1
|
Knight B, Truswell A, Jordan D, Ash A, Hampson DJ, Abraham S. Novel robotic tools used for the detection of faecal shedding of Escherichia coli resistant to critically important antimicrobials in healthy dogs. Vet Microbiol 2025; 306:110566. [PMID: 40398349 DOI: 10.1016/j.vetmic.2025.110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/17/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Escherichia coli recovered from dogs with clinical conditions such as urinary tract infections are often used to assess populations for resistance to critically important antimicrobials (CIAs). Despite the potential importance of such strains, the number of organisms scrutinised is very small and no information is obtained from the preponderance of normal, healthy dogs. Commensal E. coli are a valuable alternative, but little is gained if the number of isolates also remains small. In this work we demonstrate novel technology reliant on laboratory robots to examine the CIA resistance status of millions of commensal E. coli in the faeces of 86 healthy companion dogs. Fluoroquinolone-resistant isolates also underwent phenotypic resistance testing to detect multi-class resistant strains, and multi-locus sequence types and antimicrobial resistance genes identified with whole genome sequencing. Ciprofloxacin resistance was detected in isolates from five (5.8 %) of the healthy dogs, with a high ratio of ciprofloxacin-resistant E. coli to total E. coli being found in three of these animals. Antimicrobial susceptibility testing of the five isolates identified four resistance profiles, with all isolates having multi-class phenotypic resistance to between three and six antimicrobial classes. Genomic analysis confirmed the presence of genes encoding multi-class resistance, with four isolates being resistant to multiple classes. The five isolates belonged to sequence types ST1193 (n = 3) and ST354 (n = 2). All five isolates possessed multiple mutations within the quinolone resistance-determining regions. The predominant sequence type ST1193 is an emerging multidrug resistant E. coli strain harbouring fluoroquinolone resistance, which previously primarily has been detected in clinical samples from dogs. The current study demonstrates the power of robotics for delivering a multi-staged approach based on mass screening to achieve sensitivity and specificity achieved with detailed phenotypic and genotypic characterisation. Based on this experience, future studies can be expanded to yield a much richer understanding of antimicrobial resistance in canines.
Collapse
Affiliation(s)
- Breanna Knight
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Alec Truswell
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David Jordan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J Hampson
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
2
|
van Bohemen A, Bulach D, Frosini SM, Johnstone T, Jepson RE. Evaluation of phylogroup, sequence type, resistome and virulome in Escherichia coli resulting in feline bacterial cystitis and subclinical bacteriuria. Vet Microbiol 2025; 304:110477. [PMID: 40112693 DOI: 10.1016/j.vetmic.2025.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
There is limited information on E. coli from feline urine and whether associated virulence and antimicrobial resistance patterns contribute to disease manifestations. This study aimed to characterise E. coli isolates, sequence types (ST), antimicrobial resistance (ARG) and virulence associated genes (VAG) from cats in primary care with subclinical bacteriuria (SBU) or lower urinary tract infection (LUTI). Whole genome sequencing (WGS) was performed on E. coli isolates that had been stored from a longitudinal health monitoring programme. Clinical records were reviewed to determine underlying disease conditions, phenotypic susceptibility and SBU and LUTI status. Descriptive review of phylogroup and ST was assessed together with evaluation of ARG and VAG by ST and based on SBU or LUTI status. WGS data was available for 152 E. coli isolates from cats (n = 26 with LUTI, n = 126 with SBU). The most common phylogroup was B2 with ST73, ST80, ST83 and ST127 predominating and ST80 being associated with clinical LUTI. Evaluating all isolates, there was no difference in prevalence of MDR status, total VAG or ARG count from cats with SBU or LUTI. Exploring individual VAG, ibeA, an invasin, and kpsT, part of the group 2 polysaccharide capsule, were associated with LUTI whilst P-fimbrial genes (pap) were associated with SBU. Based on this study, evidence is limited that expression of LUTI is directly related to ST or virulome and there is no evidence for increased resistome with SBU. However, low prevalence of cats with clinical LUTI may have precluded identification of associations.
