1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Yeh FW, Chiu CH, Wang R, Su YC, Virly, Lin TY. Development of bacteriophage-modified europium alginate beads for rapid screening of Escherichia coli. Int J Biol Macromol 2025; 302:140415. [PMID: 39890000 DOI: 10.1016/j.ijbiomac.2025.140415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Escherichia coli is a common bacterium that can contaminate food and water, leading to infections. Traditional detection methods like PCR and ELISA, while accurate, require specialized equipment and take time. This study aimed to develop a fast and effective biosensor to detect E. coli in liquids. The biosensor is based on bacteriophage-modified europium alginate beads. These beads were fabricated using an extrusion drop method, followed by a two-step EDC/NHS process to immobilize E. coli bacteriophages on the surface. To enhance the photoluminescence intensity, 1,10-phenanthroline (Phen) was added to the fabrication process. The biosensor achieved a low detection limit of 37 CFU·mL-1 with a response time of 30 min. It accurately detected E. coli in bottled water and apple juice, with non-linear correlations between bacterial concentrations (101-106 CFU·mL-1) and luminescence intensity. Additionally, the biosensor demonstrated consistent performance across production batches, showing high specificity and selectivity in detecting target bacteria. This pioneering one-time-use bacteriophage-based biosensor significantly advances the rapid and specific detection of E. coli in liquid samples.
Collapse
Affiliation(s)
- Fang-Wen Yeh
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chun-Hui Chiu
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Mater of Public Health Program (MPH), College of Public Health, National Taiwan University, Taipei City, Taiwan; (GIP-TRIAD) Global Innovation Joint-Degree Program, International Joint Degree Master's Program in Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Virly
- Global Health Program, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Tung-Yi Lin
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Keelung, No. 222, Mai Chin Road, Kee-lung 204, Taiwan
| |
Collapse
|
3
|
Sawant SS, Ahmed MU, Gantala NG, Chiu C, Qu L, Zhou Q. Development of Inhalable Bacteriophage Liposomes Against Pseudomonas aeruginosa. Pharmaceutics 2025; 17:405. [PMID: 40284401 PMCID: PMC12030023 DOI: 10.3390/pharmaceutics17040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background:Pseudomonas aeruginosa is one of the major pathogens that cause respiratory infections. The rise of antimicrobial resistance has prompted a need for alternatives to conventional antibiotics. Bacteriophages (phages), natural predators of bacteria, are gaining interest as an alternative therapeutic option against drug-resistant infections. However, phage viability can be lost during manufacturing and delivery. Recent studies show that phages can be taken up by lung epithelial cells, which makes fewer phages available for antibacterial action against extracellular bacteria P. aeruginosa in the airways. Methods: In this study, we encapsulated phages in liposomes using thin film hydration. The effect of processing conditions and phage loading titer on the phage encapsulation and viability was studied. The impact of nebulization on phage viability was tested using an air-jet nebulizer (PARI-LC Plus). Phage cellular uptake was evaluated using an in vitro H441 lung epithelial cell model, grown at the air-liquid interface. Results: Our results demonstrate favorable encapsulation (58 ± 6.02%) can be achieved with minimum loss in phage titer (0.64 ± 0.21 log) by using a low phage titer for hydration. The liposomal formulations exhibited controlled release of phages over 10 h. The formulation also reduced the loss of phage viability during nebulization from 1.55 ± 0.04 log (for phage suspension) to 1.08 ± 0.05 log (for phage liposomes). Encapsulation of phages in liposomes enabled a two-fold reduction in phage cellular uptake and longer extracellular phage retention in the human lung epithelial cell monolayer. Conclusions: Our results indicate that liposomal encapsulation favors phage protection and improves phage availability for antibacterial activity. These findings highlight the potential of liposomes for inhaled phage delivery.
Collapse
Affiliation(s)
| | | | | | | | - Li Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (S.S.S.); (M.U.A.); (N.-G.G.); (C.C.)
| | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (S.S.S.); (M.U.A.); (N.-G.G.); (C.C.)
| |
Collapse
|
4
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Morgan RN, Aboshanab KM. Phage therapeutic delivery methods and clinical trials for combating clinically relevant pathogens. Ther Deliv 2025; 16:247-269. [PMID: 39545771 PMCID: PMC11875505 DOI: 10.1080/20415990.2024.2426824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing global health crisis caused by multidrug-resistant (MDR) bacteria necessitates quick interventions to introduce new management strategies for MDR-associated infections and antimicrobial agents' resistance. Phage therapy emerges as an antibiotic substitute for its high specificity, efficacy, and safety profiles in treating MDR-associated infections. Various in vitro and in vivo studies denoted their eminent bactericidal and anti-biofilm potential. This review addresses the latest developments in phage therapy regarding their attack strategies, formulations, and administration routes. It additionally discusses and elaborates on the status of phage therapy undergoing clinical trials, and the challenges encountered in their usage, and explores prospects in phage therapy research and application.
