1
|
Zhu S, Chang X, Liu N, He Y, Wang J, Wu Z. The composite microbial agent controls tomato bacterial wilt by colonizing the root surface and regulating the rhizosphere soil microbial community. Front Microbiol 2025; 16:1559380. [PMID: 40371121 PMCID: PMC12075239 DOI: 10.3389/fmicb.2025.1559380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Bacterial wilt caused by Ralstonia solanacearum seriously affects the healthy growth of tomato seedlings. Biocontrol microbes have been used to manage tomato bacterial wilt. Herein, we aim to investigate the behavior of the Enterobacter hormaechei Rs-5 and Bacillus subtilis SL-44 composite microbial agent (EB) in the rhizosphere soil, and assess its impact on both the soil microbial community and tomato plant growth in this study. Methods The plate confrontation experiment and the pot experiment were respectively used to explore the control ability of EB against Ralstonia solanacearum and bacterial wilt disease. The absolute quantitative PCR (AQ-PCR) was employed to investigate the migration ability of EB in the rhizosphere of tomatoes, and the chemotactic response of EB to tomato root exudates was analyzed by the swimming plate method. Scanning electron microscopy was utilized to study the biofilm formation of EB during its colonization on the root surface of tomatoes. Finally, high-throughput sequencing was adopted to analyze the impact of EB on the microbial community in the rhizosphere soil of tomatoes after being infected by Ralstonia solanacearum. Results The absolute quantitative PCR and scanning electron microscope showed that the EB could migrate and efficiently colonize the elongation zone of tomato roots to form a biofilm. In addition, the EB exhibits a chemotactic response to tomato root exudates like sucrose, leucine, glutamic acid, and aspartic acid. The pot experiment demonstrated that the EB can reduce the incidence of tomato bacterial wilt from 77.78% to 22.22%, and significantly increase the biomass, physicochemical properties, and rhizosphere soil nutrient contents of tomato seedlings. Besides, the relative abundance of beneficial bacteria such as Massilia, Pseudomonas, Bacillus, and Enterobacter increased, and the fungi community diversity was improved. Conclusion Overall, the EB can reduce the amount of Ralstonia solanacearum in rhizosphere soil, and then control tomato bacterial wilt directly. Besides, the EB can migrate to the root under the induction of tomato root exudates and colonize on the root surface efficiently, thereby indirectly regulating the soil microbial community structure and controlling tomato bacterial wilt.
Collapse
Affiliation(s)
- Shuangxi Zhu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Xiaojian Chang
- Agricultural Technology Extension Center of Xi’an, Xi’an, China
| | - Nana Liu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Yanhui He
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Jianwen Wang
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Zhansheng Wu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| |
Collapse
|
2
|
Yusuf A, Li M, Zhang SY, Odedishemi-Ajibade F, Luo RF, Wu YX, Zhang TT, Yunusa Ugya A, Zhang Y, Duan S. Harnessing plant-microbe interactions: strategies for enhancing resilience and nutrient acquisition for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2025; 16:1503730. [PMID: 40336613 PMCID: PMC12056976 DOI: 10.3389/fpls.2025.1503730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
The rhizosphere, a biologically active zone where plant roots interface with soil, plays a crucial role in enhancing plant health, resilience, and stress tolerance. As a key component in achieving Sustainable Development Goal 2, the rhizosphere is increasingly recognized for its potential to promote sustainable agricultural productivity. Engineering the rhizosphere microbiome is emerging as an innovative strategy to foster plant growth, improve stress adaptation, and restore soil health while mitigating the detrimental effects of conventional farming practices. This review synthesizes recent advancements in omics technologies, sequencing tools, and synthetic microbial communities (SynComs), which have provided insights into the complex interactions between plants and microbes. We examine the role of root exudates, composed of organic acids, amino acids, sugars, and secondary metabolites, as biochemical cues that shape beneficial microbial communities in the rhizosphere. The review further explores how advanced omics techniques like metagenomics and metabolomics are employed to elucidate the mechanisms by which root exudates influence microbial communities and plant health. Tailored SynComs have shown promising potential in enhancing plant resilience against both abiotic stresses (e.g., drought and salinity) and biotic challenges (e.g., pathogens and pests). Integration of these microbiomes with optimized root exudate profiles has been shown to improve nutrient cycling, suppress diseases, and alleviate environmental stresses, thus contributing to more sustainable agricultural practices. By leveraging multi-disciplinary approaches and optimizing root exudate profiles, ecological engineering of plant-microbiome interactions presents a sustainable pathway for boosting crop productivity. This approach also aids in managing soil-borne diseases, reducing chemical input dependency, and aligning with Sustainable Development Goals aimed at global food security and ecological sustainability. The ongoing research into rhizosphere microbiome engineering offers significant promise for ensuring long-term agricultural productivity while preserving soil and plant health for future generations.
Collapse
Affiliation(s)
- Abdulhamid Yusuf
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Plant Science and Biotechnology, Federal University, Dutsin-ma, Katsina State, Nigeria
| | - Min Li
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Si-Yu Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Fidelis Odedishemi-Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, Akure, Nigeria
| | - Rui-Fang Luo
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ya-Xiao Wu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ting-Ting Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Adamu Yunusa Ugya
- Department of Environmental Management, Kaduna State University, Kaduna State, Kaduna, Nigeria
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Duan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
4
|
Malik D, Kumar S, Sindhu SS. Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture. 3 Biotech 2025; 15:82. [PMID: 40071128 PMCID: PMC11891127 DOI: 10.1007/s13205-025-04243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.
Collapse
Affiliation(s)
- Diksha Malik
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
5
|
Das P, Kashyap S, Sharma I, Ray SK, Agarwala N. Exploration of endophytic and rhizospheric bacteria of invasive plant Xanthium strumarium L. reveals their potential in plant growth promotion and bacterial wilt suppression. Braz J Microbiol 2025; 56:611-633. [PMID: 39878828 PMCID: PMC11885218 DOI: 10.1007/s42770-024-01599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X. strumarium and assess their plant growth-promoting and Ralstonia solanacearum antagonism activity. From a total of 148 isolated bacteria, 7 endophytic and 2 rhizospheric bacterial isolates were found to endow with significant in vitro plant growth promotion activities. The 16S rRNA gene sequence similarity of the 7 endophytic isolates has revealed these bacteria belonging to 5 genera viz. Curtobacterium, Pantoea, Pseudomonas, Microbacterium and Paracoccus whereas, the two rhizospheric isolates were identified as species of Ralstonia pickettii and Priestia megaterium. Maximum growth promotion was observed using the strains Pseudomonas fluorescens XSS6 and Microbacterium hydrothermale XSS20 in the assay conducted on tomato plants. In the in planta inhibition assay of R. solanacearum carried out in tomato seedlings using root bacterization method, Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 showed antagonistic activity with biocontrol efficacy of 94.83% and 83.96%, respectively. GC-MS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 strains, which may contribute to the inhibition of R. solanacearum by these strains. The results of our study indicated that the bacteria associated with X. strumarium exhibit multiple plant-beneficial effects. These bacteria have the potential to be developed as effective biofertilizers and biological control agents, promoting sustainable agriculture practices.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India
| | - Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India
| | - Indrani Sharma
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India.
| |
Collapse
|
6
|
Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, Muthurajan R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol 2024; 175:104217. [PMID: 38857835 DOI: 10.1016/j.resmic.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
Collapse
Affiliation(s)
- Navarasu Sivaprakasam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Swarnakumari Narayanan
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P S Kavitha
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
da Fonseca JS, Sousa TF, de Almeida SVR, Silva CN, Castro GDS, Yamagishi MEB, Koolen HHF, Hanada RE, da Silva GF. Amazonian Bacteria from River Sediments as a Biocontrol Solution against Ralstonia solanacearum. Microorganisms 2024; 12:1364. [PMID: 39065132 PMCID: PMC11278729 DOI: 10.3390/microorganisms12071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.
