1
|
Chen J, Ran P, Xu Y, Khouchani M, Li X, Jian L, Abdelmajid T, Aittahssaint N, Yang Q, Li J, Zhao L. Biomimetic multifunctional nanoparticles for improved radiotherapy and immunotherapy in cancer treatment. Mater Today Bio 2025; 32:101698. [PMID: 40225127 PMCID: PMC11986628 DOI: 10.1016/j.mtbio.2025.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Radiotherapy represents a conventional approach in clinical cancer treatment, but suffers from insufficient DNA damage and limited tumor selectivity. Herein, bismuth oxyiodide quantum dots loaded hollow manganese dioxide (MB) nanoparticles was fabricated and subsequently wrapped with bacterial membrane vesicles (MVs) to create MB@MV nanoparticles. This biomimetic radiosensitizer is designed to enhance the efficacy of radiotherapy through a combined approach of tumor immunotherapy and oxygen delivery strategy. Upon systemic administration, MB@MV enhance tumor accumulation through specifically targeting the inflammatory milieu mediated by MVs, thereby activating dendritic cell-mediated innate immunotherapy. Concurrently, MB@MV demonstrate superior X-ray absorption, leading to effective DNA damage in tumor cells due to the high atomic number of bismuth. Notably, manganese dioxide react with the overexpressed H2O2 in the tumor microenvironment to alleviate hypoxia and fixing X-ray induced DNA damage in tumor cells, culminating in a multi-strategy approach to enhance radiotherapy sensitization. The findings from both in vitro and in vivo experiments demonstrate a significantly enhanced inhibition of tumor growth by MB@MV compared to tumors treated solely with X-ray. Overall, our multifunctional radiosensitizer MB@MV shows considerable promise in the field of tumor radiotherapy.
Collapse
Affiliation(s)
- Jiale Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, PR China
| | - Pan Ran
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yizhao Xu
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Mouna Khouchani
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Xin Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, PR China
| | - Ling Jian
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Takoui Abdelmajid
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Nadia Aittahssaint
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, PR China
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| |
Collapse
|
2
|
Abolhasani FS, Vaghefinanekaran N, Yarahmadi A, Akrami S, Mirmahdavi S, Yousefi MH, Afkhami H, Shafiei M. Outer membrane vesicles in gram-negative bacteria and its correlation with pathogenesis. Front Immunol 2025; 16:1541636. [PMID: 40236702 PMCID: PMC11996793 DOI: 10.3389/fimmu.2025.1541636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
There is a widespread distribution of gram-negative bacteria worldwide, which are responsible for the deaths of numerous patients each year. The illnesses they cause can be localized and systemic, and these bacteria possess several key virulence factors that contribute to their pathogenicity. In recent years, several distinct mechanisms of pathogenesis have evolved that remain largely unknown to scientists and medical experts. Among these, outer membrane vesicles (OMVs) are undoubtedly one of the most significant factors influencing virulence. OMVs contain various bacterial compounds and can have diverse effects on host organisms and the immune system, potentially exacerbating disease and inflammation while evading immune responses. This review comprehensively examines the role of OMVs in bacterial pathogenesis, their interaction with host cells, and their potential biomedical applications. Understanding the molecular mechanisms governing OMV biogenesis and function could pave the way for novel antimicrobial strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mirmahdavi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hasan Yousefi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Lee BH, Lin YC, Zheng YJ, Shen TL, Cheng TY, Huang CC, Hsu WH. Nanoplastics indirectly compromise lettuce growth in hydroponic systems via microbial extracellular vesicles derived from Curvibacter fontanus. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136457. [PMID: 39531814 DOI: 10.1016/j.jhazmat.2024.136457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Recent studies confirm that nanoplastics (NP) cause severe microbial imbalances in various ecosystems, significantly affecting microbial diversity and abundance. Hydroponic systems vital for lettuce production are increasingly threatened by NP contamination in irrigation water and this issue is gaining global attention. This study investigates microbial species in hydroponic irrigation water altered by NP exposure and their impact on lettuce growth. While NP (108-1010 particles/L) did not directly harm or accumulate in lettuce, significant changes in water parameters and microbial communities were observed, particularly an increase in Curvibacter fontanus abundance. Inoculation of sterile irrigation water with NP and C. fontanus led to lettuce mortality, suggesting C. fontanus as a critical mediator. Furthermore, extracellular vesicles (EVs) isolated from C. fontanus, treated with NP, were shown to suppress leaf development, growth, antioxidant defenses, and lettuce survival. This study concludes that NP-induced microbial shifts, particularly involving C. fontanus EVs, indirectly harm hydroponic lettuce production.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan.
| | - Yi-Ching Lin
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Juan Zheng
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.
| | - Ting-Yu Cheng
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Zhao Y, Zhou Y, Xu J, Fan S, Zhu N, Meng Q, Dai S, Yuan X. Cross-Kingdom RNA Transport Based on Extracellular Vesicles Provides Innovative Tools for Plant Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2712. [PMID: 39409582 PMCID: PMC11479161 DOI: 10.3390/plants13192712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
RNA interference (RNAi) shows great potential in plant defense against pathogens through RNA-mediated sequence-specific gene silencing. Among RNAi-based plant protection strategies, spray-induced gene silencing (SIGS) is considered a more promising approach because it utilizes the transfer of exogenous RNA between plants and microbes to silence target pathogen genes. The application of nanovesicles significantly enhances RNA stability and delivery efficiency, thereby improving the effectiveness of SIGS and further enhancing plant resistance to diseases and pathogens. This review explores the role of RNAi in plant protection, focusing on the cross-kingdom transport of small RNAs (sRNAs) via extracellular vesicles. It also explores the potential of nanotechnology to further optimize RNA-based plant protection, offering innovative tools and methods in modern plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Z.); (Y.Z.); (J.X.); (S.F.); (N.Z.); (Q.M.); (S.D.)
