1
|
Foroutan M, Karimipour-Saryazdi A, Ghaffari AD, Majidiani H, Arzani Birgani A, Karimzadeh-Soureshjani E, Soltani S, Elsheikha HM. In Silico Analysis and Characterization of the Immunogenicity of Toxoplasma gondii Rhoptry Protein 18. Bioinform Biol Insights 2025; 19:11779322251315924. [PMID: 39925787 PMCID: PMC11806494 DOI: 10.1177/11779322251315924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Rhoptry protein 18 (ROP18) is a key virulence factor secreted into host cells during the invasion of Toxoplasma gondii (T. gondii) and plays an important role in the pathogenesis of infection. Due to its potential as a vaccine candidate, this study aimed to characterize several properties of the T. gondii ROP18 (TgROP18) protein to support its inclusion in vaccine formulations. Using a range of bioinformatics tools, we investigated its T-cell and B-cell epitopes, physicochemical properties, subcellular localization, transmembrane domains, and tertiary and secondary structures. Our analysis revealed 48 post-translational modification sites in TgROP18. The secondary structure was composed of 4.87% beta-turns, 38.45% random coils, 42.42% alpha helices, and 14.26% extended strands. Several potential T- and B-cell epitopes were identified on ROP18. The Ramachandran plot of both crude and refined models showed that 85.8% and 95.3% of the amino acid residues, respectively, fell within favored regions, indicating energetically stable conformations. Allergenicity and antigenicity assessments indicated that TgROP18 is a nonallergenic, immunogenic protein. Predictions using the C-ImmSim server suggest that TgROP18 can stimulate humoral and cell-mediated immune responses, based on antibody titers and cytokine profiles following antigen administration. These findings provide baseline data for future investigations focused on the potential of TgROP18 in developing therapeutic strategies against toxoplasmosis.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Amir Karimipour-Saryazdi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Arezo Arzani Birgani
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Shahrzad Soltani
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Hany M Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
2
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
3
|
De Luca V, Giovannuzzi S, Capasso C, Supuran CT. Cloning, expression, and purification of an α-carbonic anhydrase from Toxoplasma gondii to unveil its kinetic parameters and anion inhibition profile. J Enzyme Inhib Med Chem 2024; 39:2346523. [PMID: 38847581 PMCID: PMC11163988 DOI: 10.1080/14756366.2024.2346523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024] Open
Abstract
Toxoplasmosis, induced by the intracellular parasite Toxoplasma gondii, holds considerable implications for global health. While treatment options primarily focusing on folate pathway enzymes have notable limitations, current research endeavours concentrate on pinpointing specific metabolic pathways vital for parasite survival. Carbonic anhydrases (CAs, EC 4.2.1.1) have emerged as potential drug targets due to their role in fundamental reactions critical for various protozoan metabolic processes. Within T. gondii, the Carbonic Anhydrase-Related Protein (TgCA_RP) plays a pivotal role in rhoptry biogenesis. Notably, α-CA (TcCA) from another protozoan, Trypanosoma cruzi, exhibited considerable susceptibility to classical CA inhibitors (CAIs) such as anions, sulphonamides, thiols, and hydroxamates. Here, the recombinant DNA technology was employed to synthesise and clone the identified gene in the T. gondii genome, which encodes an α-CA protein (Tg_CA), with the purpose of heterologously overexpressing its corresponding protein. Tg_CA kinetic constants were determined, and its inhibition patterns explored with inorganic metal-complexing compounds, which are relevant for rational compound design. The significance of this study lies in the potential development of innovative therapeutic strategies that disrupt the vital metabolic pathways crucial for T. gondii survival and virulence. This research may lead to the development of targeted treatments, offering new approaches to manage toxoplasmosis.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Leroux LP, Chaparro V, Plouffe A, Johnston B, Jaramillo M. Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 + cells. Infect Immun 2024; 92:e0030924. [PMID: 39436058 PMCID: PMC11556035 DOI: 10.1128/iai.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| |
Collapse
|
5
|
Wang Y, Li J, Zhu J, Ma H, Zhuang B, Zhao J, Zhang F, Yu L. TgMIC6 inhibition of autophagy is partially responsible for the phenotypic differences between Chinese 1 Toxoplasma gondii strains. Int Immunopharmacol 2024; 140:112857. [PMID: 39116491 DOI: 10.1016/j.intimp.2024.112857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Chinese1 is the predominant Toxoplasma gondii lineage in China, and significant phenotypic differences are observed within the lineage. WH3 and WH6 are two representative strains of Chinese 1, which exhibit divergent virulence and pathogenicity in mice. However, virulence determinants and their modulating mechanisms remain elusive. A global genome expression analysis of the WH3 and WH6 transcriptional profiles identified microneme secretory protein 6 (MIC6), which may be associated with the phenotypic difference observed in WH3. In the present study, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome-editing technique was used to generate a T. gondii microneme secretory protein (TgMIC6) knockout in WH3. Wild-type mice and different mouse and human cell lines were infected with the WH3, WH3-Δmic6, and WH6 strains. The survival rate of mice, related cytokine levels in serum, and the proliferation of parasites were observed. These results suggested that TgMIC6 is an important effector molecule that determines the differential virulence of WH3 in vivo and in vitro. Furthermore, MIC6 may enhance WH3 virulence via inhibition of host cell autophagy and activation of key molecules in the epidermal growth factor receptor (EGFR)-Akt-mammalian target of rapamycin (mTOR) classical autophagy pathway. CD40L was cleared in vivo by i.p injection of CD40L monoclonal antibody, and it was found that the virulence of WH3-Δmic6 to mice was restored to a certain extent in the absence of CD40L. This study elucidates the virulence determinants and immune escape strategies of Toxoplasma gondii in China. Moreover, these data will aid the development of effective strategies for the prevention and control of toxoplasmosis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Medical Laboratory, The Third People's Hospital of Hefei, The Third Clinical Medical College of Hefei of Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haiyang Ma
