1
|
Liu TH, Hsu YH, Hsiao RY, Cheng MC, Leu YL, Tsai TY. Improved mechanism of the bioactive compounds isolated from Lactobacillus plantarum TWK10-fermented soymilk in periodontal disease. Food Funct 2025; 16:1517-1533. [PMID: 39903172 DOI: 10.1039/d4fo04049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Lactic acid bacteria (LAB) possess immunomodulatory, antioxidant, and antimicrobial properties, making them promising for oral health applications. This study investigated the antibacterial and anti-biofilm activities of TWK10-fermented soymilk extract (TWK10FSEE) against Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa). TWK10FSEE disrupted the cell membrane integrity, altered membrane permeability, and inhibited the growth of these periodontal pathogens. In a drip-flow biofilm reactor simulating the oral environment, TWK10FSEE regulated biofilm-related gene expression, reduced fimbriae and extracellular polysaccharide production, and retarded biofilm formation. Structural identification revealed succinic acid (SA) and a mixture of daidzein and genistein (MDG) as the primary antimicrobial components. Both SA and MDG effectively inhibited Pg and Aa growth and biofilm formation. TWK10FSEE shows potential as a functional ingredient for periodontal health.
Collapse
Affiliation(s)
- Te-Hua Liu
- Department of Food Science, Fu Jen Catholic, University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan, Republic of China.
| | - Ya-Hsiang Hsu
- Department of Food Science, Fu Jen Catholic, University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan, Republic of China.
| | - Ru-Yun Hsiao
- Department of Food Science, Fu Jen Catholic, University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan, Republic of China.
| | - Meng-Chun Cheng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan, Republic of China
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
- Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, Republic of China
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic, University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan, Republic of China.
| |
Collapse
|
2
|
Hou W, Sun C, Han X, Fan M, Qiao W. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Connect Tissue Res 2024; 65:433-446. [PMID: 39373023 DOI: 10.1080/03008207.2024.2406794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism. METHODS PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation. RESULTS NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro. CONCLUSION This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Wenyue Hou
- Outpatient Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Changsheng Sun
- Department of Stomatology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Han
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Mingyu Fan
- Harbin Hou Kaiyu Dental Clinic, Harbin, Heilongjiang, P.R. China
| | - Wenjuan Qiao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
3
|
Dong X, Zhao W, Ma S, Li X, Li G, Zhang S. Oral microbial profiles of extrinsic black tooth stain in primary dentition: A literature review. J Dent Sci 2024; 19:1369-1379. [PMID: 39035270 PMCID: PMC11259676 DOI: 10.1016/j.jds.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/28/2024] [Indexed: 07/23/2024] Open
Abstract
The extrinsic black tooth stain (EBS) is commonly found in primary dentition. Patients cannot clean the EBS; this can only be done by professional scaling and debridement. It also has a tendency to reform, which significantly compromises children's aesthetics and even affects their quality of life. However, there is no conclusive evidence on the etiology of the EBS. The associations between the EBS and related oral microbial features is one of the research hot topics. No literature review summarized these research progresses in this area. Therefore, we reviewed the literature on the microbiology of the EBS since 1931 and reported as the following 5 aspects: molecular biotechnology, morphological structure and physiochemical characteristics, microbial etiology hypothesis and core microbial characteristics. The EBS is a special dental plaque mainly composed of Gram-positive bacilli and cocci with scattered calcium deposits that acquired salivary pellicle activates. Early studies showed that the Actinomyces was the main pathogenic bacteria. With advances in biological research techniques, the 'core microbiome' was proposed. The potential pathogenic genera were Actinomyces, Prevotella nigrescens, Pseudotropinibacterium, Leptotrichia, Neisseria and Rothia. However, the pathogenic species of the above genera were still unclear. Currently, it is believed that the EBS consists of iron compounds or black substances that oral bacterial metabolism produces or that the bacterial metabolites formed after chemical reactions in the micro-ecological environment.
Collapse
Affiliation(s)
- Xue Dong
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Weijin Zhao
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Sha Ma
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Ximeng Li
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, China
| | - Shinan Zhang
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
4
|
Favale N, Farina R, Carrieri A, Simonelli A, Severi M, Sabbioni S, Trombelli L, Scapoli C. Functional profile of oral plaque microbiome: Further insight into the bidirectional relationship between type 2 diabetes and periodontitis. Mol Oral Microbiol 2024; 39:62-79. [PMID: 37257865 DOI: 10.1111/omi.12418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Increasing evidence support the association between the oral microbiome and human systemic diseases. This association may be attributed to the ability of many oral microbes to influence the inflammatory microenvironment. Herein, we focused our attention on the bidirectional relationship between periodontitis and type 2 diabetes using high-resolution whole metagenomic shotgun analysis to explore the composition and functional profile of the subgingival microbiome in diabetics and non-diabetics subjects with different periodontal conditions. In the present study, the abundance of metabolic pathways encoded by oral microbes was reconstructed from the metagenome, and we identified a set of dysregulated metabolic pathways significantly enriched in the periodontitis and/or diabetic patients. These pathways were mainly involved in branched and aromatic amino acids metabolism, fatty acid biosynthesis and adipocytokine signaling pathways, ferroptosis and iron homeostasis, nucleotide metabolism, and finally in the peptidoglycan and lipopolysaccharides synthesis. Overall, the results of the present study provide evidence in favor of the hypothesis that during the primary inflammatory challenge, regardless of whether it is induced by periodontitis or diabetes, endotoxemia and/or the release of inflammatory cytokines cause a change in precursor and/or in circulating innate immune cells. Dysbiosis and inflammation, also via oral-gut microbiome axis or adipose tissue, reduce the efficacy of the host immune response, while fueling inflammation and can induce that metabolic/epigenetic reprogramming of chromatin accessibility of genes related to the immune response. Moreover, the presence of an enhanced ferroptosis and an imbalance in purine/pyrimidine metabolism provides new insights into the role of ferroptotic death in this comorbidity.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Ferrara, Italy
| | - Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (A.U.S.L.), Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Ferrara, Italy
| | - Anna Simonelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (A.U.S.L.), Ferrara, Italy
| | - Mattia Severi
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (A.U.S.L.), Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology - Section of Pathology and Applied Microbiology, University of Ferrara, Ferrara, Italy
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (A.U.S.L.), Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology - Section of Biology and Evolution, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
6
|
Azevedo MJ, Garcia A, Costa CF, Ferreira AF, Falcão-Pires I, Brandt BW, Ramalho C, Zaura E, Sampaio-Maia B. The contribution of maternal factors to the oral microbiota of the child: Influence from early life and clinical relevance. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:191-202. [PMID: 37415593 PMCID: PMC10320028 DOI: 10.1016/j.jdsr.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The mother represents one of the earliest sources of microorganisms to the child, influencing the acquisition and establishment of its microbiota in early life. However, the impact of the mother on the oral microbiota of the child from early life until adulthood remains to unveil. This narrative review aims to: i) explore the maternal influence on the oral microbiota of the child, ii) summarize the similarity between the oral microbiota of mother and child over time, iii) understand possible routes for vertical transmission, and iv) comprehend the clinical significance of this process for the child. We first describe the acquisition of the oral microbiota of the child and maternal factors related to this process. We compare the similarity between the oral microbiota of mother and child throughout time, while presenting possible routes for vertical transmission. Finally, we discuss the clinical relevance of the mother in the pathophysiological outcome of the child. Overall, maternal and non-maternal factors impact the oral microbiota of the child through several mechanisms, although the consequences in the long term are still unclear. More longitudinal research is needed to unveil the importance of early-life microbiota on the future health of the infant.