Collapse
Affiliation(s)
- Jennifer Salgado da Fonseca
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Thiago Fernandes Sousa
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Suene Vanessa Reis de Almeida
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Carina Nascimento Silva
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Gleucinei dos Santos Castro
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | | | - Hector Henrique Ferreira Koolen
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | - Rogério Eiji Hanada
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | | |
Collapse
|
8
|
Meng XJ, Wang LQ, Ma BG, Wei XH, Zhou Y, Sun ZX, Li YY. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2024; 15:1360173. [PMID: 38751839 PMCID: PMC11094357 DOI: 10.3389/fpls.2024.1360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiang-jia Meng
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Lan-qin Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bai-ge Ma
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Xi-hong Wei
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Zheng-xiang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Yan-yan Li
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
9
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
10
|
Vermeire ML, Thiour-Mauprivez C, De Clerck C. Agroecological transition: towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology. FEMS Microbiol Ecol 2024; 100:fiae031. [PMID: 38479782 PMCID: PMC10994205 DOI: 10.1093/femsec/fiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.
Collapse
Affiliation(s)
- Marie-Liesse Vermeire
- CIRAD, UPR Recyclage et Risque, Dakar 18524, Sénégal
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier 34398, France
| | - Clémence Thiour-Mauprivez
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, Dijon 21000, France
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 2 Passage des Déportés, 5030 Gembloux, Belgium
| |
Collapse
|
11
|
Garcias-Bonet N, Roik A, Tierney B, García FC, Villela HDM, Dungan AM, Quigley KM, Sweet M, Berg G, Gram L, Bourne DG, Ushijima B, Sogin M, Hoj L, Duarte G, Hirt H, Smalla K, Rosado AS, Carvalho S, Thurber RV, Ziegler M, Mason CE, van Oppen MJH, Voolstra CR, Peixoto RS. Horizon scanning the application of probiotics for wildlife. Trends Microbiol 2024; 32:252-269. [PMID: 37758552 DOI: 10.1016/j.tim.2023.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The provision of probiotics benefits the health of a wide range of organisms, from humans to animals and plants. Probiotics can enhance stress resilience of endangered organisms, many of which are critically threatened by anthropogenic impacts. The use of so-called 'probiotics for wildlife' is a nascent application, and the field needs to reflect on standards for its development, testing, validation, risk assessment, and deployment. Here, we identify the main challenges of this emerging intervention and provide a roadmap to validate the effectiveness of wildlife probiotics. We cover the essential use of inert negative controls in trials and the investigation of the probiotic mechanisms of action. We also suggest alternative microbial therapies that could be tested in parallel with the probiotic application. Our recommendations align approaches used for humans, aquaculture, and plants to the emerging concept and use of probiotics for wildlife.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Francisca C García
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Helena D M Villela
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kate M Quigley
- Minderoo Foundation, Perth, WA, Australia; James Cook University, Townsville, Australia
| | - Michael Sweet
- Aquatic Research Facility, Nature-based Solutions Research Centre, University of Derby, Derby, UK
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; University of Potsdam and Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Maggie Sogin
- Molecular Cell Biology, University of California, Merced, CA, USA
| | - Lone Hoj
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | - Gustavo Duarte
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; IMPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heribert Hirt
- Center for Desert Agriculture (CDA), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Alexandre S Rosado
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; WorldQuant Initiative on Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, QLD 4810, Australia
| | | | - Raquel S Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
13
|
Bhatt S, Faridi N, Raj SMP, Agarwal A, Punetha M. Recent advances in immuno-based methods for the detection of Ralstonia solanacearum. J Microbiol Methods 2024; 217-218:106889. [PMID: 38211840 DOI: 10.1016/j.mimet.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Ralstonia solanacearum (RS) is a widely recognized phytopathogenic bacterium which is responsible for causing devastating losses in a wide range of economically significant crops. Timely and accurate detection of this pathogen is pivotal to implementing effective disease management strategies and preventing crop losses. This review provides a comprehensive overview of recent advances in immuno-based detection methods for RS. The review begins by introducing RS, highlighting its destructive potential and the need for point-of-care detection techniques. Subsequently, it explores traditional detection methods and their limitations, emphasizing the need for innovative approaches. The main focus of this review is on immuno-based detection methods and it discusses recent advancements in serological detection techniques. Furthermore, the review sheds light on the challenges and prospects of immuno-based detection of RS. It emphasizes the importance of developing rapid, field-deployable assays that can be used by farmers and researchers alike. In conclusion, this review provides valuable insights into the recent advances in immuno-based detection methods for RS.
Collapse
Affiliation(s)
- Shalini Bhatt
- P P Savani University, Surat 394125, Gujarat, India; Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India.
| | - Neha Faridi
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - S Merwyn P Raj
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | - Ankur Agarwal
- Defence Institute of Bio-Energy Research (DIBER), DRDO, Nainital, Haldwani 263139, Uttarakhand, India
| | | |
Collapse
|
14
|
Tahir HAS, Ali Q, Rajer FU, Shakeel Q, Gillani W, Binyamin R, Tayyab HMA, Khan AR, Gu Q, Gao X, Wu H. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42. Arch Microbiol 2023; 205:358. [PMID: 37878074 DOI: 10.1007/s00203-023-03697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.
Collapse
Affiliation(s)
- Hafiz Abdul Samad Tahir
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Pakistan Tobacco Board, Ministry of National Food Security and Research, Peshawar, Pakistan
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Qaisar Shakeel
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Waqqas Gillani
- Pakistan Tobacco Board, Ministry of National Food Security and Research, Peshawar, Pakistan
| | - Rana Binyamin
- Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | | | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Sun Y, Su Y, Meng Z, Zhang J, Zheng L, Miao S, Qin D, Ruan Y, Wu Y, Xiong L, Yan X, Dong Z, Cheng P, Shao M, Yu G. Biocontrol of bacterial wilt disease in tomato using Bacillus subtilis strain R31. Front Microbiol 2023; 14:1281381. [PMID: 37840725 PMCID: PMC10568012 DOI: 10.3389/fmicb.2023.1281381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial wilt disease caused by Ralstonia solanacearum is a widespread, severe plant disease. Tomato (Solanum lycopersicum), one of the most important vegetable crops worldwide, is particularly susceptible to this disease. Biological control offers numerous advantages, making it a highly favorable approach for managing bacterial wilt. In this study, the results demonstrate that treatment with the biological control strain Bacillus subtilis R31 significantly reduced the incidence of tomato bacterial wilt. In addition, R31 directly inhibits the growth of R. solanacearum, and lipopeptides play an important role in this effect. The results also show that R31 can stably colonize the rhizosphere soil and root tissues of tomato plants for a long time, reduce the R. solanacearum population in the rhizosphere soil, and alter the microbial community that interacts with R. solanacearum. This study provides an important theoretical basis for elucidating the mechanism of B. subtilis as a biological control agent against bacterial wilt and lays the foundation for the optimization and promotion of other agents such as R31.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Li Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuang Miao
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yulan Ruan
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanhui Wu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xun Yan
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
| | - Mingwei Shao
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
16
|
Ding J, Wang N, Liu P, Liu B, Zhu Y, Mao J, Wang Y, Ding X, Yang H, Wei Y, Li J, Ding GC. Bacterial wilt suppressive composts: Significance of rhizosphere microbiome. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:179-185. [PMID: 37453305 DOI: 10.1016/j.wasman.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Composts are often suppressive to several plant diseases, including the devastating bacterial wilt caused by Ralstonia solanacearum. However, the underlying mechanisms are still unclear. Herein, we carried out an experiment with 38 composts collected from different factories in China to study the interlinking among bacterial wilt suppression, the physicochemical properties and bacterial community of the compost, and bacterial community in the rhizosphere of tomato fertilized by compost. Totally 26 composts were suppressive to bacterial wilt, while six composts stimulated the disease. The control efficiency was neither correlated with physicochemical properties (TC, TN, P and K, pH or GI) nor bacterial community of compost, but with rhizosphere bacterial community (r = 0.17, p = 0.016). The control efficiency was also positive correlated with taxa (Rhizobium, Aeromicrobium) known suppressive to R. solanacearum. The mushroom spent or cow manure, from which the two composts were 100% and 77% in control efficiencies against bacterial wilt respectively were subject to a pilot-scale composting reaction. The reproduced composts from mushroom spent or cow manure were only 57% and 23% effective on the control of bacterial wilt, respectively. The analysis of bacterial communities revealed that the relative abundances of R. solanacearum were 28.4% for the control, but only 7.8%-7.9% for compost fertilized tomatoes. The compost from mushroom spent also exerted a strong effect on rhizosphere bacterial community. Taken together, most composts were suppressive to bacterial wilt possibly also by modifying rhizosphere bacterial community towards inhibiting the colonization of R. solanacearum and selecting for beneficial genera of Proteobacteria, Bacteroidetes and Actinobacteria.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ning Wang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Pingping Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Baoju Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yuelin Zhu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Mao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Hefa Yang
- Quzhou Experimental Station, China Agricultural University, 057250 Hebei Province, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China.