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ji Zhao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Famin Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Ren Z, Yang Z, Yuan H, Song Y, He H, Nie L, Wang X, Yuan ZG, Zhang XX. 4D label-free proteomic analysis reveals key potential pathways of Toxoplasma invasion into the central nervous system. Int Immunopharmacol 2024; 138:112618. [PMID: 38996663 DOI: 10.1016/j.intimp.2024.112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Toxoplasma gondii is a successful parasite capable of infecting a wide range of warm-blooded animals, including people, livestock, and wildlife. In individuals with intact immune function, T. gondii can invade the host brain tissue by altering the blood-brain barrier permeability, leading to chronic infection. Proteins play crucial regulatory roles in disease progression. By monitoring changes in proteins, a deeper understanding of the molecular mechanisms underlying host resistance to infection and the potential pathogenic mechanisms of pathogens can be gained. This study analyzed differential protein expression and associated signaling pathways in mouse brain tissues during acute and chronic T. gondii infection using proteomic and bioinformatics methods. The results showed that during acute and chronic T. gondii infection stages, 74 and 498 differentially expressed proteins (DEPs) were identified in mouse brain tissue, respectively. Among them, 45 and 309 were up-regulated, while 29 and 189 were down-regulated. GO and KEGG analyses revealed that some of these DEPs were implicated in host immunity, pathogen immune evasion, and T. gondii invasion of the central nervous system, particularly interleukin production and secretion, complement system activation, and alterations in tight junction pathways. Notably, the upregulation of Rab13 was identified as a potential molecular mechanism for T. gondii to regulate blood-brain barrier permeability and facilitate central nervous system invasion. Our findings provided fundamental data for understanding host control of Toxoplasmosis infection and offered new insights into parasite immune evasion and invasion mechanisms within the central nervous system. These insights are crucial for developing strategies to prevent the establishment of chronic T. gondii infection.
Collapse
Affiliation(s)
- Zhaowen Ren
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Zipeng Yang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yining Song
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Houjing He
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linchong Nie
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China.
| | - Zi-Guo Yuan
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiu-Xiang Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Eraghi AT, Garweg JG, Pleyer U. The role of age in ocular toxoplasmosis: clinical signs of immunosenescence and inflammaging. Front Med (Lausanne) 2024; 11:1311145. [PMID: 38504919 PMCID: PMC10950095 DOI: 10.3389/fmed.2024.1311145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose This study aimed to investigate the association between age, immune response, and clinical presentation of ocular toxoplasmosis (OT). Design This was a monocentric, retrospective, observational cohort study. Methods A review of the medical records of patients with active OT at the Uveitis Center, Charité Universitätsmedizin, was conducted. Baseline parameters included age at presentation, visual acuity, intraocular pressure (IOP), size and location of active lesions, inflammatory activity, antibody index (AI), and complications of intraocular inflammation. The data were presented as the mean ± standard deviation (SD). The level of significance was set at a p-value of <0.05. Results Between 1998 and 2019, 290 patients with active OT were diagnosed at our tertiary reference center. The mean age of the participants was 37.7 ± 17.1 years, 53.8% of them were female individuals, and 195 patients (70.9%) showed recurrent disease. Older age was associated with lower baseline visual acuity (p = 0.043), poor visual outcome (p = 0.019), increased inflammatory activity (p < 0.005), and larger retinal lesions (p < 0.005). Older patients presented a lower AI (<35 years: 45.1 ± 82.7, median: 12.1; ≥35 years: 18.6 ± 50.5, median: 5.8; p = 0.046), confirmed by a decrease in AI with increasing age (R2 = 0.045; p = 0.024). Finally, AI was correlated with lesion size (multiple linear regression analysis: p = 0.043). Macular involvement (24.3% of patients) was positively correlated with complications (macular/peripapillary edema and retinal detachment, p < 0.005) and poor visual outcome (p < 0.005) and was negatively correlated with inflammatory activity (p < 0.005). Conclusion We found a strong and clinically relevant impact of age on the clinical presentation and course of OT. While an unspecific inflammatory response increased with age, the specific, local humoral immune response declined. These findings are well in line with the concept of immunosenescence and inflammaging in uveitis.