Collapse
Affiliation(s)
- Annelies van Bohemen
- Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom
| | - Dieter Bulach
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Siân-Marie Frosini
- Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom
| | - Thurid Johnstone
- Animal Referral Hospital, 72 Hargrave Avenue, Essendon Field, Victoria 3041, Australia
| | - Rosanne E Jepson
- Royal Veterinary College, Department of Clinical Science and Services, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom.
| |
Collapse
|
3
|
Jousserand N, Auvray F, Chagneau C, Cavalié L, Maurey C, Drut A, Lavoué R, Oswald E. Zoonotic potential of uropathogenic Escherichia coli lineages from companion animals. Vet Res 2025; 56:69. [PMID: 40140916 PMCID: PMC11948896 DOI: 10.1186/s13567-025-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025] Open
Abstract
Escherichia coli is responsible for urinary tract infections (UTI) in humans and pets. This study aims to provide data on the virulome and resistome of E. coli strains isolated during bacteriuria in companion animals and to assess their zoonotic potential. 135 E. coli strains prospectively collected from urine samples of 44 cats and 91 dogs in three French veterinary teaching hospitals were analyzed via antibiotic susceptibility tests and whole genome sequencing. Phylogroup B2 was overrepresented and several sequence types (STs) associated with human extra-intestinal pathogenic E. coli (ExPEC) were found. These included ST12, ST127 and ST141 (8 strains each), which were characterized by genetic homogeneity, and ST73 (23 strains) which contained several serotype-delineated sublineages with distinct distributions in pets and humans. Single nucleotide polymorphism (SNP) analysis further revealed the existence of highly related human and companion animal clones among these STs, indicative of a zoonotic potential. By contrast, other major human ExPEC STs (e.g. ST131, ST10, ST69, ST95 and ST1193) were rarely found (2 strains each), suggesting they might be less adapted to cats and dogs. Of note, ST372 (21 strains) was predominant and exclusively found in dogs. Pet E. coli UTI strains carried virulence genes commonly found in human E. coli UTI isolates. 15.6% of strains were predicted as multi-drug resistant. The major canine and feline ExPEC lineages were not associated with extended spectrum beta lactamase and AmpC production. Only one strain (from ST131) carried the blaCTX-M-15 gene. Persistent clones of E. coli isolated from five cats and nine dogs with recurrent infection had genetic traits similar to strains from other animals. Approximately one-third of the E. coli UTI strains from pets exhibited genetic similarities to those responsible for UTI in humans, suggesting a potential for zoonotic transmission. This study underscores the continued need to monitor and control antimicrobial resistance in companion animals.
Collapse
Affiliation(s)
- Nicolas Jousserand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Camille Chagneau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Service de Bactériologie-Hygiène, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent Cavalié
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Service de Bactériologie-Hygiène, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Christelle Maurey
- UMR Virologie, INRAE, ENVA, ANSES, Université Paris-Est, Maisons-Alfort, France
- Department of Internal Medicine, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Amandine Drut
- Oniris VetAgroBio Nantes, Université de Nantes, Nantes, France
- MIHA Team, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel Lavoué
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- InTheRes, Université de Toulouse, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
- Service de Bactériologie-Hygiène, CHU Toulouse, Hôpital Purpan, Toulouse, France.
