1
|
Vitorino IR, Gambardella N, Semedo M, Magalhães C, Lage OM. Diversity and Vertical Distribution of Planctomycetota in the Water Column of the Remote North Pacific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70063. [PMID: 39976218 PMCID: PMC11840708 DOI: 10.1111/1758-2229.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
The extensive microbial diversity found in the oceans is becoming to be uncovered despite limited knowledge and cultured representatives for many taxonomic groups. This study analysed the distribution and diversity of Planctomycetota at four water column profiles of the Eastern North Pacific subtropical front (ENPSF) using 16S rRNA gene sequencing. A dual approach, utilising PacBio long-reads and Illumina short-reads, was employed to enhance the accuracy of taxonomic assignment and compare sequencing methods. The diversity of Planctomycetota increased below the deep chlorophyll maximum level (175-200 m) and in the mesopelagic layer (500 m), with beta-diversity clustering distinctly separating samples according to different depths, resulting in pronounced vertical stratification. This community structure mirrors nutrient availability, as Planctomycetota favour depths between 175 and 200 m, where high nitrate levels are present. More Planctomycetota amplicon sequence variants (ASVs) were identified with PacBio than with Illumina, improving detection of these bacteria. Phylogenetic analyses performed after manual curation of ASVs led to the discovery of several unknown genera of Planctomycetota, indicating that substantial diversity within this group remains to be discovered and studied in remote oligotrophic oceans.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Nicola Gambardella
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Catarina Magalhães
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| | - Olga Maria Lage
- Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
| |
Collapse
|
2
|
Danovaro R, Levin LA, Fanelli G, Scenna L, Corinaldesi C. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol 2024; 8:1407-1419. [PMID: 38844822 DOI: 10.1038/s41559-024-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
- National Biodiversity Future Center, Palermo, Italy.
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Ginevra Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lorenzo Scenna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Center, Palermo, Italy.
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
3
|
Ding ZH, Wu YH. Genomic characteristics of nine Nitrospirota metagenome-assembled genomes in deep-sea sediments from East Pacific polymetallic nodules zone. Mar Genomics 2024; 75:101107. [PMID: 38735672 DOI: 10.1016/j.margen.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/14/2024]
Abstract
Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to "Candidatus Manganitrophaceae" of phylum Nitrospirota with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, Nitrospirota members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to Nitrospirota are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these Nitrospirota have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order Nitrospirales has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these Nitrospirota. In addition, different metal ion transport systems can help those Nitrospirota to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of Nitrospirota in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.
Collapse
Affiliation(s)
- Zhi-Hao Ding
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yue-Hong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
4
|
Zhao R, Jørgensen SL, Babbin AR. An abundant bacterial phylum with nitrite-oxidizing potential in oligotrophic marine sediments. Commun Biol 2024; 7:449. [PMID: 38605091 PMCID: PMC11009272 DOI: 10.1038/s42003-024-06136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Steffen L Jørgensen
- Centre for Deep-Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Tominaga K, Takebe H, Murakami C, Tsune A, Okamura T, Ikegami T, Onishi Y, Kamikawa R, Yoshida T. Population-level prokaryotic community structures associated with ferromanganese nodules in the Clarion-Clipperton Zone (Pacific Ocean) revealed by 16S rRNA gene amplicon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13224. [PMID: 38146681 PMCID: PMC10866075 DOI: 10.1111/1758-2229.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Although deep-sea ferromanganese nodules are a potential resource for exploitation, their formation mechanisms remain unclear. Several nodule-associated prokaryotic species have been identified by amplicon sequencing of 16S rRNA genes and are assumed to contribute to nodule formation. However, the recent development of amplicon sequence variant (ASV)-level monitoring revealed that closely related prokaryotic populations within an operational taxonomic unit often exhibit distinct ecological properties. Thus, conventional species-level monitoring might have overlooked nodule-specific populations when distinct populations of the same species were present in surrounding environments. Herein, we examined the prokaryotic community diversity of nodules and surrounding environments at the Clarion-Clipperton Zone in Japanese licensed areas by 16S rRNA gene amplicon sequencing with ASV-level resolution for three cruises from 2017 to 2019. Prokaryotic community composition and diversity were distinct by habitat type: nodule, nodule-surface mud, sediment, bottom water and water column. Most ASVs (~80%) were habitat-specific. We identified 178 nodule-associated ASVs and 41 ASVs associated with nodule-surface mud via linear discriminant effect size analysis. Moreover, several ASVs, such as members of SAR324 and Woeseia, were highly specific to nodules. These nodule-specific ASVs are promising targets for future investigation of the nodule formation process.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hiroaki Takebe
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | | - Akira Tsune
- Deep Ocean Resources Development Co., Ltd.TokyoJapan
| | | | | | | | - Ryoma Kamikawa
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | |
Collapse
|
6
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
7
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
8
|
Sun J, Zhou H, Cheng H, Chen Z, Yang J, Wang Y, Jing C. Depth-Dependent Distribution of Prokaryotes in Sediments of the Manganese Crust on Nazimov Guyots of the Magellan Seamounts. MICROBIAL ECOLOGY 2023; 86:3027-3042. [PMID: 37792089 DOI: 10.1007/s00248-023-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China.