Collapse
Affiliation(s)
- Armin Taghavi Eraghi
- Augenklinik, Charité Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, Zug, Switzerland
- Berner Augenklinik, Bern, Switzerland
- Klinik und Poliklinik für Augenheilkunde, Inselspital, Universität Bern, Bern, Switzerland
| | - Uwe Pleyer
- Augenklinik, Charité Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Wang D, Liu Y, Yang B, Zhang Z, El-Ashram S, Liu X, Li B. Toxoplasma gondii surface antigen 1 (SAG1) interacts in vitro with host cell receptor for activated C kinase 1 (RACK1). Acta Trop 2024; 251:107112. [PMID: 38157925 DOI: 10.1016/j.actatropica.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Toxoplasma gondii (T. gondii) surface antigen 1 (SAG1) is crucial for tachyzoite invasion into host cells. However, the role of SAG1 in interaction with host cells remains unknown. The primary objective of this study was to analyze and validate the interaction between SAG1 and host cells. RACK1, an intracellular multifunctional protein, was identified as a SAG1 binding partner in host cells. Furthermore, the expression of RACK1 is manipulated by SAG1, and depletion of RACK1 negatively regulated host cell viability. These results imply that through interaction with RACK1, SAG1 preserves the viability of host cells to satisfy the survival needs of T. gondii. Our findings suggest a novel role for SAG1 in intracellular parasitism.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuming Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zixuan Zhang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Xiaogang Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Bing Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
10
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
11
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
12
|
Diez AF, Leroux LP, Chagneau S, Plouffe A, Gold M, Chaparro V, Jaramillo M. Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a. mBio 2023; 14:e0079523. [PMID: 37387601 PMCID: PMC10470550 DOI: 10.1128/mbio.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- Andres Felipe Diez
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Mackenzie Gold
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| |
Collapse
|
13
|
Zhang P, Gong J, Jiang Y, Long Y, Lei W, Gao X, Guo D. Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics 2023; 15:1783. [PMID: 37513969 PMCID: PMC10384186 DOI: 10.3390/pharmaceutics15071783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Weiqiang Lei
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Lee J, Kim J, Lee JH, Choi YM, Choi H, Cho HD, Cha GH, Lee YH, Jo EK, Park BH, Yuk JM. SIRT1 Promotes Host Protective Immunity against Toxoplasma gondii by Controlling the FoxO-Autophagy Axis via the AMPK and PI3K/AKT Signalling Pathways. Int J Mol Sci 2022; 23:13578. [PMID: 36362370 PMCID: PMC9654124 DOI: 10.3390/ijms232113578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2023] Open
Abstract
Sirtuin 1 (SIRT1) regulates cellular processes by deacetylating non-histone targets, including transcription factors and intracellular signalling mediators; thus, its abnormal activation is closely linked to the pathophysiology of several diseases. However, its function in Toxoplasma gondii infection is unclear. We found that SIRT1 contributes to autophagy activation via the AMP-activated protein kinase (AMPK) and PI3K/AKT signalling pathways, promoting anti-Toxoplasma responses. Myeloid-specific Sirt1-/- mice exhibited an increased cyst burden in brain tissue compared to wild-type mice following infection with the avirulent ME49 strain. Consistently, the intracellular survival of T. gondii was markedly increased in Sirt1-deficient bone-marrow-derived macrophages (BMDMs). In contrast, the activation of SIRT1 by resveratrol resulted in not only the induction of autophagy but also a significantly increased anti-Toxoplasma effect. Notably, SIRT1 regulates the FoxO-autophagy axis in several human diseases. Importantly, the T. gondii-induced phosphorylation, acetylation, and cytosolic translocation of FoxO1 was enhanced in Sirt1-deficient BMDMs and the pharmacological inhibition of PI3K/AKT signalling reduced the cytosolic translocation of FoxO1 in BMDMs infected with T. gondii. Further, the CaMKK2-dependent AMPK signalling pathway is responsible for the effect of SIRT1 on the FoxO3a-autophagy axis and for its anti-Toxoplasma activity. Collectively, our findings reveal a previously unappreciated role for SIRT1 in Toxoplasma infection.
Collapse
Affiliation(s)
- Jina Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jinju Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Hyung Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yong Min Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyeonil Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hwan-Doo Cho
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 54896, Korea
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
15
|
Liu B, Yan Y, Wang X, Chen N, Wu J. Locally generated C3 regulates the clearance of Toxoplasma gondii by IFN-γ-primed macrophage through regulation of xenophagy. Front Microbiol 2022; 13:944006. [PMID: 35992649 PMCID: PMC9386420 DOI: 10.3389/fmicb.2022.944006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous pathogen infection can induce autophagy in cells. Autophagy is essential for cell survival, development, and homeostasis. It not only regulates cell defense and stress, but also has a close relationship with innate and adaptive immunity. Complement is an important part of innate immunity, which could be activated by three approaches, including classic, alternative, and lectin pathways. All the three pathways result in the activation of C3, and generate anaphylatoxin fragments C3a and C5a, and formation of the membrane attack complex. Either C3a or C5a induces the inflammatory cytokines through binding to C3aR or C5aR, respectively. However, it is still unknown whether the complement could regulate the autophagy of intracellular microorganisms or not. In this study, we constructed a Toxoplasma gondii (T. gondii) and macrophages co-culture experimental model using T. gondii expressing enhanced green fluorescence protein (EGFP) fluorescence and C3−/-C57BL/6 J mice for that T. gondii invaded peritoneal macrophages in mice. Western blot, laser confocal microscopy (LCM), and transmission electron microscopy (TEM) were used to observe the changes of autophagy between the macrophages from wild-type (WT) and C3−/− mice. Flow cytometry and LCM were used to investigate the effect of autophagy on the killing ability of macrophages against T. gondii. Here, we found that local C3 could suppress not only the canonical autophagy of macrophage, but also the xenophagy to T. gondii. Interestingly, the inhibition of C3 on host cell autophagy could significantly suppress the clearance of T. gondii by the IFN-γ-primed macrophage. Finally, we investigated the mechanism of the autophagy regulation of C3 that the effect of C3 on the macrophage-specific autophagy against T. gondii depends on mTOR. And, there is C3a but not C5a/C5aR involved in regulating macrophage xenophagy against T. gondii. Collectively, our findings suggest locally generated C3 regulates the clearance of T. gondii by Macrophage through the regulation of the non-canonical IFN-γ-dependent autophagy pathway, and paint a clearer picture in the regulation of autophagy by innate immune components.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hematology. The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian, Liaoning, China
