1
|
Mörkl S, Narrath M, Schlotmann D, Sallmutter MT, Putz J, Lang J, Brandstätter A, Pilz R, Karl Lackner H, Goswami N, Steuber B, Tatzer J, Lackner S, Holasek S, Painold A, Jauk E, Wenninger J, Horvath A, Spicher N, Barth A, Butler MI, Wagner-Skacel J. Multi-species probiotic supplement enhances vagal nerve function - results of a randomized controlled trial in patients with depression and healthy controls. Gut Microbes 2025; 17:2492377. [PMID: 40298641 PMCID: PMC12045568 DOI: 10.1080/19490976.2025.2492377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Major depression (MD) significantly impacts individual well-being and society. The vagus nerve plays a pivotal role in the gut-brain axis, facilitating bidirectional communication between these systems. Recent meta-analyses suggest potential antidepressant effects of probiotics, although their mechanisms remain unclear. This study aimed to assess the impact of a multi-species probiotic (OMNi-BiOTiC® STRESS Repair) on vagus nerve function in 43 MD patients and 43 healthy controls (HC). Participants received either probiotics or placebo twice daily. Serum and stool samples were collected at baseline, 7 days, 28 days, and 3 months. Vagus nerve (VN) function was evaluated using 24-hour electrocardiography (ECG) for heart rate variability (HRV), alongside stool microbiome analysis via 16S rRNA sequencing. After 3 months, MD patients receiving probiotics demonstrated significantly improved morning VN function compared to HC. MD participants who were in the probiotic group showed a significant increase in Christensellales, particularly Akkermansia muciniphila along with improved sleep parameters (use of sleep medication, sleep latency) as measured by the Pittsburgh Sleep Quality Inventory (PSI). This study highlights potential physiological benefits of probiotics in MD, potentially mediated through VN stimulation. Understanding these mechanisms could lead to novel therapeutic approaches for MD management.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martin Narrath
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daria Schlotmann
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marie-Therese Sallmutter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Putz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lang
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Brandstätter
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bianca Steuber
- Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
- Gravitational Physiology and Medicine Research Unit, Division of Physiology und Pathophysiology, Medical University of Graz, Graz, Austria
| | - Jasmin Tatzer
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Emanuel Jauk
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Julian Wenninger
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Nicolai Spicher
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Asmus Barth
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Mary I Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Ge Y, Janson V, Dong Z, Liu H. Role and mechanism of IL-33 in bacteria infection related gastric cancer continuum: From inflammation to tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189296. [PMID: 40058506 DOI: 10.1016/j.bbcan.2025.189296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Gastric cancer, a globally prevalent malignant tumor, is characterized by low early diagnosis rate, high metastasis rate, and poor prognosis, particularly in East Asia, Eastern Europe, and South America. Helicobacter pylori (H. pylori) is recognized as the primary risk factor for gastric cancer. However, the fact that fewer than 3 % of infected individuals develop cancer suggests that other bacteria may also influence gastric carcinogenesis. A diverse community of microorganisms may interact with H. pylori, thereby driving disease progression. Here, the role of the cytokine IL-33, a member of the IL-1 family, is scrutinized. Its production can be induced by H. pylori through the activation of specific signaling pathways, and it contributes to the inflammatory environment by promoting the release of pro-inflammatory cytokines. This article reviews the conflicting evidence regarding IL-33's role in the progression from gastritis to gastric cancer and discusses the potential therapeutic implications of targeting the IL-33/ST2 axis, with various antibodies and inhibitors in development or undergoing clinical trials for inflammatory diseases. However, the role of IL-33 in gastric cancer treatment remains to be fully elucidated, with its effects potentially dependent on the cellular context and stage of cancer progression. In summary, this review provides a comprehensive overview of the intricate relationship between gastric microbiota, IL-33, and gastritis - gastric cancer transition, offering insights into potential therapeutic targets and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
3
|
Verma J, Anwar MT, Linz B, Backert S, Pachathundikandi SK. The Influence of Gastric Microbiota and Probiotics in Helicobacter pylori Infection and Associated Diseases. Biomedicines 2024; 13:61. [PMID: 39857645 PMCID: PMC11761556 DOI: 10.3390/biomedicines13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The role of microbiota in human health and disease is becoming increasingly clear as a result of modern microbiome studies in recent decades. The gastrointestinal tract is the major habitat for microbiota in the human body. This microbiota comprises several trillion microorganisms, which is equivalent to almost ten times the total number of cells of the human host. Helicobacter pylori is a known pathogen that colonizes the gastric mucosa of almost half of the world population. H. pylori is associated with several gastric diseases, including gastric cancer (GC) development. However, the impact of the gastric microbiota in the colonization, chronic infection, and pathogenesis is still not fully understood. Several studies have documented qualitative and quantitative changes in the microbiota's composition in the presence or absence of this pathogen. Among the diverse microflora in the stomach, the Firmicutes represent the most notable. Bacteria such as Prevotella sp., Clostridium sp., Lactobacillus sp., and Veillonella sp. were frequently found in the healthy human stomach. In contrast, H.pylori is very dominant during chronic gastritis, increasing the proportion of Proteobacteria in the total microbiota to almost 80%, with decreasing relative proportions of Firmicutes. Likewise, H. pylori and Streptococcus are the most abundant bacteria during peptic ulcer disease. While the development of H. pylori-associated intestinal metaplasia is accompanied by an increase in Bacteroides, the stomachs of GC patients are dominated by Firmicutes such as Lactobacillus and Veillonella, constituting up to 40% of the total microbiota, and by Bacteroidetes such as Prevotella, whereas the numbers of H. pylori are decreasing. This review focuses on some of the consequences of changes in the gastric microbiota and the function of probiotics to modulate H. pylori infection and dysbiosis in general.
Collapse
Affiliation(s)
- Jagriti Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Md Tanveer Anwar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Bodo Linz
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Chair of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
4
|
Yan Y, Dong L, Xu J, Zhang Z, Jia P, Zhang J, Chen W, Gao W. Preliminary study on the potential impact of probiotic combination therapy on Helicobacter pylori infection in children using 16S gene sequencing and untargeted metabolomics approach. Front Microbiol 2024; 15:1487978. [PMID: 39545236 PMCID: PMC11560915 DOI: 10.3389/fmicb.2024.1487978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Objective The purpose of this study was to explore the potential mechanism of Helicobacter pylori (Hp) eradication by probiotic therapy through 16S rRNA gene sequencing technology and untargeted metabolomics. Methods Twenty four Hp-infected children were recruited from the Shanxi Bethune Hospital, and 24 healthy children were recruited as a blank control group. Group A: fecal samples from 24 healthy children. Group B: fecal samples of 24 children with Hp infection. Group B1 (n = 15): fecal samples of group B treated with probiotic therapy for 2 weeks. Group B2 (n = 19): fecal samples of group B treated with probiotic therapy for 4 weeks. The above fecal samples were analyzed by 16S rRNA gene sequencing technology and untargeted metabolomics. Results There was no significant difference in alpha diversity and beta diversity among the four groups, but many bacteria with statistical difference were found in each group at the bacterial genus level and phylum level. LEfSe results showed that in group B, Porphyromonadaceae, Shigella and other microorganisms related to intestinal microecological dysbiosis were enriched. And in group B2, abundant characteristic microorganisms were found, namely Bacillales and Prevotella. KEGG metabolic pathway enrichment analysis showed that groups B1 and B2 were involved in 10 metabolic pathways potentially related to probiotic treatment: purine metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartic acid and glutamate metabolism, glyoxylic acid and dicarboxylic acid metabolism, unsaturated fatty acid biosynthesis, fatty acid extension, fatty acid degradation, pyrimidine metabolism, fatty acid biosynthesis. Conclusion Probiotic therapy can inhibit Hp to some extent and can relieve gastrointestinal symptoms, making it a preferred therapy for children with Hp infection and functional abdominal pain. Hp infection can reduce the diversity of intestinal microbes, resulting in the disturbance of intestinal microbiota and changes in the relative abundance of microbiota in children, while probiotic therapy can restore the diversity of intestinal microbes and intestinal microecological balance.
Collapse
Affiliation(s)
- Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Lingjun Dong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Juan Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhijiao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Pengyan Jia
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation (SAARI), Taiyuan, China
| |
Collapse
|
5
|
Li C, Qian X, Zhang Z, Jiang Z. Effects of Helicobacter pylori and Helicobacter pylori eradication on the microbiota of tongue coating. BMC Microbiol 2024; 24:416. [PMID: 39425053 PMCID: PMC11487991 DOI: 10.1186/s12866-024-03584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Eradicating Helicobacter pylori (H. pylori) can cause an imbalance in the microbiota. Dysbiosis of the gut microbiome may produce multiple diseases and bacterial infections. The objective of this study was to investigate the influence of Helicobacter pylori (H. pylori) infection and its eradication on the composition of the oral tongue coating microbiota. A cohort of 35 participants was recruited and categorized into two groups: the H. pylori negative group (N group) consisting of 12 individuals and the H. pylori positive group (23 individuals). Within the H. pylori positive group, subjects were further stratified into the H. pylori pre-eradicated group (HPQ group) and the H. pylori eradicated group (HPH group). H. pylori positive individuals were treated with a quadruple regimen containing bismuth, and tongue coating samples were collected both prior to and following treatment. Concurrently, tongue coating samples were collected from H. pylori negative individuals. High-throughput 16S rRNA sequencing technology was employed to assess the microbial composition of the tongue coating in the N group, HPQ group, and HPH group. Pertinent clinical data were documented.Microbial diversity was found to significantly differ among the N group, HPQ group, and HPH group, as evidenced by variations in Chao1 index, Shannon index, and Partial Least Squares Discriminant Analysis (PLS-DA). The dominant bacterial phyla identified across all groups included Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Saccharibacteria. At the phylum level, Firmicutes exhibited higher relative abundance in the HPQ group in comparison to both the N group and HPH group. Conversely, Bacteroidetes displayed greater prevalence in the N group and HPH group. Linear Discriminant Analysis Effect Size (LEfSe) analysis indicated a higher abundance of Romboutsia, Rothia, and Turiciactor in the HPQ group. Our study revealed significant disparities in microbial diversity and richness among the three groups. Furthermore, our findings suggest a potential association between the presence of Streptococcus, Rothia and H. pylori positive individuals.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China
| | - Xuetian Qian
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| | - Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
6
|
Petkevicius V, Lehr K, Kupcinskas J, Link A. Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis. World J Gastroenterol 2024; 30:3972-3984. [PMID: 39351058 PMCID: PMC11438658 DOI: 10.3748/wjg.v30.i35.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative anaerobic bacterium that plays a key role in the development of oral inflammation, such as periodontitis and gingivitis. In the last 10 years, F. nucleatum has been identified as a prevalent bacterium associated with colorectal adenocarcinoma and has also been linked to cancer progression, metastasis and poor disease outcome. While the role of F. nucleatum in colon carcinogenesis has been intensively studied, its role in gastric carcinogenesis is still poorly understood. Although Helicobacter pylori infection has historically been recognized as the strongest risk factor for the development of gastric cancer (GC), with recent advances in DNA sequencing technology, other members of the gastric microbial community, and F. nucleatum in particular, have received increasing attention. In this review, we summarize the existing knowledge on the involvement of F. nucleatum in gastric carcinogenesis and address the potential translational and clinical significance of F. nucleatum in GC.