| |
Collapse
|
5
|
Velázquez-Flores MÁ, Ruiz Esparza-Garrido R. Fragments derived from non-coding RNAs: how complex is genome regulation? Genome 2024; 67:292-306. [PMID: 38684113 DOI: 10.1139/gen-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Ruth Ruiz Esparza-Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| |
Collapse
|
6
|
Banović Đeri B, Nešić S, Vićić I, Samardžić J, Nikolić D. Benchmarking of five NGS mapping tools for the reference alignment of bacterial outer membrane vesicles-associated small RNAs. Front Microbiol 2024; 15:1401985. [PMID: 39101033 PMCID: PMC11294920 DOI: 10.3389/fmicb.2024.1401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Advances in small RNAs (sRNAs)-related studies have posed a challenge for NGS-related bioinformatics, especially regarding the correct mapping of sRNAs. Depending on the algorithms and scoring matrices on which they are based, aligners are influenced by the characteristics of the dataset and the reference genome. These influences have been studied mainly in eukaryotes and to some extent in prokaryotes. However, in bacteria, the selection of aligners depending on sRNA-seq data associated with outer membrane vesicles (OMVs) and the features of the corresponding bacterial reference genome has not yet been investigated. We selected five aligners: BBmap, Bowtie2, BWA, Minimap2 and Segemehl, known for their generally good performance, to test them in mapping OMV-associated sRNAs from Aliivibrio fischeri to the bacterial reference genome. Significant differences in the performance of the five aligners were observed, resulting in differential recognition of OMV-associated sRNA biotypes in A. fischeri. Our results suggest that aligner(s) should not be arbitrarily selected for this task, which is often done, as this can be detrimental to the biological interpretation of NGS analysis results. Since each aligner has specific advantages and disadvantages, these need to be considered depending on the characteristics of the input OMV sRNAs dataset and the corresponding bacterial reference genome to improve the detection of existing, biologically important OMV sRNAs. Until we learn more about these dependencies, we recommend using at least two, preferably three, aligners that have good metrics for the given dataset/bacterial reference genome. The overlapping results should be considered trustworthy, yet their differences should not be dismissed lightly, but treated carefully in order not to overlook any biologically important OMV sRNA. This can be achieved by applying the intersect-then-combine approach. For the mapping of OMV-associated sRNAs of A. fischeri to the reference genome organized into two circular chromosomes and one circular plasmid, containing copies of sequences with rRNA- and tRNA-related features and no copies of sequences with protein-encoding features, if the aligners are used with their default parameters, we advise avoiding Segemehl, and recommend using the intersect-then-combine approach with BBmap, BWA and Minimap2 to improve the potential for discovery of biologically important OMV-associated sRNAs.
Collapse
Affiliation(s)
- Bojana Banović Đeri
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sofija Nešić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivan Vićić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Samardžić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Nikolić
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
8
|
Salgueiro VC, Passemar C, Vázquez-Iniesta L, Lerma L, Floto A, Prados-Rosales R. Extracellular vesicles in mycobacteria: new findings in biogenesis, host-pathogen interactions, and diagnostics. mBio 2024; 15:e0255223. [PMID: 38567992 PMCID: PMC11077946 DOI: 10.1128/mbio.02552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Since the discovery of extracellular vesicles (EVs) in mycobacterial species 15 years back, we have learned that this phenomenon is conserved in the Mycobacterium genus and has critical roles in bacterial physiology and host-pathogen interactions. Mycobacterium tuberculosis (Mtb), the tuberculosis (TB) causative agent, produces EVs both in vitro and in vivo including a diverse set of biomolecules with demonstrated immunomodulatory effects. Moreover, Mtb EVs (MEVs) have been shown to possess vaccine properties and carry biomarkers with diagnostic capacity. Although information on MEV biogenesis relative to other bacterial species is scarce, recent studies have shed light on how MEVs originate and are released to the extracellular space. In this minireview, we discuss past and new information about the vesiculogenesis phenomenon in Mtb, including biogenesis, MEV cargo, aspects in the context of host-pathogen interactions, and applications that could help to develop effective tools to tackle the disease.
Collapse
Affiliation(s)
- Vivian C. Salgueiro
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Charlotte Passemar
- Cambridge Center for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | - Lucía Vázquez-Iniesta
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Lerma
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrés Floto
- Cambridge Center for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Liu BD, Akbar R, Oliverio A, Thapa K, Wang X, Fan GC. BACTERIAL EXTRACELLULAR VESICLES IN THE REGULATION OF INFLAMMATORY RESPONSE AND HOST-MICROBE INTERACTIONS. Shock 2024; 61:175-188. [PMID: 37878470 PMCID: PMC10921997 DOI: 10.1097/shk.0000000000002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Benjamin D. Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna Oliverio
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kajol Thapa
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Park JH, Song S, Kim S, Kim M, Kim KS. Optimizing Conditions for the Production of Bacterial Extracellular Vesicles of Vibrio vulnificus and Analysis of the Inner Small RNA Compositions. J Microbiol Biotechnol 2024; 34:29-38. [PMID: 38044684 PMCID: PMC10840491 DOI: 10.4014/jmb.2310.10002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Chemical and physical elements affecting the production of bacterial extracellular vesicles (BEVs) of the human pathogen Vibrio vulnificus were quantitatively assessed to optimize the conditions for the BEV production by using the western blot quantification for an outer membrane porin OmpU and by fluorescent dye FM4-64. When cells were cultured at 37°C in an enriched medium (2 × Luria Bertani; 2 × LB) in the presence of EDTA, they produced about 70% more BEVs. BEVs were purified from the cells cultured in the established optimal conditions by the density gradient ultracentrifugation. The dynamic light scattering measurement of the purified BEVs showed that the diameter of them ranged from approximately 25 nm to 161 nm. We hypothesized that there may be some features in nucleotide sequences specific to RNAs packaged in BEVs compared to those in cellular RNA molecules. We compared the nucleotide sequences and abundance of sRNAs between in the cellular fraction and in BEVs through next-generation sequencing (NGS). While no distinct feature was observed in the nucleotide sequences of sRNAs between two groups, the length of sRNA fragments from BEVs were significantly shorter than those in cytoplasm.
