Rasmita B, Uditraj C, Siddhartha R, Bhanushree B, Saeed-Ahmed L, Manikandan B, Bidanchi RM, Abinash G, Pori B, Khushboo M, Roy VK, Gurusubramanian G. Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. J Biomol Struct Dyn 2024; 42:43-81. [PMID: 37021347 DOI: 10.1080/07391102.2023.2192797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The COVID-19 pandemic has caused adverse health (severe respiratory, enteric and systemic infections) and environmental impacts that have threatened public health and the economy worldwide. Drug repurposing and small molecule multi-target directed herbal medicine therapeutic approaches are the most appropriate exploration strategies for SARS-CoV-2 drug discovery. This study identified potential multi-target-directed Parkia bioactive entities against SARS-CoV-2 receptors (S-protein, ACE2, TMPRSS2, RBD/ACE2, RdRp, MPro, and PLPro) using ADMET, drug-likeness, molecular docking (AutoDock, FireDock and HDOCK), molecular dynamics simulation and MM-PBSA tools. One thousand Parkia bioactive entities were screened out by virtual screening and forty-five bioactive phytomolecules were selected based on favorable binding affinity and acceptable pharmacokinetic and pharmacodynamics properties. The binding affinity values of Parkia phyto-ligands (AutoDock: -6.00--10.40 kcal/mol; FireDock: -31.00--62.02 kcal/mol; and HDOCK: -150.0--294.93 kcal/mol) were observed to be higher than the reference antiviral drugs (AutoDock: -5.90--9.10 kcal/mol; FireDock: -35.64--59.35 kcal/mol; and HDOCK: -132.82--211.87 kcal/mol), suggesting a potent modulatory action of Parkia bioactive entities against the SARS-CoV-2. Didymin, rutin, epigallocatechin gallate, epicatechin-3-0-gallate, hyperin, ursolic acid, lupeol, stigmasta-5,24(28)-diene-3-ol, ellagic acid, apigenin, stigmasterol, and campesterol strongly bound with the multiple targets of the SARS-CoV-2 receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation, packaging and spread. Furthermore, ACE2, TMPRSS2, and MPro receptors possess significant molecular dynamic properties, including stability, compactness, flexibility and total binding energy. Residues GLU-589, and LEU-95 of ACE2, GLN-350, HIS-186, and ASP-257 of TMPRSS2, and GLU-14, MET-49, and GLN-189 of MPro receptors contributed to the formation of hydrogen bonds and binding interactions, playing vital roles in inhibiting the activity of the receptors. Promising results were achieved by developing multi-targeted antiviral Parkia bioactive entities as lead and prospective candidates under a small molecule strategy against SARS-CoV-2 pathogenesis. The antiviral activity of Parkia bioactive entities needs to be further validated by pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
17
|
Dobhal K, Garg R, Singh A, Semwal A. Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors. Infect Disord Drug Targets 2024; 24:e020224226681. [PMID: 38318833 DOI: 10.2174/0118715265272414231226092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.
Collapse
Affiliation(s)
- Kiran Dobhal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| | - Ruchika Garg
- School of Pharmacy, Maharaja Agrasen Universities, Baddi, Solan, Himachal Pradesh, 174103, India
| | - Alka Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Balawala, Dehradun, Uttarakhand, India
| | - Amit Semwal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| |
Collapse
|
18
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
19
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Hao K, Wang Y, Xu JH, Nie C, Song S, Yu F, Zhao Z. Kaempferol is a novel antiviral agent against channel catfish virus infection through blocking viral attachment and penetration in vitro. Front Vet Sci 2023; 10:1323646. [PMID: 38111732 PMCID: PMC10725991 DOI: 10.3389/fvets.2023.1323646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Channel catfish virus (CCV, Ictalurid herpesvirus 1) is the causative pathogen of channel catfish virus disease, which has caused high mortality and substantial economic losses in the catfish aquaculture industry. Due to the lack of licensed prophylactic vaccines and therapeutic drugs, the prevention and control of CCV infection seem to remain stagnant. Active compounds from medicinal plants offer eligible sources of pharmaceuticals and lead drugs to fight against endemic and pandemic diseases and exhibit excellent effect against viral infection. In this study, we evaluated the antiviral ability of 12 natural compounds against CCV with cell models in vitro and found kaempferol exhibited the strongest inhibitory compound against CCV infection among all the tested compounds. Correspondingly, kaempferol decreased transcription levels of viral genes and the synthesis of viral proteins, as well as reduced proliferation and release of viral progeny, the severity of the CPE induced by CCV in a dose-dependent manner, based on quantitative real-time PCR (RT-qPCR), western blotting, viral cytopathic effects (CPE) and viral titer assessment. Moreover, time-of-drug-addition assays, virus attachment, and penetration assays revealed that kaempferol exerted anti-CCV activity probably by blocking attachment and internalization of the viral entry process. Altogether, the present results indicated that kaempferol may be a promising candidate antiviral agent against CCV infection, which shed light on the development of a novel and potent treatment for fish herpesvirus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
21
|
Singh S, Verma AK, Chowdhary N, Sharma S, Awasthi A. Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124806-124828. [PMID: 37989950 DOI: 10.1007/s11356-023-30745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.