| |
Collapse
|
17
|
Kashyap S, Sharma I, Dowarah B, Barman R, Gill SS, Agarwala N. Plant and soil-associated microbiome dynamics determine the fate of bacterial wilt pathogen Ralstonia solanacearum. PLANTA 2023; 258:57. [PMID: 37524889 DOI: 10.1007/s00425-023-04209-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
MAIN CONCLUSION Plant and the soil-associated microbiome is important for imparting bacterial wilt disease tolerance in plants. Plants are versatile organisms that are endowed with the capacity to withstand various biotic and abiotic stresses despite having no locomotory abilities. Being the agent for bacterial wilt (BW) disease, Ralstonia solanacearum (RS) colonizes the xylem vessels and limits the water supply to various plant parts, thereby causing wilting. The havoc caused by RS leads to heavy losses in crop productivity around the world, for which a sustainable mitigation strategy is urgently needed. As several factors can influence plant-microbe interactions, comprehensive understanding of plant and soil-associated microbiome under the influence of RS and various environmental/edaphic conditions is important to control this pathogen. This review mainly focuses on microbiome dynamics associated with BW disease and also provide update on microbial/non-microbial approaches employed to control BW disease in crop plants.
Collapse
Affiliation(s)
- Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Indrani Sharma
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Bhaskar Dowarah
- Department of Botany, Bahona College, Bahona, Jorhat, Assam, 785101, India
| | - Ramen Barman
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
18
|
Yadav DK, Devappa V, Kashyap AS, Kumar N, Rana VS, Sunita K, Singh D. Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum. Microorganisms 2023; 11:1790. [PMID: 37512962 PMCID: PMC10383371 DOI: 10.3390/microorganisms11071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial wilt disease of tomato (Solanum lycopersicum L.), incited by Ralstonia solanacearum (Smith), is a serious agricultural problem in India. In this investigation, chemical mutagenic agents (NTG and HNO2 treatment) and ultraviolet (UV) irradiation have been used to enhance the antagonistic property of Bacillus amyloliquefaciens DSBA-11 against R. solanacearum UTT-25 towards an effective management of tomato wilt disease. The investigation established the fact that maximum inhibition to R. solanacearum UTT-25 was exerted by the derivative strain MHNO2-20 treated with nitrous acid (HNO2) and then by the derivative strain MNTG-21 treated with NTG. The exertion was significantly higher than that of the parent B. amyloliquefaciens DSBA-11. These two potential derivatives viz. MNTG-21, MHNO2-20 along with MUV-19, and a wild derivative strain of B. amyloliquefaciens i.e.,DSBA-11 were selected for GC/MS analysis. Through this analysis 18 major compounds were detected. Among the compounds thus detected, the compound 3-isobutyl hexahydropyrrolo (1,2), pyrazine-1,4-dione (4.67%) was at maximum proportion in the variant MHNO2-20 at higher retention time (RT) of 43.19 s. Bio-efficacy assessment observed a record of minimum intensity (9.28%) in wilt disease and the highest bio-control (88.75%) in derivative strain MHNO2-20-treated plants after 30 days of inoculation. The derivative strain MHNO2-20, developed by treating B. amyloliquefaciens with nitrous acid (HNO2), was therefore found to have a higher bio-efficacy to control bacterial wilt disease of tomato under glasshouse conditions than a wild-type strain.
Collapse
Affiliation(s)
- Dhananjay Kumar Yadav
- Division of Plant Pathology, ICAR, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, UHS Campus, Bagalkot, GKVK Post, Bengaluru 560065, India
| | | | - Narendra Kumar
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India
| | - V S Rana
- Division of Agriculture Chemical, Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhayay Gorakhpur University, Gorakhpur 273009, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
19
|
Park I, Seo YS, Mannaa M. Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol 2023; 14:1163832. [PMID: 37213524 PMCID: PMC10196466 DOI: 10.3389/fmicb.2023.1163832] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The viable community of microorganisms in the rhizosphere significantly impacts the physiological development and vitality of plants. The assembly and functional capacity of the rhizosphere microbiome are greatly influenced by various factors within the rhizosphere. The primary factors are the host plant genotype, developmental stage and status, soil properties, and resident microbiota. These factors drive the composition, dynamics, and activity of the rhizosphere microbiome. This review addresses the intricate interplay between these factors and how it facilitates the recruitment of specific microbes by the host plant to support plant growth and resilience under stress. This review also explores current methods for engineering and manipulating the rhizosphere microbiome, including host plant-mediated manipulation, soil-related methods, and microbe-mediated methods. Advanced techniques to harness the plant's ability to recruit useful microbes and the promising use of rhizo-microbiome transplantation are highlighted. The goal of this review is to provide valuable insights into the current knowledge, which will facilitate the development of cutting-edge strategies for manipulating the rhizosphere microbiome for enhanced plant growth and stress tolerance. The article also indicates promising avenues for future research in this field.
Collapse
Affiliation(s)
- Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
21
|
Yang B, Zheng M, Dong W, Xu P, Zheng Y, Yang W, Luo Y, Guo J, Niu D, Yu Y, Jiang C. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates upon Bacillus cereus AR156 Treatment. Microbiol Spectr 2023; 11:e0361122. [PMID: 36786562 PMCID: PMC10100852 DOI: 10.1128/spectrum.03611-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
The environmentally friendly biological control strategy that relies on beneficial bacterial inoculants to improve plant disease resistance is a promising strategy. Previously, it has been demonstrated that biocontrol bacteria treatments can change the plant rhizosphere microbiota but whether plant signaling pathways, especially those related to disease resistance, mediate the changes in rhizosphere microbiota has not been explored. Here, we investigated the complex interplay among biocontrol strains, plant disease resistance-related pathways, root exudates, rhizosphere microorganisms, and pathogens to further clarify the biocontrol mechanism of biocontrol bacteria by using plant signaling pathway mutants. Bacillus cereus AR156, which was previously isolated from forest soil by our laboratory, can significantly control tomato bacterial wilt disease in greenhouse and field experiments. Moreover, compared with the control treatment, the B. cereus AR156 treatment had a significant effect on the soil microbiome and recruited 35 genera of bacteria to enrich the rhizosphere of tomato. Among them, the relative rhizosphere abundance of nine genera, including Ammoniphilus, Bacillus, Bosea, Candidimonas, Flexivirga, Brevundimonas, Bordetella, Dyella, and Candidatus_Berkiella, was regulated by plant disease resistance-related signaling pathways and B. cereus AR156. Linear correlation analysis showed that the relative abundances of six genera in the rhizosphere were significantly negatively correlated with pathogen colonization in roots. These rhizosphere bacteria were affected by plant root exudates that are regulated by signaling pathways. IMPORTANCE Our data suggest that B. cereus AR156 can promote the enrichment of beneficial microorganisms in the plant rhizosphere by regulating salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways in plants, thereby playing a role in controlling bacterial wilt disease. Meanwhile, Spearman correlation analysis showed that the relative abundances of these beneficial bacteria were correlated with the secretion of root exudates. Our study reveals a new mechanism for SA and JA/ET signals to participate in the adjustment of plant resistance whereby the signaling pathways adjust the rhizosphere microecology by changing the root exudates and thus change plant resistance. On the other hand, biocontrol strains can utilize this mechanism to recruit beneficial bacteria by activating disease resistance-related signaling pathways to confine the infection and spread of pathogens. Finally, our data also provide a new idea for the in-depth study of biocontrol mechanisms.