| | - Yan Yan
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
| | - Xiaoreng Wang
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
| | - Nannan Chen
- Department of Hematology. The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian, Liaoning, China
- Nannan Chen,
| | - Jue Wu
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Jue Wu,
| |
Collapse
|
16
|
Semedo SSL, da Silva Sanfelice RA, Tomiotto-Pellissier F, Silva TF, da Silva Bortoleti BT, de Oliveira GC, de Lion Siervo GEM, Bosqui LR, Lazarin-Bidói D, Conchon-Costa I, de Barros LD, Garcia JL, Nakazato G, Pavanelli WR, Fernandes GSA, da Costa IN. Biogenic silver nanoparticles (AgNp-Bio) restore testosterone levels and increase TNF-α and IL-6 in Leydig cells infected with Toxoplasma gondii. Exp Parasitol 2022; 241:108343. [DOI: 10.1016/j.exppara.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
|
17
|
Wu M, An R, Zhou N, Chen Y, Cai H, Yan Q, Wang R, Luo Q, Yu L, Chen L, Du J. Toxoplasma gondii CDPK3 Controls the Intracellular Proliferation of Parasites in Macrophages. Front Immunol 2022; 13:905142. [PMID: 35757711 PMCID: PMC9226670 DOI: 10.3389/fimmu.2022.905142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interferon-γ (IFN-γ)-activated macrophages restrain the replication of intracellular parasites and disrupt the integrity of vacuolar pathogens. The growth of the less virulent type II strain of Toxoplasma gondii (such as ME49) was strongly inhibited by IFN-γ-activated murine macrophages. However, the mechanism of resistance is poorly understood. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Previous studies showed the cassette of autophagy-related proteins including Atg7, Atg3, and Atg12-Atg5-Atg16L1 complex, plays crucial roles in the proper targeting of IFN-γ effectors onto the parasitophorous vacuole (PV) membrane of Toxoplasma gondii and subsequent control of parasites. TgCDPK3 is a calcium dependent protein kinase, located on the parasite periphery, plays a crucial role in parasite egress. Herein, we show that the less virulent strain CDPK3 (ME49, type II) can enhance autophagy activation and interacts with host autophagy proteins Atg3 and Atg5. Infection with CDPK3-deficient ME49 strain resulted in decreased localization of IRGs and GBPs around PV membrane. In vitro proliferation and plaque assays showed that CDPK3-deficient ME49 strain replicated significantly more quickly than wild-type parasites. These data suggested that TgCDPK3 interacts with the host Atg3 and Atg5 to promote the localization of IRGs and GBPs around PV membrane and inhibits the intracellular proliferation of parasites, which is beneficial to the less virulent strain of Toxoplasma gondii long-term latency in host cells.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Nan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,School of Nursing, Anhui Medical University, Hefei, China
| | - Haijian Cai
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Qingli Luo
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
19
|
Arruda da Silva Sanfelice R, Silva TF, Tomiotto-Pellissier F, Bortoleti BTDS, Lazarin-Bidóia D, Scandorieiro S, Nakazato G, de Barros LD, Garcia JL, Verri WA, Conchon-Costa I, Pavanelli WR, Costa IN. Biogenic silver nanoparticles reduce Toxoplasma gondii infection and proliferation in RAW 264.7 macrophages by inducing tumor necrosis factor-alpha and reactive oxygen species production in the cells. Microbes Infect 2022; 24:104971. [PMID: 35341976 DOI: 10.1016/j.micinf.2022.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022]
Abstract
Owing to the serious adverse effects caused by pyrimethamine and sulfadiazine, the drugs commonly used to treat toxoplasmosis, there is a need for treatment alternatives for this disease. Nanotechnology has enabled significant advances toward this goal. This study was conducted to evaluate the activity of biogenic silver nanoparticles (AgNp-Bio) in RAW 264.7 murine macrophages infected with the RH strain of Toxoplasma gondii. The macrophages were infected with T. gondii tachyzoites and then treated with various concentrations of AgNp-Bio. The cells were evaluated by microscopy, and culture supernatants were collected for ELISA determination of their cytokine concentration. Treatment with 6 μM AgNp-Bio reduced the infection and parasite load in infected RAW 264.7 macrophages without being toxic to the cells. The treatment also induced the synthesis of reactive oxygen species and tumor necrosis factor-alpha (both pro-inflammatory mediators), which resulted in ultrastructural changes in the tachyzoites and their intramacrophagic destruction. Our findings suggest that AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and pro-inflammatory mechanisms and may be a potential alternative treatment for toxoplasmosis.
Collapse
Affiliation(s)
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/PR), Curitiba, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/PR), Curitiba, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, PR, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, PR, Brazil
| | - Luiz Daniel de Barros
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, 86057-970, Londrina, PR, Brazil
| | - João Luis Garcia
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, 86057-970, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil.
| |
Collapse
|
20
|
Rahimi HM, Nemati S, Alavifard H, Baghaei K, Mirjalali H, Zali MR. Soluble total antigen derived from Toxoplasma gondii RH strain prevents apoptosis, but induces anti-apoptosis in human monocyte cell line. Folia Parasitol (Praha) 2021; 68. [PMID: 34889779 DOI: 10.14411/fp.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Apoptosis plays crucial role in the pathogenesis of toxoplasmosis, as it limits further development of the disease. The current study aimed to investigate the effects of different concentrations of soluble total antigen (STAg) of Toxoplasma gondii (Nicolle et Manceaux, 1908) on the apoptotic and anti-apoptotic pathways. PMA-activated THP-1 cell line was sensed by T. gondii STAg and the expression patterns of caspase-3, -7, -8, -9, Bax, Bcl-2, and Mcl-1 genes were evaluated. The results showed statistically significant concentration-dependent overexpression of both Bcl-2 (P-value < 0.0001) and Mcl-1 (P-value = 0.0147). The cas-7 showed overexpression in all concentrations (P-value < 0.0001). The cas-3 was suppressed in concentrations 100, 80, and 40 µg, but statistically significant downregulated in concentrations 10 and 20 µg. The Bax was suppressed in concentrations 100 to 20 µg, while it slightly downregulated 1.42 fold (P-value = 0.0029) in concentration 10 µg. The expression of cas-8 and -9 was suppressed in all concentrations. Our results indicated that T. gondii STAg downregulated and suppressed apoptotic and upregulated anti-apoptotic pathways. The upregulation of cas-7 in this study may indicate the role of T. gondii STAg in activation of inflammatory responses.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran *Address for correspondence: Hamed Mirjalali, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran.