| | - Chunlei Jing
- National Deepsea Center, Ministry of Natural Resources, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Vipindas PV, Venkatachalam S, Jabir T, Yang EJ, Cho KH, Jung J, Lee Y, Krishnan KP. Water Mass Controlled Vertical Stratification of Bacterial and Archaeal Communities in the Western Arctic Ocean During Summer Sea-Ice Melting. MICROBIAL ECOLOGY 2023; 85:1150-1163. [PMID: 35347370 DOI: 10.1007/s00248-022-01992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
The environmental variations and their interactions with the biosphere are vital in the Arctic Ocean during the summer sea-ice melting period in the current scenario of climate change. Hence, we analysed the vertical distribution of bacterial and archaeal communities in the western Arctic Ocean from sea surface melt-ponds to deep water up to a 3040 m depth. The distribution of microbial communities showed a clear stratification with significant differences among different water depths, and the water masses in the Arctic Ocean - surface mixed layer, Atlantic water mass and deep Arctic water - appeared as a major factor explaining their distribution in the water column. A total of 34 bacterial phyla were detected in the seawater and 10 bacterial phyla in melt-ponds. Proteobacteria was the dominant phyla in the seawater irrespective of depth, whereas Bacteroidota was the dominant phyla in the melt-ponds. A fast expectation-maximization microbial source tracking analysis revealed that only limited dispersion of the bacterial community was possible across the stratified water column. The surface water mass contributed 21% of the microbial community to the deep chlorophyll maximum (DCM), while the DCM waters contributed only 3% of the microbial communities to the deeper water masses. Atlantic water mass contributed 37% to the microbial community of the deep Arctic water. Oligotrophic heterotrophic bacteria were dominant in the melt-ponds and surface waters, whereas chemoautotrophic and mixotrophic bacterial and archaeal communities were abundant in deeper waters. Chlorophyll and ammonium were the major environmental factors that determined the surface microbial communities, whereas inorganic nutrient concentrations controlled the deep-water communities.
Collapse
Affiliation(s)
- Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India
| | - Eun Jin Yang
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Kyoung-Ho Cho
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Youngju Lee
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, 403 804, India.
| |
Collapse
|
10
|
Shulga N, Abramov S, Klyukina A, Ryazantsev K, Gavrilov S. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci Rep 2022; 12:21967. [PMID: 36539439 PMCID: PMC9768204 DOI: 10.1038/s41598-022-23449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
The impact of biomineralization and redox processes on the formation and growth of ferromanganese deposits in the World Ocean remains understudied. This problem is particularly relevant for the Arctic marine environment where sharp seasonal variations of temperature, redox conditions, and organic matter inflow significantly impact the biogenic and abiotic pathways of ferromanganese deposits formation. The microbial communities of the fast-growing Arctic Fe-Mn deposits have not been reported so far. Here, we describe the microbial diversity, structure and chemical composition of nodules, crust and their underlying sediments collected from three different sites of the Kara Sea. Scanning electron microscopy revealed a high abundance of microfossils and biofilm-like structures within the nodules. Phylogenetic profiling together with redundancy and correlation analyses revealed a positive selection for putative metal-reducers (Thermodesulfobacteriota), iron oxidizers (Hyphomicrobiaceae and Scalinduaceae), and Fe-scavenging Nitrosopumilaceae or Magnetospiraceae in the microenvironments of the Fe-Mn deposits from their surrounding benthic microbial populations. We hypothesize that in the Kara Sea, the nodules provide unique redox-stable microniches for cosmopolitan benthic marine metal-cycling microorganisms in an unsteady environment, thus focusing the overall geochemical activity of nodule-associated microbial communities and accelerating processes of ferromanganese deposits formation to uniquely high rates.
Collapse
Affiliation(s)
- Natalia Shulga
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia.