Collapse
Affiliation(s)
- Maria João Azevedo
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Andreia Garcia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Farmácia, Universidade do Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
- Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Carolina F.F.A. Costa
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Ana Filipa Ferreira
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Bernd W. Brandt
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Carla Ramalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Department of Obstetrics-Gynecology and Pediatrics, Faculdade de Medicina, Universidade do Porto, Portugal
- Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Egija Zaura
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Benedita Sampaio-Maia
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
| |
Collapse
|
7
|
Dini C, Costa RC, Bertolini M, Shibli JA, Feres M, Klein MI, de Avila ÉD, Souza JGS, Barão VAR. In-vitro polymicrobial oral biofilm model represents clinical microbial profile and disease progression during implant-related infections. J Appl Microbiol 2023; 134:lxad265. [PMID: 37951291 DOI: 10.1093/jambio/lxad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIM Clinically relevant in-vitro biofilm models are essential and valuable tools for mechanistically dissecting the etiopathogenesis of infectious diseases and test new antimicrobial therapies. Thus, the aim of this study was to develop and test a clinically relevant in-vitro oral polymicrobial biofilm model that mimics implant-related infections in terms of microbial profile. METHODS AND RESULTS For this purpose, 24-well plate system was used to model oral biofilms, using three different microbial inoculums to grow in-vitro biofilms: (1) human saliva from periodontally healthy patients; (2) saliva as in inoculum 1 + Porphyromonas gingivalis strain; and (3) supra and subgingival biofilm collected from peri-implant sites of patients diagnosed with peri-implantitis. Biofilms were grown to represent the dynamic transition from an aerobic to anaerobic community profile. Subsequently, biofilms were collected after each phase and evaluated for microbiological composition, microbial counts, biofilm biomass, structure, and susceptibility to chlorhexidine (CHX). Results showed higher live cell count (P < .05) for biofilms developed from patients' biofilm inoculum, but biomass volume, dry weight, and microbiological composition were similar among groups (P > .05). Interestingly, according to the checkerboard DNA-DNA hybridization results, the biofilm developed from stimulated human saliva exhibited a microbial composition more similar to the clinical subgingival biofilm of patients with peri-implantitis, with proportions of the main pathogens closer to those found in the disease. In addition, biofilm developed using saliva as inoculum was shown to be susceptible to CHX with significant reduction in bacteria compared with biofilms without exposure to CHX (P < .05). CONCLUSION The findings suggested that the in-vitro polymicrobial biofilm developed from human saliva as inoculum is a suitable model and clinically relevant tool for mimicking the microbial composition of implant-related infections.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jamil Awad Shibli
- Dental Research Division, Guarulhos University, Guarulhos, SP 07011-010, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos, SP 07011-010, Brazil
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Marlise Inêz Klein
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Érica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, SP 16015-050, Brazil
| | | | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| |
Collapse
|
8
|
Mohapatra S, Rajpurohit L, Mohandas R, Patil S. Comparing the effectiveness of water flosser and dental floss in plaque reduction among adults: A systematic review. J Indian Soc Periodontol 2023; 27:559-567. [PMID: 38434511 PMCID: PMC10906797 DOI: 10.4103/jisp.jisp_597_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 03/05/2024] Open
Abstract
Introduction Interdental aids such as dental floss and water flossers have been found to be effective in removing interdental plaque. This systematic review aimed to compare the available data on the efficacy of dental floss and water flossers in plaque removal among adults. Materials and Methods Five databases: PubMed, Scopus, Cochrane, ScienceDirect, Lilac, and Google Scholar were searched from January 1, 2002, to October 31, 2022, to obtain the relevant articles. Based on the search strategy, the titles of the studies were screened independently by two reviewers. Randomized controlled trials were included in the review, in which the study participants were given either dental floss or water flosser. Reduction in plaque scores was the outcome that was assessed. Seven articles met the eligibility criteria and were further processed for qualitative analysis. Results The majority of the studies favored water flossers over dental floss in plaque reduction. Water flosser was also found to be effective in removing plaque from inaccessible interproximal areas of the tooth surfaces as compared to dental floss. Conclusion Based on the scope of this review, results suggest that water flossers can be used as an effective alternative to dental floss in patients with manual dexterity, patients undergoing orthodontic treatment, and patients with dental prostheses.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Ladusingh Rajpurohit
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rahul Mohandas
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sujeet Patil
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
9
|
Yin Z, Liu Y, Anniwaer A, You Y, Guo J, Tang Y, Fu L, Yi L, Huang C. Rational Designs of Biomaterials for Combating Oral Biofilm Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305633. [PMID: 37566788 DOI: 10.1002/adma.202305633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.
Collapse
Affiliation(s)
- Zhengrong Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaxi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Annikaer Anniwaer
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Luyao Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
10
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Wei Y, Wang K, Zhang Y, Duan Y, Tian Y, Yin H, Fu X, Ma Z, Zhou J, Yu M, Ni Q, Tang W. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation. Front Pharmacol 2023; 14:1138762. [PMID: 37007020 PMCID: PMC10063881 DOI: 10.3389/fphar.2023.1138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: It has been proven that hydrogen has obvious anti-inflammatory effects in animal experiments and clinical practice. However, the early dynamic process of the inflammatory response caused by lipopolysaccharide (LPS) and the anti-inflammatory effect of hydrogen has not been definitively reported. Methods: Inflammation in male C57/BL6J mice or RAW264.7 cells was induced with LPS, for which hydrogen was immediately administered until samples were taken. Pathological changes in lung tissue were assessed using hematoxylin and eosin (HE) staining. Levels of inflammatory factors in serum were determined using liquid protein chip. The mRNA levels of chemotactic factors in lung tissues, leukocytes, and peritoneal macrophages were measured by qRT-PCR. The expression levels of IL-1α and HIF-1α were measured by immunocytochemistry. Results: Hydrogen alleviated LPS-induced inflammatory infiltration in the lung tissues of mice. Among the 23 inflammatory factors screened, LPS-induced upregulation of IL-1α etc. was significantly inhibited by hydrogen within 1 hour. The mRNA expression of MCP-1, MIP-1α, G-CSF, and RANTES was inhibited obviously by hydrogen at 0.5 and 1 h in mouse peritoneal macrophages. In addition, hydrogen significantly blocked LPS or H2O2-induced upregulation of HIF-1α, and IL-1α in 0.5 h in RAW264.7 cells. Discussion: The results suggested that hydrogen is potentially inhibitive against inflammation by inhibiting HIF-1α and IL-1α release at early occurrence. The target of the inhibitive LPS-induced-inflammatory action of hydrogen is chemokines in macrophages in the peritoneal cavity. This study provides direct experimental evidence for quickly controlling inflammation with the translational application of a hydrogen-assisted protocol.
Collapse
Affiliation(s)
- Youzhen Wei
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- Research Center for Translational Medicine, Jinan People’s Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Kun Wang
- Office of Academic Research, Taishan Vocational College of Nursing, Taian, Shandong, China
| | - Yafang Zhang
- Department of Neonatology and NICU, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yi Duan
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tian
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Yin
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Qingbin Ni
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Regenerative Medicine, East Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| |
Collapse
|
12
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
13
|
Zhao L, Luo JL, Ali MK, Spiekerkoetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. Am J Respir Cell Mol Biol 2023; 68:245-255. [PMID: 36476129 PMCID: PMC9989478 DOI: 10.1165/rcmb.2022-0208tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.
Collapse
Affiliation(s)
- Lan Zhao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mohammed Khadem Ali
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| |
Collapse
|
14
|
Seredin PV, Ippolitov YA, Goloshchapov DL, Kashkarov VM, Ippolitov IY, Solaiman MA. [Distinctions in molecular composition of the dental biofilm depending on the method of exo-/endogeneous caries prevention and cariogenic condition of a patient]. STOMATOLOGIIA 2023; 102:86-93. [PMID: 36800793 DOI: 10.17116/stomat202310201186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PURPOSE OF THE STUDY For the first time distinctions of molecular composition of the dental biofilm at the stages of exo- and endogeneous caries prevention were studied for persons with different cariogenic conditions involving synchrotron molecular spectroscopy techniques. MATERIAL AND METHODS The samples of the dental biofilm collected from participants of the research were studied at the different stages of experiment. The studies of molecular composition of the biofilms were employed involving the equipment set in the Infrared Microspectroscopy (IRM) laboratory of Australian synchrotron. RESULTS Basing on the data obtained by synchrotron infrared spectroscopy with Fourier transform as well as using the calculations of the ratios between organic and mineral components and also statistical analysis of the data we could estimate the changes proceeding in the molecular composition of dental biofilm in a dependence of homeostasis conditions in the oral cavity at the stages of exo- and endogeneous caries prevention. CONCLUSION Observed changes in the values of phosphate/protein/lipid, phosphate/mineral and phospholipid/lipid ratios as well as the presence of statistically significant intra- and intergroup in these coefficients mean that mechanisms of adsorption for the ions, compounds and molecular complexes incoming from the oral fluid into the dental biofilm at the stage of exo-/endogeneous caries prevention are different for the patients in normal condition and for those ones with the developing caries.