| |
Collapse
|
4
|
Caddey B, Fisher S, Barkema HW, Nobrega DB. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev 2025; 38:e0014622. [PMID: 39853095 PMCID: PMC11905369 DOI: 10.1128/cmr.00146-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYNumerous questions persist regarding the role of companion animals as potential reservoirs of antimicrobial-resistant organisms that can infect humans. While relative antimicrobial usage in companion animals is lower than that in humans, certain antimicrobial-resistant pathogens have comparable colonization rates in companion animals and their human counterparts, which inevitably raises questions regarding potential antimicrobial resistance (AMR) transmission. Furthermore, the close contact between pets and their owners, as well as pets, veterinary professionals, and the veterinary clinic environment, provides ample opportunity for zoonotic transmission of antimicrobial-resistant pathogens. Here we summarize what is known about the transmission of AMR and select antimicrobial-resistant organisms between companion animals (primarily dogs, cats, and horses) and humans. We also describe the global distribution of selected antimicrobial-resistant organisms in companion animals. The impact of interspecies AMR transmission within households and veterinary care settings is critically reviewed and discussed in the context of methicillin-resistant staphylococci, extended-spectrum β-lactamase and carbapenemase-producing bacteria. Key research areas are emphasized within established global action plans on AMR, offering valuable insights for shaping future research and surveillance initiatives.
Collapse
Affiliation(s)
- Benjamin Caddey
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sibina Fisher
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Bonnevie A, Myrenås M, Nilsson O. ESBL- and pAmpC-producing Enterobacterales from Swedish dogs and cats 2017-2021: a retrospective study. Acta Vet Scand 2025; 67:2. [PMID: 39762972 PMCID: PMC11702106 DOI: 10.1186/s13028-024-00786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins. The Swedish Veterinary Agency (former English name National Veterinary Institute) performs confirmatory testing of suspected ESBL-/pAmpC-producing Enterobacterales. The aim of this study is to describe the clinical background, antibiotic susceptibility, and genetic relationships of confirmed isolates from dogs and cats in Sweden from 2017 to 2021. RESULTS The study includes 92 isolates of ESBL/pAmpC-producing bacteria from 82 dogs, and 28 isolates from 23 cats. Escherichia coli was the most commonly isolated bacteria, and the most frequent sampling site was the urinary tract. From eight dogs and two cats, ESBL/pAmpC-producing bacteria were isolated on more than one occasion. Multi-resistance was more than twice as common in samples from dogs (50%) than in samples from cats (22%). Among dogs, sequence type (ST) 131 and ST372 were the dominant strains and blaCMY-2 and blaCTX-M-15 the dominant genes conferring reduced susceptibility to third-generation cephalosporins. Among cats, ST73 was the dominant strain and blaCTX-M-15 the dominant gene. CONCLUSIONS Monitoring the resistance patterns and genetic relationships of bacteria over time is important to follow the results of measures taken to reduce resistance. Knowledge of the appropriate antibiotic usage is also crucial. In this study, a variety of STs and ESBL/pAmpC-genes were detected among the isolates. There were available antibiotics likely effective for treatment in all cases, based on resistance pattern, infection site and host species.
Collapse
Affiliation(s)
- Anna Bonnevie
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden.
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mattias Myrenås
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Oskar Nilsson
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| |
Collapse
|
6
|
White RT, Ashcroft MM, Bauer MJ, Bell J, Butkiewicz D, Álvarez-Fraga L, Gibson JS, Kidsley AK, Mollinger JL, Peters KM, Phan MD, Roberts LW, Rogers BA, Schembri MA, Trott DJ, Turnidge J, Forde BM, Beatson SA. The complete genome sequence of five pre-2013 Escherichia coli sequence type (ST)1193 strains reveals insights into an emerging pathogen. Access Microbiol 2024; 6:000894.v3. [PMID: 39430659 PMCID: PMC11488385 DOI: 10.1099/acmi.0.000894.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Fluoroquinolone-resistant Escherichia coli sequence type (ST)1193 is a profound, emerging lineage associated with systemic, urinary tract and neonatal infections. Humans, companion animals and the environment are reservoirs for ST1193, which has been disseminated globally. Following its detection in 2007, ST1193 has been identified repeatedly amongst fluoroquinolone-resistant clones in Australia. However, despite the growing importance of ST1193, only three complete genomes are published in the literature, none of which are from Australia. Here we expand on the available ST1193 resources with the complete genomes of five ST1193 strains sequenced using Oxford Nanopore Technologies and Illumina. Using in silico genotyping, we found that all strains were multi-drug resistant, including resistances to fluoroquinolones and cephalosporins. In vitro antibiotic susceptibility testing mostly correlated with individual genotypes. The exception was MS8320, which had additional in vitro resistance to piperacillin/tazobactam, ampicillin/sulbactam, cefazolin