| | - Sergey Abramov
- Department of Environmental Microbiology, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Ryazantsev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Bergo NM, Torres-Ballesteros A, Signori CN, Benites M, Jovane L, Murton BJ, da Rocha UN, Pellizari VH. Spatial patterns of microbial diversity in Fe-Mn deposits and associated sediments in the Atlantic and Pacific oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155792. [PMID: 35550892 DOI: 10.1016/j.scitotenv.2022.155792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Mining of deep-sea Fe-Mn deposits will remove crusts and nodules from the seafloor. The growth of these minerals takes millions of years, yet little is known about their microbiome. Besides being key elements of the biogeochemical cycles and essential links of food and energy to deep-sea, microbes have been identified to affect manganese oxide formation. In this study, we determined the composition and diversity of Bacteria and Archaea in deep-sea Fe-Mn crusts, nodules, and associated sediments from two areas in the Atlantic Ocean, the Tropic Seamount and the Rio Grande Rise. Samples were collected using ROV and dredge in 2016 and 2018 oceanographic campaigns, and the 16S rRNA gene was sequenced using Illumina platform. Additionally, we compared our results with microbiome data of Fe-Mn crusts, nodules, and sediments from Clarion-Clipperton Zone and Takuyo-Daigo Seamount in the Pacific Ocean. We found that Atlantic seamounts harbor an unusual and unknown Fe-Mn deposit microbiome with lower diversity and richness compared to Pacific areas. Crusts and nodules from Atlantic seamounts have unique taxa (Alteromonadales, Nitrospira, and Magnetospiraceae) and a higher abundance of potential metal-cycling bacteria, such as Betaproteobacteriales and Pseudomonadales. The microbial beta-diversity from Atlantic seamounts was clearly grouped into microhabitats according to sediments, crusts, nodules, and geochemistry. Despite the time scale of million years for these deposits to grow, a combination of environmental settings played a significant role in shaping the microbiome of crusts and nodules. Our results suggest that microbes of Fe-Mn deposits are key in biogeochemical reactions in deep-sea ecosystems. These findings demonstrate the importance of microbial community analysis in environmental baseline studies for areas within the potential of deep-sea mining.
Collapse
Affiliation(s)
| | | | | | - Mariana Benites
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Luigi Jovane
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Bramley J Murton
- National Oceanography Centre, Southampton, England, United Kingdom of Great Britain and Northern Ireland
| | | | | |
Collapse
|
12
|
The “Infernaccio” Gorges: Microbial Diversity of Black Deposits and Isolation of Manganese-Solubilizing Bacteria. BIOLOGY 2022; 11:biology11081204. [PMID: 36009831 PMCID: PMC9404752 DOI: 10.3390/biology11081204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary “Infernaccio” gorges are one of the Earth’s hidden habitats in Central Italy. Beyond the deep incisions and high slopes, these gorges are characterized by black deposits in gorge walls and covering rock surfaces. Several geological events have shaped these unique geological formations and their microbiota. This study investigated microbial contribution to black deposit formation and isolating Mn-oxide-solubilizing bacteria. Our results provided evidence of the putative role of Bacteria and Archaea in forming manganese oxide deposits. Findings also showed that these deposits are a source of valuable strains with manganese oxide bioleaching properties, essential for bioremediation and metal recovery. Abstract The present study explored the microbial diversity of black deposits found in the “Infernaccio” gorge. X-ray Powdered Diffraction (XRPD) was used to investigate the crystallinity of the samples and to identify the minerals. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDS) were used to detect the bacterial imprints, analyze microbe–mineral interactions, and highlight the chemical element distribution in the black deposits. 16S rRNA gene metabarcoding allowed the study of Archaea and Bacteria communities. Mn-oxide-solubilizing isolates were also obtained and characterized by culturable and molecular approaches. The multidisciplinary approach showed the occurrence of deposits composed of birnessite, diopside, halloysite, and leucite. Numerous bacterial imprints confirmed the role of microorganisms in forming these deposits. The Bacteria and Archaea communities associated with these deposits and runoff waters are dynamic and shaped by seasonal changes. The uncultured and unknown taxa are the most common and abundant. These amplicon sequence variants (ASVs) were mainly assigned to Proteobacteria and Bacteroidetes phyla. Six isolates showed interesting Mn solubilization abilities under microaerophilic conditions. Molecular characterization associated isolates to Brevibacterium, Bacillus, Neobacillus, and Rhodococcus genera. The findings enriched our knowledge of geomicrobiological aspects of one of the Earth’s hidden habitats. The study also unveiled the potential of this environment as an isolation source of biotechnologically relevant bacteria.
Collapse
|
13
|
Pawlowski J, Bruce K, Panksep K, Aguirre FI, Amalfitano S, Apothéloz-Perret-Gentil L, Baussant T, Bouchez A, Carugati L, Cermakova K, Cordier T, Corinaldesi C, Costa FO, Danovaro R, Dell'Anno A, Duarte S, Eisendle U, Ferrari BJD, Frontalini F, Frühe L, Haegerbaeumer A, Kisand V, Krolicka A, Lanzén A, Leese F, Lejzerowicz F, Lyautey E, Maček I, Sagova-Marečková M, Pearman JK, Pochon X, Stoeck T, Vivien R, Weigand A, Fazi S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151783. [PMID: 34801504 DOI: 10.1016/j.scitotenv.2021.151783] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - K Bruce
- NatureMetrics Ltd, CABI Site, Bakeham Lane, Egham TW20 9TY, UK
| | - K Panksep
- Institute of Technology, University of Tartu, Tartu 50411, Estonia; Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - F I Aguirre
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - L Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Baussant
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Bouchez
- INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - L Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - K Cermakova
- ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - C Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - F O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - S Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - U Eisendle
- University of Salzburg, Dept. of Biosciences, 5020 Salzburg, Austria
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - F Frontalini
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - L Frühe
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - A Haegerbaeumer
- Bielefeld University, Animal Ecology, 33615 Bielefeld, Germany
| | - V Kisand
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - A Krolicka
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - F Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Germany
| | - F Lejzerowicz
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - E Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - I Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - M Sagova-Marečková
- Czech University of Life Sciences, Dept. of Microbiology, Nutrition and Dietetics, Prague, Czech Republic
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - X Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - T Stoeck
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - R Vivien
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - A Weigand
- National Museum of Natural History Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Luxembourg
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy.