Collapse
Affiliation(s)
- Satpal Singh
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India, 485001
| | - Nupoor Chowdhary
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Shikha Sharma
- Department of Botany, Post Graduate Government College for Girls, Sector-11, Chandigarh, India, 160011
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103.
| |
Collapse
|
22
|
Mostafa A, Mostafa-Hedeab G, Elhady HA, Mohamed EA, Eledrdery AY, Alruwaili SH, Al-Abd AM, Allayeh AK. Dual action of epigallocatechin-3-gallate in virus-induced cell Injury. J Genet Eng Biotechnol 2023; 21:145. [PMID: 38012348 PMCID: PMC10682343 DOI: 10.1186/s43141-023-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Viral infections cause damage and long-term injury to infected human tissues, demanding therapy with antiviral and wound healing medications. Consequently, safe phytochemical molecules that may control viral infections with an ability to provide wound healing to viral-induced tissue injuries, either topically or systemically, are advantageous. Herein, we hypothesized that epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, might be effective as a wound healing, antiviral, and antifibrotic therapy. RESULTS The antiviral activities of EGCG against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Herpes simplex virus type 2 (HSV-2) as well as its wound healing activities against different monolayer tissue (continuous and primary) systems were investigated. Consider its possible wound-healing advantages as well. To determine the safe concentrations of EGCG in green monkey kidney (Vero) and Vero-E6 cell lines, MTT assay was performed and showed high CC50 values of 405.1 and 322.9 μM, respectively. The antiviral activities of EGCG against SARS-CoV-2 and HSV-2, measured as half-maximal concentration 50 (IC50) concentrations, were 36.28 and 59.88 μM, respectively. These results confirm that the EGCG has remarkable viral inhibitory activities and could successfully suppress the replication of SARS-CoV-2 and HSV-2 in vitro with acceptable selectivity indices (SI) of 11.16 and 5.39, respectively. In parallel, the EGCG exhibits significant and dose/time-dependent anti-migration effects in human breast cancer cells (MCF-7), its resistant variation (MCF-7adr), and human skin fibroblast (HSF) indicating their potential to heal injuries in different internal and topical mammalian systems. CONCLUSIONS The EGCG has proven to be an efficient antiviral against SARS-CoV-2 and HSV-2, as well as a wound-healing phytochemical. We assume that EGCG may be a promising option for slowing the course of acute cellular damage induced by systemic (Coronavirus Disease 2019 (COVID-19)) or topical (HSV-2) viral infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, 11564, Skaka, Saudi Arabia.
| | | | - Esraa Ahmed Mohamed
- Virology Department, Nawah Scientific Co, Almokattam Mall, Street 9, Egypt, 11562, El Mokattam, Egypt
| | - Abozer Y Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf Uni-Versity, 11564, Sakaka, Saudi Arabia
| | - Sager Holyl Alruwaili
- Department of Surgery, Orthopedic Division, College of Medicine, Jouf University, 11564, Sakaka, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
23
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
24
|
Knany HR, Elsabbagh SA, Shehata MA, Eldehna WM, Bekhit AA, Ibrahim TM. In silico screening of SARS-CoV2 helicase using African natural products: Docking and molecular dynamics approaches. Virology 2023; 587:109863. [PMID: 37586235 DOI: 10.1016/j.virol.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
In the current medical era, there is an urgent necessity to identify new effective drugs to enrich the COVID-19's therapeutic arsenal. The SARS-COV-2 NSP13/helicase enzyme has been identified as a potential target for developing novel COVID-19 inhibitors. In this work, we aimed at endorsing effective natural products with potential inhibitory action towards the NSP13 through the virtual screening of 1012 natural products of botanical and marine origin from the South African Natural Compounds Database (SANCDB). The molecules were docked into the NTPase active site, and the best twelve compounds were chosen for further analysis. Thereafter, a combination of molecular dynamics simulations and MM-GBSA free energy calculations were carried out for a subset of best hits complexed with NSP13 helicase. We believe that the findings of this work will pave the way for additional research and experimental validation of some natural products as viable NSP13 helicase inhibitors.
Collapse
Affiliation(s)
- Hamada R Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
25
|
Krzyzowska M, Janicka M, Chodkowski M, Patrycy M, Obuch-Woszczatyńska O, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Grobelny J. Epigallocatechin Gallate-Modified Silver Nanoparticles Show Antiviral Activity against Herpes Simplex Type 1 and 2. Viruses 2023; 15:2024. [PMID: 37896801 PMCID: PMC10611064 DOI: 10.3390/v15102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Epigallocatechin gallate (EGCG) has been recognized as a flavonoid showing antiviral activity against various types of DNA and RNA viruses. In this work, we tested if EGCG-modified silver nanoparticles (EGCG-AgNPs) can become novel microbicides with additional adjuvant properties to treat herpes infections. (2) Methods: The anti-HSV and cytotoxic activities of EGCG-AgNPs were tested in human HaCaT and VK-2-E6/E7 keratinocytes. HSV-1/2 titers and immune responses after treatment with EGCG-AgNPs were tested in murine models of intranasal HSV-1 infection and genital HSV-2 infection. (3) Results: EGCG-AgNPs inhibited attachment and entry of HSV-1 and HSV-2 in human HaCaT and VK-2-E6/E7 keratinocytes much better than EGCG at the same concentration. Infected mice treated intranasally (HSV-1) or intravaginally (HSV-2) with EGCG-AgNPs showed lower virus titers in comparison to treatment with EGCG alone. After EGCG-AgNPs treatment, mucosal tissues showed a significant infiltration in dendritic cells and monocytes in comparison to NaCl-treated group, followed by significantly better infiltration of CD8+ T cells, NK cells and increased expression of IFN-α, IFN-γ, CXCL9 and CXCL10. (4) Conclusions: Our findings show that EGCG-AgNPs can become an effective novel antiviral microbicide with adjuvant properties to be applied upon the mucosal tissues.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.J.); (M.C.); (M.P.); (O.O.-W.)
| | - Martyna Janicka
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.J.); (M.C.); (M.P.); (O.O.-W.)