and doripenem (carbapenem). Further investigation identified seven additional copies of an IS26 transposable unit carrying a bla TEM-1B beta-lactamase gene, suggesting this tandem amplification is associated with extended resistance phenotypes. Uropathogenicity factors, including three separate siderophore-encoding loci, were conserved in chromosomal and plasmid regions. Using all complete genomes, we further elucidated the recombination events surrounding the previously described K5/K1 capsular locus switch. Phenotypic confirmation of differing capsules in Australian ST1193 strains, coupled with genetic analysis revealing insertions downstream of the capsular locus, underscored the genetic distinctions between K5 and K1 capsule encoding strains. This study provides five new reference ST1193 genomes from Australia. These include the earliest complete K5-capsule ST1193 genomes on record (collected 2007), alongside our reference genome (MS10858), a clinical isolate obtained early during the ST1193 expansion and representative of the predominant K1-associated clade. These findings lay the foundations for further genomic and molecular analyses that may help understand the underlying reasons for the rapid global expansion of ST1193.
Collapse
Affiliation(s)
- Rhys T. White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia
- Health Group, Institute of Environmental Science and Research, Porirua 5022, New Zealand
| | - Melinda M. Ashcroft
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michelle J. Bauer
- UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women’s Hospital Campus, The University of Queensland, Herston, Queensland 4029, Australia
| | - Jan Bell
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Dominika Butkiewicz
- UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women’s Hospital Campus, The University of Queensland, Herston, Queensland 4029, Australia
| | - Laura Álvarez-Fraga
- INRAE, Le Laboratoire de Biotechnologie de l'Environnement, University of Montpellier, Narbonne 11100, France
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Justine S. Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Amanda K. Kidsley
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Joanne L. Mollinger
- Biosecurity Queensland, Department of Agriculture and Fisheries, Biosecurity Sciences Laboratory, Coopers Plains, Queensland 4108, Australia
| | - Kate M. Peters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leah W. Roberts
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women’s Hospital Campus, The University of Queensland, Herston, Queensland 4029, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin A. Rogers
- School of Clinical Sciences, Monash Medical Centre, Monash University, and Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darren J. Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - John Turnidge
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Brian M. Forde
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Scott A. Beatson
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Clabots C, Thuras P, Johnson JR. Longitudinal molecular analysis of clinical and fecal Escherichia coli isolates at a Veterans Affairs Medical Center in Minnesota, USA, 2012-2019. Front Microbiol 2024; 15:1409272. [PMID: 38887718 PMCID: PMC11180817 DOI: 10.3389/fmicb.2024.1409272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Extraintestinal Escherichia coli infections represent a growing public health threat, However, current studies often overlook important factors such as temporal patterns of infection, phylogenetic and clonal background, or the host gut E. coli population, despite their likely significance. Methods In this study, we analyzed >7000 clinical E. coli isolates from patients at the Minneapolis Veterans Affairs Health Care System (2012-2019), and concurrent fecal E. coli from uninfected veterans. We assessed phylogenetic group distribution, membership in selected sequence types (STs), and subsets thereof-including the pandemic, resistance-associated ST131-H30R, and ST1193 lineages-and strain type, as defined by pulsed-field gel electrophoresis. We then analyzed these features alongside the temporal patterns of infection in individual hosts. Results The H30R lineage emerged as the leading lineage, both overall and among fluoroquinolone-resistant isolates, with ST1193 following among fluoroquinolone-resistant isolates. Recurrences were common, occurring in 31% of subjects and 41% of episodes, and often multiple and delayed/prolonged (up to 23 episodes per subject; up to 2655d post-index). Remarkably, these recurrences typically involved the subject's index strain (63% of recurrences), even when affecting extra-urinary sites. ST131, H30R, ST1193, and fluoroquinolone-resistant strains generally caused significantly more recurrences than did other strains, despite similar recurrence intervals. ST131 strain types shifted significantly over the study period. Infection-causing strains were commonly detectable in host feces at times other than during an infection episode; the likelihood of detection varied with surveillance intensity and proximity to the infection. H30R and ST1193 were prominent causes of fecal-clinical clonal overlap. Discussion These findings provide novel insights into the temporal and clonal characteristics of E. coli infections in veterans and support efforts to develop anti-colonization interventions.