Collapse
Affiliation(s)
- Vytenis Petkevicius
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| |
Collapse
|
7
|
Qiao K, Song Z, Liang L, Zhou X, Feng X, Xu Y, Yang R, Sun B, Zhang Y. Exploring the Underlying Mechanisms of Preventive Treatment Related to Dietary Factors for Gastric Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17782-17801. [PMID: 39102359 DOI: 10.1021/acs.jafc.4c05361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gastric diseases have emerged as one of the main chronic diseases in humans, leading to considerable health, social, and economic burdens. As a result, using food or "food and medicinal homologous substances" has become an effective strategy to prevent gastric diseases. Diet may play a crucial role in the prevention and mitigation of gastric diseases, particularly long-term and regular intake of specific dietary components that have a protective effect on the stomach. These key components, extracted from food, include polysaccharides, alkaloids, terpenoids, polyphenols, peptides, probiotics, etc. The related mechanisms involve regulating gastric acid secretion, protecting gastric mucosa, increasing the release of gastric defense factors, decreasing the level of inflammatory factors, inhibiting Helicobacter pylori infection, producing antioxidant effects or reducing oxidative damage, preventing gastric oxidative stress by inhibiting lipid peroxides, activating Nrf2 signaling pathway, and inhibiting NF-κB, TLR4, and NOS/NO signaling pathways.
Collapse
Affiliation(s)
- Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zichong Song
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100048, China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Huang X, Zhang DY, Li D, Lv Y, Chen S, Bai F. Human gastric microbiota analysis of refractory H. pylori infection. Sci Rep 2024; 14:15619. [PMID: 38972876 PMCID: PMC11228035 DOI: 10.1038/s41598-024-66339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.
Collapse
Affiliation(s)
- Xianfeng Huang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da-Ya Zhang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da Li
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Yanting Lv
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Shiju Chen
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Yehai Avenue, #368, Longhua District, Haikou, 570216, Hainan Province, China.
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, 570216, China.
| |
Collapse
|
9
|
Wang Y, Zhang Z, Chen Q, Chen T. Simultaneous application of oral and intravaginal probiotics for Helicobacter pylori and its antibiotic-therapy-induced vaginal dysbacteriosis. NPJ Biofilms Microbiomes 2024; 10:49. [PMID: 38902244 PMCID: PMC11190290 DOI: 10.1038/s41522-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori is a prevalent bacterial pathogen globally, implicated in various gastrointestinal disorders. Current recommended antibiotic therapies for H. pylori infection have been proven to be therapeutically insufficient, with low eradication rates and high recurrence rates. Emerging evidence suggests that antibiotic therapy for H. pylori can lead to gastrointestinal and subsequent vaginal dysbiosis, posing challenges for conventional antibiotic approaches. Thus, this article proposes a novel probiotic therapy involving simultaneous oral and intra-vaginal probiotic administration alongside antibiotics for H. pylori treatment, aiming to enhance eradication rates and mitigate dysbiosis. We begin by providing an overview of gastrointestinal and vaginal microbiota and their interconnectedness through the vagina-gut axis. We then review the efficacy of current antibiotic regimens for H. pylori and discuss how antibiotic treatment impacts the vaginal microenvironment. To explore the feasibility of this approach, we evaluate the effectiveness of oral and intra-vaginal probiotics in restoring normal microbiota in the gastrointestinal and vaginal tracts, respectively. Additionally, we analyze the direct mechanisms by which oral and intra-vaginal probiotics act on their respective tracts and discuss potential cross-tract mechanisms. Considering the potential synergistic therapeutic effects of probiotics in both the gastrointestinal and vaginal tracts, dual-channel probiotic therapy holds promise as a more effective approach for H. pylori eradication and dysbiosis mitigation, presenting a novel concept in the collaborative treatment of gastrointestinal and genital disorders.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Nath AR, Natarajan J. Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers. Genomics Inform 2024; 22:1. [PMID: 38907281 PMCID: PMC11184957 DOI: 10.1186/s44342-024-00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/07/2024] [Indexed: 06/23/2024] Open
Abstract
The goal of the study was to investigate the changes in the gut microbiota during the advancement of gastric cancer (GC) and identify pertinent taxa associated with the disease. We used a public fecal amplicon gastric cancer dataset from the Sequence Retrieval Archive (SRA), of patients with GC, gastritis, and healthy individuals. We did sequence pre-processing, including quality filtering of the sequences. Then, we performed a diversity analysis, evaluating α- and β-diversity. Next, taxonomic composition analysis was performed and the relative abundances of different taxa at the phylum and genus levels were compared between GC, gastritis, and healthy controls. The obtained results were subsequently subjected to statistical validation. To conclude, metagenomic function prediction was carried out, followed by correlation analysis between the microbiota and KEGG pathways. α analysis revealed a significant difference between male and female categories, while β analysis demonstrated significant distinctions between GC, gastritis, and healthy controls, as well as between sexes within the GC and gastritis groups. The statistically confirmed taxonomic composition analysis highlighted the presence of the microbes Bacteroides and Veillonella. Furthermore, through metagenomic prediction analysis and correlation analysis with pathways, three taxa, namely Akkermansia, Gammaproteobacteria, and Veillonella, were identified as potential biomarkers for GC. Additionally, this study reports, for the first time, the presence of two bacteria, Desulfobacteriota and Synergistota, in GC, necessitating further investigation. Overall, this research sheds light on the potential involvement of gut microbiota in GC pathophysiology; however, additional studies are warranted to explore its functional significance.
Collapse
Affiliation(s)
- Anju R Nath
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
11
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
13
|
Wolfschluckner V, Obermüller B, Horvath A, Rodriguez-Blanco G, Fuchs P, Miekisch W, Mittl B, Flucher C, Till H, Singer G. Metabolomic Alterations of Volatile Organic Compounds and Bile Acids as Biomarkers of Microbial Shifts in a Murine Model of Short Bowel Syndrome. Nutrients 2023; 15:4949. [PMID: 38068807 PMCID: PMC10708115 DOI: 10.3390/nu15234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. β-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.
Collapse
Affiliation(s)
- Vanessa Wolfschluckner
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Patricia Fuchs
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Wolfram Miekisch
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Christina Flucher
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| |
Collapse
|
14
|
Obermüller B, Singer G, Kienesberger B, Mittl B, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Schweiger M, Pajed L, Till H, Castellani C. Probiotic OMNi-BiOTiC ® 10 AAD Reduces Cyclophosphamide-Induced Inflammation and Adipose Tissue Wasting in Mice. Nutrients 2023; 15:3655. [PMID: 37630845 PMCID: PMC10458463 DOI: 10.3390/nu15163655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.
Collapse
Affiliation(s)
- Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Paediatric Surgery, Clinical Center of Klagenfurt, 9020 Klagenfurt, Austria
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Angela Horvath
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Martina Schweiger
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Laura Pajed
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Anesthesiology and Intensive Care Medicine, Weiz District Hospital, 8160 Weiz, Austria
| |
Collapse
|
15
|
Malli C, Pandit L, D’Cunha A, Sudhir A. Helicobacter pylori infection may influence prevalence and disease course in myelin oligodendrocyte glycoprotein antibody associated disorder (MOGAD) similar to MS but not AQP4-IgG associated NMOSD. Front Immunol 2023; 14:1162248. [PMID: 37304259 PMCID: PMC10250711 DOI: 10.3389/fimmu.2023.1162248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023] Open
Abstract
Background Helicobacter pylori (Hp) persists after colonizing the gut in childhood, and potentially regulates host immune system through this process. Earlier studies have shown that Hp infection in childhood, may protect against MS in later life. Such an association was not seen with AQP4-IgG positive NMOSD, while the association with MOGAD is unclear. Objective To evaluate frequency of Hp IgG among patients with MOGAD, MS, NMOSD and matched controls and its effect on disease course. To ascertain whether childhood socio economic factors were linked to prevalence of Hp infection. Methods In all, 99 patients diagnosed to have MOGAD, 99 AQP4 IgG+ NMOSD, 254MS and 243 matched controls were included. Patient demographics, diagnosis, age at disease onset, duration and the last recorded expanded disability status scale (EDSS) were obtained from our records. Socioeconomic and educational status was queried using a previously validated questionnaire. Serum HpIgG was detected using ELISA kits (Vircell, Spain). Result Frequency of Hp IgG was significantly lower among MOGAD (28.3% vs 44%, p-0.007) and MS (21.2% vs 44%, p-0.0001) but not AQP4-IgG+ NMOSD patients (42.4% vs 44%, p-0.78) when compared to controls. Frequency of Hp IgG in MOGAD & MS patients combined (MOGAD-MS) was significantly lower than those with NMOSD (23.2% vs 42.4%, p- 0.0001). Seropositive patients with MOGAD- MS were older (p-0.001. OR -1.04, 95% CI- 1.01- 1.06) and had longer disease duration (p- 0.04, OR- 1.04, 95% CI- 1.002- 1.08) at time of testing. Educational status was lower among parents/caregivers of this study cohort (p- 0.001, OR -2.34, 95% CI- 1.48-3.69) who were Hp IgG+. Conclusions In developing countries Hp infection may be a significant environmental factor related to autoimmune demyelinating CNS disease. Our preliminary data suggests that Hp may exert a differential influence - a largely protective role for MS-MOGAD but not NMOSD and may influence disease onset and course. This differential response maybe related to immuno-pathological similarities between MOGAD and MS in contrast to NMOSD. Our study further underscores the role of Hp as a surrogate marker for poor gut hygiene in childhood and its association with later onset of autoimmune diseases.