Collapse
Affiliation(s)
- Bingye Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Mingzi Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Wenpan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Peiling Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Yiyang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| |
Collapse
|
22
|
Zhao W, Wang P, Dong L, Li S, Lu X, Zhang X, Su Z, Guo Q, Ma P. Effect of incorporation of broccoli residues into soil on occurrence of verticillium wilt of spring-sowing-cotton and on rhizosphere microbial communities structure and function. Front Bioeng Biotechnol 2023; 11:1115656. [PMID: 36761302 PMCID: PMC9902944 DOI: 10.3389/fbioe.2023.1115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Cotton verticillium wilt (CVW) represented a typical plant soil-borne disease and resulted in widespread economic losses in cotton production. However, the effect of broccoli residues (BR) on verticillium wilt of spring-sowing-cotton was not clear. We investigated the effects of BR on CVW, microbial communities structure and function in rhizosphere of two cotton cultivars with different CVW resistance using amplicon sequencing methods. Results showed that control effects of BR on CVW of susceptible cultivar (cv. EJ-1) and resistant cultivar (cv. J863) were 58.49% and 85.96%, and the populations of V. dahliae decreased by 14.31% and 34.19%, respectively. The bacterial diversity indices significantly increased in BR treatment, while fungal diversity indices significantly decreased. In terms of microbial community composition, the abilities to recruit bacteria and fungi were enhanced in BR treatment, including RB41, Gemmatimonas, Pontibacter, Streptomyces, Blastococcus, Massilia, Bacillus, and Gibberella, Plectosphaerella, Neocosmospora, Aspergillus and Preussia. However, the relative abundances of Sphingomonas, Nocardioides, Haliangium, Lysobacter, Penicillium, Mortierella and Chaetomidium were opposite tendency between cultivars in BR treatment. According to PICRUSt analysis, functional profiles prediction showed that significant shifts in metabolic functions impacting KEGG pathways of BR treatment were related to metabolism and biosynthesis. FUNGuild analysis indicated that BR treatment altered the relative abundances of fungal trophic modes. The results of this study demonstrated that BR treatment decreased the populations of V. dahliae in soil, increased bacterial diversity, decreased fungal diversity, changed the microbial community structure and function, and increased the abundances of beneficial microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Ma
- *Correspondence: Qinggang Guo, ; Ping Ma,
| |
Collapse
|
23
|
Cross Cultivation on Homologous/Heterologous Plant-Based Culture Media Empowers Host-Specific and Real Time In Vitro Signature of Plant Microbiota. DIVERSITY 2022. [DOI: 10.3390/d15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alliances of microbiota with plants are masked by the inability of in vitro cultivation of their bulk. Pure cultures piled in international centers originated from dissimilar environments/hosts. Reporting that plant root/leaf-based culture media support the organ-specific growth of microbiota, it was of interest to further investigate if a plant-based medium prepared from homologous (maize) supports specific/adapted microbiota compared to another prepared from heterologous plants (sunflower). The culture-independent community of maize phyllosphere was compared to communities cross-cultivated on plant broth-based media: CFU counts and taxa prevalence (PCR-DGGE; Illumina MiSeq amplicon sequencing). Similar to total maize phyllospheric microbiota, culture-dependent communities were overwhelmed by Proteobacteria (>94.3–98.3%); followed by Firmicutes (>1.3–3.7%), Bacteroidetes (>0.01–1.58%) and Actinobacteria (>0.06–0.34%). Differential in vitro growth on homologous versus heterologous plant-media enriched/restricted various taxa. In contrast, homologous cultivation over represented members of Proteobacteria (ca. > 98.0%), mainly Pseudomonadaceae and Moraxellaceae; heterologous cultivation and R2A enriched Firmicutes (ca. > 3.0%). The present strategy simulates/fingerprints the chemical composition of host plants to expand the culturomics of plant microbiota, advance real-time in vitro cultivation and lab-keeping of compatible plant microbiota, and identify preferential pairing of plant-microbe partners toward future synthetic community (SynComs) research and use in agriculture.
Collapse
|
24
|
Becker R, Ulrich K, Behrendt U, Schneck V, Ulrich A. Genomic Characterization of Aureimonas altamirensis C2P003-A Specific Member of the Microbiome of Fraxinus excelsior Trees Tolerant to Ash Dieback. PLANTS (BASEL, SWITZERLAND) 2022; 11:3487. [PMID: 36559599 PMCID: PMC9781493 DOI: 10.3390/plants11243487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Some European ash trees show tolerance towards dieback caused by the invasive pathogen Hymenoscyphus fraxineus. The microbiome of these trees harbours a range of specific bacterial groups. One of these groups belonging to the species Aureimonas altamirensis was studied in detail by genome analysis and a plant inoculation trial. The strain group was shown to be phylogenetically distinct from clinical isolates by 16S rRNA analysis and phylogenomics. Genome analysis of a representative strain C2P003 resulted in a large number of unique gene sequences in comparison to other well-studied strains of the species. A functional analysis of the genome revealed features associated with the synthesis of exopolysaccharides, protein secretion and biofilm production as well as genes for stress adaptation, suggesting the ability of C2P003 to effectively colonize ash leaves. The inoculation of ash seedlings with C2P003 showed a significant positive effect on the plant health of the seedlings that were exposed to H. fraxineus infection. This effect was maintained over a period of three years and was accompanied by a significant shift in the bacterial microbiome composition one year after inoculation. Overall, the results indicate that C2P003 may suppress H. fraxineus in or on ash leaves via colonization resistance or indirectly by affecting the microbiome.
Collapse
Affiliation(s)
- Regina Becker
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Kristina Ulrich
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Undine Behrendt
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Volker Schneck
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, 15377 Waldsieversdorf, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
25
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
26
|
Qiu Z, Verma JP, Liu H, Wang J, Batista BD, Kaur S, de Araujo Pereira AP, Macdonald CA, Trivedi P, Weaver T, Conaty WC, Tissue DT, Singh BK. Response of the plant core microbiome to Fusarium oxysporum infection and identification of the pathobiome. Environ Microbiol 2022; 24:4652-4669. [PMID: 36059126 DOI: 10.1111/1462-2920.16194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jay Prakash Verma
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Bruna D Batista
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Simranjit Kaur
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Tim Weaver
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - Warren C Conaty
- CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
27
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. Thermoresponsive C22 phage stiffness modulates the phage infectivity. Sci Rep 2022; 12:13001. [PMID: 35906255 PMCID: PMC9338302 DOI: 10.1038/s41598-022-16795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages offer a sustainable alternative for controlling crop disease. However, the lack of knowledge on phage infection mechanisms makes phage-based biological control varying and ineffective. In this work, we interrogated the temperature dependence of the infection and thermo-responsive behavior of the C22 phage. This soilborne podovirus is capable of lysing Ralstonia solanacearum, causing bacterial wilt disease. We revealed that the C22 phage could better infect the pathogenic host cell when incubated at low temperatures (25, 30 °C) than at high temperatures (35, 40 °C). Measurement of the C22 phage stiffness revealed that the phage stiffness at low temperatures was 2–3 times larger than at high temperatures. In addition, the imaging results showed that more C22 phage particles were attached to the cell surface at low temperatures than at high temperatures, associating the phage stiffness and the phage attachment. The result suggests that the structure and stiffness modulation in response to temperature change improve infection, providing mechanistic insight into the C22 phage lytic cycle. Our study signifies the need to understand phage responses to the fluctuating environment for effective phage-based biocontrol implementation.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
28
|
An C, Ma S, Liu C, Ding H, Xue W. Burkholderia ambifaria XN08: A plant growth-promoting endophytic bacterium with biocontrol potential against sharp eyespot in wheat. Front Microbiol 2022; 13:906724. [PMID: 35966702 PMCID: PMC9368319 DOI: 10.3389/fmicb.2022.906724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) have been considered promising biological agents to increase crop yields for years. However, the successful application of PGPB for biocontrol of sharp eyespot in wheat has been limited, partly by the lack of knowledge of the ecological/environmental factors affecting the colonization, prevalence, and activity of beneficial bacteria on the crop. In this study, an endophytic bacterium XN08 with antagonistic activity against Rhizoctonia cerealis (wheat sharp eyespot pathogenic fungus), isolated from healthy wheat plants, was identified as Burkholderia ambifaria according to the sequence analysis of 16S rRNA. The antibiotic synthesis gene amplification and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analyses were used to characterize the secondary metabolites. The results showed that the known powerful antifungal compound named pyrrolnitrin was produced by the strain XN08. In addition, B. ambifaria XN08 also showed the capacity for phosphate solubilization, indole-3-acetic acid (IAA), protease, and siderophore production in vitro. In the pot experiments, a derivate strain carrying the green fluorescent protein (GFP) gene was used to observe its colonization in wheat plants. The results showed that GFP-tagged B. ambifaria could colonize wheat tissues effectively. This significant colonization was accompanied by an enhancement of wheat plants' growth and an induction of immune resistance for wheat seedlings, which was revealed by the higher activities of polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL). As far as we know, this is the first report describing the colonization traits of B. ambifaria in wheat plants. In addition, our results indicated that B. ambifaria XN08 might serve as a new effective biocontrol agent against wheat sharp eyespot disease caused by R. cerealis.