Collapse
Affiliation(s)
- Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Fatma Alzahraa M. Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Radwa N. Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
5
|
Luo Y, Mahillon J, Sun L, You Z, Hu X. Isolation, characterization and liposome-loaded encapsulation of a novel virulent Salmonella phage vB-SeS-01. Front Microbiol 2025; 16:1494647. [PMID: 39927265 PMCID: PMC11803447 DOI: 10.3389/fmicb.2025.1494647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Salmonella is a common foodborne pathogenic bacterium, displaying facultative intracellular parasitic behavior, which can help the escape against antibiotics treatment. Bacteriophages have the potential to control both intracellular and facultative intracellular bacteria and can be developed as antibiotic alternatives. Methods This study isolated and characterized vB-SeS-01, a novel Guernseyvirinae phage preying on Salmonella enterica, whose genome is closely related to those of phages SHWT1 and vB-SenS-EnJE1. Furthermore, nine phage-carrying liposome formulations were developed by film hydration method and via liposome extruder. Results and Discussion Phage vB-SeS-01 displays strong lysis ability against 9 out of 24 tested S. enterica strains (including the pathogenic "Sendai" and "Enteritidis" serovars), high replicability with a burst size of 111 ± 15 PFU/ cell and a titre up to 2.1 × 1011 PFU/mL, and broad pH (4.0 ~ 13.0) and temperature (4 ~ 80°C) stabilities. Among the nine vB-SeS-01 liposome-carrying formulations, the one encapsulated with PC:Chol:T80:SA = 9:1:2:0.5 without sonication displayed the optimal features. This formulation carried up to 1011 PFU/mL, with an encapsulation rate of 80%, an average size of 172.8 nm, and a polydispersity index (PDI) of 0.087. It remained stable at 4°C and 23°C for at least 21 days and at 37°C for 7 days. Both vB-SeS-01 and vB-SeS-01-loaded liposomes displayed intracellular antimicrobial effects and could reduce the transcription level of some tested intracellular inflammatory factors caused by the infected S. enterica sv. Sendai 16,226 and Enteritidis 50041CMCC.
Collapse
Affiliation(s)
- Yuhang Luo
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lin Sun
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Ziqiong You
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaomin Hu
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
6
|
Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025; 13:100. [PMID: 39858868 PMCID: PMC11767365 DOI: 10.3390/microorganisms13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phage therapy, which involves the use of bacteriophages (phages) to combat bacterial infections, is emerging as a promising approach to address the escalating threat posed by multidrug-resistant (MDR) bacteria. This brief review examines the historical background and recent advancements in phage research, focusing on their genomics, interactions with host bacteria, and progress in medical and biotechnological applications. Additionally, we expose key aspects of the mechanisms of action, and therapeutic uses of phage considerations in treating MDR bacterial infections are discussed, particularly in the context of infections related to virus-bacteria interactions.
Collapse
Affiliation(s)
- Nallelyt Segundo-Arizmendi
- Laboratorio de Microbiología y Parasitología, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Dafne Arellano-Maciel
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Efren Hernández-Baltazar
- Laboratorio 1 de Tecnología Farmacéutica, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
7
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
8
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
9
|
Pérez LM, Havryliuk O, Infante N, Muniesa M, Morató J, Mariychuk R, Tzanov T. Biofilm Prevention and Removal in Non-Target Pseudomonas Strain by Siphovirus-like Coliphage. Biomedicines 2024; 12:2291. [PMID: 39457603 PMCID: PMC11504082 DOI: 10.3390/biomedicines12102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives. Bacteriophages have gained significant interest as a potential solution to combat harmful bacteria, especially in the fight against antimicrobial resistance. With the rise in drug-resistant microorganisms, the medical community is increasingly exploring new alternatives to traditional antibiotics, and bacteriophages offer several advantages in this regard. However, phage applications still face some challenges, such as host specificity. Methods. In this study, a somatic Siphovirus-like coliphage (SOM7) was tested for inhibiting the biofilm-forming capacity of the non-target strain Pseudomonas aeruginosa (ATTC 10145). The phage-sensitive strain E. coli WG5 was used as a control. The selected microorganisms were first tested for growth in the presence of SOM7 at three different concentrations (105, 107, and 109 PFU/mL). Results. As expected, the phage-sensitive E. coli WG5 was fully inhibited by the coliphage, and no phage-related affection on the growth rate was observed for the SOM7-resistant P. aeruginosa. More notably, increasing concentrations of SOM7 significantly reduced both the biofilm-forming capacity and the amount of pre-established bacterial biofilm of the phage-insensitive P. aeruginosa (24.9% and 38.8% reduction in the biofilm-forming ability, and 18.8% and 28.0% biofilm degradation for 107 PFU/mL and 109 PFU/mL SOM7, respectively; p < 0.05). These results were supported by transmission electron microscopy (TEM) imaging, providing unprecedent evidence for the interaction of the somatic coliphage with the non-host strain. Conclusions. Although more studies in other biofilm models are necessary, our results show for the very first time that bacteriophages could potentially be used as an alternative to achieve desired anti-biofilm and biofilm-degrading activity in non-host bacterial strains.
Collapse
Affiliation(s)
- Leonardo Martín Pérez
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| | - Olesia Havryliuk
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
- Department of Extremophilic Microorganisms Biology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Nury Infante
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 (Annex. Floor 0), 08028 Barcelona, Spain;
| | - Jordi Morató
- Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech, R/Sant Nebridi, 22, GAIA Building (TR14), 08222 Terrassa, Spain; (L.M.P.); (O.H.); (N.I.); (J.M.)
