1
|
Jia S, McWhorter AR, Khan S, Andrews DM, Underwood GJ, Chousalkar KK. In vitro and in vivo study on the effects of nutritive media compared with water on the resuscitation of a live attenuated Salmonella Typhimurium vaccine. Vet Q 2025; 45:1-10. [PMID: 40207888 PMCID: PMC11986869 DOI: 10.1080/01652176.2025.2485480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
In this study, a commercially available Salmonella Typhimurium vaccine (Vaxsafe ST) reconstituted in either water or nutrient broth, was tested to understand its effects on the in vitro invasion of Caco-2 cells and its transcriptional regulation post-reconstitution. Over time, the invasiveness of Vaxsafe ST was significantly higher following reconstitution in nutrient broth compared with water. Incubation temperature post-reconstitution did not significantly affect the invasion rate. Transcriptome data showed that Vaxsafe ST reconstituted in nutrient broth upregulated genes involved in the two-component system and flagella activity pathways; however, genes involved in host colonization and invasion were unaltered. Genes involved in host colonization and invasion were downregulated after reconstitution in water. Vaxsafe ST reconstituted in a nutritive diluent improved the metabolic activities of the vaccine. The animal experiment demonstrated that vaccine colonization was significantly higher in caeca compared with ileum irrespective of the diluent. Incubating the vaccine in nutrient broth for 30 min before administration did not significantly increase its colonization or organ invasion in chicks. Overall, the findings support the use of nutritive media for the reconstitution of Vaxsafe ST, warranting further investigation to optimize vaccine performance. This study provides a foundation for future work on vaccine reconstitution strategies.
Collapse
Affiliation(s)
- Siyuan Jia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | | | | | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
2
|
Khan S, McWhorter AR, Willson NL, Andrews DM, Underwood GJ, Moore RJ, Hao Van TT, Chousalkar KK. Vaccine protection of broilers against various doses of wild-type Salmonella Typhimurium and changes in gut microbiota. Vet Q 2025; 45:1-14. [PMID: 39721950 DOI: 10.1080/01652176.2024.2440428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
This study evaluated the impact of vaccine diluents (peptone or water) on the protective effects of Salmonella Typhimurium (S. Typhimurium) vaccine. Vaccinated broilers were challenged with different doses of wild-type S. Typhimurium through dust. At the time of cull, vaccine load was highest in caeca and lowest in spleen. Wild-type S. Typhimurium was detectable after 24 hrs only in the vaccinated birds challenged with 108 CFU and positive control. S. Typhimurium load was lower in the organs of the groups challenged with 104 and 106 compared to the 108 CFU group. The caecal microbiota alpha diversity of the vaccinated or vaccinated and challenged chickens differed from the positive and negative control groups. Beta diversity of the positive control clustered separately from all other treatment groups, showing that vaccine caused minimal changes in gut microbiota structure. The vaccinated and/or wild-type challenged chickens showed significantly higher abundance of Anaerostignum, Lachnoclostridium, Intestinimonas, Colidextribacter, Monoglobus, Acetanaerobacterium and Subdoligranulum. Outcomes from this study demonstrate that the vaccine effectively protected broiler chickens from S. Typhimurium infection and helped maintain a more stable gut microbiota structure, reducing the impact of S. Typhimurium on gut health. Vaccine diluent did not affect gut microbiota composition.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Andrea R McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Nicky-Lee Willson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | | | | | | | | | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
3
|
Shaji S, Sheth P, Shanmugasundaram R, Selvaraj RK. Efficacy of a killed Salmonella Enterica serovar Typhimurium bacterin vaccine administration in layer birds challenged with heterologous Salmonella Enterica serovar Enteritidis. Poult Sci 2025; 104:105044. [PMID: 40158250 PMCID: PMC11997314 DOI: 10.1016/j.psj.2025.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
In this study, we evaluated the efficacy of administering a killed Salmonella enterica ser. Typhimurium bacterin (ST) vaccine with an adjuvant intramuscularly on humoral immunity, cellular immunity, and SE load reduction in layers. The ST vaccine was prepared with 97% S. Typhimurium and an adjuvant of 3% Immune Plus® with preservatives. Eighty 14-week-old Salmonella-free Hy-Line W-36 pullets were randomly allocated into two groups: unvaccinated control and ST vaccinated, with 40 birds per group. Birds were immunized intramuscularly with 500 µL (Endovac) vaccine at week 17 and a booster dose at week 19. At 27 weeks of age, both groups were challenged with 5 × 108 CFU/mL of nalidixic acid-resistant Salmonella enterica ser. Enteritidis. At 22, 23, and 24 weeks of age, ST-vaccinated birds showed higher serum anti-Salmonella IgY levels than the control group by 186%, 202% (P < 0.05), and 2700% (P > 0.05), respectively. At 28 weeks of age, vaccinated birds had 8.3% lower levels (P > 0.05) of anti-Salmonella IgA in bile and 240% greater levels (P < 0.05) of anti-Salmonella IgY in serum compared to control group. At 28 weeks of age, splenocytes from the ST-vaccinated birds had increased antigen-specific T-lymphocyte proliferation (P > 0.05). There were no significant differences in CD4+/CD8+-T-cell ratios, IL-10, IL-4, IL-1β, IFNγ mRNA levels in the spleen and cecal tonsil between vaccinated birds compared to control. However, the vaccine did not reduce the Salmonella Enteritidis load in ceca, spleen, and liver. It can be concluded that the intramuscular administration of the killed ST vaccine with the adjuvant Immune Plus can increase serum antibody titers and induce a humoral immune response specific to Salmonella. However, the increase in serum antibody titers were not successful in reducing the Salmonella load in ceca, spleen, and liver.