Collapse
Affiliation(s)
- Jeong Heon Park
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Suji Song
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Soyee Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Minjeong Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Kun-Soo Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
12
|
Roy Chowdhury M, Massé E. New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods Mol Biol 2024; 2741:183-194. [PMID: 38217654 DOI: 10.1007/978-1-0716-3565-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
13
|
Ali A, Salem M. Methods for Bioinformatic Prediction of Genuine sRNAs from Outer Membrane Vesicles. Methods Mol Biol 2024; 2843:37-54. [PMID: 39141293 DOI: 10.1007/978-1-0716-4055-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The molecular pathogenesis of Gram-negative bacteria remains a complex and incompletely understood phenomenon. Various factors are believed to contribute to the pathogenicity of these bacteria. One key mechanism utilized by Gram-negative bacteria is the production of outer membrane vesicles (OMVs), which are small spherical particles derived from the bacterial outer membrane. These OMVs are crucial in delivering virulence factors to the host, facilitating host-pathogen interactions. Within these OMVs, small regulatory RNAs (sRNAs) have been identified as important players in modulating the host immune response. One of the main challenges in studying OMVs and their cargo of sRNAs is the difficulty in isolating and purifying sufficient quantities of OMVs, as well as accurately predicting genuine sRNAs computationally. In this chapter, we present protocols aimed at overcoming these obstacles.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| |
Collapse
|
14
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 PMCID: PMC10012962 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
15
|
Chen A, Halilovic L, Shay JH, Koch A, Mitter N, Jin H. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102441. [PMID: 37696727 PMCID: PMC10777890 DOI: 10.1016/j.pbi.2023.102441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/13/2023]
Abstract
Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. Based off the discovery of RNA uptake ability in many fungal pathogens, the application of exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. However, SIGS remains hindered by the rapid degradation of RNA in the environment. As extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of nanoparticles on RNA stability and internalization have identified key attributes that can inform better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS strategies. Here, we focus on nanotechnology advancements for the engineering of innovative RNA-based disease control strategies against eukaryotic pathogens and pests.
Collapse
Affiliation(s)
- Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jia-Hong Shay
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Aline Koch
- Institute of Plant Sciences Cell Biology and Plant Biochemistry, Plant RNA Transport, University of Regensburg, Regensburg, Germany
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
16
|
Sheikh A, Zechmann B, Sayes CM, Taube JH, Greathouse KL. A preparation of bacterial outer membrane with osmium tetroxide and uranyl acetate co-stain enables improved structural determination by transmission electron microscopy. Microscopy (Oxf) 2023; 72:515-519. [PMID: 37148329 PMCID: PMC10673695 DOI: 10.1093/jmicro/dfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
Biological nanoparticles, such as bacterial outer membrane vesicles (OMVs), are routinely characterized through transmission electron microscopy (TEM). In this study, we report a novel method to prepare OMVs for TEM imaging. To preserve vesicular shape and structure, we developed a dual fixation protocol involving osmium tetroxide incubation prior to negative staining with uranyl acetate. Combining osmium tetroxide with uranyl acetate resulted in preservation of sub-50 nm vesicles and improved morphological stability, enhancing characterization of lipid-based nanoparticles by TEM.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - K Leigh Greathouse
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
- Nutrition Sciences, Baylor University, One Bear Place #97311, Waco, TX 76798, USA
| |
Collapse
|
17
|
Cai Q, Halilovic L, Shi T, Chen A, He B, Wu H, Jin H. Extracellular vesicles: cross-organismal RNA trafficking in plants, microbes, and mammalian cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:262-282. [PMID: 37575974 PMCID: PMC10419970 DOI: 10.20517/evcna.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanometer-scale particles that transport biological materials such as RNAs, proteins, and metabolites. EVs have been discovered in nearly all kingdoms of life as a form of cellular communication across different cells and between interacting organisms. EV research has primarily focused on EV-mediated intra-organismal transport in mammals, which has led to the characterization of a plethora of EV contents from diverse cell types with distinct and impactful physiological effects. In contrast, research into EV-mediated transport in plants has focused on inter-organismal interactions between plants and interacting microbes. However, the overall molecular content and functions of plant and microbial EVs remain largely unknown. Recent studies into the plant-pathogen interface have demonstrated that plants produce and secrete EVs that transport small RNAs into pathogen cells to silence virulence-related genes. Plant-interacting microbes such as bacteria and fungi also secrete EVs which transport proteins, metabolites, and potentially RNAs into plant cells to enhance their virulence. This review will focus on recent advances in EV-mediated communications in plant-pathogen interactions compared to the current state of knowledge of mammalian EV capabilities and highlight the role of EVs in cross-kingdom RNA interference.