Collapse
|
16
|
Fiorani M, Tohumcu E, Del Vecchio LE, Porcari S, Cammarota G, Gasbarrini A, Ianiro G. The Influence of Helicobacter pylori on Human Gastric and Gut Microbiota. Antibiotics (Basel) 2023; 12:765. [PMID: 37107126 PMCID: PMC10135037 DOI: 10.3390/antibiotics12040765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that is able to colonize the human stomach, whose high prevalence has a major impact on human health, due to its association with several gastric and extra-gastric disorders, including gastric cancer. The gastric microenvironment is deeply affected by H. pylori colonization, with consequent effects on the gastrointestinal microbiota, exerted via the regulation of various factors, including gastric acidity, host immune responses, antimicrobial peptides, and virulence factors. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Notably, therapy regimens integrated with probiotics have been shown to reduce the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. In light of the deep impact of gut microbiota alterations on human health, the present article aims to provide an overview of the complex interaction between H. pylori and the gastrointestinal microbiota, focusing also on the consequences of eradication therapies and the effects of probiotic supplementation.
Collapse
Affiliation(s)
- Marcello Fiorani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ege Tohumcu
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
17
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Nadvornik C, Kallab M, Hommer N, Schlatter A, Stengel T, Garhöfer G, Zeitlinger M, Eberl S, Klymiuk I, Trajanoski S, Nehr M, Makristathis A, Schmidl D, Nussbaumer-Proell A. Effect of Antibiotic Eye Drops on the Nasal Microbiome in Healthy Subjects—A Pilot Study. Antibiotics (Basel) 2023; 12:antibiotics12030517. [PMID: 36978384 PMCID: PMC10044076 DOI: 10.3390/antibiotics12030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Antibiotic eye drops are frequently used in clinical practice. Due to the anatomical connection via the nasolacrimal duct, it seems possible that they have an influence on the nasal/pharyngeal microbiome. This was investigated by using two different commonly used antibiotic eye drops. Methods: 20 subjects were randomized to four groups of five subjects receiving eye drops containing gentamicin, ciprofloxacin, or, as controls, unpreserved povidone or benzalkonium chloride-preserved povidone. Nasal and pharyngeal swabs were performed before and after the instillation period. Swabs were analyzed by Illumina next-generation sequencing (NGS)-based 16S rRNA analysis. Bacterial culture was performed on solid media, and bacterial isolates were identified to the species level by MALDI-TOF MS. Species-dependent antimicrobial susceptibility testing was performed using single isolates and pools of isolates. Results: Bacterial richness in the nose increased numerically from 163 ± 30 to 243 ± 100 OTUs (gentamicin) and from 114 ± 17 to 144 ± 45 OTUs (ciprofloxacin). Phylogenetic diversity index (pd) of different bacterial strains in the nasal microbiome increased from 12.4 ± 1.0 to 16.9 ± 5.6 pd (gentamicin) and from 10.2 ± 1.4 to 11.8 ± 3.1 pd (ciprofloxacin). Unpreserved povidone eye drops resulted in minimal changes in bacterial counts. Preservative-containing povidone eye drops resulted in no change. A minor increase (1–2-fold) in the minimal inhibitory concentration (MIC) was observed in single streptococcal isolates. Conclusions: Antibiotic eye drops could affect the nasal microbiome. After an instillation period of seven days, an increase in the diversity and richness of bacterial strains in the nasal microbiome was observed.
Collapse
Affiliation(s)
- Clemens Nadvornik
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Kallab
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Stengel
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ingeborg Klymiuk
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria
| | - Marion Nehr
- Department of Clinical Microbiology, Clinical Institute of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Athanasios Makristathis
- Department of Clinical Microbiology, Clinical Institute of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alina Nussbaumer-Proell
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-40400-29810
| |
Collapse
|
19
|
Duan M, Liu J, Zuo X. Dual therapy for Helicobacter pylori infection. Chin Med J (Engl) 2023; 136:13-23. [PMID: 36805362 PMCID: PMC10106215 DOI: 10.1097/cm9.0000000000002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 02/22/2023] Open
Abstract
ABSTRACT Bismuth-containing quadruple therapy (BQT) has long been recommended for Helicobacter pylori ( H. pylori ) eradication in China. Meanwhile, in the latest national consensus in China, dual therapy (DT) comprising an acid suppressor and amoxicillin has also been recommended. In recent years, the eradication rate of H. pylori has reached >90% using DT, which has been used not only as a first-line treatment but also as a rescue treatment. Compared with BQT, DT has great potential for H. pylori eradication; however, it has some limitations. This review summarizes the development of DT and its application in H. pylori eradication. The H. pylori eradication rates of DT were comparable to or even higher than those of BQT or standard triple therapy, especially in the first-line treatment. The incidence of adverse events associated with DT was lower than that with other therapies. Furthermore, there were no significant differences in the effects of dual and quadruple therapies on gastrointestinal microecology. In the short term, H. pylori eradication causes certain fluctuations in the gastrointestinal microbiota; however, in the long term, the gastrointestinal microbiota eventually returns to its normal state. In the penicillin-naïve population, patients receiving DT have a high eradiation rate, better compliance, lower incidence of adverse reactions, and lower primary and secondary resistance to amoxicillin. These findings suggest the safety, efficacy, and potential of DT for H. pylori eradication.
Collapse
Affiliation(s)
- Miao Duan
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jing Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
20
|
Marinelli P, Scalese G, Covelli A, Ruffa A, Bedetti G, Bruno G, Severi C. Lactobacillus rhamnosus GG supplementation on eradication rate and dyspepsia in Helicobacter pylori infection treated with three-in-one bismuth quadruple therapy. Front Microbiol 2022; 13:932331. [PMID: 36545196 PMCID: PMC9760799 DOI: 10.3389/fmicb.2022.932331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Helicobacter pylori (Hp)-related dyspepsia has been related to gastroduodenal dysbiosis. The role of probiotic supplementation in the clinical management of Hp infection has been the object of several studies in terms of improvement of efficacy and tolerability of eradication treatments but data on their effects on the outcomes of post-eradication dyspepsia are lacking. The aim of the present study was to evaluate the influence of Lactobacillus rhamnosus GG (LGG) supplementation on bismuth quadruple therapy (BQT) in the clinical management of Hp-related infection both in terms of efficacy and tolerability and persistence of post-treatment dyspepsia. Methods A total of 164 (121 women) Hp-positive adult patients were enrolled in this pilot study and assigned to two different treatment regimens: group A received BQT for 10 days (three capsules qid, IPP bid) and group B received BQT for 10 days in combination with 6 × 109CFU LGG (ATCC53103) taken for 24 days (7 days before, 10 days during, and 7 days after therapy). Eradication was assessed after 45 days using the 13C-urea breath test (13C-UBT). Dyspepsia, distinguished into postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS), was assessed at the time of enrollment and 6 months after eradication. Results Approximately 98 patients were enrolled in group A and 66 patients in group B. At the enrollment, dyspepsia was present in 76.5% of group A and 86.5% of group B. No significant differences were observed in eradication rate between the 2 groups, both in intention-to-treat (ITT) analysis (82.3 vs. 75.0%) and per-protocol (PP) analysis (95 vs. 96%), and in the presence of side effects during the treatment (70.6 vs. 65.4%). At 6 months after eradication of Hp infection, the persistence of dyspepsia was statistically higher in patients of group A than in group B (38.8 vs. 16.1%; p = 0.032). The positive influence of LGG supplementation in improving post-eradication dyspepsia resulted in statistically more effectiveness in PDS dyspepsia, whose remission was 41.7% in group A and 84% in group B patients (p = 0.011). Conclusion In conclusion, LGG supplementation during Hp eradication therapy, even if not affecting eradication rates and therapy-related side effects, significantly impacts the remission of dyspepsia.
Collapse
|
21
|
Liu D, Wang J, Xie Y. Refractory Helicobacter pylori infection and the gastric microbiota. Front Cell Infect Microbiol 2022; 12:976710. [PMID: 36237432 PMCID: PMC9552320 DOI: 10.3389/fcimb.2022.976710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Curing refractory Helicobacter pylori infection is difficult. In addition, there is currently no research on the gastric microbiota of refractory H. pylori infection. Methods We designed a clinical retrospective study involving 32 subjects divided into three groups: 1. nAGHp.a, treatment-naïve patients with H. pylori infection; 2. nAGHp.b, H. pylori-negative patients; and 3. EFHp.a, patients with refractory H. pylori infection. Gastric mucosal samples from the biobank of our research center were collected for 16S rRNA sequencing analysis and bacterial functions were predicted via PICRUSt. Results There were significant differences between the H. pylori- positive group and the H. pylori-negative group in species diversity, gastric microbiota structure, and bacterial function. The beneficial Lactobacillus in the H. pylori-positive group were significantly enriched compared with those in the refractory H. pylori infection group. The bacterial interaction network diagram suggested that the microbiota interactions in the refractory H. pylori infection group decreased. The gastric microbiota of the refractory H. pylori infection group was enriched in the pathways of metabolism and infectious diseases (energy metabolism, bacterial secretion system, glutathione metabolism, protein folding and associated processing, sulphur metabolism, membrane and intracellular structural molecules, lipopolysaccharide biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, inorganic ion transport and metabolism, and metabolism of cofactors and vitamins) when compared with the H. pylori-positive group without treatment based on PICRUSt analysis. Conclusion Significant alterations occurred in the gastric microbiota when eradication of H. pylori failed multiple times. A history of eradication of multiple H. pylori infections leads to an imbalance in the gastric mucosal microbiota to a certain extent, which was mainly reflected in the inhibition of the growth of beneficial Lactobacillus in the stomach. Patients with refractory H. pylori infection may be at a higher risk of developing gastric cancer than other H. pylori-positive patients.