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 08001 Presov, Slovakia
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Rambla de Sant Nebridi 22, 08222 Terrassa, Spain;
| |
Collapse
|
10
|
Teymouri S, Pourhajibagher M, Bahador A. A review of the fighting Acinetobacter baumannii on three fronts: antibiotics, phages, and nanoparticles. Mol Biol Rep 2024; 51:1044. [PMID: 39377967 DOI: 10.1007/s11033-024-09979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/30/2024] [Indexed: 02/06/2025]
Abstract
In the current era of antibiotic resistance, researchers are exploring alternative ways to treat bacterial infections that are resistant to multiple drugs. Acinetobacter baumannii (A. baumannii) is a bacterium that is commonly encountered in clinical settings and is known to be resistant to several drugs. Due to the increase in drug-resistant infections caused by this bacteria, there is an urgent need to investigate alternative treatment options such as phage therapy and combination therapy. Despite the success of phages in some cases, there are some limitations in their clinical application that can be overcome by combining phages with other substrates such as nanoparticles to improve their function. The integration of nanotechnology with phage therapy against A. baumannii promises to overcome antibiotic resistance. By exploiting the targeted delivery and controlled release capabilities of nanoparticles, we can enhance the therapeutic potential of phages while minimizing their limitations. Continued research in this field will undoubtedly pave the way for more effective and precise treatments against A. baumannii infections and provide hope in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
11
|
Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. Bacteriophage-mediated approaches for biofilm control. Front Cell Infect Microbiol 2024; 14:1428637. [PMID: 39435185 PMCID: PMC11491440 DOI: 10.3389/fcimb.2024.1428637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/23/2024] Open
Abstract
Biofilms are complex microbial communities in which planktonic and dormant bacteria are enveloped in extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, lipids, and DNA. These multicellular structures present resistance to conventional antimicrobial treatments, including antibiotics. The formation of biofilms raises considerable concern in healthcare settings, biofilms can exacerbate infections in patients and compromise the integrity of medical devices employed during treatment. Similarly, certain bacterial species contribute to bulking, foaming, and biofilm development in water environments such as wastewater treatment plants, water reservoirs, and aquaculture facilities. Additionally, food production facilities provide ideal conditions for establishing bacterial biofilms, which can serve as reservoirs for foodborne pathogens. Efforts to combat antibiotic resistance involve exploring various strategies, including bacteriophage therapy. Research has been conducted on the effects of phages and their individual proteins to assess their potential for biofilm removal. However, challenges persist, prompting the examination of refined approaches such as drug-phage combination therapies, phage cocktails, and genetically modified phages for clinical applications. This review aims to highlight the progress regarding bacteriophage-based approaches for biofilm eradication in different settings.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Saskya E. Carrera-Pacheco
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Linda P. Guamán
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| |
Collapse
|
12
|
Li J, Zheng H, Leung SSY. Investigating the effectiveness of liposome-bacteriophage nanocomplex in killing Staphylococcus aureus using epithelial cell coculture models. Int J Pharm 2024; 657:124146. [PMID: 38657716 DOI: 10.1016/j.ijpharm.2024.124146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Host cell invasion with strong antibiotics evading is a major feature of respiratory Staphylococcus aureus infections with severe recurrence. Bacteriophage (phage) therapy and design of liposomal phage to target intracellular pathogens have been described recently. The practicality for pulmonary delivery of liposomal phage, and how formulation compositions affecting the aerosolization and intracellular bacterial killing remain unexplored. In the present study, three commonly used phospholipids (SPC, EPC, and HSPC) were selected to investigate their ability for phage K nebulization and intracellular therapy in the form of liposome-phage nanocomplexes. The three lipid nanocarriers showed protection on phage K upon mesh nebulization and the pulmonary deposition efficiency was influenced by the lipid used. Moreover, the intracellular bacterial killing was strongly depended on the lipid types, where EPC-phage exhibited the best killing performance with no relapsing. Phage K with the aid of EPC liposomes was also observed to manage the tissue infection in a 3D spheroid model more effectively than other groups. Altogether, this novel EPC liposome-phage nanocomplex can be a promising formulation approach that enables inhalable phage to manage respiratory infections caused by bacteria strongly associated with human epithelial cells.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
13
|
Li Y, Li XM, Duan HY, Yang KD, Ye JF. Advances and optimization strategies in bacteriophage therapy for treating inflammatory bowel disease. Front Immunol 2024; 15:1398652. [PMID: 38779682 PMCID: PMC11109441 DOI: 10.3389/fimmu.2024.1398652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Schmalstig AA, Wiggins A, Badillo D, Wetzel KS, Hatfull GF, Braunstein M. Bacteriophage infection and killing of intracellular Mycobacterium abscessus. mBio 2024; 15:e0292423. [PMID: 38059609 PMCID: PMC10790704 DOI: 10.1128/mbio.02924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE As we rapidly approach a post-antibiotic era, bacteriophage (phage) therapy may offer a solution for treating drug-resistant bacteria. Mycobacterium abscessus is an emerging, multidrug-resistant pathogen that causes disease in people with cystic fibrosis, chronic obstructive pulmonary disease, and other underlying lung diseases. M. abscessus can survive inside host cells, a niche that can limit access to antibiotics. As current treatment options for M. abscessus infections often fail, there is an urgent need for alternative therapies. Phage therapy is being used to treat M. abscessus infections as an option of last resort. However, little is known about the ability of phages to kill bacteria in the host environment and specifically in an intracellular environment. Here, we demonstrate the ability of phages to enter mammalian cells and to infect and kill intracellular M. abscessus. These findings support the use of phages to treat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Alan A. Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Wiggins
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Debbie Badillo
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine S. Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Pirnay JP, Merabishvili M, De Vos D, Verbeken G. Bacteriophage Production in Compliance with Regulatory Requirements. Methods Mol Biol 2024; 2734:89-115. [PMID: 38066364 DOI: 10.1007/978-1-0716-3523-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this chapter, we discuss production requirements for therapeutic bacteriophage preparations. We review the current regulatory expectancies and focus on pragmatic production processes, implementing relevant controls to ensure the quality, safety, and efficacy of the final products. The information disclosed in this chapter can also serve as a basis for discussions with competent authorities regarding the implementation of expedited bacteriophage product development and licensing pathways, taking into account some peculiarities of bacteriophages (as compared to conventional medicines), such as their specificity for, and co-evolution with, their bacterial hosts. To maximize the potential of bacteriophages as natural controllers of bacterial populations, the implemented regulatory frameworks and manufacturing processes should not only cater to defined bacteriophage products. But, they should also facilitate personalized approaches in which bacteriophages are selected ad hoc and even trained to target the patient's infecting bacterial strain(s), whether or not in combination with other antimicrobials such as antibiotics.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium.