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Lyte JM, Assumpcao ALFV, Caputi V, Ashwell CM, Seyoum M, Honaker CF, Daniels KM, Lyte M, Siegel PB, Taylor RL. Co-evolution of the humoral immune and serotonergic systems in chickens selected for high or low blood antibody titer response to sheep red blood cells. Poult Sci 2025; 104:104699. [PMID: 39721261 PMCID: PMC11730529 DOI: 10.1016/j.psj.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Serotonin is a potent immunomodulatory neurohormone. Activities of the serotonergic and immune systems are often reported together in poultry studies with unidirectional analyses focused on serotonergic signaling mediating immune response. Considering serotonin's relevance across a range of immune-related poultry topics, elucidation of whether the immune system affects the serotonergic system can provide valuable insights into the bi-directionality of poultry neuroendocrine-immune interactions. The present study sought to determine whether selection for divergence in blood antibody titers to a non-pathogenic antigen coincides with parallel changes in the chicken's serotonergic system over the life of the bird. We utilized generations 49 and 50 male and female White Leghorn chickens (n = 10-12/chickens/line/sex/age) that have been selected long-term for high (HAS) or low (LAS) blood antibody response to intravenous sheep red blood cell injection. Because serotonin is predominantly produced in the gut and acts as an interkingdom signaling molecule, the first experiment sampled cecal tissue and luminal content samples from male and female HAS and LAS chickens at 293 days of age. In the second experiment, cecal tissue and luminal content, as well as plasma, were collected from HAS and LAS chickens at 28 and 56 days of age. Serotonin and its main metabolite, 5-hydroxyindoleacetic acid (5-HIAA), concentrations were determined in cecal tissue, luminal content, and plasma samples. Immunoglobulins IgA and IgY concentrations were analyzed in cecal luminal content or plasma, respectively. The HAS chickens had lower (p < 0.05) cecal IgA concentrations but higher (p < 0.05) plasma IgY concentrations than LAS chickens, suggesting a compensatory response within the intestinal tract following selection for high or low blood antibody titers. Serotonin and 5-HIAA concentrations in the ceca and plasma diverged (p < 0.05) in a pattern that mirrored ceca IgA and plasma IgY differences according to genetic line. The results from this study demonstrate that evolutionary selection pressure for humoral immune response in chickens causes responses in the serotonergic system at both enteric and systemic levels.
Collapse
Affiliation(s)
- Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701.
| | | | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701
| | - Christopher M Ashwell
- School of Agriculture and Food Systems, West Virginia University, Morgantown, WV 26506
| | - Mitiku Seyoum
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701
| | | | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lA 50010
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lA 50010
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Robert L Taylor
- School of Agriculture and Food Systems, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
5
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
6
|
Li L, McWhorter A, Chousalkar K. Ensuring egg safety: Salmonella survival, control, and virulence in the supply chain. Compr Rev Food Sci Food Saf 2025; 24:e70075. [PMID: 39667949 DOI: 10.1111/1541-4337.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Salmonella contamination of eggs is a global food safety concern, producers, regulatory authorities, and affecting public health. To mitigate Salmonella risks on-farm and along the supply chain, egg producers have adopted various quality assurance, animal husbandry, and biosecurity practices recommended by organizations such as Australian eggs, the European Commission, and the US Department of Agriculture (USDA). However, egg storage requirements vary significantly worldwide. In Australia, most states follow the Food Standards Australia New Zealand, but discrepancies exist. In the United States, the USDA mandates refrigeration of eggs below 7.2°C to prevent Salmonella growth, whereas the European Union requires that eggs must not be refrigerated to avoid condensation, which may promote bacterial growth. Refrigeration of eggs is associated with reduced Salmonella growth and decreased infection risk. Yet, conflicting data regarding the impact of storage temperatures on Salmonella survival may contribute to the disparity between international recommendations for egg storage. Studies indicated better Salmonella survival in egg contents at 5°C due to higher expression levels of survival and stress response-related genes compared to 25°C, yet this may not lead to an increased risk or higher severity of Salmonella infection. Evidence suggests that storing eggs at less than 7°C will influence the virulence of bacteria. Warmer storage temperatures may lead to increased potential of Salmonella multiplication in the nutrient-rich yolk and may cause the expression of certain virulence genes. Eggs can be exposed to various temperatures in the supply chain. Further studies are essential to understand the relationship between the storage temperature on the farm, in the supply chain, and bacterial virulence.