Collapse
Affiliation(s)
- Dongsheng Liu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinyun Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
22
|
Kreuzer K, Reiter A, Birkl-Töglhofer AM, Dalkner N, Mörkl S, Mairinger M, Fleischmann E, Fellendorf F, Platzer M, Lenger M, Färber T, Seidl M, Birner A, Queissner R, Mendel LMS, Maget A, Kohlhammer-Dohr A, Häussl A, Wagner-Skacel J, Schöggl H, Amberger-Otti D, Painold A, Lahousen-Luxenberger T, Leitner-Afschar B, Haybaeck J, Habisch H, Madl T, Reininghaus E, Bengesser S. The PROVIT Study-Effects of Multispecies Probiotic Add-on Treatment on Metabolomics in Major Depressive Disorder-A Randomized, Placebo-Controlled Trial. Metabolites 2022; 12:770. [PMID: 36005642 PMCID: PMC9414726 DOI: 10.3390/metabo12080770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis plays a role in major depressive disorder (MDD). Gut-bacterial metabolites are suspected to reduce low-grade inflammation and influence brain function. Nevertheless, randomized, placebo-controlled probiotic intervention studies investigating metabolomic changes in patients with MDD are scarce. The PROVIT study (registered at clinicaltrials.com NCT03300440) aims to close this scientific gap. PROVIT was conducted as a randomized, single-center, double-blind, placebo-controlled multispecies probiotic intervention study in individuals with MDD (n = 57). In addition to clinical assessments, metabolomics analyses (1H Nuclear Magnetic Resonance Spectroscopy) of stool and serum, and microbiome analyses (16S rRNA sequencing) were performed. After 4 weeks of probiotic add-on therapy, no significant changes in serum samples were observed, whereas the probiotic groups' (n = 28) stool metabolome shifted towards significantly higher concentrations of butyrate, alanine, valine, isoleucine, sarcosine, methylamine, and lysine. Gallic acid was significantly decreased in the probiotic group. In contrast, and as expected, no significant changes resulted in the stool metabolome of the placebo group. Strong correlations between bacterial species and significantly altered stool metabolites were obtained. In summary, the treatment with multispecies probiotics affects the stool metabolomic profile in patients with MDD, which sets the foundation for further elucidation of the mechanistic impact of probiotics on depression.
Collapse
Affiliation(s)
- Kathrin Kreuzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Reiter
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Anna Maria Birkl-Töglhofer
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Nina Dalkner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Mörkl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Marco Mairinger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Eva Fleischmann
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Frederike Fellendorf
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Martina Platzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Lenger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Tanja Färber
- Institute for Psychology, Otto Friedrich University of Bamberg, 96047 Bamberg, Germany
| | - Matthias Seidl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Armin Birner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Robert Queissner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Lilli-Marie Stefanie Mendel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Maget
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alfred Häussl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Jolana Wagner-Skacel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Helmut Schöggl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Daniela Amberger-Otti
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Annemarie Painold
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Theresa Lahousen-Luxenberger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Brigitta Leitner-Afschar
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Johannes Haybaeck
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Eva Reininghaus
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Susanne Bengesser
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
23
|
Nath AN, Retnakumar RJ, Francis A, Chhetri P, Thapa N, Chattopadhyay S. Peptic Ulcer and Gastric Cancer: Is It All in the Complex Host-Microbiome Interplay That Is Encoded in the Genomes of "Us" and "Them"? Front Microbiol 2022; 13:835313. [PMID: 35547123 PMCID: PMC9083406 DOI: 10.3389/fmicb.2022.835313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is increasingly being recognized that severe gastroduodenal diseases such as peptic ulcer and gastric cancer are not just the outcomes of Helicobacter pylori infection in the stomach. Rather, both diseases develop and progress due to the perfect storms created by a combination of multiple factors such as the expression of different H. pylori virulence proteins, consequent human immune responses, and dysbiosis in gastrointestinal microbiomes. In this mini review, we have discussed how the genomes of H. pylori and other gastrointestinal microbes as well as the genomes of different human populations encode complex and variable virulome–immunome interplay, which influences gastroduodenal health. The heterogeneities that are encrypted in the genomes of different human populations and in the genomes of their respective resident microbes partly explain the inconsistencies in clinical outcomes among the H. pylori-infected people.
Collapse
Affiliation(s)
- Angitha N Nath
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - R J Retnakumar
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Prakash Chhetri
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | | |
Collapse
|
24
|
Xia X, Zhang L, Wu H, Chen F, Liu X, Xu H, Cui Y, Zhu Q, Wang M, Hao H, Li DP, Fay WP, Martinez-Lemus LA, Hill MA, Xu C, Liu Z. CagA+Helicobacter pylori, Not CagA–Helicobacter pylori, Infection Impairs Endothelial Function Through Exosomes-Mediated ROS Formation. Front Cardiovasc Med 2022; 9:881372. [PMID: 35433874 PMCID: PMC9008404 DOI: 10.3389/fcvm.2022.881372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundHelicobacter pylori (H. pylori) infection increases the risk for atherosclerosis, and ROS are critical to endothelial dysfunction and atherosclerosis. CagA is a major H. pylori virulence factor associated with atherosclerosis. The present study aimed to test the hypothesis that CagA+H. pylori effectively colonizes gastric mucosa, and CagA+H. pylori, but not CagA–H. pylori, infection impairs endothelial function through exosomes-mediated ROS formation.MethodsC57BL/6 were used to determine the colonization ability of CagA+H. pylori and CagA–H. pylori. ROS production, endothelial function of thoracic aorta and atherosclerosis were measured in CagA+H. pylori and CagA–H. pylori infected mice. Exosomes from CagA+H. pylori and CagA–H. pylori or without H. pylori infected mouse serum or GES-1 were isolated and co-cultured with bEND.3 and HUVECs to determine how CagA+H. pylori infection impairs endothelial function. Further, GW4869 was used to determine if CagA+H. pylori infection could lead to endothelial dysfunction and atherosclerosis through an exosomes-mediated mechanism.ResultsCagA+H. pylori colonized gastric mucosa more effectively than CagA–H. pylori in mice. CagA+H. pylori, not CagA–H. pylori, infection significantly increased aortic ROS production, decreased ACh-induced aortic relaxation, and enhanced early atherosclerosis formation, which were prevented with N-acetylcysteine treatment. Treatment with CagA-containing exosomes significantly increased intracellular ROS production in endothelial cells and impaired their function. Inhibition of exosomes secretion with GW4869 effectively prevented excessive aortic ROS production, endothelial dysfunction, and atherosclerosis in mice with CagA+H. pylori infection.ConclusionThese data suggest that CagA+H. pylori effectively colonizes gastric mucosa, impairs endothelial function, and enhances atherosclerosis via exosomes-mediated ROS formation in mice.
Collapse
Affiliation(s)
- Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfang Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Huifang Xu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - De-Pei Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - William P. Fay
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- *Correspondence: Zhenguo Liu,
| |
Collapse
|
25
|
Kienesberger B, Obermüller B, Singer G, Arneitz C, Gasparella P, Klymiuk I, Horvath A, Stadlbauer V, Magnes C, Zügner E, López-García P, Trajanoski S, Miekisch W, Fuchs P, Till H, Castellani C. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC ® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022; 14:1194. [PMID: 35334850 PMCID: PMC8952306 DOI: 10.3390/nu14061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. METHODS Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. RESULTS A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. CONCLUSIONS The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.
Collapse
Affiliation(s)
- Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Arneitz
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Paolo Gasparella
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Ingeborg Klymiuk
- Department of Cell Biology, Histology and Embryology, Medical University of Graz, 8034 Graz, Austria;
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Christoph Magnes
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | - Elmar Zügner
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, 8034 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| |
Collapse
|
26
|
Wang D, Zhang T, Lu Y, Wang C, Wu Y, Li J, Tao Y, Deng L, Zhang X, Ma J. Helicobacter pylori infection affects the human gastric microbiome, as revealed by metagenomic sequencing. FEBS Open Bio 2022; 12:1188-1196. [PMID: 35243810 PMCID: PMC9157398 DOI: 10.1002/2211-5463.13390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori infection is a prevalent infectious disease, associated with many gastric diseases, including gastritis, gastric ulcer, and gastric cancer. To reveal the characteristics of the gastric microbiome in patients infected with H. pylori, we performed metagenomic shotgun sequencing of stomach swab samples from 96 patients and then conducted metagenomic association analyses between alterations in the gastric microbiome and H. pylori infection status. The overall composition of the gastric microbiota in H. pylori‐infected individuals was distinctly different from the negative controls; H. pylori became the dominant species after colonizing the human stomach and significantly decreased the α‐diversity of the gastric community (P < 0.05, Wilcoxon rank‐sum test). We also identified 6 HPI‐associated microbial species (FDR < 0.05, Wilcoxon rank‐sum test): Stenotrophomonas maltophilia, Stenotrophomonas unclassified, Chryseobacterium unclassified, Pedobacter unclassified, Variovorax unclassified, and Pseudomonas stutzeri. Furthermore, 55 gastric microbial pathways were enriched in the H. pylori‐positive group, whereas only 2 pathways were more abundant in the H. pylori‐negative group: dTDP‐L‐rhamnose biosynthesis and tetrapyrrole biosynthesis (FDR < 0.05, Wilcoxon rank‐sum test). Gastritis was not associated with non‐H. pylori species in the stomach (P > 0.05, Wilcoxon rank‐sum test). This study revealed alterations in gastric microbial taxa and function associated with HPI in the Chinese population, which provides an insight into gastric microbial interactions and their potential role in the pathological process of gastric diseases.