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.J.); (M.C.); (M.P.); (O.O.-W.)
| | - Magdalena Patrycy
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.J.); (M.C.); (M.P.); (O.O.-W.)
| | - Oliwia Obuch-Woszczatyńska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.J.); (M.C.); (M.P.); (O.O.-W.)
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (G.C.); (J.G.)
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (G.C.); (J.G.)
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (G.C.); (J.G.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (G.C.); (J.G.)
| |
Collapse
|
26
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
27
|
Nunes DADF, Lopes GFM, Nizer WSDC, Aguilar MGD, Santos FRDS, Sousa GFD, Ferraz AC, Duarte LP, Brandão GC, Vieira-Filho SA, Magalhães CLDB, Ferreira JMS, de Magalhães JC. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116436. [PMID: 37003399 DOI: 10.1016/j.jep.2023.116436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Mariana G de Aguilar
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ariane Coelho Ferraz
- Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
| |
Collapse
|
28
|
Islam MN, Pramanik MEA, Hossain MA, Rahman MH, Hossen MS, Islam MA, Miah MMZ, Ahmed I, Hossain AZMM, Haque MJ, Islam AKMM, Ali MN, Jahan RA, Haque ME, Rahman MM, Hasan MS, Rahman MM, Kabir MM, Basak PM, Sarkar MAM, Islam MS, Rahman MR, Prodhan AKMAUD, Mosaddik A, Haque H, Fahmin F, Das HS, Islam MM, Emtia C, Gofur MR, Liang A, Akbar SMF. Identification of Leading Compounds from Euphorbia neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies. Euroasian J Hepatogastroenterol 2023; 13:89-107. [PMID: 38222948 PMCID: PMC10785135 DOI: 10.5005/jp-journals-10018-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) are deadly and infectious disease that impacts individuals in a variety of ways. Scientists have stepped up their attempts to find an antiviral drug that targets the spike protein (S) of Angiotensin converting enzyme 2 (ACE2) (receptor protein) as a viable therapeutic target for coronavirus. The most recent study examines the potential antagonistic effects of 17 phytochemicals present in the plant extraction of Euphorbia neriifolia on the anti-SARS-CoV-2 ACE2 protein. Computational techniques like molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET) investigations, and molecular dynamics (MD) simulation analysis were used to investigate the actions of these phytochemicals. The results of molecular docking studies showed that the control ligand (2-acetamido-2-deoxy-β-D-glucopyranose) had a binding potential of -6.2 kcal/mol, but the binding potentials of delphin, β-amyrin, and tulipanin are greater at -10.4, 10.0, and -9.6 kcal/mol. To verify their drug-likeness, the discovered hits were put via Lipinski filters and ADMET analysis. According to MD simulations of the complex run for 100 numbers, delphin binds to the SARS-CoV-2 ACE2 receptor's active region with good stability. In root-mean-square deviation (RMSD) and root mean square fluctuation (RMSF) calculations, delphinan, β-amyrin, and tulipanin showed reduced variance with the receptor binding domain subunit 1(RBD S1) ACE2 protein complex. The solvent accessible surface area (SASA), radius of gyration (Rg), molecular surface area (MolSA), and polar surface area (PSA) validation results for these three compounds were likewise encouraging. The convenient binding energies across the 100 numbers binding period were discovered by using molecular mechanics of generalized born and surface (MM/GBSA) to estimate the ligand-binding free energies to the protein receptor. All things considered, the information points to a greater likelihood of chemicals found in Euphorbia neriifolia binding to the SARS-CoV-2 ACE2 active site. To determine these lead compounds' anti-SARS-CoV-2 potential, in vitro and in vivo studies should be conducted. How to cite this article Islam MN, Pramanik MEA, Hossain MA, et al. Identification of Leading Compounds from Euphorbia Neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies. Euroasian J Hepato-Gastroenterol 2023;13(2):89-107.