Collapse
Affiliation(s)
- Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430072, Hubei, China
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, United States
| | - Ting Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430072, Hubei, China
| | - Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, United States
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, United States
| | - Huaitong Wu
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, United States
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, United States
| |
Collapse
|
18
|
Grishina YV, Vatlin AA, Mavletova DA, Odorskaya MV, Senkovenko AM, Ilyasov RA, Danilenko VN. Metabolites Potentially Determine the High Antioxidant Properties of Limosilactobacillus fermentum U-21. BIOTECH 2023; 12:biotech12020039. [PMID: 37218756 DOI: 10.3390/biotech12020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Many kinds of Lactobacillus are common occupants of humans' digestive tract that support the preservation of a balanced microbial environment that benefits host health. In this study, the unique lactic acid bacterium strain Limosilactobacillus fermentum U-21, which was isolated from the feces of a healthy human, was examined for its metabolite profile in order to compare it to that of the strain L. fermentum 279, which does not have antioxidant (AO) capabilities. By using GC × GC-MS, the metabolite fingerprint of each strain was identified, and the data were then subjected to multivariate bioinformatics analysis. The L. fermentum U-21 strain has previously been shown to possess distinctive antioxidant properties in in vivo and in vitro studies, positioning it as a drug candidate for the treatment of Parkinsonism. The production of multiple distinct compounds is shown by the metabolite analysis, demonstrating the unique characteristics of the L. fermentum U-21 strain. According to reports, some of the L. fermentum U-21 metabolites found in this study have health-promoting properties. The GC × GC-MS-based metabolomic tests defined strain L. fermentum U-21 as a potential postbiotic with significant antioxidant potential.
Collapse
Affiliation(s)
- Yelena V Grishina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Moscow, Russia
| | - Aleksey A Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Dilara A Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maya V Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Alexey M Senkovenko
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, 111234 Moscow, Russia
| | - Rustem A Ilyasov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Laboratory of Molecular Genetics, Bashkir State Agrarian University, 450001 Ufa, Russia
| | - Valeriy N Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
19
|
Wang Z, Zeng J, Deng J, Hou X, Zhang J, Yan W, Cai Q. Pathogen-Derived Extracellular Vesicles: Emerging Mediators of Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:218-227. [PMID: 36574017 DOI: 10.1094/mpmi-08-22-0162-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles that deliver bioactive proteins, nucleic acids, lipids, and other small molecules from donor to recipient cells. They have attracted significant interest recently due to their important roles in regulating plant-microbe interaction. During microbial infection, plant EVs play a prominent role in defense by delivering small regulatory RNA into pathogens, resulting in the silencing of pathogen virulence genes. Pathogens also deliver small RNAs into plant cells to silence host immunity genes. Recent evidence indicates that microbial EVs may be involved in pathogenesis and host immunity modulation by transporting RNAs and other biomolecules. However, the biogenesis and function of microbial EVs in plant-microbe interaction remain ill-defined. In this review, we discuss various aspects of microbial EVs, with a particular focus on current methods for EV isolation, composition, biogenesis, and their roles in plant-microbe interaction. We also discussed the potential role of microbial EVs in cross-kingdom RNA trafficking from pathogens to plants, as it is a highly likely possibility to explore in the future. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiayue Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiliang Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Xiangjie Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiefu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Yan
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| |
Collapse
|
20
|
Ryu S, Ni K, Wang C, Sivanantham A, Carnino JM, Ji HL, Jin Y. Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways. Biomedicines 2023; 11:568. [PMID: 36831104 PMCID: PMC9953134 DOI: 10.3390/biomedicines11020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Chenghao Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Ayyanar Sivanantham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, 11937 US Hwy 271, BMR, Lab D-11, Tyler, TX 75708, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
21
|
Fan R, Zhou Y, Chen X, Zhong X, He F, Peng W, Li L, Wang X, Xu Y. Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis. Microbiol Spectr 2023; 11:e0328822. [PMID: 36629433 PMCID: PMC9927323 DOI: 10.1128/spectrum.03288-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here, we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed tomography (micro-CT) and histological analysis showed that under stimulation with P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by human periodontal ligament cells ([hPDLCs]) in vitro, which subsequently resulted in apoptosis and inflammatory cytokine release, which was accomplished by the microRNA-size small RNA (msRNA) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, chromobox 5 (CBX5) was identified as the downstream target of screened-out sRNA45033. Using a dual-luciferase reporter assay, overexpression, and knockdown methods, sRNA45033 was confirmed to target CBX5 to regulate hPDLC apoptosis. In addition, CUT&Tag (cleavage under targets and tagmentation) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence during the development of periodontitis. IMPORTANCE P. gingivalis is a bacterium often associated with periodontitis. This study demonstrates that (i) sRNA45033 in P. gingivalis OMVs targets CBX5, (ii) CBX5 regulates the methylation of p53 DNA and its expression, which is associated with apoptosis, and (iii) a novel mechanism of interaction between hosts and pathogens is mediated by OMVs in the occurrence of periodontitis.