Collapse
Affiliation(s)
- Lingyun Li
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Neelawala RN, Edison LK, Kariyawasam S. Pre-Harvest Non-Typhoidal Salmonella Control Strategies in Commercial Layer Chickens. Animals (Basel) 2024; 14:3578. [PMID: 39765482 PMCID: PMC11672659 DOI: 10.3390/ani14243578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella (NTS) infections in poultry, particularly in commercial-layer chickens, pose a critical risk to food safety and public health worldwide. NTS bacteria can remain undetected in poultry flocks, contaminating products and potentially leading to gastroenteritis in humans. This review examines pre-harvest control strategies for NTS in layer chickens, including biosecurity protocols, vaccinations, feed additives, genetic selection, and environmental management. These strategies have substantially reduced Salmonella colonization and product contamination rates in the commercial layer industry. By evaluating these strategies, this review highlights the importance of integrated control measures to limit NTS colonization, reduce antimicrobial resistance, and improve poultry health. This review aims to provide producers, researchers, and policymakers with insights into effective practices to minimize Salmonella contamination and enhance both animal and human health outcomes.
Collapse
Affiliation(s)
| | | | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (R.N.N.); (L.K.E.)
| |
Collapse
|
8
|
Khan S, McWhorter AR, Andrews DM, Underwood GJ, Moore RJ, Van TTH, Gast RK, Chousalkar KK. Dust sprinkling as an effective method for infecting layer chickens with wild-type Salmonella Typhimurium and changes in host gut microbiota. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13265. [PMID: 38747207 PMCID: PMC11094578 DOI: 10.1111/1758-2229.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024]
Abstract
Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Andrea R. McWhorter
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | | | | | | | | | - Richard K. Gast
- U.S. National Poultry Research CenterUSDA Agricultural Research ServiceAthensGeorgiaUSA
| | - Kapil K. Chousalkar
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| |
Collapse
|
9
|
Dolatyabi S, Renu S, Schrock J, Renukaradhya GJ. Chitosan-nanoparticle-based oral Salmonella enteritidis subunit vaccine elicits cross-protection against Salmonella typhimurium in broilers. Poult Sci 2024; 103:103569. [PMID: 38447310 PMCID: PMC11067733 DOI: 10.1016/j.psj.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.
Collapse
Affiliation(s)
- Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Sankar Renu
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences; The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
10
|
Khan S, McWhorter AR, Andrews DM, Underwood GJ, Moore RJ, Van TTH, Gast RK, Chousalkar KK. A live attenuated Salmonella Typhimurium vaccine dose and diluent have minimal effects on the caecal microbiota of layer chickens. Front Vet Sci 2024; 11:1364731. [PMID: 38686027 PMCID: PMC11057240 DOI: 10.3389/fvets.2024.1364731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024] Open
Abstract
Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | | | | | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Richard K. Gast
- U. S. National Poultry Research Center, USDA Agricultural Research Service, Athens, GA, United States
| | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
11
|
Jan TR, Lin CS, Yang WY. Differential cytokine profiling and microbial species involved in cecal microbiota modulations in SPF chicks immunized with a dual vaccine against Salmonella Typhimurium infection. Poult Sci 2024; 103:103334. [PMID: 38104411 PMCID: PMC10765113 DOI: 10.1016/j.psj.2023.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonella Typhimurium (ST) infection in laying hens is a significant threat to public health and food safety. Host resistance against enteric pathogen invasion primarily relies on immunity and gut barrier integrity. This study applied the ST infection model and a dual live vaccine containing Salmonella Enteritidis (SE) strain Sm24/Rif12/Ssq and ST strain Nal2/Rif9/Rtt to investigate the cellular cytokine expression profiles and the differential community structure in the cecal microbiota of specific-pathogen-free (SPF) chicks and field-raised layers. The results showed that ST challenge significantly upregulated expressions of IL-1β in SPF chicks. Vaccination, on the other hand, led to an elevation in IFNγ expression and restrained IL-1β levels. In the group where vaccination preceded the ST challenge (S.STvc), heightened expressions of IL-1β, IL-6, IL-10, and IL-12β were observed, indicating active involvement of both humoral and cell-mediated immunity in the defense against ST. Regarding the cecal microbiota, the vaccine did not affect alpha diversity nor induce a significant shift in the microbial community. Conversely, ST infection significantly affected the alpha and beta diversity in the cecal microbiota, reducing beneficial commensal genera, such as Blautia and Subdoligranulum. MetagenomeSeq analysis reveals a significant increase in the relative abundance of Faecalibacterium prausnitzii in the groups (S.STvc and STvc) exhibiting protection against ST infection. LEfSe further demonstrated Faecalibacterium prausnitzii as the prominent biomarker within the cecal microbiota of SPF chicks and field layers demonstrating protection. Another biomarker identified in the S.STvc group, Eubacterium coprostanoligenes, displayed an antagonistic relationship with Faecalibacterium prausnitzii, suggesting the limited biological significance of the former in reducing cloacal shedding and tissue invasion. In conclusion, the application of AviPro Salmonella DUO vaccine stimulates host immunity and modulates cecal microbiota to defend against ST infection. Among the microbial modulations observed in SPF chicks and field layers with protection, Faecalibacterium prausnitzii emerges as a significant species in the ceca. Further research is warranted to elucidate its role in protecting layers against ST infection.