| |
Collapse
|
21
|
The anti-parasite action of imidazole derivatives likely involves oxidative stress but not HIF-1α signaling. Chem Biol Interact 2021; 349:109676. [PMID: 34592218 DOI: 10.1016/j.cbi.2021.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Therapeutic options for toxoplasmosis are limited. This fact underscores ongoing research efforts to identify and develop better therapy. Previously, we reported the anti-parasitic potential of a new series of derivatives of imidazole. OBJECTIVE In the current investigation, we attempted the investigation of the possible action mechanism of few promising anti-parasite imidazole derivatives namely C1 (bis-imidazole), C2 (phenyl-substituted 1H-imidazole) and C3 (thiophene-imidazole) METHODS: We evaluated if oxidative stress, hypoxia as well as metabolic reprogramming of host l-tryptophan pathway form part of the parasite growth inhibition by imidazoles. Anti-parasite assay was performed for imidazoles at concentrations ranging from 0 to 10 μM, while pyrimethamine was used as reference drug to validate assay. RESULTS Imidazole compounds restricted parasite growth dose-dependently. However, in the presence of an antioxidant (Trolox), l-tryptophan and/or CoCl2 (chemical inducer of hypoxia), the growth inhibitory efficacy of imidazoles was appreciably abolished. Further, imidazole treatment led to elevated level of reactive oxygen species, while reducing parasite mitochondrial membrane potential compared with control. In contrast, imidazole had no effect on host HIF-1α level suggesting its exclusion in the anti-parasite action. CONCLUSION Taken together, imidazole-based compounds might restrict parasite growth by causing oxidative stress. The findings provide new insight on the likely biochemical mechanisms of imidazoles as prospective anti-parasite therapy. Data gives new perspective that not only underscores the anti-parasite prospects of imidazoles, but implicates the host l-tryptophan pathway as a feasible treatment option for T. gondii infections.
Collapse
|
22
|
Chen Y, Liu Q, Xue JX, Zhang MY, Geng XL, Wang Q, Jiang W. Genome-Wide CRISPR/Cas9 Screen Identifies New Genes Critical for Defense Against Oxidant Stress in Toxoplasma gondii. Front Microbiol 2021; 12:670705. [PMID: 34163449 PMCID: PMC8216390 DOI: 10.3389/fmicb.2021.670705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is one of the most widespread apicomplexans and can cause serious infections in humans and animals. Its antioxidant system plays an important role in defending against oxidant stress imposed by the host. Some genes encoding the antioxidant enzymes of T. gondii have been identified; however, critical genes that function in response to reactive oxygen species (ROS) stress are still poorly understood. Here, we performed genome-wide CRISPR/Cas9 loss-of-function screening in the T. gondii RH strain to identify potential genes contributing to the ROS stress response. Under hydrogen peroxide treatment, 30 single guide RNAs targeting high-confidence genes were identified, including some known important antioxidant genes such as catalase and peroxiredoxin PRX3. In addition, several previously uncharacterized genes were identified, among which five hypothetical protein-coding genes, namely, HP1–HP5, were selected for further functional characterization. Targeted deletion of HP1 in T. gondii RH led to significant sensitivity to H2O2, suggesting that HP1 is critical for oxidative stress management. Furthermore, loss of HP1 led to decreased antioxidant capacity, invasion efficiency, and proliferation in vitro. In vivo results also revealed that the survival time of mice infected with the HP1-KO strain was significantly prolonged relative to that of mice infected with the wild-type strain. Altogether, these findings demonstrate that the CRISPR/Cas9 system can be used to identify potential genes critical for oxidative stress management. Furthermore, HP1 may confer protection against oxidative damage and contributes to T. gondii virulence in mice.
Collapse
Affiliation(s)
- Yun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jun-Xin Xue
- Shanghai Customs District P. R. C. China, Shanghai, China
| | - Man-Yu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Ling Geng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
23
|
Lymphotoxin β Receptor: a Crucial Role in Innate and Adaptive Immune Responses against Toxoplasma gondii. Infect Immun 2021; 89:IAI.00026-21. [PMID: 33753412 PMCID: PMC8316152 DOI: 10.1128/iai.00026-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
The lymphotoxin β receptor (LTβR) plays an essential role in the initiation of immune responses to intracellular pathogens. In mice, the LTβR is crucial for surviving acute toxoplasmosis; however, until now, a functional analysis was largely incomplete. Here, we demonstrate that the LTβR is a key regulator required for the intricate balance of adaptive immune responses. Toxoplasma gondii-infected LTβR-deficient (LTβR−/−) mice show globally altered interferon-γ (IFN-γ) regulation, reduced IFN-γ-controlled host effector molecule expression, impaired T cell functionality, and an absent anti-parasite-specific IgG response, resulting in a severe loss of immune control of the parasites. Reconstitution of LTβR−/− mice with toxoplasma immune serum significantly prolongs survival following T. gondii infection. Notably, analysis of RNA-seq data clearly indicates a specific effect of T. gondii infection on the B cell response and isotype switching. This study uncovers the decisive role of the LTβR in cytokine regulation and adaptive immune responses to control T. gondii.