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
17
|
Cortés P, Cano-Sarabia M, Colom J, Otero J, Maspoch D, Llagostera M. Nano/microformulations for Bacteriophage Delivery. Methods Mol Biol 2024; 2734:117-130. [PMID: 38066365 DOI: 10.1007/978-1-0716-3523-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO3. To perform bacteriophage encapsulation is necessary to dispose of a purified and highly concentrated lysate (around 1010 to 1011 pfu/mL) and a specific equipment. Both methodologies have been successfully applied for encapsulating Salmonella bacteriophages with different morphologies. Also, the material employed does not modify the antibacterial action of bacteriophages. Moreover, both technologies can be adapted to any bacteriophage and possibly to any delivery route for bacteriophage therapy.
Collapse
Affiliation(s)
- Pilar Cortés
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Joan Colom
- Deerland Ireland R&D Ltd., Food Science Building, University College Cork, Cork, Ireland
| | - Jennifer Otero
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus de Bellaterra, Cerdanyola del Vallès, Spain
- ICREA, Barcelona, Spain
| | - Montserrat Llagostera
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Cao Y, Khanal D, Kim J, Chang RYK, Byun AS, Morales S, Banaszak Holl MM, Chan HK. Stability of bacteriophages in organic solvents for formulations. Int J Pharm 2023; 646:123505. [PMID: 37832702 DOI: 10.1016/j.ijpharm.2023.123505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Bacteriophages or phages used as an alternative therapy for treating multi-drug resistant infections require formulation consideration. Current strategies to produce phage formulations involving organic solvents are based on empirical practices without a good understanding of phage stability during formulation development. In this study, we investigated the effect of common formulation organic solvents (ethanol, isopropyl alcohol, tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO)) on the stability of Pseudomonas aeruginosa-specific myovirus (PEV1, PEV20) and podovirus (PEV31) phages using biological assay, transmission electron microscopy (TEM) and scattering near field optical microscopy (SNOM). The three phages were mixed with the solvents at different concentrations (25%, 50%, and 75% (v/v)) for 20 min. All phages were fully viable in the organic solvents at 25% (v/v) showing negligible titre changes. At the higher solvent concentration of 50% (v/v), the myoviruses PEV1 and PEV20 remained relatively stable (titre loss 0.4-1.3 log10), whereas the podovirus PEV31 became less stable (titre loss 0.25-3.8 log10), depending on the solvent used. Increasing the solvent level to 75% (v/v) caused increased morphological changes in TEM and decreased viability as indicated by the titre loss (0.32-7.4 log10), with DMSO being the most phage-destabilising solvent. SNOM spectra showed differences in the signal intensity and peak positions in the amide I and amide II regions, revealing altered phage proteins by the solvents. In conclusion, the choice of the solvents for phage formulation depends on both the phages and solvent types. Our results showed (1) the phages are more stable in the alcohols than DMSO and THF, and (2) the myoviruses tend to be more stable than the podovirus in the solvents. Overall, a low to moderate (25-50 % v/v) level of organic solvents (except 50% THF) can be used in formulation of the phages without a substantial titre loss.
Collapse
Affiliation(s)
- Yue Cao
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Jinhee Kim
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Alex Seungyeon Byun
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia
| | - Sandra Morales
- Phage Consulting, Sydney, New South Wales, NSW 2100, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, NSW 2006, Australia.
| |
Collapse
|
19
|
Malik DJ, Goncalves-Ribeiro H, GoldSchmitt D, Collin J, Belkhiri A, Fernandes D, Weichert H, Kirpichnikova A. Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages. Clin Infect Dis 2023; 77:S370-S383. [PMID: 37932112 DOI: 10.1093/cid/ciad555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Manufacturing and formulation of stable, high purity, and high dose bacteriophage drug products (DPs) suitable for clinical usage would benefit from improved process monitoring and control of critical process parameters that affect product quality attributes. Chemistry, Manufacturing, and Controls (CMC) for both upstream (USP) and downstream processes (DSP) need mapping of critical process parameters (CPP) and linking these to critical quality attributes (CQA) to ensure quality and consistency of phage drug substance (DS) and DPs development. Single-use technologies are increasingly becoming the go-to manufacturing option with benefits both for phage bioprocess development at the engineering run research stage and for final manufacture of the phage DS. Future phage DPs under clinical development will benefit from implementation of process analytical technologies (PAT) for better process monitoring and control. These are increasingly being used to improve process robustness (to reduce batch-to-batch variability) and productivity (yielding high phage titers). Precise delivery of stable phage DPs that are suitably formulated as liquids, gels, solid-oral dosage forms, and so forth, could significantly enhance efficacy of phage therapy outcomes. Pre-clinical development of phage DPs must include at an early stage of development, considerations for their formulation including their characterization of physiochemical properties (size, charge, etc.), buffer pH and osmolality, compatibility with regulatory approved excipients, storage stability (packaging, temperature, humidity, etc.), ease of application, patient compliance, ease of manufacturability using scalable manufacturing unit operations, cost, and regulatory requirements.
Collapse
Affiliation(s)
- Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Dirk GoldSchmitt
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Joe Collin
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Aouatif Belkhiri
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Diogo Fernandes
- Nanomaterials Characterisation, Malvern Panalytical, Malvern, United Kingdom
| | - Henry Weichert
- Process Analytical Technology, Sartorius Stedim Biotech GmbH, Germany
| | - Anya Kirpichnikova
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
20
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
22
|
Torres Di Bello D, Narváez DM, Groot de Restrepo H, Vives MJ. Cytotoxic Evaluation in HaCaT Cells of the Pa.7 Bacteriophage from Cutibacterium ( Propionibacterium) acnes, Free and Encapsulated Within Liposomes. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:26-34. [PMID: 37214651 PMCID: PMC10196082 DOI: 10.1089/phage.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Acne is a multifactorial disease involving the colonization of skin follicles by Cutibacterium (formerly Propionibacterium) acnes. A combination of different retinoid-derived products, antibiotics, and hormonal antiandrogens are used to treat the disease, but these treatments require extended periods, may have secondary effects, are expensive, and not always effective. Owing to antibiotic resistance, the use of bacteriophages has been proposed as an alternative treatment. However, if they are intended for a cosmetic or pharmaceutical use, it is necessary to evaluate the safety of the phages and the preparations containing them. Materials and Methods In this study, the cytotoxicity of Pa.7 bacteriophage was evaluated in HaCaT cells, along with a liposome suitable for their encapsulation, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. Results We found that Pa.7 was not cytotoxic for HaCaT cells. Also, 30 mM of liposomes, or below are considered noncytotoxic concentrations. Conclusion Phages encapsulated in the liposomes presented in this study can be used safely for skin treatments.