Collapse
Affiliation(s)
- Tong-Rong Jan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan.
| |
Collapse
|
12
|
Jung B, Park S, Kim E, Yoon H, Hahn TW. Salmonella Typhimurium lacking phoBR as a live vaccine candidate against poultry infection. Vet Microbiol 2022; 266:109342. [PMID: 35063827 DOI: 10.1016/j.vetmic.2022.109342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Collapse
Affiliation(s)
- Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
Redweik GAJ, Kogut MH, Arsenault RJ, Lyte M, Mellata M. Reserpine improves Enterobacteriaceae resistance in chicken intestine via neuro-immunometabolic signaling and MEK1/2 activation. Commun Biol 2021; 4:1359. [PMID: 34862463 PMCID: PMC8642538 DOI: 10.1038/s42003-021-02888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica persist in the chicken gut by suppressing inflammatory responses via expansion of intestinal regulatory T cells (Tregs). In humans, T cell activation is controlled by neurochemical signaling in Tregs; however, whether similar neuroimmunological signaling occurs in chickens is currently unknown. In this study, we explore the role of the neuroimmunological axis in intestinal Salmonella resistance using the drug reserpine, which disrupts intracellular storage of catecholamines like norepinephrine. Following reserpine treatment, norepinephrine release was increased in both ceca explant media and Tregs. Similarly, Salmonella killing was greater in reserpine-treated explants, and oral reserpine treatment reduced the level of intestinal Salmonella Typhimurium and other Enterobacteriaceae in vivo. These antimicrobial responses were linked to an increase in antimicrobial peptide and IL-2 gene expression as well as a decrease in CTLA-4 gene expression. Globally, reserpine treatment led to phosphorylative changes in epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), and the mitogen-associated protein kinase 2(MEK2). Exogenous norepinephrine treatment alone increased Salmonella resistance, and reserpine-induced antimicrobial responses were blocked using beta-adrenergic receptor inhibitors, suggesting norepinephrine signaling is crucial in this mechanism. Furthermore, EGF treatment reversed reserpine-induced antimicrobial responses, whereas mTOR inhibition increased antimicrobial activities, confirming the roles of metabolic signaling in these responses. Finally, MEK1/2 inhibition suppressed reserpine, norepinephrine, and mTOR-induced antimicrobial responses. Overall, this study demonstrates a central role for MEK1/2 activity in reserpine induced neuro-immunometabolic signaling and subsequent antimicrobial responses in the chicken intestine, providing a means of reducing bacterial colonization in chickens to improve food safety.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- grid.34421.300000 0004 1936 7312Department of Food Science and Human Nutrition, Iowa State University, Ames, IA USA ,grid.34421.300000 0004 1936 7312Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA USA ,grid.266190.a0000000096214564Present Address: Molecular, Cellular & Developmental Biology, Colorado University-Boulder, Boulder, CO USA
| | - Michael H. Kogut
- grid.512846.c0000 0004 0616 2502Southern Plains Agricultural Research Center, USDA-ARS College Station, TX USA
| | - Ryan J. Arsenault
- grid.33489.350000 0001 0454 4791Department of Animal and Food Sciences, University of Delaware, Newark, DE USA
| | - Mark Lyte
- grid.34421.300000 0004 1936 7312Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA USA ,grid.34421.300000 0004 1936 7312Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA. .,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
14
|
Xie XT, Yitbarek A, Astill J, Singh S, Khan SU, Sharif S, Poljak Z, Greer AL. Within-host model of respiratory virus shedding and antibody response to H9N2 avian influenza virus vaccination and infection in chickens. Infect Dis Model 2021; 6:490-502. [PMID: 33778216 PMCID: PMC7966989 DOI: 10.1016/j.idm.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Avian influenza virus (AIV) H9N2 subtype is an infectious pathogen that can affect both the respiratory and gastrointestinal systems in chickens and continues to have an important economic impact on the poultry industry. While the host innate immune response provides control of virus replication in early infection, the adaptive immune response aids to clear infections and prevent future invasion. Modelling virus-innate immune response pathways can improve our understanding of early infection dynamics and help to guide our understanding of virus shedding dynamics that could lead to reduced transmission between hosts. While some countries use vaccines for the