Collapse
Affiliation(s)
- Md Nur Islam
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Md Enayet Ali Pramanik
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China; On-Farm Research Division, Bangladesh Agricultural Research Institute, Rajshahi, Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University (BSMRSTU), Gopalganj, Bangladesh
| | - Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Ashraful Islam
- Department of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Istiak Ahmed
- Department of Surgery, Rajshahi Medical College Hospital, Rajshahi, Bangladesh
| | | | - Md Jawadul Haque
- Department of Community Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | - AKM Monoarul Islam
- Department of Nephrology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Nowshad Ali
- Department of Pediatric Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | | | - Md Enamul Haque
- Department of Ortho-Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Munzur Rahman
- Department of Ortho-Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Sharif Hasan
- Department of Cardiology, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | | | - Md Mamun Kabir
- Department of Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | | | | | - Md Shafiqul Islam
- Department of Gastroenterology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Rashedur Rahman
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Ashik Mosaddik
- Director, Center for Interdisciplinary Research, Varendra University, Rajshahi, Bangladesh
| | - Humayra Haque
- Department of Anaesthesia, Analgesia & Intensive Care Unit, Chattogram Medical College, Chattogram, Bangladesh
| | - Fahmida Fahmin
- Department of Paediatric, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | | | - Md Manzurul Islam
- Director, Prime Minister Office and Private Secretary of Economic Advisor to the Hon'ble Prime Minister of Bangladesh, Prime Minister's Office, Tejgaon, Dhaka, Bangladesh
| | - Chandrima Emtia
- Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Honjo, Saga, Japan
| | - Md Royhan Gofur
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China; On-Farm Research Division, Bangladesh Agricultural Research Institute, Rajshahi, Bangladesh
| | - Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine; Research Center for Global and Local Infectious Diseases, Faculty of Medicine, Oita University, Oita; Miyakawa Memorial Research Foundation, Tokyo, Japan
| |
Collapse
|
29
|
Yi B, Chew BXZ, Chen H, Lee RCH, Fong YD, Chin WX, Mok CK, Chu JJH. Antiviral Activity of Catechin against Dengue Virus Infection. Viruses 2023; 15:1377. [PMID: 37376676 DOI: 10.3390/v15061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Dengue virus (DENV) is the cause of dengue fever, infecting 390 million people worldwide per year. It is transmitted to humans through the bites of mosquitoes and could potentially develop severe symptoms. In spite of the rising social and economic impact inflicted by the disease on the global population, a conspicuous lack of efficacious therapeutics against DENV still persists. In this study, catechin, a natural polyphenol compound, was evaluated as a DENV infection inhibitor in vitro. Through time-course studies, catechin was shown to inhibit a post-entry stage of the DENV replication cycle. Further investigation revealed its role in affecting viral protein translation. Catechin inhibited the replication of all four DENV serotypes and chikungunya virus (CHIKV). Together, these results demonstrate the ability of catechin to inhibit DENV replication, hinting at its potential to be used as a starting scaffold for further development of antivirals against DENV infection.
Collapse
Affiliation(s)
- Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Benjamin Xuan Zheng Chew
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuhui Deborah Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee Keng Mok
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
30
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
31
|
Vicente J, Benedetti M, Martelliti P, Vázquez L, Gentilini MV, Peñaranda Figueredo FA, Nabaes Jodar MS, Viegas M, Barquero AA, Bueno CA. The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2. Viruses 2023; 15:v15040989. [PMID: 37112969 PMCID: PMC10143848 DOI: 10.3390/v15040989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
New antiviral treatments are needed to deal with the unpredictable emergence of viruses. Furthermore, vaccines and antivirals are only available for just a few viral infections, and antiviral drug resistance is an increasing concern. Cyanidin (a natural product also called A18), a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, through its anti-inflammatory effects. Regarding its mechanism of action, A18 was identified as an IL-17A inhibitor, resulting in the attenuation of IL-17A signaling and associated diseases in mice. Importantly, A18 also inhibits the NF-κB signaling pathway in different cell types and conditions in vitro and in vivo. In this study, we report that A18 restricts RSV, HSV-1, canine coronavirus, and SARS-CoV-2 multiplication, indicating a broad-spectrum antiviral activity. We also found that A18 can control cytokine and NF-κB induction in RSV-infected cells independently of its antiviral activity. Furthermore, in mice infected with RSV, A18 not only significantly reduces viral titers in the lungs, but also diminishes lung injury. Thus, these results provide evidence that A18 could be used as a broad-spectrum antiviral and may contribute to the development of novel therapeutic targets to control these viral infections and pathogenesis.
Collapse
Affiliation(s)
- Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Martina Benedetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Paula Martelliti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Luciana Vázquez
- Unidad Operativa Centro de Contención Biológica (UOCCB), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires 1282, Argentina
| | - María Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)-CONICET, Buenos Aires 1093, Argentina
| | - Freddy Armando Peñaranda Figueredo
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Mercedes Soledad Nabaes Jodar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires 1417, Argentina
| | - Mariana Viegas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires 1417, Argentina
| | - Andrea Alejandra Barquero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Carlos Alberto Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
32
|
da Silva Rodrigues JV, Rodrigues Gazolla PA, da Cruz Pereira I, Dias RS, Poly da Silva IE, Oliveira Prates JW, de Souza Gomes I, de Azevedo Silveira S, Costa AV, de Oliveira FM, de Aguiar AR, Canedo da Silva C, Teixeira RR, de Paula SO. Synthesis and virucide activity on zika virus of 1,2,3-triazole-containing vanillin derivatives. Antiviral Res 2023; 212:105578. [PMID: 36934985 DOI: 10.1016/j.antiviral.2023.105578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The Zika virus (ZIKV) is an arbovirus and belongs to the Flaviviridae family and Flavivirus genus, with dissemination in the Americas. In Brazil, the predominant strain is the Asian, promoting outbreaks that started in 2015 and are directly related to microcephaly in newborns and Guillain-Barré syndrome in adults. Recently, researchers identified a new African strain circulating in Brazil at the mid-end of 2018 and the beginning of 2019, with the potential to originate a new epidemic. To date, there is no approved vaccine or drug for the treatment of Zika syndrome, and the development of therapeutic alternatives to treat it is of relevance. A critical approach is to use natural products when searching for new chemical agents to treat Zika syndrome. The present investigation describes the preparation of a series of 1,2,3-triazoles derived from the natural product vanillin and the evaluation of their virucide activity. A series of fourteen derivatives were prepared via alkylation of vanillin followed by CuAAC (the copper(I)-catalyzed azide-alkyne cycloaddition) reaction. The compounds were fully characterized by infrared (I.R.), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) techniques. The cytotoxicity of Vero cells and the effect on the Zika Virus of the vanillin derivatives were evaluated. It was found that the most effective compound corresponded to 4-((1-(4-isopropylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxybenzaldehyde (8) (EC50 = 27.14 μM, IC50 = 334.9 μM). Subsequent assessments, namely pre and post-treatment assays, internalization and adsorption inhibition assays, kinetic, electronic microscopy analyses, and zeta potential determination, revealed that compound 8 blocks the Zika virus infection in vitro by acting on the viral particle. A molecular docking study was performed, and the results are also discussed.