| |
Collapse
|
14
|
Cordier T, Angeles IB, Henry N, Lejzerowicz F, Berney C, Morard R, Brandt A, Cambon-Bonavita MA, Guidi L, Lombard F, Arbizu PM, Massana R, Orejas C, Poulain J, Smith CR, Wincker P, Arnaud-Haond S, Gooday AJ, de Vargas C, Pawlowski J. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. SCIENCE ADVANCES 2022; 8:eabj9309. [PMID: 35119936 PMCID: PMC8816347 DOI: 10.1126/sciadv.abj9309] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump.
Collapse
Affiliation(s)
- Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Inès Barrenechea Angeles
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Franck Lejzerowicz
- Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cédric Berney
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Section Crustacea, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Ecology, Evolution, and Diversity, Goethe-University of Frankfurt, FB 15, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | | | - Lionel Guidi
- Laboratoire d’océanographie de Villefranche (LOV), Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, 06230 Nice, France
| | - Fabien Lombard
- Laboratoire d’océanographie de Villefranche (LOV), Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, 06230 Nice, France
- Institut Universitaire de France (IUF), Paris, France
| | - Pedro Martinez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Südstrand 44, 26382 Wilhelmshaven, Germany
- FK V IBU, AG Marine Biodiversität, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Covadonga Orejas
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Gijón,, Avda Príncipe de Asturias 70 bis, 33212 Gijón, Spain
| | - Julie Poulain
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, University Paris-Saclay, 91057 Evry, France
| | - Craig R. Smith
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, University Paris-Saclay, 91057 Evry, France
| | | | - Andrew J. Gooday
- National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- ID-Gene ecodiagnostics, Confignon, 1232 Geneva, Switzerland
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| |
Collapse
|
15
|
Bergo NM, Bendia AG, Ferreira JCN, Murton BJ, Brandini FP, Pellizari VH. Microbial Diversity of Deep-Sea Ferromanganese Crust Field in the Rio Grande Rise, Southwestern Atlantic Ocean. MICROBIAL ECOLOGY 2021; 82:344-355. [PMID: 33452896 DOI: 10.1007/s00248-020-01670-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Seamounts are often covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Future mining of these crusts is predicted to have significant effects on biodiversity in mined areas. Although microorganisms have been reported on Fe-Mn crusts, little is known about the role of crusts in shaping microbial communities. Here, we investigated microbial communities based on 16S rRNA gene sequences retrieved from Fe-Mn crusts, coral skeleton, calcarenite, and biofilm at crusts of the Rio Grande Rise (RGR). RGR is a prominent topographic feature in the deep southwestern Atlantic Ocean with Fe-Mn crusts. Our results revealed that crust field of the RGR harbors a usual deep-sea microbiome. No differences were observed on microbial community diversity among Fe-Mn substrates. Bacterial and archaeal groups related to oxidation of nitrogen compounds, such as Nitrospirae, Nitrospinae phyla, Candidatus Nitrosopumilus within Thaumarchaeota group, were present on those substrates. Additionally, we detected abundant assemblages belonging to methane oxidation, i.e., Methylomirabilales (NC10) and SAR324 (Deltaproteobacteria). The chemolithoautotrophs associated with ammonia-oxidizing archaea and nitrite-oxidizing bacteria potentially play an important role as primary producers in the Fe-Mn substrates from RGR. These results provide the first insights into the microbial diversity and potential ecological processes in Fe-Mn substrates from the Atlantic Ocean. This may also support draft regulations for deep-sea mining in the region.
Collapse
|
16
|
Lyu J, Yu X, Jiang M, Cao W, Saren G, Chang F. The Mechanism of Microbial-Ferromanganese Nodule Interaction and the Contribution of Biomineralization to the Formation of Oceanic Ferromanganese Nodules. Microorganisms 2021; 9:microorganisms9061247. [PMID: 34201233 PMCID: PMC8227974 DOI: 10.3390/microorganisms9061247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Ferromanganese nodules are an important mineral resource in the seafloor; however, the genetic mechanism is still unknown. The biomineralization of microorganisms appears to promote ferromanganese nodule formation. To investigate the possible mechanism of microbial–ferromanganese nodule interaction, to test the possibility of marine microorganisms as deposition template for ferromanganese nodules minerals, the interactions between Jeotgalibacillus campisalis strain CW126-A03 and ferromanganese nodules were studied. The results showed that strain CW126-A03 increased ion concentrations of Fe, Mn, and other metal elements in solutions at first. Then, metal ions were accumulated on the cells’ surface and formed ultra-micro sized mineral particles, even crystalline minerals. Strain CW126-A03 appeared to release major elements in ferromanganese nodules, and the cell surface may be a nucleation site for mineral precipitation. This finding highlights the potentially important role of biologically induced mineralization (BIM) in ferromanganese nodule formation. This BIM hypothesis provides another perspective for understanding ferromanganese nodules’ genetic mechanism, indicating the potential of microorganisms in nodule formation.