Collapse
|
29
|
Characterization and Assessment of 2, 4-Diacetylphloroglucinol (DAPG)-Producing Pseudomonas fluorescens VSMKU3054 for the Management of Tomato Bacterial Wilt Caused by Ralstonia solanacearum. Microorganisms 2022; 10:microorganisms10081508. [PMID: 35893565 PMCID: PMC9330548 DOI: 10.3390/microorganisms10081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial bio-products are becoming an appealing and viable alternative to chemical pesticides for effective management of crop diseases. These bio-products are known to have potential to minimize agrochemical applications without losing crop yield and also restore soil fertility and productivity. In this study, the inhibitory efficacy of 2,4-diacetylphloroglucinol (DAPG) produced by Pseudomonas fluorescens VSMKU3054 against Ralstonia solanacearum was assessed. Biochemical and functional characterization study revealed that P. fluorescens produced hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA) and hydrolytic enzymes such as amylase, protease, cellulase and chitinase, and had the ability to solubilize phosphate. The presence of the key antimicrobial encoding gene in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG) was identified by PCR. The maximum growth and antimicrobial activity of P. fluorescens was observed in king’s B medium at pH 7, 37 °C and 36 h of growth. Glucose and tryptone were found to be the most suitable carbon and nitrogen sources, respectively. DAPG was separated by silica column chromatography and identified by various methods such as UV-Vis, FT-IR, GC-MS and NMR spectroscopy. When R. solanacearum cells were exposed to DAPG at 90 µg/mL, the cell viability was decreased, reactive oxygen species (ROS) were increased and chromosomal DNA was damaged. Application of P. fluorescens and DAPG significantly reduced the bacterial wilt incidence. In addition, P. fluorescens was also found effective in promoting the growth of tomato seedlings. It is concluded that the indigenous isolate P. fluorescens VSMKU3054 could be used as a suitable biocontrol agent against bacterial wilt disease of tomato.
Collapse
|
30
|
Greene G, Koolman L, Whyte P, Burgess C, Lynch H, Coffey A, Lucey B, O’Connor L, Bolton D. Effect of Doxycycline Use in the Early Broiler Production Cycle on the Microbiome. Front Microbiol 2022; 13:885862. [PMID: 35875529 PMCID: PMC9301238 DOI: 10.3389/fmicb.2022.885862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
16S rRNA amplicon sequencing was used to investigate changes in the broiler gastrointestinal tract (GIT) microbiota throughout the rearing period and in combination with antibiotic treatment. Thirty birds (from a commercial flock) were removed at multiple points throughout the rearing period on days 13, 27, and 33, euthanised, and their GIT aseptically removed and divided into upper (the crop, proventriculus, and the gizzard), middle (the duodenum, jejunum, and ileum) and lower (the large intestine, the caeca, and the cloaca) sections. In a separate commercial flock, on the same farm with similar husbandry practices and feed, doxycycline (100 mg/ml per kg body weight) was administered in drinking water between day 8 and 12 (inclusive) of the production cycle. Birds were removed on days, 13, 27, and 33 and GIT samples prepared as above. The contents of three merged samples from each GIT section were pooled (n = 60), the DNA extracted and analysed by 16S rRNA amplicon metagenomic sequencing and analysed. Major changes in the broiler microbiota were observed as the birds aged particularly with the Firmicutes/Bacteroidetes ratio (F:B) of the lower GIT. Moreover, Chao1, ACE, and Shannon indices showed the antibiotic treatment significantly altered the microbiota, and this change persisted throughout the rearing period. Further research is required to investigate the effect of these changes on bird performance, susceptibility to infections and Campylobacter carriage.
Collapse
Affiliation(s)
- Genevieve Greene
- Teagasc Food Research Centre, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Helen Lynch
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Department of Agriculture, Food and the Marine, Backweston, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Declan Bolton
- Teagasc Food Research Centre, Dublin, Ireland
- *Correspondence: Declan Bolton,
| |
Collapse
|
31
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
32
|
Kumar S, Ahmad K, Behera SK, Nagrale DT, Chaurasia A, Yadav MK, Murmu S, Jha Y, Rajawat MVS, Malviya D, Singh UB, Shankar R, Tripathy M, Singh HV. Biocomputational Assessment of Natural Compounds as a Potent Inhibitor to Quorum Sensors in Ralstonia solanacearum. Molecules 2022; 27:molecules27093034. [PMID: 35566383 PMCID: PMC9102662 DOI: 10.3390/molecules27093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is among the most damaging bacterial phytopathogens with a wide number of hosts and a broad geographic distribution worldwide. The pathway of phenotype conversion (Phc) is operated by quorum-sensing signals and modulated through the (R)-methyl 3-hydroxypalmitate (3-OH PAME) in R. solanacearum. However, the molecular structures of the Phc pathway components are not yet established, and the structural consequences of 3-OH PAME on quorum sensing are not well studied. In this study, 3D structures of quorum-sensing proteins of the Phc pathway (PhcA and PhcR) were computationally modeled, followed by the virtual screening of the natural compounds library against the predicted active site residues of PhcA and PhcR proteins that could be employed in limiting signaling through 3-OH PAME. Two of the best scoring common ligands ZINC000014762512 and ZINC000011865192 for PhcA and PhcR were further analyzed utilizing orbital energies such as HOMO and LUMO, followed by molecular dynamics simulations of the complexes for 100 ns to determine the ligands binding stability. The findings indicate that ZINC000014762512 and ZINC000011865192 may be capable of inhibiting both PhcA and PhcR. We believe that, after further validation, these compounds may have the potential to disrupt bacterial quorum sensing and thus control this devastating phytopathogenic bacterial pathogen.
Collapse
Affiliation(s)
- Sunil Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India;
- Correspondence: (S.K.); (H.V.S.)
| | - Khurshid Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Santosh Kumar Behera
- National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India;
| | - Dipak T. Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur 440010, India;
| | - Anurag Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India;
| | - Manoj Kumar Yadav
- Department of Bioinformatics, SRM University, Sonepat 131029, India;
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India;
| | - Yachana Jha
- N. V. Patel College of Pure and Applied Sciences, S.P. University, Anand 388315, India;
| | - Mahendra Vikram Singh Rajawat
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Deepti Malviya
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Udai B. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Raja Shankar
- ICAR-IIHR, Hessaraghatta Lake Post, Bengaluru 560089, India;
| | - Minaketan Tripathy
- Department of Pharmacy, Sitaram Kashyap College of Pharmacy, Rahod 495556, India;
| | - Harsh Vardhan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
- Correspondence: (S.K.); (H.V.S.)
| |
Collapse
|
33
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
34
|
Ulrich K, Becker R, Behrendt U, Kube M, Schneck V, Ulrich A. Physiological and genomic characterisation of Luteimonas fraxinea sp. nov., a bacterial species associated with trees tolerant to ash dieback. Syst Appl Microbiol 2022; 45:126333. [DOI: 10.1016/j.syapm.2022.126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
|
35
|
Biocontrol Streptomyces Induces Resistance to Bacterial Wilt by Increasing Defense-Related Enzyme Activity in Solanum melongena L. Curr Microbiol 2022; 79:146. [PMID: 35344085 DOI: 10.1007/s00284-022-02832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces strains were isolated from rhizosphere soil and evaluated for in vitro plant growth and antagonistic potential against Ralstonia solanacearum. Based on their in vitro screening, seven Streptomyces were evaluated for plant growth promotion (PGP) and biocontrol efficacy by in-planta and pot culture study. In the in-planta study, Streptomyces-treated eggplant seeds showed better germination percentage, plant growth, and disease occurrence against R. solanacearum than the control treatment. Hence, all seven Streptomyces cultures were developed as a bioformulation by farmyard manure and used for pot culture study. The highest plant growth, weight, and total chlorophyll content were observed in UP1A-1-treated eggplant followed by UP1A-4, UT4A-49, and UT6A-57. Similarly, the maximum biocontrol efficacy was observed in UP1A-1-treated eggplants against bacterial wilt. The biocontrol potential of Streptomyces is also confirmed through metabolic responses by assessing the activities of the defense-related enzymes peroxidase (POX), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and as well as the levels of total phenol. Treatment with UP1A-1/ UT4A-49 and challenge with R. solanacearum led to maximum changes in the activities of POX, PPO, and PAL and the levels of total phenol in the eggplants at different time intervals. Alterations in enzymes of UP1A-1 treatment were related to early defense responses in eggplant. Therefore, the treatment with UP1A-1 significantly delayed the establishment of bacterial wilt in eggplant. Altogether, the present study suggested that the treatment of Streptomyces maritimus UP1A-1 fortified farmyard manure has improved the plant growth and stronger disease control against R. solanacearum on eggplant.