Collapse
Affiliation(s)
- Ruyi Fan
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xu Chen
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xianmei Zhong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, Taizhou Stomatological Hospital, Taizhou, China
| | - Fanzhen He
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wenzao Peng
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
22
|
Jiang X, Wang N, Liu C, Zhuo Y, Liang L, Gan Y, Yu M. Oral delivery of nucleic acid therapeutics: Challenges, strategies, and opportunities. Drug Discov Today 2023; 28:103507. [PMID: 36690175 DOI: 10.1016/j.drudis.2023.103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In recent decades, advances in chemical synthesis and delivery systems have accelerated the development of therapeutic nucleic acids, several of which have been approved by the Us Food and Drug Administration (FDA). Oral nucleic acid delivery is preferred because of its simplicity and patient compliance, but it still presents distinct challenges. The negative charge, hydrophilicity, and large molecular weight of nucleic acids combined with in vivo gastrointestinal (GI) barriers (e.g., acidic pH, enzymes, mucus, and intestinal epithelial cells) severely hinder their delivery efficacy. Recently, various nanoparticles (NPs), ranging from polymeric to lipid-based (L)NPs and extracellular vesicles (EVs), have been extensively explored to address these obstacles. In this review, we describe the physiological barriers in the GI tract and summarize recent advances in NP-based oral nucleic acid therapeutics.
Collapse
Affiliation(s)
- Xiaohe Jiang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhuo
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330000, China
| | - Li Liang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
23
|
Sarshar M, Scribano D, Palamara AT, Ambrosi C, Masotti A. The Acinetobacter baumannii model can explain the role of small non-coding RNAs as potential mediators of host-pathogen interactions. Front Mol Biosci 2022; 9:1088783. [PMID: 36619166 PMCID: PMC9810633 DOI: 10.3389/fmolb.2022.1088783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial small RNAs (sRNAs) research has accelerated over the past decade, boosted by advances in RNA-seq technologies and methodologies for capturing both protein-RNA and RNA-RNA interactions. The emerging picture is that these regulatory sRNAs play important roles in controlling complex physiological processes and are required to survive the antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has also gained increasing attention, particularly in the context of infection. Secreted RNAs from several bacterial pathogens have been characterized but the exact mechanisms promoting pathogenicity remain elusive. In this review, we briefly discuss how secreted sRNAs interact with targets in infected cells, thus representing a novel perspective of host cell manipulation during bacterial infection. During the last decade, Acinetobacter baumannii became clinically relevant emerging pathogens responsible for nosocomial and community-acquired infections. Therefore, we also summarize recent findings of regulation by sRNAs in A. baumannii and discuss how this emerging bacterium utilizes many of these sRNAs to adapt to its niche and become successful human pathogen.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy,IRCCS San Raffaele Roma, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| |
Collapse
|
24
|
Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022; 11:pathogens11101173. [PMID: 36297228 PMCID: PMC9609396 DOI: 10.3390/pathogens11101173] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic bacterium that lives in the oral cavity. It is an integral part of the oral microbiome, which includes more than 500 types of bacteria. Under certain circumstances, as a consequence of virulence factors, it can become very destructive and proliferate to many cells in periodontal lesions. It is one of the causative agents present extremely often in dental plaque and is the main etiological factor in the development of periodontal disease. During various therapeutic procedures, P. gingivalis can enter the blood and disseminate through it to distant organs. This primarily refers to the influence of periodontal agents on the development of subacute endocarditis and can facilitate the development of coronary heart disease, atherosclerosis, and ischemic infarction. The action of P. gingivalis is facilitated by numerous factors of virulence and pathogenicity such as fimbriae, hemolysin, hemagglutinin, capsules, outer membrane vesicles, lipopolysaccharides, and gingipains. A special problem is the possibility of biofilm formation. P. gingivalis in a biofilm is 500 to 1000 times less sensitive to antimicrobial drugs than planktonic cells, which represents a significant problem in the treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| | - Marko Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Miroslav Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cardiology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| |
Collapse
|
25
|
Yañez A, Garduño RA, Contreras-Rodríguez A. Editorial: What is known and what remains to be discovered about bacterial outer membrane vesicles, volume II. Front Microbiol 2022; 13:929696. [PMID: 36262321 PMCID: PMC9574390 DOI: 10.3389/fmicb.2022.929696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alejandro Yañez
- Facultad de Ciencias, Universidad Austral de Chile (INCAR), Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rafael A. Garduño
- Department of Microbiology and Immunology, Dalhousie University and the Canadian Food Inspection Agency, Halifax, NS, Canada
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Araceli Contreras-Rodríguez ;
| |
Collapse
|
26
|
Yan XY, Yao JP, Li YQ, Zhang W, Xi MH, Chen M, Li Y. Global trends in research on miRNA-microbiome interaction from 2011 to 2021: A bibliometric analysis. Front Pharmacol 2022; 13:974741. [PMID: 36110534 PMCID: PMC9468484 DOI: 10.3389/fphar.2022.974741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
An increasing number of research suggests that the microRNA (miRNA)-microbiome interaction plays an essential role in host health and diseases. This bibliometric analysis aimed to identify the status of global scientific output, research hotspots, and frontiers regarding the study of miRNA-microbiome interaction over the past decade. We retrieved miRNA-microbiome-related studies published from 2011 to 2021 from the Web of Science Core Collection database; the R package bibliometrix was used to analyze bibliometric indicators, and VOSviewer was used to visualize the field status, hotspots, and research trends of miRNA-microbiome interplay. In total, 590 articles and reviews were collected. A visual analysis of the results showed that significant increase in the number of publications over time. China produced the most papers, and the United States contributed the highest number of citations. Shanghai Jiaotong University and the University of California Davis were the most active institutions in the field. Most publications were published in the areas of biochemistry and molecular biology. Yu Aiming was the most prolific writer, as indicated by the h-index and m-index, and Liu Shirong was the most commonly co-cited author. A paper published in the International Journal of Molecular Sciences in 2017 had the highest number of citations. The keywords "expression" and "gut microbiota" appeared most frequently, and the top three groups of diseases that appeared among keywords were cancer (colorectal, et al.), inflammatory bowel disease (Crohn's disease and ulcerative colitis), and neurological disorders (anxiety, Parkinson's disease, et al.). This bibliometric study revealed that most studies have focused on miRNAs (e.g., miR-21, miR-155, and miR-146a), gut microbes (e.g., Escherichia coli, Bifidobacterium, and Fusobacterium nucleatum), and gut bacteria metabolites (e.g., butyric acid), which have the potential to improve the diagnosis, treatment, and prognosis of diseases. We found that therapeutic strategies targeting the miRNA-microbiome axis focus on miRNA drugs produced in vitro; however, some studies suggest that in vivo fermentation can greatly increase the stability and reduce the degradation of miRNA. Therefore, this method is worthy of further research.