Collapse
Affiliation(s)
- Connie Clabots
- Minneapolis VA Health Care System, Minneapolis, MN, United States
| | - Paul Thuras
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - James R. Johnson
- Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Sato T, Uemura K, Yasuda M, Maeda A, Minamoto T, Harada K, Sugiyama M, Ikushima S, Yokota SI, Horiuchi M, Takahashi S, Asai T. Traces of pandemic fluoroquinolone-resistant Escherichia coli clone ST131 transmitted from human society to aquatic environments and wildlife in Japan. One Health 2024; 18:100715. [PMID: 39010959 PMCID: PMC11247291 DOI: 10.1016/j.onehlt.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 07/17/2024] Open
Abstract
Transmission of antimicrobial-resistant bacteria among humans, animals, and the environment is a growing concern worldwide. The distribution of an international high-risk fluoroquinolone-resistant Escherichia coli clone, ST131, has been documented in clinical settings. However, the transmission of ST131 from humans to surrounding environments remains poorly elucidated. To comprehend the current situation and identify the source of ST131 in nature, we analyzed the genetic features of ST131 isolates from the aquatic environment (lake/river water) and wildlife (fox, raccoon, raccoon dog, and deer) and compared them with the features of isolates from humans in Japan using accessory and core genome single nucleotide polymorphism (SNP) analyses. We identified ST131 isolates belonging to the same phylotype and genome clusters (four of eight clusters were concomitant) with low SNP distance between the human isolates and those from the aquatic environment and wildlife. These findings warn of ST131 transmission between humans and the surrounding environment in Japan.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Kojiro Uemura
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuru Yasuda
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aiko Maeda
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Toshifumi Minamoto
- Department of Human Environmental Science, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kazuki Harada
- Joint Department of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Michiyo Sugiyama
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shiori Ikushima
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Testuo Asai
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
de Mendieta JM, Argüello A, Menocal MA, Rapoport M, Albornoz E, Más J, Corso A, Faccone D. Emergence of NDM-producing Enterobacterales infections in companion animals from Argentina. BMC Vet Res 2024; 20:174. [PMID: 38702700 PMCID: PMC11067382 DOI: 10.1186/s12917-024-04020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to β-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.
Collapse
Affiliation(s)
- Juan Manuel de Mendieta
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | | | - María Alejandra Menocal
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Melina Rapoport
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Javier Más
- Laboratorio Diagnotest, El Palomar, Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Ciudad de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
10
|
White RT, Bull MJ, Barker CR, Arnott JM, Wootton M, Jones LS, Howe RA, Morgan M, Ashcroft MM, Forde BM, Connor TR, Beatson SA. Genomic epidemiology reveals geographical clustering of multidrug-resistant Escherichia coli ST131 associated with bacteraemia in Wales. Nat Commun 2024; 15:1371. [PMID: 38355632 PMCID: PMC10866875 DOI: 10.1038/s41467-024-45608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Antibiotic resistance is a significant global public health concern. Uropathogenic Escherichia coli sequence type (ST)131, a widely prevalent multidrug-resistant clone, is frequently associated with bacteraemia. This study investigates third-generation cephalosporin resistance in bloodstream infections caused by E. coli ST131. From 2013-2014 blood culture surveillance in Wales, 142 E. coli ST131 genomes were studied alongside global data. All three major ST131 clades were represented across Wales, with clade C/H30 predominant (n = 102/142, 71.8%). Consistent with global findings, Welsh strains of clade C/H30 contain β-lactamase genes from the blaCTX-M-1 group (n = 65/102, 63.7%), which confer resistance to third-generation cephalosporins. Most Welsh clade C/H30 genomes belonged to sub-clade C2/H30Rx (58.3%). A Wales-specific sub-lineage, named GB-WLS.C2, diverged around 1996-2000. An introduction to North Wales around 2002 led to a localised cluster by 2009, depicting limited genomic diversity within North Wales. This investigation emphasises the value of genomic epidemiology, allowing the detection of genetically similar strains in local areas, enabling targeted and timely public health interventions.