Collapse
|
36
|
Dal’Rio I, Mateus JR, Seldin L. Unraveling the Tropaeolum majus L. (Nasturtium) Root-Associated Bacterial Community in Search of Potential Biofertilizers. Microorganisms 2022; 10:638. [PMID: 35336212 PMCID: PMC8950702 DOI: 10.3390/microorganisms10030638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Although Tropaeolum majus (nasturtium) is an agriculturally and economically important plant, especially due to the presence of edible flowers and its medicinal properties, its microbiome is quite unexplored. Here, the structure of the total bacterial community associated with the rhizosphere, endosphere and bulk soil of T. majus was determined by 16S rRNA amplicon metagenomic sequencing. A decrease in diversity and richness from bulk soil to the rhizosphere and from the rhizosphere to the endosphere was observed in the alpha diversity analyses. The phylum Proteobacteria was the most dominant in the bacteriome of the three sites evaluated, whereas the genera Pseudomonas and Ralstonia showed a significantly higher relative abundance in the rhizosphere and endosphere communities, respectively. Plant growth-promoting bacteria (236 PGPB) were also isolated from the T. majus endosphere, and 76 strains belonging to 11 different genera, mostly Serratia, Raoultella and Klebsiella, showed positive results for at least four out of six plant growth-promoting tests performed. The selection of PGPB associated with T. majus can result in the development of a biofertilizer with activity against phytopathogens and capable of favoring the development of this important plant.
Collapse
Affiliation(s)
| | | | - Lucy Seldin
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil; (I.D.); (J.R.M.)
| |
Collapse
|
37
|
Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022; 11:273. [PMID: 35215215 PMCID: PMC8879208 DOI: 10.3390/pathogens11020273] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Food security has become a major concern worldwide in recent years due to ever increasing population. Providing food for the growing billions without disturbing environmental balance is incessantly required in the current scenario. In view of this, sustainable modes of agricultural practices offer better promise and hence are gaining prominence recently. Moreover, these methods have taken precedence currently over chemical-based methods of pest restriction and pathogen control. Adoption of Biological Control is one such crucial technique that is currently in the forefront. Over a period of time, various biocontrol strategies have been experimented with and some have exhibited great success and promise. This review highlights the different methods of plant-pathogen control, types of plant pathogens, their modus operandi and various biocontrol approaches employing a range of microorganisms and their byproducts. The study lays emphasis on the use of upcoming methodologies like microbiome management and engineering, phage cocktails, genetically modified biocontrol agents and microbial volatilome as available strategies to sustainable agricultural practices. More importantly, a critical analysis of the various methods enumerated in the paper indicates the need to amalgamate these techniques in order to improve the degree of biocontrol offered by them.
Collapse
Affiliation(s)
- Manisha Arora Pandit
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Saloni Gulati
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Neeru Bhandari
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Poonam Mehta
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Roma Katyal
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| | - Jasleen Kaur
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India; (S.G.); (N.B.); (P.M.); (R.K.)
| |
Collapse
|
38
|
Dong H, Xu X, Gao R, Li Y, Li A, Yao Q, Zhu H. Myxococcus xanthus R31 Suppresses Tomato Bacterial Wilt by Inhibiting the Pathogen Ralstonia solanacearum With Secreted Proteins. Front Microbiol 2022; 12:801091. [PMID: 35197943 PMCID: PMC8859152 DOI: 10.3389/fmicb.2021.801091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
The pathogenic bacterium Ralstonia solanacearum caused tomato bacterial wilt (TBW), a destructive soil-borne disease worldwide. There is an urgent need to develop effective control methods. Myxobacteria are microbial predators and are widely distributed in the soil. Compared with other biocontrol bacteria that produce antibacterial substances, the myxobacteria have great potential for biocontrol. This study reports a strain of Myxococcus xanthus R31 that exhibits high antagonistic activity to R. solanacearum. Plate test indicated that the strain R31 efficiently predated R. solanacearum. Pot experiments showed that the biocontrol efficacy of strain R31 against TBW was 81.9%. Further study found that the secreted protein precipitated by ammonium sulfate had significant lytic activity against R. solanacearum cells, whereas the ethyl acetate extract of strain R31 had no inhibitory activity against R. solanacearum. Substrate spectroscopy assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of secreted proteins showed that some peptidases, lipases, and glycoside hydrolases might play important roles and could be potential biocontrol factors involved in predation. The present study reveals for the first time that the use of strain M. xanthus R31 as a potential biocontrol agent could efficiently control TBW by predation and secreting extracellular lyase proteins.
Collapse
Affiliation(s)
- Honghong Dong
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xin Xu
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ruixiang Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yueqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Honghui Zhu,
| |
Collapse
|
39
|
Carril P, Cruz J, di Serio C, Pieraccini G, Ait Bessai S, Tenreiro R, Cruz C. Modulation of the Wheat Seed-Borne Bacterial Community by Herbaspirillum seropedicae RAM10 and Its Potential Effects for Tryptophan Metabolism in the Root Endosphere. Front Microbiol 2022; 12:792921. [PMID: 35003023 PMCID: PMC8733462 DOI: 10.3389/fmicb.2021.792921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Plants and their associated microbiota share ecological and evolutionary traits that are considered to be inseparably woven. Their coexistence foresees the use of similar metabolic pathways, leading to the generation of molecules that can cross-regulate each other’s metabolism and ultimately influence plant phenotype. However, the extent to which the microbiota contributes to the overall plant metabolic landscape remains largely unexplored. Due to their early presence in the seed, seed-borne endophytic bacteria can intimately colonize the plant’s endosphere while conferring a series of phytobeneficial services to their host. Understanding the dynamics of these endophytic communities is a crucial step toward the formulation of microbial inoculants that can modulate the functionality of the plant-associated microbiota for improved plant fitness. In this work, wheat (Triticum aestivum) roots non-inoculated and inoculated with the bacterium Herbaspirillum seropedicae strain RAM10 were analyzed to explore the impact of inoculant–endophyte–wheat interrelationships on the regulation of tryptophan (Trp) metabolism in the endosphere environment. Root inoculation with H. seropedicae led to phylum-specific changes in the cultivable seed-borne endophytic community. This modulation shifted the metabolic potential of the community in light of its capacity to modulate the levels of key Trp-related metabolites involved in both indole-3-acetic acid (IAA) biosynthesis and in the kynurenine pathway. Our results support a mode of action of H. seropedicae relying on a shift in both the composition and functionality of the seed-borne endophytic community, which may govern important processes such as root growth. We finally provide a conceptual framework illustrating that interactions among roots, inoculants, and seed-borne endophytes are critical to fine-tuning the levels of IAA in the endosphere. Understanding the outcomes of these interactions is a crucial step toward the formulation of microbial inoculants based on their joint action with seed-borne endophytic communities to promote crop growth and health in a sustainable manner.