Collapse
Affiliation(s)
| | | | - Yueqi Lu
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Yumei Wu
- Department of Gastroenterology, National Clinical Research Center of Infectious Disease, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518114, China
| | | | - Ye Tao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Le Deng
- Department of Gastroenterology, National Clinical Research Center of Infectious Disease, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518114, China
| | - Xiaoyin Zhang
- Department of Gastroenterology, National Clinical Research Center of Infectious Disease, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518114, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
27
|
Gregor A, Pignitter M, Trajanoski S, Auernigg-Haselmaier S, Somoza V, König J, Duszka K. Microbial contribution to the caloric restriction-triggered regulation of the intestinal levels of glutathione transferases, taurine, and bile acid. Gut Microbes 2022; 13:1992236. [PMID: 34693866 PMCID: PMC8547879 DOI: 10.1080/19490976.2021.1992236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recently we showed that caloric restriction (CR) triggers an increase in the levels of free taurine, taurine-conjugated bile acids (BA), and other taurine conjugates in intestinal mucosa while decreasing glutathione (GSH) levels in wild-type male mice. In the current project, we decided to investigate whether the microbiota is involved in the response to CR by depleting gut bacteria. The antibiotics treatment diminished CR-specific increase in the levels of free taurine and its conjugates as well as upregulated expression and activity of GSH transferases (GST) in the intestinal mucosa. Further, it diminished a CR-related increase in BAs levels in the liver, plasma, and intestinal mucosa. Transplant of microbiota from CR mice to ad libitum fed mice triggered CR-like changes in MGST1 expression, levels of taurine and taurine conjugates in the mucosa of the ileum. We show for the first time, that microbiota contributes to the intestinal response to CR-triggered changes in BA, taurine, and GST levels.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | | | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria,Leibniz-Institut for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria,CONTACT Kalina Duszka Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Gomez-Ramirez U, Valencia-Mayoral P, Mendoza-Elizalde S, Murillo-Eliosa JR, Solórzano Santos F, Contreras-Rodríguez A, Zúñiga G, Aguilar-Rodea P, Jiménez-Rojas VL, Vigueras Galindo JC, Salazar-García M, Velázquez-Guadarrama N. Role of Helicobacter pylori and Other Environmental Factors in the Development of Gastric Dysbiosis. Pathogens 2021; 10:1203. [PMID: 34578235 PMCID: PMC8467233 DOI: 10.3390/pathogens10091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Rafael Murillo-Eliosa
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Fortino Solórzano Santos
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Verónica Leticia Jiménez-Rojas
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Carlos Vigueras Galindo
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| |
Collapse
|
30
|
Weng CY, Xu JL, Sun SP, Wang KJ, Lv B. Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa. World J Gastroenterol 2021; 27:5152-5170. [PMID: 34497441 PMCID: PMC8384747 DOI: 10.3748/wjg.v27.i31.5152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infects approximately 50% of all humans globally. Persistent H. pylori infection causes multiple gastric and extragastric diseases, indicating the importance of early diagnosis and timely treatment. H. pylori eradication produces dramatic changes in the gastric mucosa, resulting in restored function. Consequently, to better understand the importance of H. pylori eradication and clarify the subsequent recovery of gastric mucosal functions after eradication, we summarize histological, endoscopic, and gastric microbiota changes to assess the therapeutic effects on the gastric mucosa.
Collapse
Affiliation(s)
- Chun-Yan Weng
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jing-Li Xu
- Department of Gastrointestinal Surgery, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shao-Peng Sun
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai-Jie Wang
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
31
|
Castellani C, Obermüller B, Kienesberger B, Singer G, Peterbauer C, Grabherr R, Mayrhofer S, Klymiuk I, Horvath A, Stadlbauer V, Russmayer H, Miekisch W, Fuchs P, Till H, Heinl S. Production, Storage Stability, and Susceptibility Testing of Reuterin and Its Impact on the Murine Fecal Microbiome and Volatile Organic Compound Profile. Front Microbiol 2021; 12:699858. [PMID: 34394042 PMCID: PMC8361477 DOI: 10.3389/fmicb.2021.699858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Probiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases. Methods: Reuterin supernatant was cultured from Lentilactobacillus diolivorans in a bioreactor in a two-step process. Storage stability at −20°C and effect of repeated freeze-thaw cycles were assessed by high performance liquid chromatography (HPLC). Antimicrobial activity was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus (S.) aureus, Staphylococcus epidermidis, Streptococcus (S.) agalactiae, Propionibacterium acnes, and Pseudomonas aeruginosae. Male BALBc mice were gavage fed with reuterin supernatant (n = 10) or culture medium (n = 10). Fecal volatile organic compounds (VOC) were assessed by gas chromatography mass spectroscopy; the microbiome was examined by 16S rRNA gene sequencing. Results: The supernatant contained 13.4 g/L reuterin (3-hydroxypropionaldehyde; 3-HPA). 3-HPA content remained stable at −20°C for 35 days followed by a slow decrease of its concentration. Repeated freezing/thawing caused a slow 3-HPA decrease. Antimicrobial activity was encountered against S. aureus, S. epidermidis, and S. agalactiae. Microbiome analysis showed no differences in alpha and beta diversity markers. Linear discriminant effect size (LEfSe) analysis identified Lachnospiraceae_bacterium_COE1 and Ruminoclostridium_5_uncultured_Clostridiales_ bacterium (in the reuterin medium group) and Desulfovibrio_uncultured_ bacterium, Candidatus Arthromitus, Ruminococcae_NK4A214_group, and Eubacterium_xylanophilum_group (in the reuterin group) as markers for group differentiation. VOC analysis showed a significant decrease of heptane and increase of 3-methylbutanal in the reuterin group. Conclusion: The supernatant produced in this study contained acceptable amounts of 3-HPA remaining stable for 35 days at −20°C and exhibiting an antimicrobial effect against S. aureus, S. agalactiae, and S. epidermidis. Under in vivo conditions, the reuterin supernatant caused alterations of the fecal microbiome. In the fecal, VOC analysis decreased heptane and increased 3-methylbutanal were encountered. These findings suggest the high potential of the reuterin system to influence the intestinal microbiome in health and disease, which needs to be examined in detail in future projects.
Collapse
Affiliation(s)
- Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Clemens Peterbauer
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sigrid Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ingeborg Klymiuk
- Core Facility of Molecular Biology, Medical University of Graz, Graz, Austria.,Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Hannes Russmayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,CD Laboratory for Biotechnology of Glycerol, Vienna, Austria
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Experimental Research Center, University of Rostock, Rostock, Germany
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Experimental Research Center, University of Rostock, Rostock, Germany
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Stefan Heinl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
32
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Microbiota changes with fermented kimchi contributed to either the amelioration or rejuvenation of Helicobacter pylori-associated chronic atrophic gastritis. J Clin Biochem Nutr 2021; 69:98-110. [PMID: 34376919 PMCID: PMC8325762 DOI: 10.3164/jcbn.20-123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or β-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1β. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | | | | | - Seong Jin Kim
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-ro, Bundang-gu, Seongnam 13497, Korea
| |
Collapse
|
33
|
Kienesberger B, Obermüller B, Singer G, Mittl B, Grabherr R, Mayrhofer S, Heinl S, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Klymiuk I, Till H, Castellani C. (S)-Reutericyclin: Susceptibility Testing and In Vivo Effect on Murine Fecal Microbiome and Volatile Organic Compounds. Int J Mol Sci 2021; 22:6424. [PMID: 34203988 PMCID: PMC8232739 DOI: 10.3390/ijms22126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to assess the in vitro antimicrobial activity and the in vivo effect on the murine fecal microbiome and volatile organic compound (VOC) profile of (S)-reutericyclin. The antimicrobial activity of (S)-reutericyclin was tested against Clostridium difficile, Listeria monocytogenes, Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Staphylococcus (S.) epidermidis, Streptococcus agalactiae, Pseudomonas aeruginosa and Propionibacterium acnes. Reutericyclin or water were gavage fed to male BALBc mice for 7 weeks. Thereafter stool samples underwent 16S based microbiome analysis and VOC analysis by gas chromatography mass spectrometry (GC-MS). (S)-reutericyclin inhibited growth of S. epidermidis only. Oral (S)-reutericyclin treatment caused a trend towards reduced alpha diversity. Beta diversity was significantly influenced by reutericyclin. Linear discriminant analysis Effect Size (LEfSe) analysis showed an increase of Streptococcus and Muribaculum as well as a decrease of butyrate producing Ruminoclostridium, Roseburia and Eubacterium in the reutericyclin group. VOC analysis revealed significant increases of pentane and heptane and decreases of 2,3-butanedione and 2-heptanone in reutericyclin animals. The antimicrobial activity of (S)-reutericyclin differs from reports of (R)-reutericyclin with inhibitory effects on a multitude of Gram-positive bacteria reported in the literature. In vivo (S)-reutericyclin treatment led to a microbiome shift towards dysbiosis and distinct alterations of the fecal VOC profile.
Collapse
Affiliation(s)
- Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria; (R.G.); (S.M.); (S.H.)
| | - Sigrid Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria; (R.G.); (S.M.); (S.H.)
| | - Stefan Heinl
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria; (R.G.); (S.M.); (S.H.)
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria; (V.S.); (A.H.)
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria; (V.S.); (A.H.)
- Center of Biomarker Research (CBmed), 8036 Graz, Austria
| | - Wolfram Miekisch
- Experimental Research Center, Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Experimental Research Center, Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Ingeborg Klymiuk
- Gottfried Schatz Research Center, Department of Cell Biology, Histology and Embryology, Medical University of Graz, 8036 Graz, Austria;
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.K.); (G.S.); (B.M.); (H.T.); (C.C.)
| |
Collapse
|
34
|
Durán C, Ciucci S, Palladini A, Ijaz UZ, Zippo AG, Sterbini FP, Masucci L, Cammarota G, Ianiro G, Spuul P, Schroeder M, Grill SW, Parsons BN, Pritchard DM, Posteraro B, Sanguinetti M, Gasbarrini G, Gasbarrini A, Cannistraci CV. Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome. Nat Commun 2021; 12:1926. [PMID: 33771992 PMCID: PMC7997970 DOI: 10.1038/s41467-021-22135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities.
Collapse
Affiliation(s)
- Claudio Durán
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
| | - Sara Ciucci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
| | - Alessandra Palladini
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum Munchen, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Umer Z Ijaz
- Department of Infrastructure and Environment University of Glasgow, School of Engineering, Glasgow, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | - Luca Masucci
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Stephan W Grill
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Gastroenterology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Brunella Posteraro
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giovanni Gasbarrini
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Cluster of Excellence Physics of Life (PoL), Department of Physics, Technische Universität Dresden, Dresden, Germany.