Collapse
Affiliation(s)
- Jing Lyu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Xinke Yu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mingyu Jiang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Wenrui Cao
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Gaowa Saren
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengming Chang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Morales-Guzmán D, Martínez-Morales F, Bertrand B, Rosas-Galván NS, Curiel-Maciel NF, Teymennet-Ramírez KV, Mazón-Román LE, Licea-Navarro AF, Trejo-Hernández MR. Microbial prospection of communities that produce biosurfactants from the water column and sediments of the Gulf of Mexico. Biotechnol Appl Biochem 2020; 68:1202-1215. [PMID: 32969539 DOI: 10.1002/bab.2042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/13/2020] [Indexed: 11/10/2022]
Abstract
Microbial communities capable of hydrocarbon degradation linked to biosurfactant (BS) and bioemulsifier (BE) production are basically unexplored in the Gulf of México (GOM). In this work, the BS and BE production of culturable marine bacterial hydrocarbonoclasts consortia isolated from two sites (the Perdido Fold Belt and Coatzacoalcos area) was investigated. The prospection at different locations and depths led to the screening and isolation of a wide variety of bacterial consortia with BS and BE activities, after culture enrichment with crude oil and glycerol as the carbon sources. At least 55 isolated consortia presented reduction in surface tension (ST) and emulsifying activity (EI24 ). After colony purification, bacteria were submitted to polyphasic analysis assays that resulted in the identification of different strains of cultivable Gammaproteobacteria Gram (-) Citrobacter, Enterobacter, Erwinia, Pseudomonas, Vibrio, Shewanella, Thalassospira, Idiomarina, Pseudoalteromonas, Photobacterium, and Gram (+) Staphylococcus, Bacillus, and Microbacterium. Overall, the best results for ST reduction and EI24 were obtained with consortia. Individually, Pseudomonas, Bacillus, and Enterobacter strains showed the best results for the reduction of ST after 6 days, while Thalassospira and Idiomarina strains showed the best results for EI24 (above 68% after 9 days). Consortia isolates from the GOM had the ability to degrade crude oil by up to 40-80% after 24 and 36 months, respectively. In all cases, biodegradation of crude oil was related to the reduction in ST and bioemulsifying activity and was independent from the depth in the water column.
Collapse
Affiliation(s)
- Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Brandt Bertrand
- Universidad Nacional Autónoma de México (ICF-UNAM). Avenida Universidad 2001, Chamilpa, Instituto de Ciencias Físicas, Cuernavaca, Morelos, México
| | - Nashbly Sarela Rosas-Galván
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nidya Fabiola Curiel-Maciel
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Enrique Mazón-Román
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Alexei Fedorovish Licea-Navarro
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, BC, México
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
18
|
Vonnahme TR, Molari M, Janssen F, Wenzhöfer F, Haeckel M, Titschack J, Boetius A. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. SCIENCE ADVANCES 2020; 6:eaaz5922. [PMID: 32426478 PMCID: PMC7190355 DOI: 10.1126/sciadv.aaz5922] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/04/2020] [Indexed: 05/14/2023]
Abstract
Future supplies of rare minerals for global industries with high-tech products may depend on deep-sea mining. However, environmental standards for seafloor integrity and recovery from environmental impacts are missing. We revisited the only midsize deep-sea disturbance and recolonization experiment carried out in 1989 in the Peru Basin nodule field to compare habitat integrity, remineralization rates, and carbon flow with undisturbed sites. Plough tracks were still visible, indicating sites where sediment was either removed or compacted. Locally, microbial activity was reduced up to fourfold in the affected areas. Microbial cell numbers were reduced by ~50% in fresh "tracks" and by <30% in the old tracks. Growth estimates suggest that microbially mediated biogeochemical functions need over 50 years to return to undisturbed levels. This study contributes to developing environmental standards for deep-sea mining while addressing limits to maintaining and recovering ecological integrity during large-scale nodule mining.