Collapse
Affiliation(s)
| | - Yu A Ippolitov
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| | | | | | - I Yu Ippolitov
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| | - M A Solaiman
- Voronezh State Medical University after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|
15
|
Leija-Montoya AG, González-Ramírez J, Serafín-Higuera I, Sandoval-Basilio J, Isiordia-Espinoza M, Serafín-Higuera N. Emerging avenues linking myeloid-derived suppressor cells to periodontal disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:165-189. [PMID: 36967152 DOI: 10.1016/bs.ircmb.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Periodontal disease is one of the most common inflammatory disorders in humans. Gingivitis is the mildest form of periodontal disease and its progression can lead to periodontitis, an inflammatory disease characterized by soft tissue damage that can lead to progressive destruction of the periodontal ligament and alveolar bone. Diverse populations of immune cells are involved in periodontal disease. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous group of immature myeloid cells derived from hematopoietic precursor cells and exhibit T cell immunosuppressive functions that are thought to be involved in periodontal disease. Therefore, MDSCs have been recently analyzed in the context of this disease. In this review, we discuss the most recent advances in the characterization of the biological aspects, subpopulations, and traffic of MDSCs, as well as their immunosuppressive and osteoclastogenic activity in the context of periodontal disease and in the presence of key periodontal pathogens.
Collapse
|
16
|
Kurtzman GM, Horowitz RA, Johnson R, Prestiano RA, Klein BI. The systemic oral health connection: Biofilms. Medicine (Baltimore) 2022; 101:e30517. [PMID: 36401454 PMCID: PMC9678577 DOI: 10.1097/md.0000000000030517] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Frequently, periodontal health and it's associated oral biofilm has not been addressed in those patients who have systemic health issues, especially those who are not responding to medical treatment via their physician. Oral biofilm may be present in the periodontal sulcus in the absence of clinical disease of periodontal disease (bleeding on probing, gingival inflammation) and periodontal reaction is dependent on the patient's immune response to the associated bacterial and their byproducts. Increasing evidence has been emerging the past decade connecting oral biofilm with systemic conditions, either initiating them or complicating those medical conditions. The patient's health needs to be thought of as a whole-body system with connections that may originate in the oral cavity and have distant affects throughout the body. To maximize total health, a coordination in healthcare needs to be a symbiosis between the physician and dentist to eliminate the oral biofilm and aid in prevention of systemic disease or minimize those effects to improve the patient's overall health and quality of life. Various areas of systemic health have been associated with the bacteria and their byproducts in the oral biofilm. Those include cardiovascular disease, chronic kidney disease, diabetes, pulmonary disease, prostate cancer, colon cancer, pancreatic cancer, pre-term pregnancy, erectile dysfunction Alzheimer's disease and Rheumatoid arthritis. This article will discuss oral biofilm, its affects systemically and review the medical conditions associated with the oral systemic connection with an extensive review of the literature.
Collapse
Affiliation(s)
| | - Robert A. Horowitz
- Private periodontal practice Scarsdale, New York, USA
- Adjunct Clinical Assistant Professor, Department of Periodontology and Implant Dentistry, New York University College of Dentistry
| | | | | | | |
Collapse
|
17
|
Georges FM, Do NT, Seleem D. Oral dysbiosis and systemic diseases. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.995423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this mini review is to investigate the connection between oral microbiome dysbiosis and systemic diseases. Many systemic conditions can have oral manifestations and cause worsening in oral diseases. For example, uncontrolled type 2 diabetes has been associated with worsening of periodontal disease. Other inflammatory diseases or autoimmune diseases may predispose to oral mucositis, mucosal ulcers, xerostomia, and higher susceptibility to oral infections. This review will outline common systemic diseases, such as metabolic, cardiovascular, and immunologic disorders as they relate to oral manifestations and changes in the oral microbiome composition.
Collapse
|
18
|
Tan HC, Cheung GSP, Chang JWW, Zhang C, Lee AHC. Enterococcus faecalis Shields Porphyromonas gingivalis in Dual-Species Biofilm in Oxic Condition. Microorganisms 2022; 10:microorganisms10091729. [PMID: 36144331 PMCID: PMC9505435 DOI: 10.3390/microorganisms10091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Aim: To develop a reproducible biofilm model consisting of Enterococcus faecalis (E. faecalis) and Porphyromonas gingivalis (P. gingivalis) and to evaluate the interaction between the two bacterial species. Methodology: E. faecalis and P. gingivalis were grown in mono-culture, sequential, and co-culture models for 96 h in a 96-well polystyrene microtiter plate under both aerobic and anaerobic conditions separately. The viability of the two bacterial species in the biofilms was quantified by polymerase chain reaction (qPCR). Biofilm thickness and protein contents were measured using confocal laser scanning microscopy (CLSM). Two-way analysis of variance (ANOVA) was performed to analyze cell viability and biofilm thickness among different culture models cultivated under either aerobic or anaerobic conditions. The level of significance was set at p < 0.05. Results: Different culture models tested did not show any significant difference between the viable cell counts of both E. faecalis and P. gingivalis cultivated under aerobic and anaerobic conditions (p > 0.05). Biofilm was significantly thicker (p < 0.05) in the co-culture models compared to the mono-culture and sequential models. Protein contents in the biofilms were more pronounced when both bacterial species were co-cultured under aerobic conditions. Conclusions: E. faecalis appeared to shield P. gingivalis and support its continued growth in oxic (aerobic) conditions. The co-culture model of E. faecalis and P. gingivalis produced a significantly thicker biofilm irrespective of the presence or absence of oxygen, while increased protein contents were only observed in the presence of oxygen.
Collapse
|
19
|
Chattopadhyay I, Lu W, Manikam R, Malarvili MB, Ambati RR, Gundamaraju R. Can metagenomics unravel the impact of oral bacteriome in human diseases? Biotechnol Genet Eng Rev 2022; 39:85-117. [PMID: 35861776 DOI: 10.1080/02648725.2022.2102877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oral microbial ecosystems are vital in maintaining the health of the oral cavity and the entire body. Oral microbiota is associated with the progression of oral diseases such as dental caries, periodontal diseases, head and neck cancer, and several systemic diseases such as cardiovascular disease, rheumatoid arthritis, adverse pregnancy outcomes, diabetes, lung infection, colorectal cancer, and pancreatic cancer. Buccal mucosa, tongue dorsum, hard palate, saliva, palatine tonsils, throat, keratinized gingiva, supra-gingival plaque, subgingival plaque, dentures, and lips are microbial habitats of the oral cavity. Porphyromonas gingivalis may have a role in the development of periodontal diseases, oral cancer, diabetes, and atherosclerotic disease. Fusobacterium nucleatum showed a higher abundance in periodontal diseases, oral and colon cancer, adverse pregnancy outcomes, diabetes, and rheumatoid arthritis. The higher abundance of Prevotella intermedia is typical in periodontal diseases, rheumatoid arthritis, and adverse pregnancy outcome. S. salivarius displayed higher abundance in both dental caries and OSCC. Oral bacteria may influence systemic diseases through inflammation by releasing pro inflammatory cytokines. Identification of oral bacteria using culture-dependent approaches and next-generation sequencing-based metagenomic approaches is believed to significantly identify the therapeutic targets and non-invasive diagnostic indicators in different human diseases. Oral bacteria in saliva could be exploited as a non-invasive diagnostic indicator for the early detection of oral and systemic disorders. Other therapeutic approaches such as the use of probiotics, green tea polyphenol, cold atmospheric plasma (CAP) therapy, antimicrobial photodynamic therapy, and antimicrobial peptides are used to inhibit the growth of biofilm formation by oral bacteria.