- Center for Complex Network Intelligence (CCNI) at Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Biomedical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
35
|
Klymiuk I, Singer G, Castellani C, Trajanoski S, Obermüller B, Till H. Characterization of the Luminal and Mucosa-Associated Microbiome along the Gastrointestinal Tract: Results from Surgically Treated Preterm Infants and a Murine Model. Nutrients 2021; 13:nu13031030. [PMID: 33806771 PMCID: PMC8004827 DOI: 10.3390/nu13031030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors, including nutritional habits or birth mode, are known key determinants for intestinal microbial composition. Investigations of the intestinal microbiome in different species in a multiplicity of studies during recent decades have revealed differential microbial patterns and quantities along the gastrointestinal (GI) tract. Characterization of the microbial pattern in various aspects is a prerequisite for nutritional interventions. In this 16S rRNA amplicon-based approach, we present a characterization of the mucosa-associated microbiome in comparison with the luminal community of four infants at the time of the closure of ileostomies and perform a systematic characterization of the corresponding luminal and mucosal microbiome from jejunal, ileal and colonic regions, as well as collected feces in mice. The most dominant taxa in infant-derived samples altered due to individual differences, and in the mucosa, Enterococcus, Clostridiumsensustricto1, Veillonella, Streptococcus and Staphylococcus were the most abundant. Two less abundant taxa differed significantly between the mucosa and lumen. In murine samples, relative abundances differed significantly, mainly between the intestinal regions. Significant differences between mouse mucosa- and lumen-derived samples could be found in the observed species with a trend to lower estimated diversity in mucosa-derived samples, as well as in the relative abundance of individual taxa. In this study, we examined the difference between the mucosal and luminal bacterial colonization of the gastrointestinal tract in a small sample cohort of preterm infants. Individual differences were characterized and statistical significance was reached in two taxa (Cupriavidus, Ralstonia). The corresponding study on the different murine intestinal regions along the GI tract showed differences all over the intestinal region.
Collapse
Affiliation(s)
- Ingeborg Klymiuk
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (I.K.); (S.T.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8010 Graz, Austria; (C.C.); (B.O.); (H.T.)
- Correspondence: ; Tel.: +43-316-385-83722
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8010 Graz, Austria; (C.C.); (B.O.); (H.T.)
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (I.K.); (S.T.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8010 Graz, Austria; (C.C.); (B.O.); (H.T.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8010 Graz, Austria; (C.C.); (B.O.); (H.T.)
| |
Collapse
|
36
|
Bakhti SZ, Latifi-Navid S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next? BMC Microbiol 2021; 21:71. [PMID: 33663382 PMCID: PMC7934379 DOI: 10.1186/s12866-021-02130-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies causing death worldwide, and Helicobacter pylori is a powerful inducer of precancerous lesions and GC. The oral microbiota is a complex ecosystem and is responsible for maintaining homeostasis, modulating the immune system, and resisting pathogens. It has been proposed that the gastric microbiota of oral origin is involved in the development and progression of GC. Nevertheless, the causal relationship between oral microbiota and GC and the role of H. pylori in this relationship is still controversial. This study was set to review the investigations done on oral microbiota and analyze various lines of evidence regarding the role of oral microbiota in GC, to date. Also, we discussed the interaction and relationship between H. pylori and oral microbiota in GC and the current understanding with regard to the underlying mechanisms of oral microbiota in carcinogenesis. More importantly, detecting the patterns of interaction between the oral cavity microbiota and H. pylori may render new clues for the diagnosis or screening of cancer. Integration of oral microbiota and H. pylori might manifest a potential method for the assessment of GC risk. Hence it needs to be specified the patterns of bacterial transmission from the oral cavity to the stomach and their interaction. Further evidence on the mechanisms underlying the oral microbiota communities and how they trigger GC may contribute to the identification of new prevention methods for GC. We may then modulate the oral microbiota by intervening with oral-gastric bacterial transmission or controlling certain bacteria in the oral cavity.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
| |
Collapse
|
37
|
Warncke G, Singer G, Windhaber J, Schabl L, Friehs E, Miekisch W, Gierschner P, Klymiuk I, Eber E, Zeder K, Pfleger A, Obermüller B, Till H, Castellani C. Volatile Organic Compounds, Bacterial Airway Microbiome, Spirometry and Exercise Performance of Patients after Surgical Repair of Congenital Diaphragmatic Hernia. Molecules 2021; 26:molecules26030645. [PMID: 33530644 PMCID: PMC7865878 DOI: 10.3390/molecules26030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the exhaled volatile organic compounds (VOCs) profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients (median age 9 years, range 6-13 years) treated for CDH were included. Exhaled VOCs were measured by GC-MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry. The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH patients had no signs of impaired physical performance capacity, fueling controversial reports in the literature.
Collapse
MESH Headings
- Acetone/analysis
- Adolescent
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Child
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Exercise
- Female
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/physiopathology
- Hernias, Diaphragmatic, Congenital/surgery
- Herniorrhaphy/methods
- Humans
- Male
- Microbiota
- Pentanes/analysis
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Spirometry
- Vital Capacity
- Volatile Organic Compounds/analysis
Collapse
Affiliation(s)
- Gert Warncke
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
- Correspondence: ; Tel.: +43-316-385-83722
| | - Jana Windhaber
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Lukas Schabl
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Elena Friehs
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany; (W.M.); (P.G.)
| | - Peter Gierschner
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany; (W.M.); (P.G.)
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Ernst Eber
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Katarina Zeder
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Andreas Pfleger
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| |
Collapse
|
38
|
Berg JL, Perfler B, Hatzl S, Mayer MC, Wurm S, Uhl B, Reinisch A, Klymiuk I, Tierling S, Pregartner G, Bachmaier G, Berghold A, Geissler K, Pichler M, Hoefler G, Strobl H, Wölfler A, Sill H, Zebisch A. Micro-RNA-125a mediates the effects of hypomethylating agents in chronic myelomonocytic leukemia. Clin Epigenetics 2021; 13:1. [PMID: 33407852 PMCID: PMC7789782 DOI: 10.1186/s13148-020-00979-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is an aggressive hematopoietic malignancy that arises from hematopoietic stem and progenitor cells (HSPCs). Patients with CMML are frequently treated with epigenetic therapeutic approaches, in particular the hypomethylating agents (HMAs), azacitidine (Aza) and decitabine (Dec). Although HMAs are believed to mediate their efficacy via re-expression of hypermethylated tumor suppressors, knowledge about relevant HMA targets is scarce. As silencing of tumor-suppressive micro-RNAs (miRs) by promoter hypermethylation is a crucial step in malignant transformation, we asked for a role of miRs in HMA efficacy in CMML. RESULTS Initially, we performed genome-wide miR-expression profiling in a KrasG12D-induced CMML mouse model. Selected candidates with prominently decreased expression were validated by qPCR in CMML mice and human CMML patients. These experiments revealed the consistent decrease in miR-125a, a miR with previously described tumor-suppressive function in myeloid neoplasias. Furthermore, we show that miR-125a downregulation is caused by hypermethylation of its upstream region and can be reversed by HMA treatment. By employing both lentiviral and CRISPR/Cas9-based miR-125a modification, we demonstrate that HMA-induced miR-125a upregulation indeed contributes to mediating the anti-leukemic effects of these drugs. These data were validated in a clinical context, as miR-125a expression increased after HMA treatment in CMML patients, a phenomenon that was particularly pronounced in cases showing clinical response to these drugs. CONCLUSIONS Taken together, we report decreased expression of miR-125a in CMML and delineate its relevance as mediator of HMA efficacy within this neoplasia.
Collapse
Affiliation(s)
- Johannes Lorenz Berg
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Bianca Perfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Marie-Christina Mayer
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Sonja Wurm
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Medical University of Graz, Graz, Austria
| | - Sascha Tierling
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Klaus Geissler
- 5th Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Centre, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
- Otto-Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
| |
Collapse
|
39
|
Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021; 13:1-22. [PMID: 33938378 PMCID: PMC8096336 DOI: 10.1080/19490976.2021.1909459] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complex population of microbes in the human gastrointestinal (GI) tract interacts with itself and with the host, exerting a deep influence on health and disease development. The development of modern sequencing technology has enabled us to gain insight into GI microbes. Helicobacter pylori colonization significantly affects the gastric microenvironment, which in turn affects gastric microbiota and may be correlated with colonic microbiota changes. Crosstalk between H. pylori and GI commensal flora may play a role in H. pylori-related carcinogenicity and extragastric manifestations. We review current knowledge on how H. pylori shapes GI microbiota with a specific focus on its impact on the stomach and colon. We also review current evidence on colonic microbiota changes attributed to eradication therapy based on the clinical studies performed to date.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chan Hong
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
40
|
Cardiorespiratory performance capacity and airway microbiome in patients following primary repair of esophageal atresia. Pediatr Res 2021; 90:66-73. [PMID: 33159185 PMCID: PMC8370877 DOI: 10.1038/s41390-020-01222-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients following repair of an esophageal atresia (EA) or tracheoesophageal fistula (TEF) carry an increased risk of long-term cardiopulmonary malaise. The role of the airway microbiome in EA/TEF patients remains unclear. METHODS All EA/TEF patients treated between 1980 and 2010 were invited to a prospective clinical examination, spirometry, and spiroergometry. The airway microbiome was determined from deep induced sputum by 16 S rRNA gene sequencing. The results were compared to a healthy age- and sex-matched control group. RESULTS Nineteen EA/TEF patients with a mean age of 24.7 ± 7 years and 19 age- and sex-matched controls were included. EA/TEF patients showed a significantly lower muscle mass, lower maximum vital capacity (VCmax), and higher rates of restrictive ventilation disorders. Spiroergometry revealed a significantly lower relative performance capacity and lower peak VO2 in EA/TEF patients. Alpha- and beta-diversity of the airway microbiome did not differ significantly between the two groups. Linear discriminant effect size analysis revealed significantly enriched species of Prevotella_uncultured, Streptococcus_anginosus, Prevotella_7_Prevotella_enoeca, and Mogibacterium_timidum. CONCLUSION EA/TEF patients frequently suffer from restrictive ventilation disorders and impaired cardiopulmonary function associated with minor alterations of the airway microbiome. Long-term examinations of EA/TEF patients seem to be necessary in order to detect impaired cardiopulmonary function. IMPACT The key messages of the present study are a significantly decreased VCmax and exercise performance, as well as airway microbiome differences in EA/TEF patients. This study is the first to present parameters of lung function and exercise performance in combination with airway microbiome analysis with a mean follow-up of 24 years in EA/TEF patients. Prospective, long-term studies are needed to unravel possible interactions between alterations of the airway microbiome and impaired pulmonary function in EA/TEF patients.