Collapse
Affiliation(s)
- T. R. Vonnahme
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- Corresponding author.
| | - M. Molari
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - F. Janssen
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- HGF MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, Bremerhaven, Germany
| | - F. Wenzhöfer
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- HGF MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, Bremerhaven, Germany
| | - M. Haeckel
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - J. Titschack
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - A. Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- HGF MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, Bremerhaven, Germany
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, Juliarni, Rastelli E, Danovaro R, Corinaldesi C, Kitahashi T, Tasumi E, Nishizawa M, Takai K, Nomaki H, Nunoura T. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME JOURNAL 2019; 14:740-756. [PMID: 31827245 PMCID: PMC7031335 DOI: 10.1038/s41396-019-0564-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. Our trans-trench analysis highlights intra- and inter-trench distributions of microbial assemblages and geochemistry in surface seafloor sediments, providing novel insights into ultradeep-sea microbial ecology, one of the last frontiers on our planet.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Yohei Matsui
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Akiko Makabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hiroaki Minegishi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585, Saitama, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Juliarni
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| |
Collapse
|
20
|
Kato S, Hirai M, Ohkuma M, Suzuki K. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo Seamount as revealed by metagenomics. PLoS One 2019; 14:e0224888. [PMID: 31703093 PMCID: PMC6839870 DOI: 10.1371/journal.pone.0224888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
Rocky outcrops covered with thick Fe and Mn oxide coatings, which are known as ferromanganese (Fe-Mn) crusts, are commonly found on slopes of aged seamounts in bathyal and abyssal zones. Although the presence of diverse microorganisms on these Fe-Mn crusts has been reported, little is known about their metabolism. Here, we report the metabolic potential of the microbial community in an abyssal crust collected in the Takuyo-Daigo Seamount, in the north-western Pacific. We performed shotgun metagenomic sequencing of the Fe-Mn crust, and detected putative genes involved in dissolution and precipitation of Fe and Mn, nitrification, sulfur oxidation, carbon fixation, and decomposition of organics in the metagenome. In addition, four metagenome-assembled genomes (MAGs) of abundant members in the microbial community were recovered from the metagenome. The MAGs were affiliated with Thaumarchaeota, Alphaproteobacteria, and Gammaproteobacteria, and were distantly related to previously reported genomes/MAGs of cultured and uncultured species. Putative genes involved in the above reactions were also found in the crust MAGs. Our results suggest that crust microbial communities play a role in biogeochemical cycling of C, N, S, Fe, and Mn, and imply that they contribute to the growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Katsuhiko Suzuki
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
21
|
Gawas VS, Shivaramu MS, Damare SR, Pujitha D, Meena RM, Shenoy BD. Diversity and extracellular enzyme activities of heterotrophic bacteria from sediments of the Central Indian Ocean Basin. Sci Rep 2019; 9:9403. [PMID: 31253859 PMCID: PMC6599205 DOI: 10.1038/s41598-019-45792-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Sedimentary bacteria play a role in polymetallic nodule formation and growth. There are, however, limited reports on bacterial diversity in nodule-rich areas of the Central Indian Ocean Basin (CIOB). In this study, bacterial abundance in thirteen sediment cores collected from the CIOB was enumerated, followed by phylogenetic characterisation and, screening of select heterotrophic bacteria for extracellular enzyme activities. Total bacterial counts (TBC) were in the order of 107 cells g-1; there was a significant difference (p > 0.05) among the cores but not within the sub-sections of the cores. The retrievable heterotrophic counts ranged from non-detectable to 5.33 × 105 g-1; the heterotrophic bacteria clustered within the phyla Firmicutes, Proteobacteria and Actinobacteria. Bacillus was the most abundant genus. The extracellular enzyme activities were in the order: amylase > lipase > protease > phosphatase > Dnase > urease. Major findings are compared with previous studies from the CIOB and other areas.
Collapse
Affiliation(s)
- Vijayshree S Gawas
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Mamatha S Shivaramu
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India.
| | - Samir R Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Devagudi Pujitha
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam, 530017, Andhra Pradesh, India.,Department of Bioinformatics, Karunya University, Coimbatore, 611114, Tamil Nadu, India
| | - Ram Murti Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Belle Damodara Shenoy
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam, 530017, Andhra Pradesh, India.
| |
Collapse
|
22
|
Drazen J, Smith C, Gjerde K, Au W, Black J, Carter G, Clark M, Durden J, Dutrieux P, Goetze E, Haddock S, Hatta M, Hauton C, Hill P, Koslow J, Leitner A, Measures C, Pacini A, Parrish F, Peacock T, Perelman J, Sutton T, Taymans C, Tunnicliffe V, Watling L, Yamamoto H, Young E, Ziegler A. Report of the workshop Evaluating the nature of midwater mining plumes and their potential effects on midwater ecosystems. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e33527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The International Seabed Authority (ISA) is developing regulations to control the future exploitation of deep-sea mineral resources including sulphide deposits near hydrothermal vents, polymetallic nodules on the abyssal seafloor, and cobalt crusts on seamounts. Under the UN Convention on the Law of the Sea the ISA is required to adopt are taking measures to ensure the effective protection of the marine environment from harmful effects arising from mining-related activities. Contractors are required to generate environmental baselines and assess the potential environmental consequences of deep seafloor mining. Understandably, nearly all environmental research has focused on the seafloor where the most direct mining effects will occur. However, sediment plumes and other impacts (e.g., noise) from seafloor mining are likely to be extensive in the water column. Sediment plumes created on the seafloor will affect the benthic boundary layer which extends 10s to 100s of meters above the seafloor. Separation or dewatering of ore from sediment and seawater aboard ships will require discharge of a dewatering plume at some depth in the water column.