Collapse
|
24
|
Greigert V, Bittich-Fahmi F, Pfaff AW. Pathophysiology of ocular toxoplasmosis: Facts and open questions. PLoS Negl Trop Dis 2020; 14:e0008905. [PMID: 33382688 PMCID: PMC7774838 DOI: 10.1371/journal.pntd.0008905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infections with the protozoan parasite Toxoplasma gondii are frequent, but one of its main consequences, ocular toxoplasmosis (OT), remains poorly understood. While its clinical description has recently attracted more attention and publications, the underlying pathophysiological mechanisms are only sparsely elucidated, which is partly due to the inherent difficulties to establish relevant animal models. Furthermore, the particularities of the ocular environment explain why the abundant knowledge on systemic toxoplasmosis cannot be just transferred to the ocular situation. However, studies undertaken in mouse models have revealed a central role of interferon gamma (IFNγ) and, more surprisingly, interleukin 17 (IL17), in ocular pathology and parasite control. These studies also show the importance of the genetic background of the infective Toxoplasma strain. Indeed, infections due to exotic strains show a completely different pathophysiology, which translates in a different clinical outcome. These elements should lead to more individualized therapy. Furthermore, the recent advance in understanding the immune response during OT paved the way to new research leads, involving immune pathways poorly studied in this particular setting, such as type I and type III interferons. In any case, deeper knowledge of the mechanisms of this pathology is needed to establish new, more targeted treatment schemes.
Collapse
Affiliation(s)
- Valentin Greigert
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Faiza Bittich-Fahmi
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, UR 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
25
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
26
|
Hu RS, He JJ, Elsheikha HM, Zou Y, Ehsan M, Ma QN, Zhu XQ, Cong W. Transcriptomic Profiling of Mouse Brain During Acute and Chronic Infections by Toxoplasma gondii Oocysts. Front Microbiol 2020; 11:570903. [PMID: 33193165 PMCID: PMC7604304 DOI: 10.3389/fmicb.2020.570903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
Infection by the protozoan Toxoplasma gondii can have a devastating impact on the structure and function of the brain of the infected individuals, particularly immunocompromised patients. A systems biology view of the brain transcriptome can identify key molecular targets and pathways that mediate the neuropathogenesis of cerebral toxoplasmosis. Here, we performed transcriptomic analysis of the brain of mice infected by T. gondii Pru strain oocysts at 11 and 33 days post-infection (dpi) compared to uninfected (control) mice using RNA sequencing (RNA-seq). T. gondii altered the expression of 936 and 2,081 transcripts at 11 and 33 dpi, respectively, and most of these were upregulated in the infected brains. Gene Ontology (GO) enrichment and pathway analysis showed that immune response, such as interferon-gamma (IFN-γ) responsive genes were strongly affected at 11dpi. Likewise, differentially expressed transcripts (DETs) related to T cell activation, cytokine production and immune cell proliferation were significantly altered at 33 dpi. Host-parasite interactome analysis showed that some DETs were involved in immune signaling, metabolism, biosynthesis-related processes and interspecies interaction. These findings should increase knowledge of the mouse brain transcriptome and the changes in transcriptional regulation and downstream signaling pathways during acute and chronic T. gondii infections.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
27
|
Toxoplasma gondii ROP38 protein: Bioinformatics analysis for vaccine design improvement against toxoplasmosis. Microb Pathog 2020; 149:104488. [PMID: 32916240 DOI: 10.1016/j.micpath.2020.104488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Rhoptry proteins (ROPs) play a significant role in various stages of Toxoplasma gondii (T. gondii) life cycle, being critical for both invasion and intracellular survival. ROP38 is a key manipulator of host gene expression and has a function in tachyzoite to bradyzoite conversion. In this study, we've employed various bioinformatics online tools for immunogenicity prediction of ROP38 protein, comprising physico-chemical, antigenic and allergenic profiles, transmembrane domain, subcellular localization, post-translational modification (PTM) sites, secondary and 3D structure, B-cell, MHC-binding and cytotoxic T-lymphocyte (CTL) epitopes. The findings showed 54 PTM sites without a transmembrane domain. Also, ROP38 was proved a non-allergenic and antigenic protein. The protein had Sec signal peptide (Sec/SPI) with 0.8762 likelihood. The secondary structure included 52.68% random coil, 29.57% alpha helix and 17.74% extended strand. Based on Ramachandran plot output for refined model, 95.3%, 3.4%, and 1.4% of amino acid residues were incorporated in the favored, allowed, and outlier regions, respectively. B-cell epitopes TFPGDDIQTSS (67-72) and KAKNKWGRTRYTLQG (207-221) as well as T-cell epitope LSPVGFFTAL (6-15) possessed the highest antigenic index in the protein sequence. This paper is a premise for further researches, and provides insights for the development of a suitable vaccine against toxoplasmosis. More empirical studies are required using the ROP38 alone or in combination with other antigens/epitopes in the future.