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Han Xi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Clinical Medicine School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Paolini A, Baldassarre A, Bruno SP, Felli C, Muzi C, Ahmadi Badi S, Siadat SD, Sarshar M, Masotti A. Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Front Microbiol 2022; 13:888414. [PMID: 35756065 PMCID: PMC9218639 DOI: 10.3389/fmicb.2022.888414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, the clinical use of extracellular miRNAs as potential biomarkers of disease has increasingly emerged as a new and powerful tool. Serum, urine, saliva and stool contain miRNAs that can exert regulatory effects not only in surrounding epithelial cells but can also modulate bacterial gene expression, thus acting as a “master regulator” of many biological processes. We think that in order to have a holistic picture of the health status of an individual, we have to consider comprehensively many “omics” data, such as miRNAs profiling form different parts of the body and their interactions with cells and bacteria. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) algorithms coupled to other multiomics data (i.e., big data) could help researchers to classify better the patient’s molecular characteristics and drive clinicians to identify personalized therapeutic strategies. Here, we highlight how the integration of “multiomic” data (i.e., miRNAs profiling and microbiota signature) with other omics (i.e., metabolomics, exposomics) analyzed by AI algorithms could improve the diagnostic and prognostic potential of specific biomarkers of disease.
Collapse
Affiliation(s)
- Alessandro Paolini
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | | | - Stefania Paola Bruno
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.,Department of Science, University Roma Tre, Rome, Italy
| | - Cristina Felli
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chantal Muzi
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Sara Ahmadi Badi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
28
|
Testa E, Palazzo C, Mastrantonio R, Viscomi MT. Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma. Cancers (Basel) 2022; 14:3128. [PMID: 35804908 PMCID: PMC9265028 DOI: 10.3390/cancers14133128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell-BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell-cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs-tumor cell interaction.
Collapse
Affiliation(s)
- Erika Testa
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Claudia Palazzo
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Roberta Mastrantonio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Maria Teresa Viscomi
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
- IRCCS, Fondazione Policlinico Universitario “Agostino Gemelli”, L.go A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
29
|
Rudnicka M, Noszczyńska M, Malicka M, Kasperkiewicz K, Pawlik M, Piotrowska-Seget Z. Outer Membrane Vesicles as Mediators of Plant-Bacterial Interactions. Front Microbiol 2022; 13:902181. [PMID: 35722319 PMCID: PMC9198584 DOI: 10.3389/fmicb.2022.902181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/05/2022] Open
Abstract
Plants have co-evolved with diverse microorganisms that have developed different mechanisms of direct and indirect interactions with their host. Recently, greater attention has been paid to a direct "message" delivery pathway from bacteria to plants, mediated by the outer membrane vesicles (OMVs). OMVs produced by Gram-negative bacteria play significant roles in multiple interactions with other bacteria within the same community, the environment, and colonized hosts. The combined forces of innovative technologies and experience in the area of plant-bacterial interactions have put pressure on a detailed examination of the OMVs composition, the routes of their delivery to plant cells, and their significance in pathogenesis, protection, and plant growth promotion. This review synthesizes the available knowledge on OMVs in the context of possible mechanisms of interactions between OMVs, bacteria, and plant cells. OMVs are considered to be potential stimulators of the plant immune system, holding potential for application in plant bioprotection.
Collapse
Affiliation(s)
| | | | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | | | | |
Collapse
|
30
|
Díez-Sainz E, Milagro FI, Riezu-Boj JI, Lorente-Cebrián S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022; 78:485-499. [PMID: 34472032 PMCID: PMC8410452 DOI: 10.1007/s13105-021-00837-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota-derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet-induced increase of the proteobacterium Pseudomonas panacis-derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet-induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota-derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota-derived EV.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| |
Collapse
|
31
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|
32
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
33
|
Roncarati D, Scarlato V, Vannini A. Targeting of Regulators as a Promising Approach in the Search for Novel Antimicrobial Agents. Microorganisms 2022; 10:microorganisms10010185. [PMID: 35056634 PMCID: PMC8777881 DOI: 10.3390/microorganisms10010185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Since the discovery of penicillin in the first half of the last century, antibiotics have become the pillars of modern medicine for fighting bacterial infections. However, pathogens resistant to antibiotic treatment have increased in recent decades, and efforts to discover new antibiotics have decreased. As a result, it is becoming increasingly difficult to treat bacterial infections successfully, and we look forward to more significant efforts from both governments and the scientific community to research new antibacterial drugs. This perspective article highlights the high potential of bacterial transcriptional and posttranscriptional regulators as targets for developing new drugs. We highlight some recent advances in the search for new compounds that inhibit their biological activity and, as such, appear very promising for treating bacterial infections.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Correspondence: (D.R.); (V.S.); (A.V.)