Collapse
Affiliation(s)
- João Vitor da Silva Rodrigues
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - Iago da Cruz Pereira
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - John Willians Oliveira Prates
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Isabela de Souza Gomes
- Departamento de Ciência da Computação, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | | | | | | | | | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Pharmacological Elevation of Cellular Dihydrosphingomyelin Provides a Novel Antiviral Strategy against West Nile Virus Infection. Antimicrob Agents Chemother 2023; 67:e0168722. [PMID: 36920206 PMCID: PMC10112131 DOI: 10.1128/aac.01687-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 μM, respectively, in Vero cells; EC50s of 2.2 and 1.9 μM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.
Collapse
|
34
|
Zarei A, Ramazani A, Rezaei A, Moradi S. Screening of honey bee pollen constituents against COVID-19: an emerging hot spot in targeting SARS-CoV-2-ACE-2 interaction. Nat Prod Res 2023; 37:974-980. [PMID: 35758279 DOI: 10.1080/14786419.2022.2092865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The attachment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike to angiotensin-converting enzyme 2 (ACE-2) leads the cell fusion process, so spike blockade may be a promising therapy combating COVID-19. Bee pollen bioflavonoids with intrinsic bioactivities are of outmost importance to block SARS-CoV-2-ACE-2 interaction. Herein, we conducted a molecular docking assessment through natural phenolics/non-phenolics of pollen to investigate their affinity against SARS-CoV-2 spike. Finally, kaempferol 3-neohesperidoside 7-O-rhamnoside (compound a), quercetin 7-rhamnoside (compound b), delphinidin-3-O-(6-p-coumaroyl) glucoside (compound c), and luteolin-7-O-6″-malonylglucoside (compound d) showed the lowest binding affinity of -8.1, -7.7, -7.3 and -6.7 kcal/mol. The docking procedure was validated using protein-protein interactions between ACE-2 and SARS-CoV-2 RBD via HADDOCK webserver. MD simulations were fulfilled to investigate different ligands' effects on protein movements. Collectively, compound a may possess the potency to disturb the binding of SARS-CoV-2 spike-ACE-2, which can be on the call for further in vitro and in vivo study to investigate its antiviral potential against SARS-CoV-2.
Collapse
Affiliation(s)
- Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Yu W, Zhang B, Hong X, Cai H, Wang Y, Lu J, Hu X, Cao B. Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection. Antiviral Res 2023; 211:105542. [PMID: 36646387 DOI: 10.1016/j.antiviral.2023.105542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Zika virus (ZIKV) infection arises as a global health threat owing to its association with Guillain-Barre syndrome and microcephaly in adults and fetuses since the most recent epidemics. Although extraordinary efforts have been underway globally to identify safe and effective treatments for ZIKV, therapeutic progressions seem to remain stagnant, especially for treating congenital ZIKV infection. Bio-compounds from medicinal plants evolutionarily optimized as drug-like molecules offer eligible sources of pharmaceuticals and lead drugs to fight against viral infections. Here, we identified desoxyrhapontigenin (DES), a naturally occurring bioactive product, as the strongest inhibitory compound against ZIKV infection among six conventional polyphenols in vitro. We also leveraged the trophoblast cell line, human trophoblast stem cells, and complex placental organoid models to provide solid evidence to support the anti-ZIKV bioactivity of DES. Notably, DES treatment effectively reduced the ZIKV burden in serum and target tissues, and correspondingly improved ZIKV-induced pathologic changes including weight loss, tissue inflammation, cell apoptosis, and adverse pregnancy outcomes, while it did not lead to obvious toxicity in both adult and pregnant mice. Furthermore, mechanistic studies revealed that DES could suppress ZIKV entry via dual mechanisms of direct targeting ZIKV E proteins and downregulating putative ZIKV receptors. These findings elucidate a previously unappreciated protective role of desoxyrhapontigenin against ZIKV infection both in vitro and in vivo, which shed light on the development of a novel and potent treatment for congenital ZIKV infection.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Beiang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiao Hong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China.