prevention of H9N2 AIV in poultry, the virus continues to be endemic in regions of Eurasia and Africa, indicating a need for improved vaccine efficacy or vaccination strategies. Here we explored how three type-I interferon (IFN) pathways affect respiratory virus shedding patterns in infected chickens using a within-host model. Additionally, prime and boost vaccination strategies for a candidate H9N2 AIV vaccine are assessed for the ability to elicit seroprotective antibody titres. The model demonstrates that inclusion of virus sensitivity to intracellular type-I IFN pathways results in a shedding pattern most consistent with virus titres observed in infected chickens, and the inclusion of a cellular latent period does not improve model fit. Furthermore, early administration of a booster dose two weeks after the initial vaccine is administered results in seroprotective titres for the greatest length of time for both broilers and layers. These results demonstrate that type-I IFN intracellular mechanisms are required in a model of respiratory virus shedding in H9N2 AIV infected chickens, and also highlights the need for improved vaccination strategies for laying hens.
Collapse
Affiliation(s)
- Xiao-Ting Xie
- Department of Population Medicine, University of Guelph, ON, Canada
| | | | - Jake Astill
- Department of Pathobiology, University of Guelph, ON, Canada
| | - Shirene Singh
- School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Salah Uddin Khan
- Department of Population Medicine, University of Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, ON, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, University of Guelph, ON, Canada
| | - Amy L Greer
- Department of Population Medicine, University of Guelph, ON, Canada
| |
Collapse
|
15
|
Protection Conferred by Drinking Water Administration of a Nanoparticle-Based Vaccine against Salmonella Enteritidis in Hens. Vaccines (Basel) 2021; 9:vaccines9030216. [PMID: 33802556 PMCID: PMC8001700 DOI: 10.3390/vaccines9030216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Salmonellosis remains a major medical and an unmet socioeconomic challenge. Worldwide, more than three million deaths per year are associated with Salmonella enterica serovar Enteritidis infections. Although commercially available vaccines for use in poultry exist, their efficacy is limited. We previously described a method for isolating a heat extract (HE) fraction of the cell surface of S. Enteritidis that contained major antigenic complexes immunogenic in hens naturally infected with the bacterium. One single dose of S. Enteritidis’ HE induced protection against lethal salmonellosis in mice. Furthermore, HE encapsulation in nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (PVM/MA), Gantrez AN, improved and prolonged the protection against the disease in mice. We formulated new preparations of Gantrez AN nanoparticles with HE S. Enteritidis and assessed their stability in drinking water and their efficacy in hens after experimental infection. The oral treatment of six-week-old hens with two doses of HE nanoparticles significantly reduced the Salmonella excretion in hens. Due to the effectiveness of the treatment in reducing bacterial excretion, we conclude that HE nanoencapsulation obtained from S. Enteritidis is a viable novel vaccination approach against salmonellosis in farms.
Collapse
|
16
|
Jia S, McWhorter AR, Andrews DM, Underwood GJ, Chousalkar KK. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines (Basel) 2020; 8:E696. [PMID: 33228065 PMCID: PMC7712944 DOI: 10.3390/vaccines8040696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria over the course of their productive lifetime. Eggs laid in a contaminated environment are at risk of potential exposure to bacteria. Thus, mitigating the bacterial load on farms aids in the protection of the food supply chain. Layer hen producers use a multifaceted approach for reducing Salmonella on farms, including the all-in-all-out management strategy, strict biosecurity, sanitization, and vaccination. The use of live attenuated Salmonella vaccines is favored because they elicit a broader host immune response than killed or inactivated vaccines that have been demonstrated to provide cross-protection against multiple serovars. Depending on the vaccine, two to three doses of Salmonella Typhimurium vaccines are generally administered to layer hens within the first few weeks. The productive life of a layer hen, however, can exceed 70 weeks and it is unclear whether current vaccination regimens are effective for that extended period. The objective of this review is to highlight layer hen specific challenges that may affect vaccine efficacy.