Collapse
Affiliation(s)
- Rhys T White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Health Group, Institute of Environmental Science and Research, 5022, Porirua, New Zealand
| | - Matthew J Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Clare R Barker
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Julie M Arnott
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Mandy Wootton
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Lim S Jones
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Robin A Howe
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Melinda M Ashcroft
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brian M Forde
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women's Hospital Campus, Brisbane, QLD, 4029, Australia
| | - Thomas R Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.
- Public Health Genomics Programme, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom.
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Silva BA, do Amarante VS, Xavier RGC, Colombo SA, da Silva TF, Brenig B, Aburjaile FF, de Carvalho Azevedo VA, Silva ROS. Characterization of ESBL/AmpC-producing extraintestinal Escherichia coli (ExPEC) in dogs treated at a veterinary hospital in Brazil. Res Vet Sci 2024; 166:105106. [PMID: 38086217 DOI: 10.1016/j.rvsc.2023.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
The clinical aspects and lineages involved in Extraintestinal pathogenic Escherichia coli (ExPEC) infections in dogs remain largely unknown. In this study, we investigated the antimicrobial resistance and molecular structures of ExPECs isolated from infected dogs in Brazil. Samples were obtained from dogs (n = 42) with suspected extraintestinal bacterial infections. Phylogroup B2 was predominant (65.1%). No association was observed between the site of infection, phylogroups, or virulence factors. Almost half of the isolates (44.2%) were MDR, and 20.9% were extended-spectrum β-lactamase (ESBL)-positive. E. coli isolates that were resistant to fluoroquinolones (27.9%) were more likely to be MDR. The CTX-M-15 enzyme was predominant among the ESBL-producing strains, and seven sequence types were identified, including the high-risk clones ST44 and ST131. Single SNPs analysis confirmed the presence of two clonal transmissions. The present study showed a high frequency of ExPECs from phylogroup B2 infecting various sites and a high frequency of ESBL-producing strains that included STs frequently associated with human infection. This study also confirmed the nosocomial transmission of ESBL-producing E. coli, highlighting the need for further studies on the prevention and diagnosis of nosocomial infections in veterinary settings.
Collapse
Affiliation(s)
- Brendhal Almeida Silva
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Victor Santos do Amarante
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Rafael Gariglio Clark Xavier
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Salene Angelini Colombo
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Tales Fernando da Silva
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Flavia Figueira Aburjaile
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil
| | | | - Rodrigo Otávio Silveira Silva
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte 31.270-901, MG, Brazil.