It is important to consider the potential impacts of mining on the ocean’s midwaters (depths from ~200 m to the seafloor) because they provide vital ecosystem services and harbor substantial biodiversity. The better known epipelagic or sunlit surface ocean provisions the rest of the water column through primary production and export flux (This was not the focus at this workshop as the subject was considered too large and surface discharges are unlikely). It is also home to a diverse community of organisms including commercially important fishes such as tunas, billfish, and cephalopods that contribute to the economies of many countries. The mesopelagic or twilight zone (200-1000 m) is dimly lit and home to very diverse and abundant communities of organisms. Mesopelagic plankton and small nekton form the forage base for many deep-diving marine mammals and commercially harvested epipelagic species. Furthermore, detritus from the epipelagic zone falls through the mesopelagic where it is either recycled, providing the vital process of nutrient regeneration, or sinks to greater depths sequestering carbon from short-term atmospheric cycles. The waters below the mesopelagic down to the seafloor (both the bathypelagic and abyssopelagic) are very poorly characterized but are likely large reservoirs of novel biodiversity and link the surface and benthic ecosystems.
Great strides have been made in understanding the biodiversity and ecosystem function of the ocean’s midwaters, but large regions, including those containing many exploration license areas and the greater depths where mining plumes will occur, remain very poorly studied. It is clear that pelagic communities are distinct from those on the seafloor and in the benthic boundary layer. They are often sampled with different instrumentation. The fauna have relatively large biogeographic ranges and they are more apt to mix freely across stakeholder boundaries, reference areas and other spatial management zones. Pelagic organisms live in a three-dimensional habitat and their food webs and populations are vertically connected by daily or lifetime migrations and the sinking flux of detritus from the epipelagic. The fauna do not normally encounter hard surfaces, making them fragile, and difficult to capture and maintain for sensitivity or toxicity studies. Despite some existing general knowledge, ecological baselines for midwater communities and ecosystems that likely will be impacted by mining have not been documented. There is an urgent need to conduct more research and evaluate the midwater biota (microbes to fishes) in regions where mining is likely to occur.
Deep-sea mining activities may affect midwater organisms in a number of ways, but it is still unclear at what scale perturbations may occur. The sediment plumes both from collectors on the seafloor and from midwater discharge will have a host of negative consequences. They may cause respiratory distress from clogged gills or respiratory surfaces. Suspension feeders, such as copepods, polychaetes, salps, and appendicularians, that filter small particles from the water and form an important basal group of the food web, may suffer from dilution of their food by inorganic sediments and/or clogging of their fragile mucous filter nets. Small particles may settle on gelatinous plankton causing buoyancy issues. Metals, including toxic elements that will enter the food web, will be released from pore waters and crushed ore materials. Sediment plumes will also absorb light and change backscatter properties, reducing visual communication and bioluminescent signaling that are very important for prey capture and reproduction in midwater animals. Noise from mining activities may alter the behaviors of marine mammals and other animals. Small particles have high surface area to volume ratios, high pelagic persistence and dispersal and as a result greater potential to result in pelagic impacts. All of these potential effects will result in mortality, migration (both horizontal and vertical), decreased fitness, and shifts in community composition. Depending on the scale and duration of these effects, there could be reduction in provisioning to commercial fish species, delivery of toxic metals to pelagic food webs and hence human seafood supply, and alterations to carbon transport and nutrient regeneration services.
After four days of presentations and discussions, the workshop participants came to several conclusions and synthesized recommendations.
1. Assuming no discharge in the epipelagic zone, it is essential to minimize mining effects in the mesopelagic zone because of links to our human seafood supply as well as other ecosystem services provided by the mesopelagic fauna. This minimization could be accomplished by delivering dewatering discharge well below the mesopelagic/bathypelagic transition (below ~1000 m depth).
2. Research should be promoted by the ISA and other bodies to study the bathypelagic and abyssopelagic zones (from ~1000 m depths to just above the seafloor). It is likely that both collector plumes and dewatering plumes will be created in the bathypelagic, yet this zone is extremely understudied and contains major unknowns for evaluating mining impacts.
3. Management objectives, regulations and management actions need to prevent the creation of a persistent regional scale “haze” (enhanced suspended particle concentrations) in pelagic midwaters. Such a haze would very likely cause chronic harm to deep midwater ecosystem biodiversity, structure and function.
4. Effort is needed to craft suitable standards, thresholds, and indicators of harmful environmental effects that are appropriate to pelagic ecosystems. In particular, suspension feeders are very important ecologically and are likely to be very sensitive to sediment plumes. They are a high priority for study.