Collapse
Affiliation(s)
- Siyuan Jia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Daniel M. Andrews
- Bioproperties Pty Ltd., Ringwood, VIC 3134, Australia; (D.M.A.); (G.J.U.)
| | | | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| |
Collapse
|
17
|
Troxell B, Mendoza M, Ali R, Koci M, Hassan H. Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines (Basel) 2020; 8:vaccines8040646. [PMID: 33153043 PMCID: PMC7711481 DOI: 10.3390/vaccines8040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars are significant health burden worldwide. Although much effort has been devoted to developing typhoid-based vaccines for humans, currently there is no NTS vaccine available. Presented here is the efficacy of a live attenuated serovar Typhimurium strain (NC983). Oral delivery of strain NC983 was capable of fully protecting C57BL/6 and BALB/c mice against challenge with virulent Typhimurium. Strain NC983 was found to elicit an anti-Typhimurium IgG response following administration of vaccine and boosting doses. Furthermore, in competition experiments with virulent S. Typhimurium (ATCC 14028), NC983 was highly defective in colonization of the murine liver and spleen. Collectively, these results indicate that strain NC983 is a potential live attenuated vaccine strain that warrants further development.
Collapse
Affiliation(s)
- Bryan Troxell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Mary Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Rizwana Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
- Microbiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +919-515-7081; Fax: +919-515-2625
| |
Collapse
|
18
|
Bae D, Kim DH, Chon JW, Song KY, Seo KH. Synergistic effects of the early administration of Lactobacillus kefiranofaciens DN1 and Kluyveromyces marxianus KU140723-05 on the inhibition of Salmonella Enteritidis colonization in young chickens. Poult Sci 2020; 99:5999-6006. [PMID: 33142518 PMCID: PMC7647741 DOI: 10.1016/j.psj.2020.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023] Open
Abstract
In this study, we aimed to assess the feasibility of the lactic acid bacterium Lactobacillus kefiranofaciens DN1 (LKF_DN1) and the yeast Kluyveromyces marxianus KU140723-05 (KMA5), recently isolated from kefir, as probiotics. Specifically, we evaluated the effect of early administration of these 2 microbes on the inhibition of Salmonella Enteritidis (SE) colonization in neonatal chicks. We also examined the effects of exposure of chicks to probiotics before SE exposure on the reduction in the number of gut SE. A total of 108 1-day-old specific-pathogen-free male layer chicks were used for 3 independent experiments. The experimental chicks were randomly divided into 6 groups (negative control: basal diet [BD] without probiotics and SE; positive control: BD; probiotic group [PG] 1: BD + LKF_DN1; PG2: BD + KMA5; PG3: BD + LKF_DN1 + KMA5; and PG4: BD+ a commercial product IDF-7), all of which, except negative control, were coadministered with SE strain resistant to rifampicin (SERR). We found that the administration of LKF_DN1 and/or KMA5 reduced the number of viable cells of the SERR strain in chicks by up to 1.90 log10, relative to positive control chicks. Compared with late administration (day [D] 10 and D11), early administration (D1 and D2) of the probiotics was more effective in reducing SERR cell numbers in the gut. Furthermore, we detected no significant difference in the reduction of gut SERR cell numbers in chicks from the same groups exposed to the probiotics at D10 and D11 before and after administration with SERR. Collectively, our findings indicate that, as dietary additives, LKF_DN1 and KMA5 showed potential probiotic activity in chicks. Moreover, the combination of the lactic acid bacteria and/or yeast strain was found to rapidly reduce SE numbers in the chick gut and showed a prolonged inhibitory effect against SE colonization. We, thus, propose that the administration of these 2 probiotics, as early as possible after hatching, would be considerably effective in controlling SE colonization in the guts of chicks.