Collapse
Affiliation(s)
- Daniela Torres Di Bello
- Microbiology Research Center–CIMIC, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Diana M. Narváez
- Human Genetics Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Helena Groot de Restrepo
- Human Genetics Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Martha J. Vives
- Microbiology Research Center–CIMIC, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
23
|
Pardo-Freire M, Domingo-Calap P. Phages and Nanotechnology: New Insights against Multidrug-Resistant Bacteria. BIODESIGN RESEARCH 2023; 5:0004. [PMID: 37849463 PMCID: PMC10521656 DOI: 10.34133/bdr.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 10/19/2023] Open
Abstract
Bacterial infections are a major threat to the human healthcare system worldwide, as antibiotics are becoming less effective due to the emergence of multidrug-resistant strains. Therefore, there is a need to explore nontraditional antimicrobial alternatives to support rapid interventions and combat the spread of pathogenic bacteria. New nonantibiotic approaches are being developed, many of them at the interface of physics, nanotechnology, and microbiology. While physical factors (e.g., pressure, temperature, and ultraviolet light) are typically used in the sterilization process, nanoparticles and phages (bacterial viruses) are also applied to combat pathogenic bacteria. Particularly, phage-based therapies are rising due to the unparalleled specificity and high bactericidal activity of phages. Despite the success of phages mostly as compassionate use in clinical cases, some drawbacks need to be addressed, mainly related to their stability, bioavailability, and systemic administration. Combining phages with nanoparticles can improve their performance in vivo. Thus, the combination of nanotechnology and phages might provide tools for the rapid and accurate detection of bacteria in biological samples (diagnosis and typing), and the development of antimicrobials that combine the selectivity of phages with the efficacy of targeted therapy, such as photothermal ablation or photodynamic therapies. In this review, we aim to provide an overview of how phage-based nanotechnology represents a step forward in the fight against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Marco Pardo-Freire
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| |
Collapse
|
24
|
Chang RYK, Nang SC, Chan HK, Li J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv Drug Deliv Rev 2022; 187:114378. [PMID: 35671882 DOI: 10.1016/j.addr.2022.114378] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Antibiotic therapy has become increasingly ineffective against bacterial infections due to the rise of resistance. In particular, ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have caused life-threatening infections in humans and represent a major global health threat due to a high degree of antibiotic resistance. To respond to this urgent call, novel strategies are urgently needed, such as bacteriophages (or phages), phage-encoded enzymes, immunomodulators and monoclonal antibodies. This review critically analyses these promising antimicrobial therapies for the treatment of multidrug-resistant bacterial infections. Recent advances in these novel therapeutic strategies are discussed, focusing on preclinical and clinical investigations, as well as combinatorial approaches. In this 'Bad Bugs, No Drugs' era, novel therapeutic strategies can play a key role in treating deadly infections and help extend the lifetime of antibiotics.
Collapse
|
25
|
Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F. Paving the way for phage therapy using novel drug delivery approaches. J Control Release 2022; 347:414-424. [PMID: 35569589 DOI: 10.1016/j.jconrel.2022.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Bacterial resistance against antibiotics is an emergent medical issue. The development of novel therapeutic approaches is urgently needed and, in this context, bacteriophages represent a promising strategy to fight multi resistant bacteria. However, for some applications, bacteriophages cannot be used without an appropriate drug delivery system which increases their stability or provides an adequate targeting to the site of infection. This review summarizes the main application routes for bacteriophages and presents the new delivery approaches designed to increase phage's activity. Clinical successes of these formulations are also highlighted. Globally, this work paves the way for the design and optimization of nano and micro delivery systems for phage therapy.
Collapse
Affiliation(s)
- Thomas Briot
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France.