Collapse
Affiliation(s)
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Rishya Manikam
- Trauma and Emergency, University of Malaya, Kuala Lumpur, Malaysia
| | - M B Malarvili
- School of Biomedical and Health Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan`s Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
20
|
Tan CAZ, Lam LN, Biukovic G, Soh EYC, Toh XW, Lemos JA, Kline KA. Enterococcus faecalis Antagonizes Pseudomonas aeruginosa Growth in Mixed-Species Interactions. J Bacteriol 2022; 204:e0061521. [PMID: 35758750 PMCID: PMC9295543 DOI: 10.1128/jb.00615-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/05/2022] [Indexed: 12/30/2022] Open
Abstract
Enterococcus faecalis is often coisolated with Pseudomonas aeruginosa in polymicrobial biofilm-associated infections of wounds and the urinary tract. As a defense strategy, the host innately restricts iron availability at infection sites. Despite their coprevalence, the polymicrobial interactions of these two species in biofilms and under iron-restricted conditions remain unexplored. Here, we show that E. faecalis inhibits P. aeruginosa growth within biofilms when iron is restricted. E. faecalis lactate dehydrogenase (ldh1) gives rise to l-lactate production during fermentative growth. We find that an E. faecalis ldh1 mutant fails to inhibit P. aeruginosa growth. Additionally, we demonstrate that ldh1 expression is induced under iron-restricted conditions, resulting in increased lactic acid exported and, consequently, a reduction in local environmental pH. Together, our results suggest that E. faecalis synergistically inhibits P. aeruginosa growth by decreasing environmental pH and l-lactate-mediated iron chelation. Overall, this study emphasizes the importance of the microenvironment in polymicrobial interactions and how manipulating the microenvironment can impact the growth trajectory of bacterial communities. IMPORTANCE Many infections are polymicrobial and biofilm-associated in nature. Iron is essential for many metabolic processes and plays an important role in controlling infections, where the host restricts iron as a defense mechanism against invading pathogens. However, polymicrobial interactions between pathogens are underexplored under iron-restricted conditions. Here, we explore the polymicrobial interactions between commonly coisolated E. faecalis and P. aeruginosa within biofilms. We find that E. faecalis modulates the microenvironment by exporting lactic acid which further chelates already limited iron and also lowers the environmental pH to antagonize P. aeruginosa growth under iron-restricted conditions. Our findings provide insights into polymicrobial interactions between bacteria and how manipulating the microenvironment can be taken advantage of to better control infections.
Collapse
Affiliation(s)
- Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Goran Biukovic
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Eliza Ye-Chen Soh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Xiao Wei Toh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Seredin P, Goloshchapov D, Kashkarov V, Nesterov D, Ippolitov Y, Ippolitov I, Vongsvivut J. Effect of Exo/Endogenous Prophylaxis Dentifrice/Drug and Cariogenic Conditions of Patient on Molecular Property of Dental Biofilm: Synchrotron FTIR Spectroscopic Study. Pharmaceutics 2022; 14:pharmaceutics14071355. [PMID: 35890251 PMCID: PMC9320832 DOI: 10.3390/pharmaceutics14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objectives: This study is the first one to investigate the molecular composition of the dental biofilm during the exogenous and endogenous prophylaxis stages (use of dentifrice/drug) of individuals with different cariogenic conditions using molecular spectroscopy methods. (2) Materials and Methods: The study involved 100 participants (50 males and 50 females), aged 18–25 years with different caries conditions. Biofilm samples were collected from the teeth surface of all participants. The molecular composition of biofilms was investigated using synchrotron infrared microspectroscopy. Changes in the molecular composition were studied through calculation and analysis of ratios between organic and mineral components of biofilm samples. (3) Results: Based on the data obtained by synchrotron FTIR, calculations of organic and mineral component ratios, and statistical analysis of the data, we were able to assess changes occurring in the molecular composition of the dental biofilm. Variations in the phosphate/protein/lipid, phosphate/mineral, and phospholipid/lipid ratios and the presence of statistically significant intra- and inter-group differences in these ratios indicate that the mechanisms of ion adsorption, compounds and complexes arriving from oral fluid into dental biofilm during exo/endogenous prophylaxis, differ for patients in norm and caries development. (4) Conclusions: The conformational environment and charge interaction in the microbiota and the electrostatic state of the biofilm protein network in patients with different cariogenic conditions play an important role. (5) Clinical Significance: Understanding the changes that occur in the molecular composition of the dental biofilm in different oral homeostasis conditions will enable successful transition to a personalised approach in dentistry and high-tech healthcare.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
- Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Dmitry Nesterov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | | |
Collapse
|
22
|
Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clin Exp Immunol 2022; 209:161-174. [PMID: 35652460 DOI: 10.1093/cei/uxac057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases have long been known to share a common pathogenesis involving a dysregulated immune system with failure to recognize self from non-self antigens. This immune dysregulation is now increasingly understood to be induced by environmental triggers in genetically predisposed individuals. Although several external environmental triggers have been defined in different autoimmune diseases, much attention is being paid to the role of the internal micro-environment occupied by the microbiome which was once termed "the forgotten organ". In this regard, the gut microbiome, serving as an intermediary between some of those external environmental effectors and the immune system helps programming of the immune system to be tolerant to innocent external and self antigens. However, in the presence of perturbed gut microbiota (dysbiosis), the immune system could be erroneously directed in favor of pro-inflammatory pathways to instigate different autoimmune processes. An accumulating body of evidence, including both experimental and human studies (observational and interventional) points to a role of gut microbiome in different autoimmune diseases. Such evidence could provide a rationale for gut microbiome manipulation with therapeutic and even preventative intents in patients with established or predisposed to autoimmune diseases respectively. Perturbations of the gut microbiome have been delineated in some immune mediated diseases, IBD in particular. However, such patterns of disturbance (microbiome signatures) and related pathogenetic roles of the gut microbiome are context dependent and cannot be generalized in the same exact way to other autoimmune disorders and the contribution of gut microbiome to different disease phenotypes has to be precisely defined. In this review, we revise the evidence for a role of gut microbiome in various autoimmune diseases and possible mechanisms mediating such a role.