| |
Collapse
|
34
|
Meers PR. Membrane Organization Strategies in Vesicular Antibiotic Delivery. J Membr Biol 2022; 255:523-535. [PMID: 35018488 DOI: 10.1007/s00232-021-00210-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
Small molecule antibiotics are often derived from microorganisms that thrive in competitive environments. Their importance as therapeutics for infectious disease in humans has been established over many years. It has now become clear that antibiotic-producing organisms use packaging and delivery in the form of vesicles in many cases. A similar strategy has evolved in recent decades in the pharmaceutical industry for formulation of antibiotic therapies. The top-down approach that has evolved over millions of years in various micro-organisms has generated complex, efficient delivery systems that we are just now beginning to understand. The bottom-up formulation approach involves simple, safe compositions, which are being continually enhanced by trying to add features of which the natural systems inform us. A comparison is made here of these paradigms. Despite the differences, there are a number of common features in the basic physical and biological requirements that must be satisfied. In this review, illustration and comparison of some of these requirements is given, demonstrating the ongoing challenges in this area of research.
Collapse
Affiliation(s)
- Paul R Meers
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
35
|
Mills J, Erdmann S. Isolation, Purification, and Characterization of Membrane Vesicles from Haloarchaea. Methods Mol Biol 2022; 2522:435-448. [PMID: 36125769 DOI: 10.1007/978-1-0716-2445-6_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane vesicles (MVs), also described as extracellular vesicles (EVs), exosomes, or outer membrane vesicles (OMVs), are nano-sized (10-300 nm) spherical, membrane-bound structures deriving from the cell envelope. MVs have been studied extensively in both eukaryotic and prokaryotic systems, revealing a plethora of unique functions including cell-to-cell communication and protection of the cell. They are able to encapsulate specific cargos from nucleic acids to proteins, thereby concentrating cargo and providing protection from the extracellular environment. While MV production has been identified for all domains of life, with extensive investigation particularly for Bacteria and Eukaryota, it has only been studied in a few members of the archaeal domain, leaving a void of information concerning the role of MVs for the majority of Archaea. In addition, several discrepancies exist in the process of MV preparation and analysis between studies of MV production in different archaeal organisms. To further encourage the investigation of MVs in Archaea among the scientific community, we present a standardized method for the isolation, purification, and characterization of MVs based on the archaeal model organism, Haloferax volcanii. However, the described protocol can be applied to other Archaea with the appropriate modifications that are highlighted in Subheading 4.
Collapse
Affiliation(s)
- Joshua Mills
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
36
|
Reid LV, Spalluto CM, Watson A, Staples KJ, Wilkinson TMA. The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD. Front Immunol 2021; 12:754004. [PMID: 34925327 PMCID: PMC8675939 DOI: 10.3389/fimmu.2021.754004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Individuals with COPD typically experience a progressive, debilitating decline in lung function as well as systemic manifestations of the disease. Multimorbidity, is common in COPD patients and increases the risk of hospitalisation and mortality. Central to the genesis of multimorbidity in COPD patients is a self-perpetuating, abnormal immune and inflammatory response driven by factors including ageing, pollutant inhalation (including smoking) and infection. As many patients with COPD have multiple concurrent chronic conditions, which require an integrative management approach, there is a need to greater understand the shared disease mechanisms contributing to multimorbidity. The intercellular transfer of extracellular vesicles (EVs) has recently been proposed as an important method of local and distal cell-to-cell communication mediating both homeostatic and pathological conditions. EVs have been identified in many biological fluids and provide a stable capsule for the transfer of cargo including proteins, lipids and nucleic acids. Of these cargo, microRNAs (miRNAs), which are short 17-24 nucleotide non-coding RNA molecules, have been amongst the most extensively studied. There is evidence to support that miRNA are selectively packaged into EVs and can regulate recipient cell gene expression including major pathways involved in inflammation, apoptosis and fibrosis. Furthermore changes in EV cargo including miRNA have been reported in many chronic diseases and in response to risk factors including respiratory infections, noxious stimuli and ageing. In this review, we discuss the potential of EVs and EV-associated miRNA to modulate shared pathological processes in chronic diseases. Further delineating these may lead to the identification of novel biomarkers and therapeutic targets for patients with COPD and multimorbidities.
Collapse
Affiliation(s)
- Laura V Reid
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
37
|
Extracellular Vesicles and Host-Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes (Basel) 2021; 12:genes12071010. [PMID: 34208860 PMCID: PMC8303656 DOI: 10.3390/genes12071010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication.