| | - Camille Kolenda
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Tristan Ferry
- Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France; Infectious and Tropical Diseases unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Medina
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Frederic Laurent
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Leboucher
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Fabrice Pirot
- Plateforme FRIPHARM, Service pharmaceutique, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Plateforme FRIPHARM, Faculté de Pharmacie, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique - UMR 5305, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
26
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
27
|
Kaur S, Kumari A, Kumari Negi A, Galav V, Thakur S, Agrawal M, Sharma V. Nanotechnology Based Approaches in Phage Therapy: Overcoming the Pharmacological Barriers. Front Pharmacol 2021; 12:699054. [PMID: 34675801 PMCID: PMC8524003 DOI: 10.3389/fphar.2021.699054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
With the emergence and spread of global antibiotic resistance and the need for searching safer alternatives, there has been resurgence in exploring the use of bacteriophages in the treatment of bacterial infections referred as phage therapy. Although modern phage therapy has come a long way as demonstrated by numerous efficacy studies but the fact remains that till date, phage therapy has not received regulatory approval for human use (except for compassionate use).Thus, to hit the clinical market, the roadblocks need to be seriously addressed and gaps mended with modern solution based technologies. Nanotechnology represents one such ideal and powerful tool for overcoming the pharmacological barriers (low stability, poor in-vivo retention, targeted delivery, neutralisation by immune system etc.) of administered phage preparations.In literature, there are many review articles on nanotechnology and bacteriophages but these are primarily focussed on highlighting the use of lytic and temperate phages in different fields of nano-medicine such as nanoprobes, nanosensors, cancer diagnostics, cancer cell targeting, drug delivery through phage receptors, phage display etc. Reviews specifically focused on the use of nanotechnology driven techniques strictly to improve phage therapy are however limited. Moreover, these review if present have primarily focussed on discussing encapsulation as a primary method for improving the stability and retention of phage(s) in the body.With new advances made in the field of nanotechnology, approaches extend from mere encapsulation to recently adopted newer strategies. The present review gives a detailed insight into the more recent strategies which include 1) use of lipid based nano-carriers (liposomes, transfersomes etc.) 2) adopting microfluidic based approach, surface modification methods to further enhance the efficiency and stability of phage loaded liposomes 3) Nano- emulsification approach with integration of microfluidics for producing multiple emulsions (suitable for phage cocktails) with unique control over size, shape and drop morphology 4) Phage loaded nanofibers produced by electro-spinning and advanced core shell nanofibers for immediate, biphasic and delayed release systems and 5) Smart release drug delivery platforms that allow superior control over dosing and phage release as and when required. All these new advances are aimed at creating a suitable housing system for therapeutic bacteriophage preparations while targeting the multiple issues of phage therapy i.e., improving phage stability and titers, improving in-vivo retention times, acting as suitable delivery systems for sustained release at target site of infection, improved penetration into biofilms and protection from immune cell attack. The present review thus aims at giving a complete insight into the recent advances (2010 onwards) related to various nanotechnology based approaches to address the issues pertaining to phage therapy. This is essential for improving the overall therapeutic index and success of phage therapy for future clinical approval.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Anila Kumari
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| | - Anjana Kumari Negi
- Department of Biochemistry, Dr. Rajendra Prasad Government Medical College, Himachal Pradesh, India
| | - Vikas Galav
- Department of Veterinary Pathology, Post Graduate Institute of Veterinary Education and Research (RAJUVAS), Jaipur, India
| | - Shikha Thakur
- Department of Biotechnology, Kumaun University, Uttarakhand, India
| | - Manish Agrawal
- Department of Veterinary Pathology, Post Graduate Institute of Veterinary Education and Research (RAJUVAS), Jaipur, India
| | - Vandana Sharma
- Department of Food Science, Mehr Chand Mahajan DAV College for Women, Chandigarh, India
| |
Collapse
|
28
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
29
|
Manufacturing Bacteriophages (Part 2 of 2): Formulation, Analytics and Quality Control Considerations. Pharmaceuticals (Basel) 2021; 14:ph14090895. [PMID: 34577595 PMCID: PMC8467454 DOI: 10.3390/ph14090895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Within this second piece of the two-part series of phage manufacturing considerations, we are examining the creation of a drug product from a drug substance in the form of formulation, through to fill-finish. Formulation of a drug product, in the case of bacteriophage products, is often considered only after many choices have been made in the development and manufacture of a drug substance, increasing the final product development timeline and difficulty of achieving necessary performance parameters. As with the preceding review in this sequence, we aim to provide the reader with a framework to be able to consider pharmaceutical development choices for the formulation of a bacteriophage-based drug product. The intent is to sensitize and highlight the tradeoffs that are necessary in the development of a finished drug product, and to be able to take the entire spectrum of tradeoffs into account, starting with early-stage R&D efforts. Furthermore, we are arming the reader with an overview of historical and current analytical methods with a special emphasis on most relevant and most widely available methods. Bacteriophages pose some challenges that are related to but also separate from eukaryotic viruses. Last, but not least, we close this two-part series by briefly discussing quality control (QC) aspects of a bacteriophage-based product, taking into consideration the opportunities and challenges that engineered bacteriophages uniquely present and offer.
Collapse
|
30
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
31
|
Pirnay JP, Ferry T, Resch G. Recent progress towards the implementation of phage therapy in Western medicine. FEMS Microbiol Rev 2021; 46:6325169. [PMID: 34289033 DOI: 10.1093/femsre/fuab040] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Like the sword of Damocles, the threat of a post-antibiotic era is hanging over humanity's head. The scientific and medical community is thus reconsidering bacteriophage therapy (BT) as a partial but realistic solution for treatment of difficult to eradicate bacterial infections. Here, we summarize the latest developments in clinical BT applications, with a focus on developments in the following areas: i) pharmacology of bacteriophages of major clinical importance and their synergy with antibiotics; ii) production of therapeutic phages; and iii) clinical trials, case studies, and case reports in the field. We address regulatory concerns, which are of paramount importance insofar as they dictate the conduct of clinical trials, which are needed for broader BT application. The increasing amount of new available data confirm the particularities of BT as being innovative and highly personalized. The current circumstances suggest that the immediate future of BT may be advanced within the framework of national BT centers in collaboration with competent authorities, which are urged to adopt incisive initiatives originally launched by some national regulatory authorities.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tristan Ferry
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Grégory Resch
- Centre of Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
32
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
33
|
Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals (Basel) 2021; 14:ph14040359. [PMID: 33924739 PMCID: PMC8069877 DOI: 10.3390/ph14040359] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of antibiotic-resistant pathogens is becoming increasingly problematic in the treatment of bacterial diseases. This has led to bacteriophages receiving increased attention as an alternative form of treatment. Phages are effective at targeting and killing bacterial strains of interest and have yielded encouraging results when administered as part of a tailored treatment to severely ill patients as a last resort. Despite this, success in clinical trials has not always been as forthcoming, with several high-profile trials failing to demonstrate the efficacy of phage preparations in curing diseases of interest. Whilst this may be in part due to reasons surrounding poor phage selection and a lack of understanding of the underlying disease, there is growing consensus that future success in clinical trials will depend on effective delivery of phage therapeutics to the area of infection. This can be achieved using bacteriophage formulations instead of purely liquid preparations. Several encapsulation-based strategies can be applied to produce phage formulations and encouraging results have been observed with respect to efficacy as well as long term phage stability. Immobilization-based approaches have generally been neglected for the production of phage therapeutics but could also offer a viable alternative.