| |
Collapse
|
12
|
Aurich S, Wolf SA, Prenger-Berninghoff E, Thrukonda L, Semmler T, Ewers C. Genotypic Characterization of Uropathogenic Escherichia coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats. Antibiotics (Basel) 2023; 13:38. [PMID: 38247597 PMCID: PMC10812829 DOI: 10.3390/antibiotics13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. coli lineages among UTI isolates from dogs and cats and to assess their overlaps with human UPEC lineages. We analysed 315 non-duplicate E. coli isolates from the UT of dogs (198) and cats (117) collected in central Germany in 2019 and 2020 utilizing whole genome sequencing and in silico methods. Phylogroup B2 (77.8%), dog-associated sequence type (ST) 372 (18.1%), and human-associated ST73 (16.6%), were predominant. Other STs included ST12 (8.6%), ST141 (5.1%), ST127 (4.8%), and ST131 (3.5%). Among these, 58.4% were assigned to the ExPEC group and 51.1% to the UPEC group based on their virulence associated gene (VAG) profile (ExPEC, presence of ≥VAGs: papAH and/or papC, sfa/focG, afaD/draBC, kpsMTII, and iutA; UPEC, additionally cnf1 or hlyD). Extended-spectrum cephalosporin (ESC) resistance mediated by extended-spectrum β-lactamases (ESBL) and AmpC-β-lactamase was identified in 1.9% of the isolates, along with one carbapenemase-producing isolate and one isolate carrying a mcr gene. Low occurrence of ESC-resistant or multidrug-resistant (MDR) isolates (2.9%) in the two most frequently detected STs implies that E. coli isolated from UTIs of companion animals are to a lesser extent associated with resistance, but possess virulence-associated genes enabling efficient UT colonization and carriage. Detection of human-related pandemic lineages suggests interspecies transmission and underscores the importance of monitoring companion animals.
Collapse
Affiliation(s)
- Sophie Aurich
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | - Silver Anthony Wolf
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | | | - Torsten Semmler
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| |
Collapse
|
13
|
Sealey JE, Hammond A, Reyher KK, Avison MB. One health transmission of fluoroquinolone-resistant Escherichia coli and risk factors for their excretion by dogs living in urban and nearby rural settings. One Health 2023; 17:100640. [PMID: 38024284 PMCID: PMC10665141 DOI: 10.1016/j.onehlt.2023.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Rates of fluoroquinolone resistance in Escherichia coli, a key opportunistic human pathogen, are problematic. Taking a One Health approach, we investigated the excretion of fluoroquinolone-resistant (FQ-R) E. coli by 600 dogs (303 from rural and 297 from urban environments) recruited from a 50 × 50 km region where we have also surveyed FQ-R E. coli from cattle and from human urine. FQ-R E. coli were detected in faeces from 7.3% (rural) and 11.8% (urban) of dogs. FQ-R E. coli from rural dogs tended to be of sequence types (STs) commonly excreted by cattle, whilst those from urban dogs tended to carry plasmid-mediated quinolone resistance genes, common in human E. coli in our study region. Phylogenetic evidence was obtained for sharing FQ-R E. coli - particularly for STs 10, 162 and 744 - between cattle, dogs and humans. Epidemiological analysis showed a strong association between feeding dogs uncooked meat and the excretion of FQ-R E. coli, particularly for STs 10, 162 and 744. This practice, therefore, could serve as a transmission link for FQ-R E. coli from farmed animals entering the home so we suggest that dogs fed uncooked meat should be handled and housed using enhanced hygiene practices.
Collapse
Affiliation(s)
- Jordan E. Sealey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Kristen K. Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Matthew B. Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
14
|
Buranasinsup S, Wiratsudakul A, Chantong B, Maklon K, Suwanpakdee S, Jiemtaweeboon S, Sakcamduang W. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from veterinary staff, pets, and pet owners in Thailand. J Infect Public Health 2023; 16 Suppl 1:194-202. [PMID: 37973494 DOI: 10.1016/j.jiph.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Companion animals may act as antimicrobial resistance (AMR) reservoirs. This study investigated the prevalence and AMR patterns of Escherichia coli in pets and people in close contact with pets. METHODS A total of 955 samples were collected from veterinary clinics across Thailand by rectal and skin or ear swabs from dogs and cats and fecal swabs from veterinarians, veterinary assistants, and pet owners. The minimum inhibitory concentrations (MICs) of the obtained isolates were investigated using Sensititre™ MIC plates against 21 different antimicrobial drugs. RESULTS Escherichia coli from pets was frequently resistant to ampicillin (100%) and amoxicillin-clavulanic acid (100%), whereas E. coli from pet owners, veterinarians, and veterinary assistants was mostly resistant to tetracycline. The multiple antibiotic resistance index revealed that multidrug-resistant E. coli isolates were frequently found in dogs (34.92%), cats (62.12%), veterinarians (61.11%), veterinarian assistants (36.36%), and pet owners (47.62%). The most common AMR genes identified in this study were blaCTX-M, blaTEM, tetA, and tetB, which were associated with the antimicrobial susceptibility results. Additionally, extended-spectrum beta-lactamase (ESBL)-associated genes (i.e., blaCTX-M, blaTEM, and blaSHV) were found in 21.69%, 71.97%, 27.78%, and 21.43% of E. coli isolated from dogs, cats, veterinarians, and pet owners, respectively. CONCLUSIONS Our findings demonstrated the presence of AMR genes, particularly ESBL-associated genes, in E. coli isolated from healthy pets and veterinarians. This implies that these sources of E. coli could potentially be reservoirs for antibiotic resistance, thereby increasing the risk of harm to both humans and animals. These findings highlight the importance of implementing effective AMR control measures in veterinary practices, as bacteria resistant to commonly used antimicrobials are present in humans and animals.