Collapse
|
28
|
Portes J, Barrias E, Travassos R, Attias M, de Souza W. Toxoplasma gondii Mechanisms of Entry Into Host Cells. Front Cell Infect Microbiol 2020; 10:294. [PMID: 32714877 PMCID: PMC7340009 DOI: 10.3389/fcimb.2020.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Juliana Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emile Barrias
- Laboratório de Metrologia Aplicada à Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, Brazil
| | - Renata Travassos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Ferreira AIC, Brandão de Mattos CC, Frederico FB, Bernardo CR, de Almeida Junior GC, Siqueira RC, Meira-Strejevitch CS, Pereira-Chioccola VL, de Mattos LC. Duffy blood group system and ocular toxoplasmosis. INFECTION GENETICS AND EVOLUTION 2020; 85:104430. [PMID: 32565360 DOI: 10.1016/j.meegid.2020.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Duffy blood group phenotypes [Fy(a + b-), Fy(a-b+), Fy(a + b+), Fy(a-b-)], characterized by the expression of Fya, and Fyb antigens, are present in red blood cells. Therefore, we hypothesize that the non-hematopoietic expression of these antigens might influence cell invasion by T. gondii. 576 consecutive patients from both genders were enrolled. The presumed OT clinical diagnosis was performed. Duffy phenotyping was performed by hemagglutination in gel columns and for the correct molecular characterization Fy(a-b-) phenotype, using PCR-RFLP. Anti-T. gondii IgG antibodies were detected by ELISA. Chi-square, Fisher's exact tests were used to compare the proportions. OT was present in 22.9% (n = 132) and absent in 77.1% (n = 444) of patients. The frequencies of anti-T. gondii IgG antibodies were higher in OT (127/132, 96.2%) than those without this disease (321/444, 72.3%) (p < .0001). None of the Duffy antigens or phenotypes were associated with T. gondii infection (χ2: 2.222, GL: 3, p = .5276) as well as the risk of OT (χ2: 0.771, GL: 3, p = .8566). Duffy blood group system phenotypes and their antigens do not constitute risk factors for infection by T. gondii infection and the development of OT.
Collapse
Affiliation(s)
- Ana Iara Costa Ferreira
- Universidade Federal de Roraima. Brazil; Faculdade de Medicina de São Jose do Rio Preto, SP, Brazil
| | | | - Fábio Batista Frederico
- Ophthalmology Outpatient Clinic of Fundação Faculdade Regional de Medicina de São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Quan JH, Gao FF, Ismail HAHA, Yuk JM, Cha GH, Chu JQ, Lee YH. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection Through Suppression of NOX4-Dependent ROS Generation. Int J Nanomedicine 2020; 15:3695-3716. [PMID: 32547023 PMCID: PMC7266428 DOI: 10.2147/ijn.s244785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose External and internal stimuli easily affect the retina. Studies have shown that cells infected with Toxoplasma gondii are resistant to multiple inducers of apoptosis. Nanoparticles (NPs) have been widely used in biomedical fields; however, little is known about cytotoxicity caused by NPs in the retina and the modulators that inhibit nanotoxicity. Materials and Methods ARPE-19 cells from human retinal pigment epithelium were treated with silver nanoparticles (AgNPs) alone or in combination with T. gondii. Then, the cellular toxicity, apoptosis, cell cycle analysis, autophagy, ROS generation, NOX4 expression, and MAPK/mTOR signaling pathways were investigated. To confirm the AgNP-induced cytotoxicity in ARPE-19 cells and its modulatory effects caused by T. gondii infection, the major experiments carried out in ARPE-19 cells were performed again using human foreskin fibroblast (HFF) cells and bone marrow-derived macrophages (BMDMs) from NOX4−/− mice. Results AgNPs dose-dependently induced cytotoxicity and cell death in ARPE-19 cells. Apoptosis, sub-G1 phase cell accumulation, autophagy, JNK phosphorylation, and mitochondrial apoptotic features, such as caspase-3 and PARP cleavages, mitochondrial membrane potential depolarization, and cytochrome c release into the cytosol were observed in AgNP-treated cells. AgNP treatment also increased the Bax, Bik, and Bim protein levels as well as NOX4-dependent ROS generation. However, T. gondii-infected ARPE-19 cells inhibited AgNP-induced apoptosis, JNK phosphorylation, sub-G1 phase cell accumulation, autophagy, NOX4-mediated ROS production, and mitochondrial apoptosis. Furthermore, mitochondrial apoptosis was found in AgNP-treated HFF cells and BMDMs, and AgNP-induced mitochondrial apoptosis inhibition via NOX4-dependent ROS suppression in T. gondii pre-infected HFF cells and BMDMs was also confirmed. Conclusion AgNPs induced mitochondrial apoptosis in human RPE cells combined with cell cycle dysregulation and autophagy; however, these effects were significantly inhibited by T. gondii pre-infection by suppression of NOX4-mediated ROS production, suggesting that T. gondii is a strong inhibitory modulator of nanotoxicity in in vitro models.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524-001, People's Republic of China
| | - Fei Fei Gao
- Department of Infection Biology and Department of Medical Science, Chungnam National University College of Medicine, Daejeon 301-131, Korea
| | | | - Jae-Min Yuk
- Department of Infection Biology and Department of Medical Science, Chungnam National University College of Medicine, Daejeon 301-131, Korea
| | - Guang-Ho Cha
- Department of Infection Biology and Department of Medical Science, Chungnam National University College of Medicine, Daejeon 301-131, Korea
| | - Jia-Qi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524-001, People's Republic of China
| | - Young-Ha Lee
- Department of Infection Biology and Department of Medical Science, Chungnam National University College of Medicine, Daejeon 301-131, Korea
| |
Collapse
|
31
|
Lee J, Choi JW, Han HY, Kim WS, Song HY, Byun EB, Byun EH, Lee YH, Yuk JM. 4-Hydroxybenzaldehyde Restricts the Intracellular Growth of Toxoplasma gondii by Inducing SIRT1-Mediated Autophagy in Macrophages. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:7-14. [PMID: 32145722 PMCID: PMC7066436 DOI: 10.3347/kjp.2020.58.1.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu- lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec- tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4- HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres- sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1- mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Jina Lee
- Department of Infection Biology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Won Choi
- Department of Infection Biology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hye Young Han
- Department of Infection Biology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Woo Sik Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea
| | - Young-Ha Lee
- Department of Infection Biology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Min Yuk
- Department of Infection Biology and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
32
|
Production and characterization of monoclonal antibodies against Toxoplasma gondii ROP18 with strain-specific reactivity. Parasitology 2020; 147:940-948. [PMID: 32046796 DOI: 10.1017/s0031182020000177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rhoptry kinase 18 of Toxoplasma gondii (TgROP18) has been identified as a key virulence factor that allows the parasite to escape from host immune defences and promotes its proliferation in host cells. Although much research is focused on the interaction between host cells and TgROP18, the development of monoclonal antibodies (mAbs) against TgROP18 has not been reported till date. To produce mAbs targeting TgROP18, two hybridomas secreting mAbs against TgROP18, designated as A1 and T2, were generated using cell fusion technology. The subtypes of the A1 and T2 mAbs were identified as IgG3 λ and IgM κ, and peptide scanning revealed that the core sequences of the antigenic epitopes were 180LRAQRRRSELVFE192 and 351NYFLLMMRAEADM363, respectively. The T2 mAb specifically reacted with both T. gondii type I and Chinese I, but not with T. gondii type II, Plasmodium falciparum or Schistosoma japonicum. Finally, the sequences of heavy chain and light chain complementarity-determining regions of T2 were amplified, cloned and characterized, making the modification of the mAb feasible in the future. The development of mAbs against TgROP18 would aid the investigation of the molecular mechanisms underlying the modulation of host cellular functions by TgROP18, and in the development of strategies to diagnose and treat Toxoplasmosis.