Collapse
Affiliation(s)
- Walaa Abdelaty Shaheen
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,Gastroenterology Department, Menoufia University, Egypt
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
23
|
Basu A, Singh R, Gupta S. Bacterial infections in cancer: A bilateral relationship. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1771. [PMID: 34994112 DOI: 10.1002/wnan.1771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Bacteria share a long commensal relationship with the human body. New findings, however, continue to unravel many complexities associated with this old alliance. In the past decades, the dysbiosis of human microbiome has been linked to tumorigenesis, and more recently to spontaneous colonization of existing tumors. The topic, however, remains open for debate as the claims for causative-prevailing dual characteristics of bacteria are mostly based on epidemiological evidence rather than robust mechanistic models. There are also no reviews linking the collective impact of bacteria in tumor microenvironments to the efficacy of cancer drugs, mechanisms of pathogen-initiated cancer and bacterial colonization, personalized nanomedicine, nanotechnology, and antimicrobial resistance. In this review, we provide a holistic overview of the bilateral relationship between cancer and bacteria covering all these aspects. Our collated evidence from the literature does not merely categorize bacteria as cancer causative or prevailing agents, but also critically highlights the gaps in the literature where more detailed studies may be required to reach such a conclusion. Arguments are made in favor of dual drug therapies that can simultaneously co-target bacteria and cancer cells to overcome drug resistance. Also discussed are the opportunities for leveraging the natural colonization and remission power of bacteria for cancer treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Rohini Singh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
24
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
25
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
26
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
27
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
28
|
Rocha FG, Berges A, Sedra A, Ghods S, Kapoor N, Pill L, Davey ME, Fairman J, Gibson FC. A Porphyromonas gingivalis Capsule-Conjugate Vaccine Protects From Experimental Oral Bone Loss. FRONTIERS IN ORAL HEALTH 2021; 2:686402. [PMID: 35048031 PMCID: PMC8757777 DOI: 10.3389/froh.2021.686402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
Periodontal diseases are chronic inflammatory diseases of the periodontium that result in progressive destruction of the soft and hard tissues supporting the teeth, and it is the most common cause of tooth loss among adults. In the US alone, over 100 million individuals are estimated to have periodontal disease. Subgingival bacteria initiate and sustain inflammation, and, although several bacteria have been associated with periodontitis, Porphyromonas gingivalis has emerged as the key etiological organism significantly contributing to the disease. Currently, intensive clinical maintenance strategies are deployed to mitigate the further progression of disease in afflicted individuals; however, these treatments often fail to stop disease progression, and, as such, the development of an effective vaccine for periodontal disease is highly desirable. We generated a conjugate vaccine, comprising of the purified capsular polysaccharide of P. gingivalis conjugated to eCRM®, a proprietary and enhanced version of the CRM197 carrier protein with predetermined conjugation sites (Pg-CV). Mice immunized with alum adjuvanted Pg-CV developed robust serum levels of whole organism-specific IgG in comparison to animals immunized with unconjugated capsular polysaccharide alone. Using the murine oral bone loss model, we observed that mice immunized with the capsule-conjugate vaccine were significantly protected from the effects of P. gingivalis-elicited oral bone loss. Employing a preclinical model of infection-elicited oral bone loss, our data support that a conjugate vaccine incorporating capsular polysaccharide antigen is effective in reducing the main clinical endpoint of periodontal disease-oral bone destruction. Further development of a P. gingivalis capsule-based conjugate vaccine for preventing periodontal diseases is supported.
Collapse
Affiliation(s)
- Fernanda G. Rocha
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Aym Berges
- Vaxcyte Inc., Foster City, CA, United States
| | - Angie Sedra
- Vaxcyte Inc., Foster City, CA, United States
| | - Shirin Ghods
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | | | - Lucy Pill
- Vaxcyte Inc., Foster City, CA, United States
| | - Mary Ellen Davey
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | | | - Frank C. Gibson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| |
Collapse
|
29
|
Chen Z, Guo Z, Lin H, Tian Y, Zhang P, Chen H, Wang Y, Shen Y. The feasibility of phage therapy for periodontitis. Future Microbiol 2021; 16:649-656. [PMID: 34098742 DOI: 10.2217/fmb-2020-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis, a chronic progressive inflammation caused by plaque biofilm, is the main cause of tooth loss in adults. For certain refractory periodontitis cases, it is difficult to achieve a good curative effect using the existing periodontal treatment approaches, which may be due to periodontal pathogenic mechanism in the affected periodontal tissue that the host cannot resist and eliminate. Various pieces of evidence collectively revealed that most studies are focusing on phages in periodontal disease. Several studies have reported periodontitis treatment using phage therapy, highlighting its features including specificity, rapid propagation, and effectiveness on bacteriophage biofilms. In this study, we focus on these reports, aiming to lay the foundation for improved periodontal treatment approaches.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongbing Lin
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yue Tian
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Peipei Zhang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Huishan Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yawei Wang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| |
Collapse
|
30
|
Abstract
Ecologists have long recognized the importance of spatial scale in understanding structure-function relationships among communities of organisms within their environment. Here, we review historical and contemporary studies of dental plaque community structure in the context of three distinct scales: the micro (1-10 µm), meso (10-100 µm) and macroscale (100 µm to ≥1 cm). Within this framework, we analyze the compositional nature of dental plaque at the macroscale, the molecular interactions of microbes at the microscale, and the emergent properties of dental plaque biofilms at the mesoscale. Throughout our analysis of dental plaque across spatial scales, we draw attention to disease and health-associated structure-function relationships and include a discussion of host immune involvement in the mesoscale structure of periodontal disease-associated biofilms. We end with a discussion of two filamentous organisms, Fusobacterium nucleatum and Corynebacterium matruchotii, and their relevant contributions in structuring dental plaque biofilms.
Collapse
Affiliation(s)
| | - Alex M. Valm
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
31
|
Teixeira Essenfelder L, Gomes AA, Coimbra JLM, Moreira MA, Ferraz SM, Miquelluti DJ, Felippe da Silva G, Magalhães MDLB. Salivary β-glucosidase as a direct factor influencing the occurrence of halitosis. Biochem Biophys Rep 2021; 26:100965. [PMID: 33732903 PMCID: PMC7941027 DOI: 10.1016/j.bbrep.2021.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
β-Glucosidases are enzymes present in all living organisms, playing a pivotal role in diverse biological processes. These enzymes cleave β-glycosidic bonds between carbohydrates, or between a carbohydrate and a non-carbohydrate moiety, which may result in the liberation of volatile aglycones. Released compounds execute diverse physiological roles, while the industry takes advantage of exogenously added β-glucosidases for aroma enrichment during food and beverage production. β-Glucosidase enzymatic activity has been reported in human saliva and given the fact that these enzymes are involved in aroma release, we investigated here the correlation between β-glucosidase activity in human saliva and the occurrence of halitosis. Measurement of salivary enzyme activity of 48 volunteers was performed using p-nitrophenyl-β-d-glucopyranoside as substrate. Each volunteer was clinically evaluated by a dental surgeon and clinical and laboratorial data were statistically analyzed. Gas-chromatography of saliva headspace allowed the analysis of the direct role of exogenous β-glucosidase on aromatic /volatile profile of saliva samples. The data demonstrated a positive correlation between halitosis and enzymatic activity, suggesting that the enzyme exerts a direct role in the occurrence of bad breath. Gas-chromatography analysis demonstrated that exogenously added enzyme led to the alteration of volatile organic content, confirming a direct contribution of β-glucosidase activity on saliva volatile compounds release. Although halitosis is a multifactorial condition, the complete understanding of all governing factors may allow the development of more effective treatment strategies. Such studies may pave the way to the use of β-glucosidase inhibitors for halitosis clinical management. β-Glucosidases are capable of altering the aromatic profile of saliva. Increased salivary β-glucosidase is associated with halitosis. Increased salivary β-glucosidase is associated with dental biofilm. Salivary β-glucosidases are produced by oral microrganisms.
Collapse
Affiliation(s)
- Lucimari Teixeira Essenfelder
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Anderson Albino Gomes
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Jefferson Luis Meirelles Coimbra
- Department of Soil and Natural Resources, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Marcelo Alves Moreira
- Department of Soil and Natural Resources, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Sandra Maria Ferraz
- Department of Veterinary Medicine, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - David José Miquelluti
- Department of Soil and Natural Resources, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Gustavo Felippe da Silva
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| | - Maria de Lourdes Borba Magalhães
- Biochemistry Laboratory, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina, 88520-000, Brazil
| |
Collapse
|
32
|
Johnson A, Kong F, Miao S, Thomas S, Ansar S, Kong ZL. In-Vitro Antibacterial and Anti-Inflammatory Effects of Surfactin-Loaded Nanoparticles for Periodontitis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:356. [PMID: 33535497 PMCID: PMC7912741 DOI: 10.3390/nano11020356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis is an inflammatory disease associated with biofilm formation and gingival recession. The practice of nanotechnology in the clinical field is increased overtime due to its potential advantages in drug delivery applications. Nanoparticles can deliver drugs into the targeted area with high efficiency and cause less damages to the tissues. In this study, we investigated the antibacterial and anti-inflammatory properties of surfactin-loaded κ-carrageenan oligosaccharides linked cellulose nanofibers (CO-CNF) nanoparticles. Three types of surfactin-loaded nanoparticles were prepared based on the increasing concentration of surfactin such as 50SNPs (50 mg surfactin-loaded CO-CNF nanoparticles), 100SNPs (100 mg surfactin-loaded CO-CNF nanoparticles), and 200SNPs (200 mg surfactin-loaded CO-CNF nanoparticles). The results showed that the nanoparticles inhibited the growth of Fusobacterium nucleatum and Pseudomonas aeruginosa. The reduction in biofilm formation and metabolic activity of the bacteria were confirmed by crystal violet and MTT assay, respectively. Besides, an increase in oxidative stress was also observed in bacteria. Furthermore, anti-inflammatory effects of surfactin-loaded CO-CNF nanoparticles was observed in lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGF) cells. A decrease in the production of reactive oxygen species (ROS), transcription factor, and cytokines were observed in the presence of nanoparticles. Collectively, these observations supported the use of surfactin-loaded CO-CNF as a potential candidate for periodontitis management.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA;
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork P61 C996, Ireland;
| | - Sabu Thomas
- School of Energy Studies and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, Kerala 686560, India;
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
33
|
Measurement of the Level of Nitric Oxide in Exhaled Air in Patients Using Acrylic Complete Dentures and with Oral Pathologies. COATINGS 2021. [DOI: 10.3390/coatings11020169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The measurement of nitric oxide (NO) in exhaled air is used in diagnostics and monitoring of the pathologies in the respiratory system but also in the oral cavity. Researchers have shown a huge increase of its level in asthma and diseases in the oral cavity. It seems reasonable to research the impact of pathologies in the oral cavity on the level of NO in exhaled air. The purpose of this study was to determine the impact of inflammation in the oral cavity (according to the material of dentures) on the level of nitric oxide in exhaled air. Three groups of patients were examined in this study. The hygiene of acrylic dentures, hard tissues, periodontal tissues, hygiene of the oral cavity, and level of NO in exhaled air were examined. Prosthetic stomatitis, denture plaque, tooth decay, poor sanitation and periodontitis increase levels of NO.