Collapse
Affiliation(s)
- Pablo Carril
- Plant-Soil Ecology Laboratory, Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal
| | - Joana Cruz
- Plant-Soil Ecology Laboratory, Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal
| | - Claudia di Serio
- Geriatric Intensive Care Unit, Experimental and Clinical Medicine Department, University of Florence, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
| | - Giuseppe Pieraccini
- Department of Health Sciences, Mass Spectrometry Centre (CISM), University of Florence, Florence, Italy
| | - Sylia Ait Bessai
- Laboratoire de Maîtrise des Énergies Renouvelables (LMER), Faculté des Sciences de la nature et de la vie, Université de Bejaia, Bejaia, Algérie
| | - Rogério Tenreiro
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Cristina Cruz
- Plant-Soil Ecology Laboratory, Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal
| |
Collapse
|
40
|
Vargas P, Bosmans L, Van Calenberge B, Van Kerckhove S, Lievens B, Rediers H. Bacterial community dynamics of tomato hydroponic greenhouses infested with hairy root disease. FEMS Microbiol Ecol 2021; 97:6442176. [PMID: 34849757 DOI: 10.1093/femsec/fiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
The rhizosphere is a complex ecosystem consisting of microbes in the interface between growth medium and plant roots, which affects plant productivity and health. This is one of the few studies analysing bacterial communities present in the rhizosphere of hydroponically grown plants. Tomato grown under hydroponic conditions is prone to hairy root disease (HRD) that is caused by rhizogenic Agrobacterium biovar 1 strains. In this study, using high-throughput amplicon sequencing of partial ribosomal RNA (rRNA) genes, we aimed to characterize bacterial communities in rockwool samples obtained from healthy or HRD-infested tomato during an entire growing season. Alpha diversity of rockwool increased in direct relation with time and samples obtained from healthy greenhouses presented a significantly lower alpha diversity than those from HRD-infested greenhouses. Beta diversity showed that bacterial community composition changed throughout the growing season. Amplicon Sequence Variants (ASVs) identified as rhizogenic Agrobacterium bv. 1 were more prevalent in HRD-infected greenhouses. Conversely, ASVs identified as Paenibacillus, previously identified as biocontrol organisms of rhizogenic agrobacteria, were more prevalent in healthy greenhouses. Altogether, our study greatly contributes to the knowledge of bacterial communities in rockwool hydroponics.
Collapse
Affiliation(s)
- Pablo Vargas
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Lien Bosmans
- Research Station Hoogstraten, Voort 71, B-2328 Meerle, Belgium
| | - Bart Van Calenberge
- Research Station for Vegetable Production, Duffelsesteenweg 101, B-2860 Sint-Katelijne-Waver, Belgium
| | | | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Hans Rediers
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.,Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
41
|
Huang Z, Liu B, Yin Y, Liang F, Xie D, Han T, Liu Y, Yan B, Li Q, Huang Y, Liu Q. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe). PEST MANAGEMENT SCIENCE 2021; 77:5537-5546. [PMID: 34390303 DOI: 10.1002/ps.6595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bacteria are the most diverse and abundant group of soil organisms that influence plant growth and health. Bacillus and Trichoderma are commonly used as biological control agents (BCA) that directly or indirectly act on soil bacteria. Therefore, it is essential to understand how the applied microbes impact the indigenous microbial community before exploring their activity in the control of soilborne diseases. RESULTS MiSeq sequencing of the 16S rRNA gene was used to decipher the shift of rhizosphere bacterial community in ginger (Zingiber officinale Roscoe) treated with Bacillus subtilus and Trichoderma harzianum at different concentrations. The dominant phyla in treated and nontreated samples were Proteobacteria, Actinobacteria, Acidobacteria and comprised up to 54.7% of the total sequences. There were significant differences between BCA treated and nontreated samples in the bacteria community. BCA treated plants presented higher bacterial diversity than nontreated and higher dosage of BCA had a larger impact on rhizosphere microbiota, but the 'dose-response relationship' varied in different bacterial groups. Potential biomarkers at genus level were found, such as RB41, Pseudomonas, Nitrospira, Candidatus_Udaeobacter. CONCLUSION The combined use of Bacillus subtilus and Trichoderma harzianum could alter bacterial community structure and diversity in rhizosphere soil. BCA-microbes interactions as well as soil microbial ecology should be noticed in plant disease management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| | - Bowen Liu
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Yin
- Department of Sichuan Agriculture, Station for Plant Protection, Chengdu, China
| | - Fang Liang
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Deshan Xie
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Tiantian Han
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Yongzeng Liu
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Bin Yan
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qian Li
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Natural Plant Application and Metabolic Regulation Centre, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Division of Research and Development, Chengdu Tepu Biotech Co Ltd, Chengdu, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shang Hai, China
| |
Collapse
|
42
|
Bez C, Esposito A, Thuy HD, Nguyen Hong M, Valè G, Licastro D, Bertani I, Piazza S, Venturi V. The rice foot rot pathogen Dickeya zeae alters the in-field plant microbiome. Environ Microbiol 2021; 23:7671-7687. [PMID: 34398481 PMCID: PMC9292192 DOI: 10.1111/1462-2920.15726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot‐rot symptomatic field‐grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co‐presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture‐dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen‐focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.
Collapse
Affiliation(s)
- Cristina Bez
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Alfonso Esposito
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Hang Dinh Thuy
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | | | - Giampiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, Vercelli, 13100, Italy
| | - Danilo Licastro
- ARGO Laboratorio Genomica ed Epigenomica, AREA Science Park, Basovizza, Trieste, 34149, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Silvano Piazza
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| |
Collapse
|
43
|
Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci Rep 2021; 11:9317. [PMID: 33927238 PMCID: PMC8085009 DOI: 10.1038/s41598-021-88495-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The responses of rhizosphere bacterial communities of Streptomyces (SS14 and IT20 stains) treated-pepper plants following inoculation by Phytophthora capsici (PC) was investigated using Illumina MiSeq sequencing. Distinct modulation of the bacteriome composition was found for PC samples with the highest relative abundance (RA) of Chitinophaga (22 ± 0.03%). The RA of several bacterial operational taxonomic units (OTUs) was affected and caused changes in alpha and beta-diversity measures. In IT20, the RA of Cyanobacteria was enriched compared to SS14 (72%) and control samples (47%). Phylotypes belonging to Devosia, Promicromonospora, Kribbella, Microbacterium, Amylocolatopsis, and Pseudomonas genera in the rhizosphere were positively responding against the pathogen. Our findings show that the phosphate solubilizing strain IT20 has higher microbial community responders than the melanin-producing strain SS14. Also, positive interactions were identified by comparing bacterial community profiles between treatments that might allow designing synthetic bio-inoculants to solve agronomic problems in an eco-friendly way.
Collapse
|
44
|
Elsayed TR, Grosch R, Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbiol Ecol 2021; 97:6155061. [PMID: 33674848 DOI: 10.1093/femsec/fiab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum biovar2-race3 (Rs r3b2) is an epidemic soil-borne bacterial phytopathogen causing brown rot disease in potato. In this study, we assessed how three soil types stored at the same field site influenced the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Rs in bulk soil and different potato plant spheres (rhizosphere, endorhiza and endocaulosphere; ecto- and endosphere of seed and yield tubers). In general, the plate counts observed for each sample type were not significantly different. A total of 96 colonies per sample type was picked and screened for in vitro antagonistic activity against Rs. Antagonists were obtained from all bulk soils and plant spheres with the highest proportion obtained from the endorhiza and endocaulosphere of potato plants. BOX-PCR fingerprints of antagonists showed that some were specific for particular plant spheres independent of the soil type, while others originated from different plant spheres of a particular soil type. The majority of antagonists belonged to Pseudomonas. A high proportion of antagonists produced siderophores, and interestingly antagonists from potato tubers frequently carried multiple antibiotic production genes. Our data showed an enrichment of bacteria with genes or traits potentially involved in biocontrol in the rhizosphere and in endophytic compartments. We report that the proportion and diversity of in vitro antagonists towards Rs isolated from bulk soil and different spheres of potato plants grown under field conditions in three different soil types was mainly shaped by the plant sphere and to a lesser extent by the soil type. Bacteria with antagonistic activity towards Ralstonia solanacearum were isolated from all plant spheres and bulk soils but their proportion was highest in endophytic compartments.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Plant-Microbe Systems, Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
45
|
Balbín-Suárez A, Jacquiod S, Rohr AD, Liu B, Flachowsky H, Winkelmann T, Beerhues L, Nesme J, J Sørensen S, Vetterlein D, Smalla K. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol Ecol 2021; 97:6136273. [PMID: 33587112 DOI: 10.1093/femsec/fiab031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 01/19/2023] Open
Abstract
A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. 'M26' apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.