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China.
| |
Collapse
|
36
|
Coronado MA, Gering I, Sevenich M, Olivier DS, Mastalipour M, Amaral MS, Willbold D, Eberle RJ. The Importance of Epigallocatechin as a Scaffold for Drug Development against Flaviviruses. Pharmaceutics 2023; 15:pharmaceutics15030803. [PMID: 36986663 PMCID: PMC10053286 DOI: 10.3390/pharmaceutics15030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arboviruses such as Dengue, yellow fever, West Nile, and Zika are flaviviruses vector-borne RNA viruses transmitted biologically among vertebrate hosts by blood-taking vectors. Many flaviviruses are associated with neurological, viscerotropic, and hemorrhagic diseases, posing significant health and socioeconomic concerns as they adapt to new environments. Licensed drugs against them are currently unavailable, so searching for effective antiviral molecules is still necessary. Epigallocatechin molecules, a green tea polyphenol, have shown great virucidal potential against flaviviruses, including DENV, WNV, and ZIKV. The interaction of EGCG with the viral envelope protein and viral protease, mainly identified by computational studies, describes the interaction of these molecules with viral proteins; however, how the viral NS2B/NS3 protease interacts with epigallocatechin molecules is not yet fully deciphered. Consequently, we tested the antiviral potential of two epigallocatechin molecules (EGC and EGCG) and their derivative (AcEGCG) against DENV, YFV, WNV, and ZIKV NS2B/NS3 protease. Thus, we assayed the effect of the molecules and found that a mixture of the molecules EGC (competitive) and EGCG (noncompetitive) inhibited the virus protease of YFV, WNV, and ZIKV more effectively with IC50 values of 1.17 ± 0.2 µM, 0.58 ± 0.07 µM, and 0.57 ± 0.05 µM, respectively. As these molecules fundamentally differ in their inhibitory mode and chemical structure, our finding may open a new line for developing more effective allosteric/active site inhibitors to combat flaviviruses infection.
Collapse
Affiliation(s)
- Mônika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Correspondence: (M.A.C.); (R.J.E.); Tel.: +49-2461-61-9505 (M.A.C. & R.J.E.)
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Marc Sevenich
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Priavoid GmbH, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Integrated Sciences Center, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil
| | - Mohammadamin Mastalipour
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- Correspondence: (M.A.C.); (R.J.E.); Tel.: +49-2461-61-9505 (M.A.C. & R.J.E.)
| |
Collapse
|
37
|
Sadeer NB, Haddad JG, Ezzat MO, Desprès P, Abdallah HH, Zengin G, Alshamrani IM, Barnawi J, Khalid A, Abdalla AN, Le Van B, El Kalamouni C, Mahomoodally MF. Rhizophora mucronata Lam., a halophyte from Mauritius Island, inhibits the entry of Zika virus in human cells (A549)- an in vitro and in silico analysis. J Biomol Struct Dyn 2023; 41:12599-12609. [PMID: 36648248 DOI: 10.1080/07391102.2023.2167115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
The recent appearance of Zika virus (ZIKV) in Brazil should serve as a wake-up call to international authorities, as it poses a threat to global public health. In the present study, we investigated whether a mangrove plant, Rhizophora mucronata Lam. (R. mucronata) collected in Mauritius, possesses anti-ZIKV activity at the non-cytotoxic doses. ZIKVMC-MR766NIID (ZIKVGFP) was used for assessing anti ZIKV activity. In silico docking (Autodock 4) and molecular simulation were performed on collected data. Using a recombinant ZIKV expressing reporter green fluorescent protein(GFP) protein, we discovered that fruit and root methanolic, decocted fruit and root extracts were effective inhibitors of ZIKV infection in human epithelial A549 cells at negligible cytotoxicity. The mechanisms by which such extracts prevented ZIKV infection are linked to the inability of the virus to attach to the host cell surface. The outcomes of this study were supported by the docking calculations in which some of the dominant compounds have shown high binding affinity against ZIKV. The scientific data gathered in this study might pave the way for the future development of possible R. mucronata inhibitors to combat ZIKV.fCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Juliano G Haddad
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, Ramadi, Anbar, Iraq
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University-erbil, erbil, Iraq
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | | | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bao Le Van
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Chaker El Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| |
Collapse
|
38
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
39
|
Rudrapal M, Issahaku AR, Agoni C, Bendale AR, Nagar A, Soliman MES, Lokwani D. In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10437-10453. [PMID: 34182889 DOI: 10.1080/07391102.2021.1944909] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, Maharashtra, India
| | - Abdul Rashid Issahaku
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Clement Agoni
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Atul R Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, India
| | - Akhil Nagar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Deepak Lokwani
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
40
|
Ramiharimanana FD, Haddad JG, Andrianavalonirina MA, Apel C, Olivon F, Diotel N, Desprès P, Ramanandraibe VV, El Kalamouni C. Antiviral Effect of Stenocline ericoides DC. and Stenocline inuloides DC., Two Flavonoid-Rich Endemic Plants from Madagascar, against Dengue and Zika Viruses. Pharmaceuticals (Basel) 2022; 15:ph15121500. [PMID: 36558951 PMCID: PMC9787939 DOI: 10.3390/ph15121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Dengue and Zika viruses are identified as the most medically important arthropod-borne viral pathogens. Over the past 20 years, the global dengue incidence has dramatically increased with epidemics of severe dengue where the case fatality rate can reach up to 20% in untreated patients. The association between Zika virus infection and severe congenital anomalies was first reported in 2015. Today no specific antiviral therapies are available for dengue and Zika virus infections, accentuating the need of adapted antiviral strategies based on medicinal plant drug discovery. Plants are a potential source of antiviral phytocompounds which act primarily by blocking virus entry in the host-cell. In the present study, we evaluated whether crude extracts from Stenocline ericoides DC. and Stenocline inuloides DC., two endemic plants from Madagascar, may have antiviral effects against dengue and Zika viruses. We showed that S. ericoides has virucidal action whereas S. inuloides inhibits the early steps of virus infection with a non-cytotoxic effect in human cells. The administration of S. ericoides and S. inuloides extracts in zebrafish had no effect on the behavior of animals at the active doses against dengue and Zika viruses, suggesting the absence of adverse effects at these doses. LC-HRMS2 and molecular networking analyses revealed the richness of these two plants in polyphenols and flavonoid with the presence of clusters of phytocompounds specific to each Stenocline species. Consequently, S. ericoides and S. inuloides represent potential sources for natural and safe antiviral phytocompounds against flaviviruses of medical concern.