Collapse
|
34
|
Goswami A, Sharma PR, Agarwal R. Combatting intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 2021; 47:461-478. [PMID: 33818246 DOI: 10.1080/1040841x.2021.1902266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular pathogens reside in specialised compartments within the host cells restricting the access of antibiotics. Insufficient intracellular delivery of antibiotics along with several other resistance mechanisms weaken the efficacy of current therapies. An alternative to antibiotic therapy could be bacteriophage (phage) therapy. Although phage therapy has been in practice for a century against various bacterial infections, the efficacy of phages against intracellular bacteria is still being explored. In this review, we will discuss the advancement and challenges in phage therapy, particularly against intracellular bacterial pathogens. Finally, we will highlight the uptake mechanisms and approaches to overcome the challenges to phage therapy against intracellular bacteria.
Collapse
Affiliation(s)
- Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
35
|
Aghaei H, Solaimany Nazar AR, Varshosaz J. Double flow focusing microfluidic-assisted based preparation of methotrexate–loaded liposomal nanoparticles: Encapsulation efficacy, drug release and stability. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and Delivery of Therapeutic Phages. Appl Environ Microbiol 2021; 87:AEM.01979-20. [PMID: 33310718 PMCID: PMC8090888 DOI: 10.1128/aem.01979-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Delivery of therapeutic compounds to the site of action is crucial. While many chemical substances such as beta-lactam antibiotics can reach therapeutic levels in most parts throughout the human body after administration, substances of higher molecular weight such as therapeutic proteins may not be able to reach the site of action (e.g. an infection), and are therefore ineffective. In the case of therapeutic phages, i.e. viruses that infect microbes that can be used to treat bacterial infections, this problem is exacerbated; not only are phages unable to penetrate tissues, but phage particles can be cleared by the immune system and phage proteins are rapidly degraded by enzymes or inactivated by the low pH in the stomach. Yet, the use of therapeutic phages is a highly promising strategy, in particular for infections caused by bacteria that exhibit multi-drug resistance. Clinicians increasingly encounter situations where no treatment options remain available for such infections, where antibiotic compounds are ineffective. While the number of drug-resistant pathogens continues to rise due to the overuse and misuse of antibiotics, no new compounds are becoming available as many pharmaceutical companies discontinue their search for chemical antimicrobials. In recent years, phage therapy has undergone massive innovation for the treatment of infections caused by pathogens resistant to conventional antibiotics. While most therapeutic applications of phages are well described in the literature, other aspects of phage therapy are less well documented. In this review, we focus on the issues that are critical for phage therapy to become a reliable standard therapy and describe methods for efficient and targeted delivery of phages, including their encapsulation.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Vijay Singh Gondil
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fazal Mehmood Khan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Sebastian Leptihn
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
37
|
Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, Moriarty TF. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020; 11:538060. [PMID: 33072008 PMCID: PMC7531225 DOI: 10.3389/fmicb.2020.538060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life. Loading phage within a biomaterial can shield the incorporated phage against many of these harmful environmental factors, and in addition, provide controlled release for prolonged therapeutic activity. In this review, we assess the different classes of biomaterials (i.e., biopolymers, synthetic polymers, and ceramics) that have been used for phage delivery and describe the processing methodologies that are compatible with phage embedding or encapsulation. We also elaborate on the clinical or pre-clinical data generated using these materials. While a primary focus is placed on the application of phage-loaded materials for treatment of infection, we also include studies from other translatable fields such as food preservation and animal husbandry. Finally, we summarize trends in the literature and identify current barriers that currently prevent clinical application of phage-loaded biomaterials.
Collapse
Affiliation(s)
- Stijn Gerard Rotman
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | - Eric Sumrall
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | | - David Eglin
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
38
|
Chang RYK, Morales S, Okamoto Y, Chan HK. Topical application of bacteriophages for treatment of wound infections. Transl Res 2020; 220:153-166. [PMID: 32268129 PMCID: PMC7293950 DOI: 10.1016/j.trsl.2020.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Wound infections associated with multidrug-resistant (MDR) bacteria are one of the important threats to public health. Bacteriophage (phage) therapy is a promising alternative or supplementary therapeutic approach to conventional antibiotics for combating MDR bacterial infections. In recent years, significant effort has been put into the development of phage formulations and delivery methods for topical applications, along with preclinical and clinical uses of phages for the treatment of acute and chronic wound infections. This paper reviews the application of phages for wound infections, with focus on the current status of phage formulations (including liquid, semi-solid and liposome-encapsulated formulations, phage-immobilized wound dressings), safety and efficacy assessment in clinical settings and major challenges to overcome.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, New South Wales, Australia
| | | | - Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Marqus S, Lee L, Istivan T, Kyung Chang RY, Dekiwadia C, Chan HK, Yeo LY. High frequency acoustic nebulization for pulmonary delivery of antibiotic alternatives against Staphylococcus aureus. Eur J Pharm Biopharm 2020; 151:181-188. [PMID: 32315699 DOI: 10.1016/j.ejpb.2020.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