5. Particularly noisy mining activities such as ore grinding at seamounts and hydrothermal vents is of concern to deep diving marine mammals and other species. One way to minimize sound impacts would be to minimize activities in the sound-fixing-and-ranging (SOFAR) channel (typically at depths of ~1000 m) which transmits sounds over very long distances.
6. A Lagrangian (drifting) perspective is needed in monitoring and management because the pelagic ecosystem is not a fixed habitat and mining effects are likely to cross spatial management boundaries. For example, potential broad-scale impacts to pelagic ecosystems should be considered in the deliberations over preservation reference zones, the choice of stations for environmental baseline and monitoring studies and other area-based management and conservation measures.
7. Much more modeling and empirical study of realistic mining sediment plumes is needed. Plume models will help evaluate the spatial and temporal extent of pelagic (as well as benthic) ecosystem effects and help to assess risks from different technologies and mining scenarios. Plume modeling should include realistic mining scenarios (including duration) and assess the spatial-temporal scales over which particle concentrations exceed baseline levels and interfere with light transmission to elucidate potential stresses on communities and ecosystem services. Models should include both near and far field-phases, incorporating realistic near field parameters of plume generation, flocculation, particle sinking, and other processes. It is important to note that some inputs to these models such as physical oceanographic parameters are lacking and should be acquired in the near-term. Plume models need to be complemented by studies to understand effects on biological components by certain particle sizes and concentrations.
Collapse
|
23
|
Kato S, Okumura T, Uematsu K, Hirai M, Iijima K, Usui A, Suzuki K. Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount. Microbes Environ 2018; 33:366-377. [PMID: 30381615 PMCID: PMC6307992 DOI: 10.1264/jsme2.me18090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rock outcrops of aged deep-sea seamounts are generally covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Although the presence of microorganisms in Fe-Mn crusts has been reported, limited information is currently available on intra- and inter-variations in crust microbial communities. Therefore, we collected several Fe-Mn crusts in bathyal and abyssal zones (water depths of 1,150-5,520 m) in the Takuyo-Daigo Seamount in the northwestern Pacific, and examined microbial communities on the crusts using culture-independent molecular and microscopic analyses. Quantitative PCR showed that microbial cells were abundant (106-108 cells g-1) on Fe-Mn crust surfaces through the water depths. A comparative 16S rRNA gene analysis revealed community differences among Fe-Mn crusts through the water depths, which may have been caused by changes in dissolved oxygen concentrations. Moreover, community differences were observed among positions within each Fe-Mn crust, and potentially depended on the availability of sinking particulate organic matter. Microscopic and elemental analyses of thin Fe-Mn crust sections revealed the accumulation of microbial cells accompanied by the depletion of Mn in valleys of bumpy crust surfaces. Our results suggest that heterogeneous and abundant microbial communities play a role in the biogeochemical cycling of Mn, in addition to C and N, on crusts and contribute to the extremely slow growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Tomoyo Okumura
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC.,Center for Advanced Marine Core Research, Kochi University
| | | | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC
| | - Koichi Iijima
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Akira Usui
- Center for Advanced Marine Core Research, Kochi University
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| |
Collapse
|
24
|
Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Central Arctic Ocean. Front Microbiol 2018; 9:1035. [PMID: 29875749 PMCID: PMC5974969 DOI: 10.3389/fmicb.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022] Open
Abstract
In summer 2012, Arctic sea ice declined to a record minimum and, as a consequence of the melting, large amounts of aggregated ice-algae sank to the seafloor at more than 4,000 m depth. In this study, we assessed the composition, turnover and connectivity of bacterial and microbial eukaryotic communities across Arctic habitats from sea ice, algal aggregates and surface waters to the seafloor. Eukaryotic communities were dominated by diatoms, dinoflagellates and other alveolates in all samples, and showed highest richness and diversity in sea-ice habitats (∼400-500 OTUs). Flavobacteriia and Gammaproteobacteria were the predominant bacterial classes across all investigated Arctic habitats. Bacterial community richness and diversity peaked in deep-sea samples (∼1,700 OTUs). Algal aggregate-associated bacterial communities were mainly recruited from the sea-ice community, and were transported to the seafloor with the sinking ice algae. The algal deposits at the seafloor had a unique community structure, with some shared sequences with both the original sea-ice community (22% OTU overlap), as well as with the deep-sea sediment community (17% OTU overlap). We conclude that ice-algal aggregate export does not only affect carbon export from the surface to the seafloor, but may change microbial community composition in central Arctic habitats with potential effects for benthic ecosystem functioning in the future.
Collapse
Affiliation(s)
- Josephine Z. Rapp
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Christina Bienhold
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
25
|
Lindh MV, Maillot BM, Smith CR, Church MJ. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:113-122. [PMID: 29411533 DOI: 10.1111/1758-2229.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|