Collapse
Affiliation(s)
- Fenia D. Ramiharimanana
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
- International Associated Laboratory, University of Antananarivo-Lyon 1, Antananarivo P.O. Box 906, Madagascar
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
| | | | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, University of Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | | | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, UMR 1188, 97491 Sainte Clotilde, France
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
| | | | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
- Correspondence:
| |
Collapse
|
41
|
Pasquereau S, Galais M, Bellefroid M, Pachón Angona I, Morot-Bizot S, Ismaili L, Van Lint C, Herbein G. Ferulic acid derivatives block coronaviruses HCoV-229E and SARS-CoV-2 replication in vitro. Sci Rep 2022; 12:20309. [PMID: 36434137 PMCID: PMC9700709 DOI: 10.1038/s41598-022-24682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drugs with broad anti-coronavirus activity embody a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested ten small-molecules with chemical structures close to ferulic acid derivatives (FADs) (n = 8), caffeic acid derivatives (CAFDs) (n = 1) and carboxamide derivatives (CAMDs) (n = 1) for their ability to reduce HCoV-229E replication, another member of the coronavirus family. Among these ten drugs tested, five of them namely MBA112, MBA33, MBA27-1, OS4-1 and MBA108-1 were highly cytotoxic and did not warrant further testing. In contrast, we observed a moderate cytotoxicity for two of them, MBA152 and 5c. Three drugs, namely MBA140, LIJ2P40, and MBA28 showed lower cytotoxicity. These candidates were then tested for their antiviral propreties against HCoV-229E and SARS-CoV2 replication. We first observed encouraging results in HCoV-229E. We then measured a reduction of the viral SARS-CoV2 replication by 46% with MBA28 (EC50 > 200 µM), by 58% with MBA140 (EC50 = 176 µM), and by 82% with LIJ2P40 (EC50 = 66.5 µM). Overall, the FAD LIJ2P40 showed a reduction of the viral titer on SARS-CoV-2 up to two logs with moderate cytotoxicity which opens the door to further evaluation to fight Covid-19.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Mathilde Galais
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Maxime Bellefroid
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Irene Pachón Angona
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | | | - Lhassane Ismaili
- grid.493090.70000 0004 4910 6615Neurosciences Intégratives et Cliniques EA 481, Pôle de Chimie Organique et Thérapeutique, Univ. Bourgogne Franche-Comté, UFR Santé, Besançon, France
| | - Carine Van Lint
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Georges Herbein
- grid.7459.f0000 0001 2188 3779Pathogens and Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France ,grid.411158.80000 0004 0638 9213Department of Virology, CHU Besançon, Besançon, France
| |
Collapse
|
42
|
Efficacy of olive leaves extract on the outcomes of hospitalized covid-19 patients: A randomized, triple-blinded clinical trial. Explore (NY) 2022:S1550-8307(22)00204-X. [PMID: 36319585 PMCID: PMC9617633 DOI: 10.1016/j.explore.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Introduction Since the emergence of the novel coronavirus, herbal medicine has been considered a treatment for COVID-19 patients. This study was done to determine the efficacy of olive leaf extract on the outcomes of COVID-19 patients. Materials and Methods This randomized, triple-blinded clinical trial was conducted on hospitalized COVID-19 patients. Using block randomization, eligible patients were allocated to the following groups: intervention A received olive leaf extract (250 mg every 12 hours for five days), intervention B received olive leaf extract (500 mg every 12 hours for five days), and the control group received placebo (every 12 hours for five days). The outcomes (vital signs, laboratory tests, and length of hospitalization) were compared by group. Results Of the 150 patients randomized into groups, 141 completed the follow-up and were analyzed. On the fifth day of hospitalization, body temperature (MD=0.34, P<0.001), pulse rate (MD=5.42, P=0.016), respiratory rate (MD=1.66, P=0.001), ESR (MD=13.55, P<0.001), and CRP (MD=15.68, P<0.001) of intervention A were significantly lower than the control group, while oxygen saturation (MD= -1.81, P=0.001) of intervention A was significantly higher than the control group. Furthermore, body temperature (MD=0.30, P=0.001), pulse rate (MD=5.29, P=0.022), respiratory rate (MD=1.41, P=0.006), ESR (MD=14.79, P<0.001), and CRP (MD=16.28, P<0.001) of intervention B were significantly lower than the control group, while oxygen saturation (MD= -2.38, P<0.001) of intervention B was significantly higher than the control group. Conclusion Olive leaf extract can improve the clinical status of the patients and decrease the length of hospitalization.