Collapse
Affiliation(s)
- Dongryeoul Bae
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Hyeon Kim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Whan Chon
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kwang-Young Song
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kun-Ho Seo
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Occurrence and Characterization of Salmonella Isolated from Table Egg Layer Farming Environments in Western Australia and Insights into Biosecurity and Egg Handling Practices. Pathogens 2020; 9:pathogens9010056. [PMID: 31941158 PMCID: PMC7168610 DOI: 10.3390/pathogens9010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the occurrence and distribution of Salmonella in commercial layer farming environments of 26 flocks belonging to seven egg businesses (free-range and barn-laid) in Western Australia (WA). Between November 2017 and June 2018, a total of 265 environmental samples of dust, feed, water, pooled feces, and boot swabs were tested for detection of Salmonella according to standard culture-based methods. Isolates were assayed for serovar and subtyped by multilocus sequence typing (MLST). Salmonella spp. were recovered from 35% (93/265) of all tested samples. Dust (53.8%, 28/52) and pooled fecal (54.5%, 18/33) samples provided the highest Salmonella recovery rates. Nine different Salmonella serovars were characterized across the positive (n = 93) environmental samples, of which S. Typhimurium (60/93, 64.5%) and S. Infantis (21/93, 22.5%) were the most prevalent. MLST revealed that all S. Typhimurium isolates were of sequence type ST-19. Microbiological screening of Salmonella was not routinely practiced in any of the surveyed egg businesses. Some of the egg businesses exhibited variable levels of compliance with basic biosecurity measures as well as high-risk egg handling practices. Egg businesses in WA should be encouraged to adopt a voluntary program of environmental sampling and verification testing for Salmonella. Such voluntary programs will aid in supporting solutions for the management of this pathogen in the human food chain.
Collapse
|
20
|
El-Shall NA, Awad AM, El-Hack MEA, Naiel MAE, Othman SI, Allam AA, Sedeik ME. The Simultaneous Administration of a Probiotic or Prebiotic with Live Salmonella Vaccine Improves Growth Performance and Reduces Fecal Shedding of the Bacterium in Salmonella-Challenged Broilers. Animals (Basel) 2019; 10:E70. [PMID: 31906020 PMCID: PMC7023486 DOI: 10.3390/ani10010070] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Salmonellosis is one of the most important bacterial diseases in poultry, causing heavy economic losses, increased mortality and reduced production. The aim of this study was the comparative efficacy of a commercial probiotic and/or prebiotic with a live attenuated Salmonella Enteritidis (SE) vaccine on the protection of broiler chickens from SE challenge. The efficacy of probiotic or prebiotic products, as well as a live Salmonella Enteritidis (SE) vaccine at the 7th day of age, administered via drinking water, were evaluated for clinical protection and effects on growth performance of broiler chickens experimentally challenged with SE at the 28th day of age. The use of probiotic or prebiotic simultaneously with the live Salmonella vaccine can diminish the negative effect of live vaccine growth performance, reducing mortality rate, fecal shedding, and re-isolation of SE from liver, spleen, heart and cecum. The use of probiotic or prebiotic simultaneously with the application of the live Salmonella vaccine is a good practice to diminish the negative effect of the harmful bacteria and improve the growth performance of broilers. Thus, further studies may be carried out with layers and breeders.
Collapse
Affiliation(s)
- Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Ashraf M. Awad
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | | | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Sarah I. Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, BO. Box 24428, Riyadh 11671, Saudi Arabia;
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt;
| | - Mahmoud E. Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| |
Collapse
|
21
|
Khan S, Chousalkar KK. Short-term feeding of probiotics and synbiotics modulates caecal microbiota during Salmonella Typhimurium infection but does not reduce shedding and invasion in chickens. Appl Microbiol Biotechnol 2019; 104:319-334. [PMID: 31758235 DOI: 10.1007/s00253-019-10220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Positive modulation of gut microbiota in laying chickens may offer a strategy for reduction of Salmonella Typhimurium shedding and production of safer poultry products. In the current study, the caecal luminal microbiota of laying chicks was studied using 16S rRNA amplicon sequencing on DNA obtained from the chicks that were offered supplementation with commercial probiotics, synbiotics and/or Salmonella Typhimurium challenge. The load of Salmonella Typhimurium in various organs was quantified. Irrespective of the probiotics and synbiotics supplementation and Salmonella Typhimurium challenge, caecal microbiota was dominated by 22 distinct bacterial genera and 14 families that clustered into Actinobacteria, Proteobacteria and Firmicutes at phylum level. Taken together, probiotics and synbiotics supplementation increased (false discovery rate; FDR < 0.05) the abundance of Ruminococcus, Trabulsiella, Bifidobacterium, Holdemania and Oscillospira, indicating their role in maintaining gut health through lowering luminal pH and digestion of complex polysaccharides. Salmonella Typhimurium challenge decreased the abundance of Trabulsiella, Oscillospira, Holdemania, Coprococcus, Bifidobacterium and Lactobacillus and increased Klebsiella and Escherichia, indicating its role in caecal dysbiosis. Although probiotics and synbiotics supplementation positively modulated the caecal microbiota, they were not effective in significantly (P > 0.05) reducing Salmonella Typhimurium load in caecal tissue and invasion into vital organs such as liver and spleen. The early colonisation of laying chick caeca by probiotics and synbiotics had the potential to positively influence luminal microbiota; however, the microbial abundance and diversity were not sufficient to significantly reduce the shedding of Salmonella Typhimurium in faeces or invasion into internal organs during this study.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
22
|
Salmonella on Australian cage egg farms: Observations from hatching to end of lay. Food Microbiol 2019; 87:103384. [PMID: 31948625 DOI: 10.1016/j.fm.2019.103384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023]
Abstract
Single-aged caged layer hen flocks were monitored for Salmonella over the course of their lifetime. Chicks from both flocks were Salmonella negative at hatch and remained negative during rearing. Pullets were transported to production farms at 15 weeks of age. Pre-population dust swabs collected from both production sheds had a high percentage of Salmonella positive samples (80 and 90%). Flocks were sampled at regular intervals until 70-72 weeks of age. The proportion of Salmonella positive samples and mean load detected on eggs was low on both farms. Analysis of dust samples revealed that Salmonella persisted in dust over 8 weeks. Dust total moisture content and water activity appears to influence bacterial persistence. On egg grading equipment, only suction cups prior to egg washing were Salmonella positive (mean proportion Salmonella positive samples 0.13 ± 0.07; mean load of 18.6 ± 12.31 MPN/ml). An egg washing experiment demonstrated that while washing reduced the total Salmonella load from eggshell surfaces, no effect was observed for shell pores. These results demonstrate that despite environmental contamination on farm, Salmonella contamination of eggs is low and is further minimized by washing.