The increasing prevalence of multidrug resistant bacteria has warranted the search for new antimicrobial agents as existing antibiotics lose their potency. Among these, bacteriophage therapy, as well as the administration of specific bacteriolysis agents, i.e., lytic enzymes, have emerged as attractive alternatives. Nebulizers offer the possibility for delivering these therapeutics directly to the lung, which is particularly advantageous as a non-invasive and direct route to treat bacterial lung infections. Nevertheless, nebulizers can often result in significant degradation of the bacteriophage or protein, both structurally and functionally, due to the large stresses the aerosolization process imposes on these entities. In this work, we assess the capability of a novel low-cost and portable hybrid surface and bulk acoustic wave platform (HYDRA) to nebulize a Myoviridae bacteriophage (phage K) and lytic enzyme (lysostaphin) that specifically targets Staphylococcus aureus. Besides its efficiency in producing phage or protein-laden aerosols within the 1-5 μm respirable range for optimum delivery to the lower respiratory tract where lung infections commonly take place, we observe that the HYDRA platform-owing to the efficiency of driving the aerosolization process at relatively low powers and high frequencies (approximately 10 MHz)-does not result in appreciable denaturation of the phages or proteins, such that the loss of antimicrobial activity following nebulization is minimized. Specifically, a low (0.1 log10 (pfu/ml)) titer loss was obtained with the phages, resulting in a high viable respirable fraction of approximately 90%. Similarly, minimal loss of antimicrobial activity was obtained with lysostaphin upon nebulization wherein its minimum inhibitory concentration (0.5 μg/ml) remained unaltered as compared with the non-nebulized control. These results therefore demonstrate the potential of the HYDRA nebulization platform as a promising strategy for pulmonary administration of alternative antimicrobial agents to antibiotics for the treatment of lung diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Susan Marqus
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Taghrid Istivan
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
40
|
Chen YS, Chung KC, Huang WY, Lee WB, Fu CY, Wang CH, Lee GB. Generating digital drug cocktails via optical manipulation of drug-containing particles and photo-patterning of hydrogels. LAB ON A CHIP 2019; 19:1764-1771. [PMID: 30942234 DOI: 10.1039/c9lc00189a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An integrated microfluidic system combining 1) an optically-induced-dielectrophoresis (ODEP) module for manipulation of drug-containing particles and 2) an ultraviolet (UV) "direct writing" module capable of patterning hydrogels was established herein for automatic formulation of customized digital drug cocktails. Using the ODEP module, the drug-containing particles were assembled by using moving light patterns generated from a digital projector. The hydrogel, poly(ethylene glycol) diacrylate (PEGDA), was used as the medium in the ODEP module such that the assembled drug-containing particles could be UV-cured and consequently encapsulated in "pills" of specific sizes and shapes by using the UV direct writing module. At an optimal ODEP force of 335 pN, which was achieved in a solution of 15% PEGDA in 0.2 M sucrose, it was possible to manipulate and UV-cure the drug-containing particles. Furthermore, with a digital micromirror device inside the UV direct writing module, different UV patterns could be designed and projected, allowing for the digital drug cocktails to be packaged into different shapes in <60 s. As a demonstration, emulsion droplets containing two different anti-cancer drugs were further tested to show the capability of the developed device. This represents an automatic digital drug cocktail formulating device which stands to revolutionize personalized medicine.
Collapse
Affiliation(s)
- Yi-Sin Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci Rep 2019; 9:2091. [PMID: 30765740 PMCID: PMC6376040 DOI: 10.1038/s41598-018-38318-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Fibrin glue has been used clinically for decades in a wide variety of surgical specialties and is now being investigated as a medium for local, prolonged drug delivery. Effective local delivery of antibacterial substances is important perioperatively in patients with implanted medical devices or postoperatively for deep wounds. However, prolonged local application of antibiotics is often not possible or simply inadequate. Biofilm formation and antibiotic resistance are also major obstacles to antibacterial therapy. In this paper we test the biocompatibility of bacteriophages incorporated within fibrin glue, track the release of bacteriophages from fibrin scaffolds, and measure the antibacterial activity of released bacteriophages. Fibrin glue polymerized in the presence of the PA5 bacteriophage released high titers of bacteriophages during 11 days of incubation in liquid medium. Released PA5 bacteriophages were effective in killing Pseudomonas aeruginosa PA01. Overall, our results show that fibrin glue can be used for sustained delivery of bacteriophages and this strategy holds promise for many antibacterial applications.
Collapse
|
42
|
High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production. Viruses 2018; 10:v10100537. [PMID: 30275405 PMCID: PMC6213498 DOI: 10.3390/v10100537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Future industrial demand for large quantities of bacteriophages e.g., for phage therapy, necessitates the development of scalable Good Manufacturing Practice compliant (cGMP) production platforms. The continuous production of high titres of E coli T3 phages (1011 PFU mL−1) was achieved using two continuous stirred tank bioreactors connected in series, and a third bioreactor was used as a final holding tank operated in semi-batch mode to finish the infection process. The first bioreactor allowed the steady-state propagation of host bacteria using a fully synthetic medium with glucose as the limiting substrate. Host bacterial growth was decoupled from the phage production reactor downstream of it to suppress the production of phage-resistant mutants, thereby allowing stable operation over a period of several days. The novelty of this process is that the manipulation of the host reactor dilution rates (range 0.1–0.6 hr−1) allows control over the physiological state of the bacterial population. This results in bacteria with considerably higher intracellular phage production capability whilst operating at high dilution rates yielding significantly higher overall phage process productivity. Using a pilot-scale chemostat system allowed optimisation of the upstream phage amplification conditions conducive for high intracellular phage production in the host bacteria. The effect of the host reactor dilution rates on the phage burst size, lag time, and adsorption rate were evaluated. The host bacterium physiology was found to influence phage burst size, thereby affecting the productivity of the overall process. Mathematical modelling of the dynamics of the process allowed parameter sensitivity evaluation and provided valuable insights into the factors affecting the phage production process. The approach presented here may be used at an industrial scale to significantly improve process control, increase productivity via process intensification, and reduce process manufacturing costs through process footprint reduction.
Collapse
|