Collapse
|
33
|
Omega-3 Polyunsaturated Fatty Acids Prevent Toxoplasma gondii Infection by Inducing Autophagy via AMPK Activation. Nutrients 2019; 11:nu11092137. [PMID: 31500218 PMCID: PMC6771136 DOI: 10.3390/nu11092137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω3-PUFAs) have potential protective activity in a variety of infectious diseases, but their actions and underlying mechanisms in Toxoplasma gondii infection remain poorly understood. Here, we report that docosahexaenoic acid (DHA) robustly induced autophagy in murine bone marrow-derived macrophages (BMDMs). Treatment of T. gondii-infected macrophages with DHA resulted in colocalization of Toxoplasma parasitophorous vacuoles with autophagosomes and reduced intracellular survival of T. gondii. The autophagic and anti-Toxoplasma effects induced by DHA were mediated by AMP-activated protein kinase (AMPK) signaling. Importantly, BMDMs isolated from Fat-1 transgenic mice, a well-known animal model capable of synthesizing ω3-PUFAs from ω6-PUFAs, showed increased activation of autophagy and AMPK, leading to reduced intracellular survival of T. gondii when compared with wild-type BMDMs. Moreover, Fat-1 transgenic mice exhibited lower cyst burden in the brain following infection with the avirulent strain ME49 than wild-type mice. Collectively, our results revealed mechanisms by which endogenous ω3-PUFAs and DHA control T. gondii infection and suggest that ω3-PUFAs might serve as therapeutic candidate to prevent toxoplasmosis and infection with other intracellular protozoan parasites.
Collapse
|
34
|
Alvarado-Esquivel C, Estrada-Martínez S, Pérez-Alamos AR. A Case-Control Seroprevalence Study on the Association Between Toxoplasma gondii Infection and Bipolar Disorder. Front Psychiatry 2019; 10:766. [PMID: 31708819 PMCID: PMC6823190 DOI: 10.3389/fpsyt.2019.00766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Infection with the parasite Toxoplasma gondii has been associated with bipolar disorder in several countries other than Mexico. Therefore, we sought to determine the association between seropositivity to T. gondii and bipolar disorder in a Mexican population. Methods: We performed an age- and gender-matched case-control study of 66 patients with bipolar disorder (WHO International Classification of Diseases, 10th Revision code: F31) and 396 subjects without this disorder from the general population. Anti-Toxoplasma immunoglobulin G (IgG) and IgM antibodies were determined using commercially available enzyme-linked immunoassays. Results: Six (9.1%) of the 66 patients with bipolar disorder and 22 (5.6%) of the 396 controls had anti-T. gondii IgG antibodies (odds ratio [OR] = 1.7; 95% confidence interval [CI] = 0.66-4.36; P = 0.26). Stratification by gender and age did not show a difference in seroprevalence between cases and controls. The frequency of high (> 150 international units/ml) anti-T. gondii IgG levels was similar in cases (n = 2) and in controls (n = 12) (OR = 1.0; 95% CI = 0.21-4.57; P = 1.00). Stratification by International Classification of Diseases, 10th Revision F31 codes showed that patients with F31.3 code had a higher seroprevalence of T. gondii infection than their age- and gender-matched controls (OR = 16.4; 95% CI = 1.25-215.09; P = 0.04). None of the six anti-T. gondii IgG-seropositive patients with bipolar disorder and 4 (18.2%) of the 22 anti-T. gondii IgG-seropositive controls had anti-T. gondii IgM antibodies (P = 0.54). Conclusions: Our results suggest that T. gondii seropositivity is not associated with bipolar disorder in general. However, a specific type of bipolar disorder (F31.3) might be associated with T. gondii seropositivity. Further research to elucidate the role of T. gondii infection in bipolar disorder is needed.
Collapse
Affiliation(s)
| | - Sergio Estrada-Martínez
- Institute for Scientific Research "Dr. Roberto Rivera Damm," Juárez University of Durango State, Durango, Mexico
| | - Alma Rosa Pérez-Alamos
- Institute for Scientific Research "Dr. Roberto Rivera Damm," Juárez University of Durango State, Durango, Mexico
| |
Collapse
|