Collapse
|
38
|
Li Z, Stanton BA. Transfer RNA-Derived Fragments, the Underappreciated Regulatory Small RNAs in Microbial Pathogenesis. Front Microbiol 2021; 12:687632. [PMID: 34079534 PMCID: PMC8166272 DOI: 10.3389/fmicb.2021.687632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
In eukaryotic organisms, transfer RNA (tRNA)-derived fragments have diverse biological functions. Considering the conserved sequences of tRNAs, it is not surprising that endogenous tRNA fragments in bacteria also play important regulatory roles. Recent studies have shown that microbes secrete extracellular vesicles (EVs) containing tRNA fragments and that the EVs deliver tRNA fragments to eukaryotic hosts where they regulate gene expression. Here, we review the literature describing microbial tRNA fragment biogenesis and how the fragments secreted in microbial EVs suppress the host immune response, thereby facilitating chronic infection. Also, we discuss knowledge gaps and research challenges for understanding the pathogenic roles of microbial tRNA fragments in regulating the host response to infection.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
39
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Markelova N, Glazunova O, Alikina O, Panyukov V, Shavkunov K, Ozoline O. Suppression of Escherichia coli Growth Dynamics via RNAs Secreted by Competing Bacteria. Front Mol Biosci 2021; 8:609979. [PMID: 33937321 PMCID: PMC8082180 DOI: 10.3389/fmolb.2021.609979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
With the discovery of secreted RNAs, it has become apparent that the biological role of regulatory oligonucleotides likely goes beyond the borders of individual cells. However, the mechanisms of their action are still comprehended only in general terms and mainly for eukaryotic microRNAs, which can interfere with mRNAs even in distant recipient cells. It has recently become clear that bacterial cells lacking interference systems can also respond to eukaryotic microRNAs that have targets in their genomes. However, the question of whether bacteria can perceive information transmitted by oligonucleotides secreted by other prokaryotes remained open. Here we evaluated the fraction of short RNAs secreted by Escherichia coli during individual and mixed growth with Rhodospirillum rubrum or Prevotella copri, and found that in the presence of other bacteria E. coli tends to excrete oligonucleotides homologous to alien genomes. Based on this observation, we selected four RNAs secreted by either R. rubrum or P. copri, together with one E. coli-specific oligonucleotide. Both fragments of R. rubrum 23S-RNA suppressed the growth of E. coli. Of the two fragments secreted by P. copri, one abolished the stimulatory effect of E. coli RNA derived from the 3'-UTR of ProA mRNA, while the other inhibited bacterial growth only in the double-stranded state with complementary RNA. The ability of two RNAs secreted by cohabiting bacteria to enter E. coli cells was demonstrated using confocal microscopy. Since selected E. coli-specific RNA also affected the growth of this bacterium, we conclude that bacterial RNAs can participate in inter- and intraspecies signaling.
Collapse
Affiliation(s)
- Natalia Markelova
- Laboratory of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Olga Glazunova
- Laboratory of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Olga Alikina
- Laboratory of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Valeriy Panyukov
- Department of Structural and Functional Genomics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.,Laboratory of Bioinformatics, Institute of Mathematical Problems of Biology, Pushchino, Russia
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.,Department of Structural and Functional Genomics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Olga Ozoline
- Laboratory of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.,Department of Structural and Functional Genomics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
41
|
Luz BSRD, Nicolas A, Chabelskaya S, Rodovalho VDR, Le Loir Y, Azevedo VADC, Felden B, Guédon E. Environmental Plasticity of the RNA Content of Staphylococcus aureus Extracellular Vesicles. Front Microbiol 2021; 12:634226. [PMID: 33776967 PMCID: PMC7990786 DOI: 10.3389/fmicb.2021.634226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of bacterial extracellular vesicles (EVs) in cell-to-cell signaling are progressively being unraveled. These membranous spheres released by many living cells carry various macromolecules, some of which influence host-pathogen interactions. Bacterial EVs contain RNA, which may serve in communicating with their infected hosts. Staphylococcus aureus, an opportunistic human and animal pathogen, produces EVs whose RNA content is still poorly characterized. Here, we investigated in depth the RNA content of S. aureus EVs. A high-throughput RNA sequencing approach identified RNAs in EVs produced by the clinical S. aureus strain HG003 under different environmental conditions: early- and late-stationary growth phases, and presence or absence of a sublethal vancomycin concentration. On average, sequences corresponding to 78.0% of the annotated transcripts in HG003 genome were identified in HG003 EVs. However, only ~5% of them were highly covered by reads (≥90% coverage) indicating that a large fraction of EV RNAs, notably mRNAs and sRNAs, were fragmented in EVs. According to growth conditions, from 86 to 273 highly covered RNAs were identified into the EVs. They corresponded to 286 unique RNAs, including 220 mRNAs. They coded for numerous virulence-associated factors (hld encoded by the multifunctional sRNA RNAIII, agrBCD, psmβ1, sbi, spa, and isaB), ribosomal proteins, transcriptional regulators, and metabolic enzymes. Twenty-eight sRNAs were also detected, including bona fide RsaC. The presence of 22 RNAs within HG003 EVs was confirmed by reverse transcription quantitative PCR (RT-qPCR) experiments. Several of these 286 RNAs were shown to belong to the same transcriptional units in S. aureus. Both nature and abundance of the EV RNAs were dramatically affected depending on the growth phase and the presence of vancomycin, whereas much less variations were found in the pool of cellular RNAs of the parent cells. Moreover, the RNA abundance pattern differed between EVs and EV-producing cells according to the growth conditions. Altogether, our findings show that the environment shapes the RNA cargo of the S. aureus EVs. Although the composition of EVs is impacted by the physiological state of the producing cells, our findings suggest a selective packaging of RNAs into EVs, as proposed for EV protein cargo. Our study shedds light to the possible roles of potentially functional RNAs in S. aureus EVs, notably in host-pathogen interactions.
Collapse
Affiliation(s)
- Brenda Silva Rosa Da Luz
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Svetlana Chabelskaya
- BRM [Bacterial Regulatory RNAs and Medicine] UMR_S 1230, University of Rennes, Inserm, Rennes, France
| | - Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Brice Felden
- BRM [Bacterial Regulatory RNAs and Medicine] UMR_S 1230, University of Rennes, Inserm, Rennes, France
| | | |
Collapse
|
42
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|