Collapse
|
43
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
44
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Mahmood RA, Hasan A, Rahmatullah M, Paul AK, Jahan R, Jannat K, Bondhon TA, Mahboob T, Nissapatorn V, de Lourdes Pereira M, Paul TK, Rumi OH, Wiart C, Wilairatana P. Solanaceae Family Phytochemicals as Inhibitors of 3C-Like Protease of SARS-CoV-2: An In Silico Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154739. [PMID: 35897915 PMCID: PMC9331421 DOI: 10.3390/molecules27154739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.
Collapse
Affiliation(s)
- Raisul Awal Mahmood
- Department of Chemistry, Bangladesh University of Engineering & Technology, Dhaka 1000, Bangladesh;
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
- Correspondence: (M.R.); (M.d.L.P.)
| | - Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Tohmina Afroze Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Tooba Mahboob
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (M.R.); (M.d.L.P.)
| | - Tridib K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Ommay Hany Rumi
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.H.); (A.K.P.); (R.J.); (K.J.); (T.A.B.); (T.K.P.); (O.H.R.)
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
46
|
Tamkutė L, Haddad JG, Diotel N, Desprès P, Venskutonis PR, El Kalamouni C. Cranberry Pomace Extract Exerts Antiviral Activity against Zika and Dengue Virus at Safe Doses for Adult Zebrafish. Viruses 2022; 14:1101. [PMID: 35632841 PMCID: PMC9147401 DOI: 10.3390/v14051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Mosquito-borne dengue virus (DENV) and zika virus (ZIKV) infections constitute a global health emergency. Antivirals directly targeting the virus infectious cycle are still needed to prevent dengue hemorrhagic fever and congenital zika syndrome. In the present study, we demonstrated that Cranberry Pomace (CP) extract, a polyphenol-rich agrifood byproduct recovered following cranberry juice extraction, blocks DENV and ZIKV infection in human Huh7.5 and A549 cell lines, respectively, in non-cytotoxic concentrations. Our virological assays identified CP extract as a potential inhibitor of virus entry into the host-cell by acting directly on viral particles, thus preventing their attachment to the cell surface. At effective antiviral doses, CP extract proved safe and tolerable in a zebrafish model. In conclusion, polyphenol-rich agrifood byproducts such as berry extracts are a promising source of safe and naturally derived nutraceutical antivirals that target medically important pathogens.
Collapse
Affiliation(s)
- Laura Tamkutė
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu, pl. 19, LT-50254 Kaunas, Lithuania;
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, UMR 1188, 97490 Saint-Denis de La Réunion, France;
| | - Philippe Desprès
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu, pl. 19, LT-50254 Kaunas, Lithuania;
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| |
Collapse
|
47
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
48
|
Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, Ahmad A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front Nutr 2022; 9:746881. [PMID: 35369062 PMCID: PMC8969030 DOI: 10.3389/fnut.2022.746881] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble flavonoids abundantly present in fruits and vegetables. They are polymethoxyderivatives of 2-phenyl-benzopyrylium or flavylium salts. Delphinidin (Dp) is a purple-colored plant pigment, which occurs in a variety of berries, eggplant, roselle, and wine. It is found in a variety of glycosidic forms ranging from glucoside to arabinoside. Dp is highly active in its aglycone form, but the presence of a sugar moiety is vital for its bioavailability. Several animal and human clinical studies have shown that it exerts beneficial effects on gut microbiota. Dp exhibits a variety of useful biological activities by distinct and complex mechanisms. This manuscript highlights the basic characteristics, chemistry, biosynthesis, stability profiling, chemical synthesis, physicochemical parameters along with various analytical methods developed for extraction, isolation and characterization, diverse biological activities and granted patents to this lead anthocyanin molecule, Dp. This review aims to open pathways for further exploration and research investigation on the true potential of the naturally occurring purple pigment (Dp) in its anthocyanidin and anthocyanin forms beyond nutrition.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harshit Chanana
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - U M Dhanalekshmi
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Anwar A Alghamdi
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Santos Pereira R, Vasconcelos Costa V, Luiz Menezes Gomes G, Rodrigues Valadares Campana P, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F. Anti-Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCL-81 and Human Neuroblastoma SH-SY5Y Cells. Chem Biodivers 2022; 19:e202100842. [PMID: 35285139 DOI: 10.1002/cbdv.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 μg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 μg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gabriel Luiz Menezes Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Milton Barbosa
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Yumi Oki
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gustavo Heiden
- Empresa Brasileira de Pesquisa Agropecuária Clima Temperado, CEP 96010-971, Pelotas, Brazil
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13:750494. [PMID: 35359838 PMCID: PMC8963989 DOI: 10.3389/fphar.2022.750494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue has become a worldwide affliction despite incessant efforts to search for a cure for this long-lived disease. Optimistic consequences for dengue vaccine are implausible as the efficiency is tied to previous dengue virus (DENV) exposure and a very high cost is required for large-scale production of vaccine. Medicinal plants are idyllic substitutes to fight DENV infection since they constitute important components of traditional medicine and show antiviral properties, although the mechanism behind the action of bioactive compounds to obstruct viral replication is less explored and yet to be discovered. This review includes the existing traditional knowledge on how DENV infects and multiplies in the host cells, conscripting different medicinal plants that obtained bioactive compounds with anti-dengue properties, and the probable mechanism on how bioactive compounds modulate the host immune system during DENV infection. Moreover, different plant species having such bioactive compounds reported for anti-DENV efficiency should be validated scientifically via different in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | | - M. M. Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|