Collapse
|
41
|
Suárez-Jaramillo A, Baldeón ME, Prado B, Fornasini M, Cohen H, Flores N, Salvador I, Cargua O, Realpe J, Cárdenas PA. Duodenal microbiome in patients with or without Helicobacter pylori infection. Helicobacter 2020; 25:e12753. [PMID: 32896972 DOI: 10.1111/hel.12753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal microbiota are recognized as an organ with important physiological functions whose alterations have been associated with common diseases including inflammatory intestinal conditions, malnutrition, type-2 diabetes, and cardiovascular diseases. The composition and function of the microbiota in the distal part of the intestine has been mainly described, while there is limited information on the small intestine microbiota. The objective of the present study was to describe the duodenal microbiome in individuals with dyspepsia in the presence or absence of Helicobacter pylori gastric infection. MATERIALS AND METHODS Thirty-eight biopsies from the proximal duodenum of uninfected and 37 from H pylori-infected individuals were analyzed. Microbiota composition was assessed by PCR amplification and sequencing of 16S rRNA and ITS genes; sequences were analyzed with QIIME2. RESULTS AND CONCLUSIONS At the phyla level, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Fusobacteria were predominant in the mucosal associated duodenal microbiota (MAM); at the genera level, we observed the predominance of Ralstonia, Streptococcus, Pseudomonas, Haemophilus, Herbaspirillum, Neisseria, and Veillonella. Microbiota α-diversity was higher in H pylori-infected individuals than in non-infected ones. In terms of β-diversity metrics, there was a statistically significant difference between groups. Also, relative abundance of Haemophilus, Neisseria, Prevotella pallens, Prevotella 7, and Streptococcus was greater in H pylori-infected patients. In infected patients, several types of H pylori were present in duodenal MAM. Finally, the majority of duodenal samples had fungi sequences; the most common taxa observed were Recurvomyces followed by Ascomycota and Basidiomycota.
Collapse
Affiliation(s)
| | - Manuel E Baldeón
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Belén Prado
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Marco Fornasini
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Henry Cohen
- Facultad de Medicina, Universidad de la República Uruguay, Montevideo, Uruguay
| | - Nancy Flores
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Iván Salvador
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Oswaldo Cargua
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - José Realpe
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica, Universidad Tecnológica Equinoccial, Quito, Ecuador
| | - Paul A Cárdenas
- Instituto de Microbiología, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
42
|
Cage bedding modifies metabolic and gut microbiota profiles in mouse studies applying dietary restriction. Sci Rep 2020; 10:20835. [PMID: 33257713 PMCID: PMC7705694 DOI: 10.1038/s41598-020-77831-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Experiments involving food restriction are common practice in metabolic research. Under fasted conditions, mice supplement their diet with cage bedding. We aimed at identifying metabolic and microbiota-related parameters affected by the bedding type. We exposed mice housed with wooden, cellulose, or corncob cage beddings to ad libitum feeding, caloric restriction (CR), or over-night (ON) fasting. Additionally, two subgroups of the ON fast group were kept without any bedding or on a metal grid preventing coprophagy. Mice under CR supplemented their diet substantially with bedding; however, the amount varied depending on the kind of bedding. Bedding-related changes in body weight loss, fat loss, cecum size, stomach weight, fecal output, blood ghrelin levels as well as a response to glucose oral tolerance test were recorded. As fiber is fermented by the gut bacteria, the type of bedding affects gut bacteria and fecal metabolites composition of CR mice. CR wood and cellulose groups showed distinct cecal metabolite and microbiome profiles when compared to the CR corncob group. While all ad libitum fed animal groups share similar profiles. We show that restriction-related additional intake of bedding-derived fiber modulates multiple physiological parameters. Therefore, the previous rodent studies on CR, report the combined effect of CR and increased fiber consumption.
Collapse
|
43
|
PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression-A Randomized Controlled Trial. Nutrients 2020; 12:nu12113422. [PMID: 33171595 PMCID: PMC7695208 DOI: 10.3390/nu12113422] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gut microbiota are suspected to affect brain functions and behavior as well as lowering inflammation status. Therefore, an effect on depression has already been suggested by recent research. The aim of this randomized double-blind controlled trial was to evaluate the effect of probiotic treatment in depressed individuals. Within inpatient care, 82 currently depressed individuals were randomly assigned to either receive a multistrain probiotic plus biotin treatment or biotin plus placebo for 28 days. Clinical symptoms as well as gut microbiome were analyzed at the begin of the study, after one and after four weeks. After 16S rRNA analysis, microbiome samples were bioinformatically explored using QIIME, SPSS, R and Piphillin. Both groups improved significantly regarding psychiatric symptoms. Ruminococcus gauvreauii and Coprococcus 3 were more abundant and β-diversity was higher in the probiotics group after 28 days. KEGG-analysis showed elevated inflammation-regulatory and metabolic pathways in the intervention group. The elevated abundance of potentially beneficial bacteria after probiotic treatment allows speculations on the functionality of probiotic treatment in depressed individuals. Furthermore, the finding of upregulated vitamin B6 and B7 synthesis underlines the connection between the quality of diet, gut microbiota and mental health through the regulation of metabolic functions, anti-inflammatory and anti-apoptotic properties. Concluding, four-week probiotic plus biotin supplementation, in inpatient individuals with a major depressive disorder diagnosis, showed an overall beneficial effect of clinical treatment. However, probiotic intervention compared to placebo only differed in microbial diversity profile, not in clinical outcome measures.
Collapse
|
44
|
Blesl A, Jüngst C, Lammert F, Fauler G, Rainer F, Leber B, Feldbacher N, Stromberger S, Wildburger R, Spindelböck W, Fickert P, Horvath A, Stadlbauer V. Secondary Sclerosing Cholangitis in Critically Ill Patients Alters the Gut-Liver Axis: A Case Control Study. Nutrients 2020; 12:E2728. [PMID: 32906634 PMCID: PMC7551864 DOI: 10.3390/nu12092728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary sclerosing cholangitis in critically ill patients (SC-CIP) occurs after long-term intensive care treatment. This study aimed to assess the gut-liver axis in SC-CIP. Stool microbiome composition, gut permeability, bacterial translocation and serum bile acid profiles of 18 SC-CIP patients compared to 11 patients after critical illness without liver disease (CIP controls), 21 patients with cirrhosis and 21 healthy controls were studied. 16S rDNA was isolated from stool and sequenced using the Illumina technique. Diamine oxidase, zonulin, soluble CD14 (sCD14) and lipopolysaccharide binding protein were measured in serum and calprotectin in stool. Serum bile acids were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Reduced microbiome alpha diversity and altered beta diversity were seen in SC-CIP, CIP controls and cirrhosis compared to healthy controls. SC-CIP patients showed a shift towards pathogenic taxa and an oralization. SC-CIP, CIP controls and cirrhotic patients presented with impaired gut permeability, and biomarkers of bacterial translocation were increased in SC-CIP and cirrhosis. Total serum bile acids were elevated in SC-CIP and cirrhosis and the bile acid profile was altered in SC-CIP, CIP controls and cirrhosis. In conclusions, observed alterations of the gut-liver axis in SC-CIP cannot solely be attributed to liver disease, but may also be secondary to long-term intensive care treatment.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Christoph Jüngst
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Zürich, 8032 Zürich, Switzerland;
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Günter Fauler
- Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria;
| | - Florian Rainer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Bettina Leber
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Nicole Feldbacher
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Silvia Stromberger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Renate Wildburger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Walter Spindelböck
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Peter Fickert
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| |
Collapse
|
45
|
Guo Y, Zhang Y, Gerhard M, Gao JJ, Mejias-Luque R, Zhang L, Vieth M, Ma JL, Bajbouj M, Suchanek S, Liu WD, Ulm K, Quante M, Li ZX, Zhou T, Schmid R, Classen M, Li WQ, You WC, Pan KF. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut 2020; 69:1598-1607. [PMID: 31857433 PMCID: PMC7456744 DOI: 10.1136/gutjnl-2019-319696] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Gastrointestinal microbiota may be involved in Helicobacter pylori-associated gastric cancer development. The aim of this study was to explore the possible microbial mechanisms in gastric carcinogenesis and potential dysbiosis arising from H. pylori infection. DESIGN Deep sequencing of the microbial 16S ribosomal RNA gene was used to investigate alterations in paired gastric biopsies and stool samples in 58 subjects with successful and 57 subjects with failed anti-H. pylori treatment, relative to 49 H. pylori negative subjects. RESULTS In H. pylori positive subjects, richness and Shannon indexes increased significantly (both p<0.001) after successful eradication and showed no difference to those of negative subjects (p=0.493 for richness and p=0.420 for Shannon index). Differential taxa analysis identified 18 significantly altered gastric genera after eradication. The combination of these genera into a Microbial Dysbiosis Index revealed that the dysbiotic microbiota in H. pylori positive mucosa was associated with advanced gastric lesions (chronic atrophic gastritis and intestinal metaplasia/dysplasia) and could be reversed by eradication. Strong coexcluding interactions between Helicobacter and Fusobacterium, Neisseria, Prevotella, Veillonella, Rothia were found only in advanced gastric lesion patients, and were absent in normal/superficial gastritis group. Changes in faecal microbiota included increased Bifidobacterium after successful H. pylori eradication and more upregulated drug-resistant functional orthologs after failed treatment. CONCLUSION H. pylori infection contributes significantly to gastric microbial dysbiosis that may be involved in carcinogenesis. Successful H. pylori eradication potentially restores gastric microbiota to a similar status as found in uninfected individuals, and shows beneficial effects on gut microbiota.