Collapse
|
34
|
Kharitonova M, Vankov P, Abdrakhmanov A, Mamaeva E, Yakovleva G, Ilinskaya O. The composition of microbial communities in inflammatory periodontal diseases in young adults Tatars. AIMS Microbiol 2021; 7:59-74. [PMID: 33659769 PMCID: PMC7921377 DOI: 10.3934/microbiol.2021005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Host susceptibility and environmental factors are important for the development of gingivitis and periodontitis, but bacterial biofilms attached to the teeth and gingival tissues play a crucial role. We have analyzed and compared the subgingival microbial communities between subjects with dental plaque biofilm-induced generalized chronic gingivitis (CG), localized initial (Stage I) periodontitis (IP) and healthy controls (HC) of young people aged 18-19 years permanently residing in the city of Kazan (Tatarstan, Russia). The results showed that the α-diversity in groups with CG and IP was higher than in the healthy group. In a course of periodontal disease, a decrease in the relative abundance of dominates genera Rothia and Streptococcus was observed along with increase of class TM7-3 (Candidatus Saccharibacteria phylum) representatives. Also, the increase of red complex representatives Porphyromonadeceae, Treponema and Tannerella was detected together with statistically significant increase of Filifactor, Parvimonas, Peptostreptococcaceae, Veillonellaceae, Tissierelaceae and Mogibacteriaceae. Analysis of our data suggests that transition from HC to IP may be accompanied by a decrease in microbial diversity and a reduction in the abundance of family Rs-045 (Candidatus Saccharibacteria phylum), Desulfovibrionaceae Corynebacterium, Campylobacter and Selenomonas in young adults Kazan Tatars.
Collapse
Affiliation(s)
- Maya Kharitonova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Peter Vankov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Airat Abdrakhmanov
- Department of Pediatric Dentistry, Kazan State Medical University, Butlerova Str. 49, Kazan 420012, Russia
| | - Elena Mamaeva
- Department of Pediatric Dentistry, Kazan State Medical University, Butlerova Str. 49, Kazan 420012, Russia
| | - Galina Yakovleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
35
|
Rath S, Bal SCB, Dubey D. Oral Biofilm: Development Mechanism, Multidrug Resistance, and Their Effective Management with Novel Techniques. Rambam Maimonides Med J 2021; 12:RMMJ.10428. [PMID: 33478627 PMCID: PMC7835112 DOI: 10.5041/rmmj.10428] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are formed by the congregation of one or more types of microorganisms that can grow on a firm surface. Dental plaque is one of the most commonly forming biofilms in the oral cavity and appears as a slimy layer on the surface of the teeth. In general, the formation is slow, but biofilms are very adaptive to the changing environment, and a mature biofilm can cause many health-related problems in humans. These biofilms remain unaffected by antibiotics as they do not allow the penetration of antibiotics. Moreover, the increased level of virulence and antibiotic resistance of microorganisms in the oral biofilm or dental plaque has made its clinical management a serious challenge worldwide. Chlorhexidine-like antimicrobial drugs have been partially effective in removing such organisms; however, the precise and continuous elimination of these microorganisms without disturbing the normal microbial flora of the oral cavity is still a challenge. This review paper focuses on the process of oral biofilm formation, related complications, development of drug-resistant bacteria in these biofilms, and their effective management by the use of different novel techniques, available from various published research and review articles.
Collapse
Affiliation(s)
- Shakti Rath
- Associate Professor (Research), Central Research Laboratory, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- To whom correspondence should be addressed. E-mail:
| | - Sourav Chandra Bidyasagar Bal
- Assistant Professor (Public Health Dentistry), Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debasmita Dubey
- Post Doctoral Fellow, Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology, Sambalpur University, Sambalpur, Odisha, India
| |
Collapse
|
36
|
Johnson A, Kong F, Miao S, Lin HTV, Thomas S, Huang YC, Kong ZL. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci Rep 2020; 10:18037. [PMID: 33093521 PMCID: PMC7581766 DOI: 10.1038/s41598-020-74845-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an inflammatory disease that can lead to the periodontal pocket formation and tooth loss. This study was aimed to develop antimicrobials loaded hydrogels composed of cellulose nanofibers (CNF) and κ-carrageenan oligosaccharides (CO) nanoparticles for the treatment of periodontitis. Two antimicrobial agents such as surfactin and Herbmedotcin were selected as the therapeutic agents and the hydrogels were formulated based on the increasing concentration of surfactin. The proposed material has high thermal stability, controlled release, and water absorption capacity. This study was proceeded by investigating the in vitro antibacterial and anti-inflammatory properties of the hydrogels. This material has strong antibacterial activity against periodontal pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Fusobacterium nucleatum, and Pseudomonas aeruginosa. Moreover, a significant increase in malondialdehyde (MDA) production and a decrease in biofilm formation and metabolic activity of the bacteria was observed in the presence of hydrogel. Besides, it reduced the reactive oxygen species (ROS) generation, transcription factor, and cytokines production in human gingival fibroblast cells (HGF) under inflammatory conditions. In conclusion, the hydrogels were successfully developed and proven to have antibacterial and anti-inflammatory properties for the treatment of periodontitis. Thus, it can be used as an excellent candidate for periodontitis treatment.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA, 30602, USA
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, P61 C996, Ireland
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Sabu Thomas
- School of Energy Studies and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, Kerala, 686560, India
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
37
|
Rosca AS, Castro J, Sousa LGV, Cerca N. Gardnerella and vaginal health: the truth is out there. FEMS Microbiol Rev 2020; 44:73-105. [PMID: 31697363 DOI: 10.1093/femsre/fuz027] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The human vagina is a dynamic ecosystem in which homeostasis depends on mutually beneficial interactions between the host and their microorganisms. However, the vaginal ecosystem can be thrown off balance by a wide variety of factors. Bacterial vaginosis (BV) is the most common vaginal infection in women of childbearing age but its etiology is not yet fully understood, with different controversial theories being raised over the years. What is generally accepted is that BV is often characterized by a shift in the composition of the normal vaginal microbiota, from a Lactobacillus species dominated microbiota to a mixture of anaerobic and facultative anaerobic bacteria. During BV, a polymicrobial biofilm develops in the vaginal microenvironment, being mainly composed of Gardnerella species. The interactions between vaginal microorganisms are thought to play a pivotal role in the shift from health to disease and might also increase the risk of sexually transmitted infections acquisition. Here, we review the current knowledge regarding the specific interactions that occur in the vaginal niche and discuss mechanisms by which these interactions might be mediated. Furthermore, we discuss the importance of novel strategies to fight chronic vaginal infections.