Collapse
|
23
|
McWhorter AR, Tearle R, Moyle TS, Chousalkar KK. In vivo passage of Salmonella Typhimurium results in minor mutations in the bacterial genome and increases in vitro invasiveness. Vet Res 2019; 50:71. [PMID: 31551081 PMCID: PMC6760104 DOI: 10.1186/s13567-019-0688-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
Abstract
Eggs and raw or undercooked egg-containing food items are frequently identified as the bacterial source during epidemiolocal investigation of Salmonella outbreaks. Multi-locus variable number of tandem repeats analysis (MLVA) is a widely used Salmonella typing method enabling the study of diversity within populations of the same serotype. In vivo passage, however, has been linked with changes in MLVA type and more broadly the Salmonella genome. We sought to investigate whether in vivo passage through layer hens had an effect on MLVA type as well as the bacterial genome and whether any mutations affected bacterial virulence. Layer hens were infected with either Salmonella Typhimurium DT9 (03-24-11-11-523) as part of a single infection or were co-infected with an equal amount of Salmonella Mbandaka. Salmonella shedding in both single and co-infected birds was variable over the course of the 16-week experiment. Salmonella Typhimurium and Salmonella Mbandaka were identified in feces of co-infected birds. Salmonella colonies isolated from fecal samples were subtyped using MLVA. A single change in SSTR-6 was observed in Salmonella Typhimurium strains isolated from co-infected birds. Isolates of Salmonella Typhimurium of both the parent (03-24-11-11-523) and modified (03-24-12-11-523) MLVA type were sequenced and compared with the genome of the parent strain. Sequence analysis revealed that in vivo passaging resulted in minor mutation events. Passaged isolates exhibited significantly higher invasiveness in cultured human intestinal epithelial cells than the parent strain. The microevolution observed in this study suggests that changes in MLVA may arise more commonly and may have clinical significance.
Collapse
Affiliation(s)
- Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Rick Tearle
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Talia S. Moyle
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
24
|
McWhorter AR, Chousalkar KK. From hatch to egg grading: monitoring of Salmonella shedding in free-range egg production systems. Vet Res 2019; 50:58. [PMID: 31362780 PMCID: PMC6668057 DOI: 10.1186/s13567-019-0677-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
Human cases of salmonellosis are frequently liked with the consumption of contaminated table eggs. Recently, there has been an increase in consumer demand for cage-free eggs precipitating the need for a greater understanding of Salmonella dynamics in free-range production systems. A longitudinal study was conducted to determine the points in production where birds are most likely to be exposed to Salmonella and where the risk of egg contamination is highest. In this study, two free-range flocks were sampled from hatch to the end of production. At hatch, all chicks were Salmonella negative and remained negative during rearing. During production, the proportion of positive samples was low on both farms. Salmonella positive samples were detected intermittently for Flock A. Dust, nest box, and egg belt swabs had the highest proportion of positive samples and highest overall loads of Salmonella. The egg grading floor was swabbed at different points following the processing of eggs from Flock A. Only the suction cups that handle eggs prior to egg washing tested positive for Salmonella. Swabs collected from machinery handling eggs after washing were Salmonella negative. During production, positive samples from Flock B were observed at only single time point. Dust has been implicated as a source of Salmonella that can lead to flock to flock contamination. Bulk dust samples were collected and tested for Salmonella. The proportion of positive dust samples was low and is likely due to physical parameters which are not likely to support the survival of Salmonella in the environment.
Collapse
Affiliation(s)
- Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|