Collapse
Affiliation(s)
- Alicia Balbín-Suárez
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Samuel Jacquiod
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Annmarie-Deetja Rohr
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Bygning 1, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Bygning 1, 2100 Copenhagen, Denmark
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle/Saale, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
46
|
Berg G, Kusstatscher P, Abdelfattah A, Cernava T, Smalla K. Microbiome Modulation-Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants. Front Microbiol 2021; 12:650610. [PMID: 33897663 PMCID: PMC8060476 DOI: 10.3389/fmicb.2021.650610] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Plant-associated microorganisms are involved in important functions related to growth, performance and health of their hosts. Understanding their modes of action is important for the design of promising microbial inoculants for sustainable agriculture. Plant-associated microorganisms are able to interact with their hosts and often exert specific functions toward potential pathogens; the underlying in vitro interactions are well studied. In contrast, in situ effects of inoculants, and especially their impact on the plant indigenous microbiome was mostly neglected so far. Recently, microbiome research has revolutionized our understanding of plants as coevolved holobionts but also of indigenous microbiome-inoculant interactions. Here we disentangle the effects of microbial inoculants on the indigenous plant microbiome and point out the following types of plant microbiome modulations: (i) transient microbiome shifts, (ii) stabilization or increase of microbial diversity, (iii) stabilization or increase of plant microbiome evenness, (iv) restoration of a dysbiosis/compensation or reduction of a pathogen-induced shift, (v) targeted shifts toward plant beneficial members of the indigenous microbiota, and (vi) suppression of potential pathogens. Therefore, we suggest microbiome modulations as novel and efficient mode of action for microbial inoculants that can also be mediated via the plant.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
47
|
Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Microbiol Res 2021; 248:126751. [PMID: 33839507 DOI: 10.1016/j.micres.2021.126751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
In this study, the seed endosphere of a bacterial wilt tolerant chilli cv. Firingi Jolokia was explored in order to find effective agents for bacterial wilt disease biocontrol. A total of 32 endophytic bacteria were isolated from freshly collected seeds and six isolates were selected based on R. solanacearum inhibition assay. These isolates were identified as Bacillus subtilis (KJ-2), Bacillus velezensis (KJ-4), Leuconostoc mesenteroides (KP-1), Lactococcus lactis (LB-3), Bacillus amyloliquefaciens (WK-2), and Bacillus subtilis (WK-3) by 16S rRNA gene sequencing. In the in planta R. solanacearum inhibition assay carried out by seedling root bacterization method, Bacillus subtilis (KJ-2) exhibited highest biocontrol efficacy of 86.6 % on 7th day post R. solanacearum inoculation and a minimum biocontrol efficacy of 52.9 % was noted for Leuconostoc mesenteroides (KP-1). GC-HRMS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Bacillus subtilis (KJ-2); which may contribute to inhibition of R. solanacearum. In the growth promotion assay conducted using these isolates, only two of them namely Bacillus subtilis (KJ-2) and Bacillus amyloliquefaciens (WK-2) showed growth promotion in true leafed tomato plants. All the selected seed endophytic isolates were able to control bacterial wilt of tomato at the seedling stage and Bacillus subtilis (KJ-2) was found to be most effective in controlling the disease. The results of the present study highlighted that seed endosphere of bacterial wilt tolerant cultivar is a rich source of R. solanacearum antagonizing bacterial isolates.
Collapse
|
48
|
Suresh P, Varathraju G, Shanmugaiah V, Almaary KS, Elbadawi YB, Mubarak A. Partial purification and characterization of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens VSMKU3054 against bacterial wilt disease of tomato. Saudi J Biol Sci 2021; 28:2155-2167. [PMID: 33911932 PMCID: PMC8071909 DOI: 10.1016/j.sjbs.2021.02.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022] Open
Abstract
We find out the antimicrobial potential of partially purified 2,4-diacetylphloroglucinol (DAPG) against Ralstonia solanacearum and fungal plant pathogens isolated from tomato rhizobacterium Pseudomonas fluorescens VSMKU3054. The present study is mainly focused on the control of wilt disease of tomato by our isolate VSMKU3054 and DAPG. The cell free culture filtrate of P. fluorescens VSMKU3054 was significantly arrested the growth of R. solanacearum and fungal pathogens such as Rhizoctonia solani, Sclerotium rolfsii, Macrophomina phaseolina and Fusarium oxysporum compared to control. The existence of DAPG from the crude metabolites of P. fluorescens VSMKU3054 was confirmed on TLC with Rf value 0.34, which is coincide with that of authentic phloroglucinol. The partially purified DAPG exhibited much higher activity against R. solanacearum at 30 µg/ml than the fungal plant pathogens compared to control. The antimicrobial partially purified compound was identified as DAPG by UV, FT-IR and GC-MS analysis. The percentage of live cells of R. solanacearum when supplemented with DAPG at 30 µg/ml, significantly controlled the living nature of R. solanacearum up to 68% compared to tetracycline and universal control observed under high content screening analysis. The selected isolate P. fluorescens VSMKU3054 and DAPG significantly controlled wilt disease of tomato up to 59.5% and 42.12% on 3rd and 7th days compared to positive and negative control by detached leaf assay. Further, in silico analysis revealed that high interaction of DAPG encoding protease with lectin which is associated with R. solanacearum. Based on our findings, we confirmed that P. fluorescens VSMKU3054 and DAPG could be used a potential bio inoculants for the management of bacterial wilt disease of tomato.
Collapse
Affiliation(s)
- Perumal Suresh
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Govintharaj Varathraju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Yahya B Elbadawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Paudel S, Dobhal S, Alvarez AM, Arif M. Taxonomy and Phylogenetic Research on Ralstonia solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020; 9:E886. [PMID: 33113847 PMCID: PMC7694096 DOI: 10.3390/pathogens9110886] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
The bacterial wilt pathogen, first known as Bacillus solanacearum, has undergone numerous taxonomic changes since its first description in 1896. The history and significance of this pathogen is covered in this review with an emphasis on the advances in technology that were used to support each reclassification that finally led to the current separation of Ralstonia solanacearum into three genomic species. Frequent name changes occurred as methodology transitioned from phenotypic, biochemical, and molecular studies, to genomics and functional genomics. The diversity, wide host range, and geographical distribution of the bacterial wilt pathogen resulted in its division into three species as genomic analyses elucidated phylogenetic relationships among strains. Current advances in phylogenetics and functional genomics now open new avenues for research into epidemiology and control of the devastating bacterial wilt disease.
Collapse
Affiliation(s)
| | | | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.P.); (S.D.)
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.P.); (S.D.)
| |
Collapse
|
50
|
Morales-Cedeño LR, Orozco-Mosqueda MDC, Loeza-Lara PD, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol Res 2020; 242:126612. [PMID: 33059112 DOI: 10.1016/j.micres.2020.126612] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Sustainable agriculture requires the recruitment of bacterial agents to control diverse plant diseases such as bacterial endophytes. Bacterial endophytes colonize and inhabit internal plant tissues without causing any apparent damage. Within the plant, these bacteria exert multiple beneficiary effects, including direct stimulation of plant growth by the action of phytohormones or the production of metabolites. However, bacterial endophytes also protect their plant host through biocontrol pathogens or by inducing plant innate immune system. The present work makes a systematic and in-depth review on the current state of endophytic bacterial diversity, their plant colonization strategies, and their potential roles as protective agents against plant diseases during pre- and post-harvest stages of crop productivity. In addition, an exploration of their beneficial effects on sustainable agriculture by reducing/eliminating the use of toxic agrochemicals was conducted. Finally, we propose diverse effective strategies for the application of endophytic bacteria as biological agents during both pre- and post-harvest stages, with the aim of protecting crop plants and their agricultural products.
Collapse
Affiliation(s)
- Luzmaria R Morales-Cedeño
- Instituto De Investigaciones Químico-Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Morelia, Michoacán, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Facultad De Agrobiología (··)Presidente Juárez(··), Universidad Michoacana De San Nicolás De Hidalgo, Uruapan, Michoacán, Mexico
| | - Pedro D Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Mexico
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad Obregón, Sonora, Mexico
| | | | - Gustavo Santoyo
- Instituto De Investigaciones Químico-Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Morelia, Michoacán, Mexico.
| |
Collapse
|