Collapse
Affiliation(s)
- Yang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
| | - Markus Gerhard
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Juan-Juan Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Raquel Mejias-Luque
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Michael Vieth
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Monther Bajbouj
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Stepan Suchanek
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- Department of Medicine, 1st Faculty of Medicine, Military University Hospital, Charles University, Prague, Czech Republic
| | - Wei-Dong Liu
- Linqu Public Health Bureau, Linqu, Shandong, China
| | - Kurt Ulm
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Michael Quante
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Zhe-Xuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Roland Schmid
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Meinhard Classen
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Wen-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
- PYLOTUM Key joint laboratory for upper GI cancer, Technische Universität München/Peking University Cancer Hospital & Institute, Munich/Beijing, Germany/China
| |
Collapse
|
46
|
Usui G, Shinozaki T, Jinno T, Fujibayashi K, Morikawa T, Gunji T, Matsuhashi N. Relationship between time-varying status of reflux esophagitis and Helicobacter pylori and progression to long-segment Barrett's esophagus: time-dependent Cox proportional-hazards analysis. BMC Gastroenterol 2020; 20:270. [PMID: 32799812 PMCID: PMC7429870 DOI: 10.1186/s12876-020-01418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Reflux esophagitis (RE) and absence of Helicobacter pylori (non-H. pylori) are considered to be associated with the progression to long-segment Barrett’s esophagus (LSBE). However, it is difficult to assess this association because RE and H. pylori status can change during follow-up. Additionally, the association between H. pylori eradication and LSBE remains unclear. Methods A total of 11,493 asymptomatic Japanese subjects who underwent medical check-ups and were endoscopically diagnosed with short-segment Barrett’s esophagus (SSBE) between May 2006 and December 2015 were enrolled. The hazards of progression to LSBE were compared between time-varying RE and H. pylori infection/eradication by time-dependent multivariable Cox proportional hazards models. Results A total of 7637 subjects who underwent additional medical check-ups after being diagnosed with endoscopic SSBE were analyzed. Subjects with RE and without current/past H. pylori infection were strongly associated with a higher rate of progression to LSBE (adjusted hazard ratio [HR]: 7.17, 95% confidence interval [CI]: 2.48–20.73, p < 0.001 for RE and non-H. pylori vs. non-RE and H. pylori groups). Subjects with H. pylori had a lower rate of progression to LSBE (adjusted HR: 0.48, 95% CI: 0.22–1.07, p = 0.07 for H. pylori vs. non-H. pylori). Hazards of progression to LSBE were still lower in the H. pylori eradication group than that of the non-H. pylori group (adjusted HR: 0.51, 95% CI: 0.18–1.46, p = 0.21). Conclusions RE and non-H. pylori were associated with the progression to LSBE, considering the changes in exposures. H. pylori infection was associated with the prevention of the development of LSBE irrespective of RE. The environment preventive of the development of LSBE persists for at least a few years after H. pylori eradication.
Collapse
Affiliation(s)
- Genki Usui
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, 5-9-22 Higashi-gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan.
| | - Tomohiro Shinozaki
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Tokyo, Japan
| | - Toyohisa Jinno
- Center for Preventive Medicine, NTT Medical Center, Tokyo, Tokyo, Japan
| | | | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, 5-9-22 Higashi-gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Toshiaki Gunji
- Center for Preventive Medicine, NTT Medical Center, Tokyo, Tokyo, Japan
| | | |
Collapse
|
47
|
Stadlbauer V, Engertsberger L, Komarova I, Feldbacher N, Leber B, Pichler G, Fink N, Scarpatetti M, Schippinger W, Schmidt R, Horvath A. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr 2020; 20:248. [PMID: 32690030 PMCID: PMC7372911 DOI: 10.1186/s12877-020-01644-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dementia is an increasing public health threat worldwide. The pathogenesis of dementia has not been fully elucidated yet. Inflammatory processes are hypothesized to play an important role as a driver for cognitive decline but the origin of inflammation is not clear. We hypothesize that disturbances in gut microbiome composition, gut barrier dysfunction, bacterial translocation and resulting inflammation are associated with cognitive dysfunction in dementia. METHODS To test this hypothesis, a cohort of 23 patients with dementia and 18 age and sex matched controls without cognitive impairments were studied. Gut microbiome composition, gut barrier dysfunction, bacterial translocation and inflammation were assessed from stool and serum samples. Malnutrition was assessed by Mini Nutritional Assessment Short Form (MNA-SF), detailed information on drug use was collected. Microbiome composition was assessed by 16S rRNA sequencing, QIIME 2 and Calypso 7.14 tools. RESULTS Dementia was associated with dysbiosis characterized by differences in beta diversity and changes in taxonomic composition. Gut permeability was increased as evidenced by increased serum diamine oxidase (DAO) levels and systemic inflammation was confirmed by increased soluble cluster of differentiation 14 levels (sCD14). BMI and statin use had the strongest impact on microbiome composition. CONCLUSION Dementia is associated with changes in gut microbiome composition and increased biomarkers of gut permeability and inflammation. Lachnospiraceae NK4A136 group as potential butyrate producer was reduced in dementia. Malnutrition and drug intake were factors, that impact on microbiome composition. Increasing butyrate producing bacteria and targeting malnutrition may be promising therapeutic targets in dementia. TRIAL REGISTRATION NCT03167983 .
Collapse
Affiliation(s)
- Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Center of Biomarker Research in Medicine (CBmed), Graz, Austria.
| | - Lara Engertsberger
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Irina Komarova
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Nicole Feldbacher
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Bettina Leber
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Graz, Austria
| | - Gerald Pichler
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Nicole Fink
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Monika Scarpatetti
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Walter Schippinger
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
48
|
The Effects of Prebiotic Supplementation with OMNi-LOGiC ® FIBRE on Fecal Microbiome, Fecal Volatile Organic Compounds, and Gut Permeability in Murine Neuroblastoma-Induced Tumor-Associated Cachexia. Nutrients 2020; 12:nu12072029. [PMID: 32650568 PMCID: PMC7400931 DOI: 10.3390/nu12072029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant diseases can cause tumor-associated cachexia (TAC). Supplementation with prebiotic non-digestible carbohydrates exerts positive metabolic effects in experimental oncologic diseases. The aim of this project was to assess the effect of prebiotic supplementation with OMNi-LOGiC® FIBRE on intestinal microbiome, bacterial metabolism, gut permeability, and inflammation in a murine model of neuroblastoma (NB)-associated TAC. For this study, 2,000,000 NB cells (MHH-NB11) were implanted into athymic mice followed by daily supplementation with water or 200 mg prebiotic oligosaccharide (POS) OMNi-LOGiC® FIBRE (NB-Aqua, n = 12; NB-POS, n = 12). Three animals of each tumor group did not develop NB. The median time of tumor growth (first visibility to euthanasia) was 37 days (IQR 12.5 days) in the NB-Aqua group and 37 days (IQR 36.5 days) in the NB-POS group (p = 0.791). At euthanasia, fecal microbiome and volatile organic compounds (VOCs), gut permeability (fluorescein isothiocyanate-dextran (FITC-dextran), and gut barrier markers were measured. Values were compared to sham animals following injection of culture medium and gavage of either water or OMNi-LOGiC® FIBRE (SH-Aqua, n = 10; SH-POS, n = 10). Alpha diversity did not differ significantly between the groups. Principal coordinate analysis (PCoA) revealed clustering differences between Aqua and POS animals. Both NB and POS supplementation led to taxonomic alterations of the fecal microbiome. Of 49 VOCs, 22 showed significant differences between the groups. NB animals had significantly higher gut permeability than Aqua animals; POS did not ameliorate these changes. The pore and leak pathways of tight junctions did not differ between groups. In conclusion, our results suggest that NB-induced TAC causes increased gut permeability coupled with compositional changes in the fecal microbiome and VOC profile. Prebiotic supplementation with OMNi-LOGiC® FIBRE seemed to induce modifications of the fecal microbiome and VOC profile but did not improve gut permeability.
Collapse
|
49
|
Zollner-Schwetz I, Scarpatetti M, Pichler G, Pux C, Klymiuk I, Trajanoski S, Krause R. Effect of a Multispecies Probiotic on Intestinal and Skin Colonization by Multidrug-Resistant Gram-Negative Bacteria in Patients in a Long-Term Care Facility: A Pilot Study. Nutrients 2020; 12:nu12061586. [PMID: 32481668 PMCID: PMC7352861 DOI: 10.3390/nu12061586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023] Open
Abstract
Residents in long-term care facilities (LTCFs) are frequently colonized by multidrug-resistant Gram-negative bacteria, putting them at risk for subsequent infections. We aimed to evaluate the effect of the multispecies probiotic Omnibiotic10AAD® on the intestinal and inguinal skin colonization of patients by multidrug-resistant Gram-negative bacteria in LTCFs. Patients colonized by multidrug-resistant Gram-negative bacteria received a 12 week oral course of Omnibiotic10AAD®. Inguinal swabs and stool samples were collected during and after treatment for microbiological and microbiome analysis. The median age of patients was 76 years. Twelve patients completed the pilot study. Intestinal colonization was reduced to 42% of patients 8 weeks after the end of treatment, but increased to 66% 24 weeks after the end of probiotic treatment. Colonization of inguinal skin was lowest during probiotic treatment and increased thereafter. Fecal microbiome analysis revealed statistically significant increases of the genus Enterococcus comparing start and end of probiotic treatment. In conclusion, a 12 week course of a multispecies probiotic led to a transient reduction of intestinal colonization 8 weeks after the end of treatment. The findings of our pilot study warrant further research in the area of probiotics and intestinal colonization by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ines Zollner-Schwetz
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
- Correspondence:
| | - Monika Scarpatetti
- Geriatric Health Centres of the City of Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria; (M.S.); (G.P.); (C.P.)
| | - Gerald Pichler
- Geriatric Health Centres of the City of Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria; (M.S.); (G.P.); (C.P.)
| | - Christian Pux
- Geriatric Health Centres of the City of Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria; (M.S.); (G.P.); (C.P.)
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Centre for Medical Research, Medical University of Graz, Stiftingtalstraße 24/1, 8010 Graz, Austria; (I.K.); (S.T.)
| | - Slave Trajanoski
- Core Facility Molecular Biology, Centre for Medical Research, Medical University of Graz, Stiftingtalstraße 24/1, 8010 Graz, Austria; (I.K.); (S.T.)
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| |
Collapse
|
50
|
de Leeuw MA, Duval MX. The Presence of Periodontal Pathogens in Gastric Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-10. [DOI: 10.14218/erhm.2020.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|