Collapse
Affiliation(s)
- Aliona S Rosca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
38
|
|
39
|
Radaic A, Ye C, Parks B, Gao L, Kuraji R, Malone E, Kamarajan P, Zhan L, Kapila YL. Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol 2020; 12:1809302. [PMID: 32944159 PMCID: PMC7482728 DOI: 10.1080/20002297.2020.1809302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Oral dysbiosis is an imbalance in the oral microbiome and is associated with a variety of oral and systemic diseases, including periodontal disease, caries, and head and neck/oral cancer. Although antibiotics can be used to control this dysbiosis, they can lead to adverse side effects and superinfections. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents, since they are considered safe for humans and the environment. Specifically, the Gram-positive Lactococcus lactis, a species present in the oral and gut microbiota, is able to produce nisin, which has been used worldwide for food preservation. Objective The objective of this study was to test whether a nisin probiotic can promote a healthier oral microbiome in pathogen-spiked oral biofilms. Results We found that L. lactis can prevent oral biofilm formation and disrupt 24-h and 48-h pre-formed biofilms. Finally, we demonstrate that both treatments, a nisin-producing L. lactis probiotic and nisin can decrease the levels of pathogens in the biofilms and return the diversity levels back to control or ‘healthy’ levels. Conclusion A nisin-producing probiotic, can be used to treat ‘disease-altered’ biofilms and promote healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Brett Parks
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Mountcastle SE, Cox SC, Sammons RL, Jabbari S, Shelton RM, Kuehne SA. A review of co-culture models to study the oral microenvironment and disease. J Oral Microbiol 2020; 12:1773122. [PMID: 32922679 PMCID: PMC7448840 DOI: 10.1080/20002297.2020.1773122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/25/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Co-cultures allow for the study of cell-cell interactions between different eukaryotic species or with bacteria. Such an approach has enabled researchers to more closely mimic complex tissue structures. This review is focused on co-culture systems modelling the oral cavity, which have been used to evaluate this unique cellular environment and understand disease progression. Over time, these systems have developed significantly from simple 2D eukaryotic cultures and planktonic bacteria to more complex 3D tissue engineered structures and biofilms. Careful selection and design of the co-culture along with critical parameters, such as seeding density and choice of analysis method, have resulted in several advances. This review provides a comparison of existing co-culture systems for the oral environment, with emphasis on progression of 3D models and the opportunity to harness techniques from other fields to improve current methods. While filling a gap in navigating this literature, this review ultimately supports the development of this vital technique in the field of oral biology.
Collapse
Affiliation(s)
- Sophie E Mountcastle
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, UK
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | | | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Ebersole J, Samburova V, Son Y, Cappelli D, Demopoulos C, Capurro A, Pinto A, Chrzan B, Kingsley K, Howard K, Clark N, Khlystov A. Harmful chemicals emitted from electronic cigarettes and potential deleterious effects in the oral cavity. Tob Induc Dis 2020; 18:41. [PMID: 32435175 PMCID: PMC7233525 DOI: 10.18332/tid/116988] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigs), is increasing across the US population and is particularly troubling due to their adoption by adolescents, teens, and young adults. The industry’s marketing approach for these instruments of addiction has been to promote them as a safer alternative to tobacco, a behavioral choice supporting smoking cessation, and as the ‘cool’ appearance of vaping with flavored products (e.g. tutti frutti, bubble gum, and buttered popcorn etc.). Thus, there is a clear need to better document the health outcomes of e-cig use in the oral cavity of the addicted chronic user. There appears to be an array of environmental toxins in the vapors, including reactive aldehydes and carbonyls resulting from the heating elements action on fluid components, as well as from the composition of chemical flavoring agents. The chemistry of these systems shows that the released vapors from the e-cigs frequently contain levels of environmental toxins that considerably exceed federal occupational exposure limits. Additionally, the toxicants in the vapors appear to be retained in the host fluids/tissues at levels often approximating 90% of the levels in the e-cig vapors. These water-soluble reactive toxins can challenge the oral cavity constituents, potentially contributing to alterations in the autochthonous microbiome and host cells critical for maintaining oral homeostasis. This review updates the existing chemistry/environmental aspects of e-cigs, as well as providing an overview of the somewhat limited data on potential oral health effects that could occur across the lifetime of daily e-cig users.
Collapse
Affiliation(s)
- Jeffrey Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Vera Samburova
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, United States
| | - David Cappelli
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Christina Demopoulos
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Antonina Capurro
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andres Pinto
- Oral and Maxillofacial Medicine and Diagnostic Sciences, School of Dental Medicine, Case Western University, Cleveland, United States
| | - Brian Chrzan
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Karl Kingsley
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Katherine Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Nathaniel Clark
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| | - Andrey Khlystov
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, United States
| |
Collapse
|
42
|
Zhang X, Chen BD, Zhao LD, Li H. The Gut Microbiota: Emerging Evidence in Autoimmune Diseases. Trends Mol Med 2020; 26:862-873. [PMID: 32402849 DOI: 10.1016/j.molmed.2020.04.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
The pathogenesis of autoimmune diseases (AIDs) is not only attributed to genetic susceptibilities but also environmental factors, among which, disturbed gut microbiota has attracted increasing attention. Compositional and functional changes of gut microbiota have been reported in various AIDs, and increasing evidence suggests that disturbed gut microbiota contributes to their immunopathogenesis. The accepted mechanisms include abnormal microbial translocation, molecular mimicry, and dysregulation of both local and systemic immunity. Studies have also suggested microbiota-based classification models and therapeutic interventions for patients with AIDs. Further in-depth mechanistic studies on microbiota-autoimmunity interplay in AIDs are urgently needed and underway to explore novel and precise diagnostic biomarkers and develop disease and patient-tailored therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730.
| | - Bei-di Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, 100730
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology 2020; 109:18-28. [PMID: 32279229 DOI: 10.1007/s10266-020-00514-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen and major colonizer in host tissue which plays a pivotal role in periodontitis among the other polymicrobial infections. Increasing facts demonstrate that curcumin has antibacterial activity and anti-biofilm effect against the periodontopathogens through diverse mechanisms that have a positive impact on periodontal health. The present study was aimed to elucidate the effect of curcumin on biofilm formation and virulence factor gene expression of P. gingivalis. By using gene expression studies, we exploited the mechanism of anti-biofilm effects of curcumin on P. gingivalis. The minimum inhibitory concentration and minimum bactericidal concentration of curcumin for both ATCC and clinical strains of P. gingivalis were found to be 62.5 and 125 µg ml-1 respectively. Curcumin prevented bacterial adhesion and biofilm formation in a dose-dependent manner. Further, curcumin attenuated the virulence of P. gingivalis by reducing the expression of genes coding for major virulence factors, including adhesions (fimA, hagA, and hagB) and proteinases (rgpA, rgpB, and kgp). The results indicated that curcumin has shown anti-biofilm as well as antibacterial activity against P. gingivalis. Further, curcumin because of its pleiotropic actions could be a simple and inexpensive therapeutic strategy in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
- Department of Pharmaceutics, Maratha Mandal's College of Pharmacy, Belgaum, Karnataka, 590 010, India
| | - Manohar S Kugaji
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Vadgaon Budruk, Sinhagad Road, Pune, Maharashtra, 411 0 41, India
| | - Sanjivani P Patil
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University (Formerly Known as B.V.Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubli, Karnataka, 580031, India
| | - Kishore G Bhat
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India.
| |
Collapse
|
44
|
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, Bras G, Zawrotniak M, Karkowska-Kuleta J, Satala D, Kozik A, Zyla E, Gawron K, Lazarz-Bartyzel K, Chomyszyn-Gajewska M, Rapala-Kozik M. Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. Int J Mol Sci 2020; 21:E1984. [PMID: 32183255 PMCID: PMC7139284 DOI: 10.3390/ijms21061984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Sykut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Edyta Zyla
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Katarzyna Lazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| |
Collapse
|
45
|
Urvashi, Sharma D, Sharma S, Pal V, Lal R, Patil P, Grover V, Korpole S. Bacterial Populations in Subgingival Plaque Under Healthy and Diseased Conditions: Genomic Insights into Oral Adaptation Strategies by Lactobacillus sp. Strain DISK7. Indian J Microbiol 2020; 60:78-86. [PMID: 32089577 PMCID: PMC7000561 DOI: 10.1007/s12088-019-00828-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Human oral cavity is a complex habitat comprising about 700 microbial species and represents the most complex microbiota after gastrointestinal tract. In fact, oral microbiota directly influences health, metabolism and immune responses of the host. Metagenomic studies based on 16S rDNA profiling has reported the inhabitant bacteria mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, Spirochaetes and Bacteroidetes. Therefore, it is essential to isolate these strains and characterize in detail to understand their interaction. We have isolated strains from subgingival plaque from healthy to diseased individuals and the molecular characterization based on 16S rRNA gene sequence analysis showed predominance of Firmicutes, specifically members of the genus Streptococcus. Species of Lactobacillus and Veillonella were also found in significant number, which are considered as secondary colonizers. However, the population of Lactobacillus was decreased in diseased conditions with the increase in opportunistic pathogenic strains pertaining to genera like Campylobacter, Neisseria, Enterobacter, Pseudomonas and Morococcus. Further, we have also made an attempt to gain genomic insights on adaptation features and interactions of an isolate, Lactobacillus sp. strain DISK7 by performing whole genome sequencing and analysis, subsequently biochemical characterization to explore its functional and metabolic properties for the development as probiotic agent.
Collapse
Affiliation(s)
- Urvashi
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Deepika Sharma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Shikha Sharma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Vijay Pal
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| | - Prabhu Patil
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Vishakha Grover
- Dr. HS Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| |
Collapse
|
46
|
Gandolfi MG, Gardin C, Zamparini F, Ferroni L, Esposti MD, Parchi G, Ercan B, Manzoli L, Fava F, Fabbri P, Prati C, Zavan B. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E432. [PMID: 32121340 PMCID: PMC7153699 DOI: 10.3390/nano10030432] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Exosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs). Two different mineral-doped scaffolds were produced: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Scaffolds surface micromorphology was investigated by ESEM-EDX before and after 28 days immersion in simulated body fluid (HBSS). Exosomes were deposited on the surface of the scaffolds and the effect of exosome-enriched scaffolds on osteogenic commitment of hAD-MSCs cultured in proximity of the scaffolds has been evaluated by real time PCR. In addition, the biocompatibility was evaluated by direct-contact seeding hAD-MSCs on scaffolds surface-using MTT viability test. In both formulations, ESEM showed pores similar in shape (circular and elliptic) and size (from 10-30 µm diameter). The porosity of the scaffolds decreased after 28 days immersion in simulated body fluid. Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment. The presence of the mineral fillers increased the osteogenic commitment of hAD-MSCs. Exosomes were easily entrapped on the surface of the scaffolds and their presence improved gene expression of major markers of osteogenesis such as collagen type I, osteopontin, osteonectin, osteocalcin. The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the osteogenic commitment of MSCs. In conclusion, the enrichment of bioresorbable functional scaffolds with exosomes is confirmed as a potential strategy to improve bone regeneration procedures.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Chiara Gardin
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Letizia Ferroni
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Greta Parchi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, 06800 Ankara, Turkey
| | - Lucia Manzoli
- Cellular Signaling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Barbara Zavan
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
47
|
Autologous platelet-rich fibrin stimulates canine periodontal regeneration. Sci Rep 2020; 10:1850. [PMID: 32024893 PMCID: PMC7002419 DOI: 10.1038/s41598-020-58732-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Platelet-rich fibrin (PRF) provides a scaffold for cell migration and growth factors for promoting wound healing and tissue regeneration. Here, we report using PRF in periodontal healing after open flap debridement (OFD) in canine periodontitis. A split-mouth design was performed in twenty dogs. Forty periodontitis surgical sites were randomly categorized into 2 groups; OFD alone and OFD with PRF treatment. Clinical parameters of periodontal pocket depth, gingival index, and the cemento-enamel junction-alveolar bone levels/root length ratio were improved in the OFD + PRF group. The OFD + PRF group also demonstrated a dramatically decreased inflammatory score compared with the OFD group. Collagen accumulation was improved in the OFD + PRF group at later time points compared with baseline. PRF application also significantly reduced inflammatory cytokine expression (TNFA and IL1B), and promoted the expression of collagen production-related genes (COL1A1, COL3A1, and TIMP1) and growth factors (PDGFB, TGFB1, and VEGFA). These findings suggest that PRF combined with OFD provides a new strategy to enhance the overall improvement of canine periodontitis treatment outcomes, especially in terms of inflammation and soft tissue healing. Therefore, PRF use in treating periodontitis could play an important role as a regenerative material to improve canine periodontitis treatment.
Collapse
|
48
|
Barta Z. Apical Periodontitis in Patients With Inflammatory Bowel Disease: A Puppet Master? Inflamm Bowel Dis 2020; 26:280-282. [PMID: 31247090 DOI: 10.1093/ibd/izz129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/09/2022]
Abstract
Focal infection theory posits that periodontal pathobionts play a causal role in initiating or exacerbating diseases. Periodontal disease is a common inflammatory, multifactorial disease of the periodontal tissues. The main factor for inflammation is mature dental plaque with the presence of pathogens in the microbial biofilm. Disturbances of the systemic and/or mucosal immune system, antibiotic treatments, immunosuppressants, and biologic therapies all increase the chance of infections and inflammatory processes (ie, apical periodontitis). The pathogenesis of Crohn's disease and ulcerative colitis, the 2 main forms of inflammatory bowel disease (IBD), is still unclear, but both autoimmune and immune-mediated phenomena are involved. It is a global disease with a prevalence of 0.3% and an incidence of 280-320 per 100,000 people in North America. According to the literature, there is a negative association between poor oral health and risk of IBD, and this protective effect increases with the severity of poor dental hygiene. On the other hand, existing IBD seems to be associated with an increased risk of periodontal disease and worse oral health compared with other diseases. The nature of these associations is unclear, but it is unquestionable that all have an effect on the others. Additional studies are needed to confirm if there is a causal relationship between dental status and IBD. Apical periodontitis in patients affected by Crohn's disease or ulcerative colitis needs to be considered carefully, and it is important to treat the disease.
Collapse
Affiliation(s)
- Zsolt Barta
- Department of Gastroenterology, Institute of Medicine, and Department of Infectology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
49
|
Othman N, Risma Rismayuddin N, Kamaluddin WFWM, Arzmi M, Ismail A, Aidid E. The Pathogenicity of Actinomyces naeslundii is associated with polymicrobial interactions: A systematic review. SCIENTIFIC DENTAL JOURNAL 2020. [DOI: 10.4103/sdj.sdj_31_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm. Molecules 2019; 24:molecules24244560. [PMID: 31842508 PMCID: PMC6943720 DOI: 10.3390/molecules24244560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Biofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the growth of planktonic bacteria by disrupting the cytoplasmic membrane. The current study investigated the effects of synthetic peptides (PS1-2, PS1-5, and PS1-6) and conventional antibiotics on the growth, biofilm formation, and biofilm reduction of drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus. The effects of PS1-2, PS1-5, and PS1-6 were also tested in vivo using a mouse model. All peptides inhibited planktonic cell growth and biofilm formation in a dose-dependent manner. They also reduced preformed biofilm masses by removing the carbohydrates, extracellular DNA, and lipids that comprised extracellular polymeric substances (EPSs) but did not affect proteins. In vivo, PS1-2 showed the greatest efficacy against preformed biofilms with no cytotoxicity. Our findings indicate that the PS1-2 peptide has potential as a next-generation therapeutic drug to overcome multidrug resistance and to regulate inflammatory response in biofilm-associated infections.
Collapse
|