Collapse
Affiliation(s)
- Shutipen Buranasinsup
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Khuanwalai Maklon
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarin Suwanpakdee
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sineenard Jiemtaweeboon
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
15
|
Yun CS, Moon BY, Hwang MH, Lee SK, Ku BK, Lee K. Characterization of the pathogenicity of extraintestinal pathogenic Escherichia coli isolates from pneumonia-infected lung samples of dogs and cats in South Korea. Sci Rep 2023; 13:5575. [PMID: 37019949 PMCID: PMC10076304 DOI: 10.1038/s41598-023-32287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to investigate the pathogenicity of extraintestinal pathogenic Escherichia coli (ExPEC) isolated from dog and cat lung samples in South Korea. A total of 101 E. coli isolates were analyzed for virulence factors, phylogroups, and O-serogroups, and their correlation with bacterial pneumonia-induced mortality was elucidated. P fimbriae structural subunit (papA), hemolysin D (hlyD), and cytotoxic necrotizing factor 1 (cnf1) were highly prevalent in both species, indicating correlation with bacterial pneumonia. Phylogroups B1 and B2 were the most prevalent phylogroups (36.6% and 32.7%, respectively) and associated with high bacterial pneumonia-induced mortality rates. Isolates from both species belonging to phylogroup B2 showed high frequency of papA, hlyD, and cnf1. O-serogrouping revealed 21 and 15 serogroups in dogs and cats, respectively. In dogs, O88 was the most prevalent serogroup (n = 8), and the frequency of virulence factors was high for O4 and O6. In cats, O4 was the most prevalent serogroup (n = 6), and the frequency of virulence factors was high for O4 and O6. O4 and O6 serogroups were mainly grouped under phylogroup B2 and associated with high bacterial pneumonia-induced mortality. This study characterized the pathogenicity of ExPEC and described the probability of ExPEC pneumonia-induced mortality.
Collapse
Affiliation(s)
- Chi Sun Yun
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Bo-Youn Moon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Mi-Hye Hwang
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Soo-Kyoung Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Kichan Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea.
| |
Collapse
|
16
|
Teng L, Feng M, Liao S, Zheng Z, Jia C, Zhou X, Nambiar RB, Ma Z, Yue M. A Cross-Sectional Study of Companion Animal-Derived Multidrug-Resistant Escherichia coli in Hangzhou, China. Microbiol Spectr 2023; 11:e0211322. [PMID: 36840575 PMCID: PMC10100847 DOI: 10.1128/spectrum.02113-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Antimicrobial resistance poses a challenge to global public health, and companion animals could serve as the reservoir for antimicrobial-resistant bacteria. However, the prevalence of antimicrobial-resistant bacteria, especially multidrug-resistant (MDR) bacteria, and the associated risk factors from companion animals are partially understood. Here, we aim to investigate the prevalence of MDR Escherichia coli, as an indicator bacterium, in pet cats and dogs in Hangzhou, China, and evaluate the factors affecting the prevalence of MDR E. coli. The proportion of pets carrying MDR E. coli was 35.77% (49/137), i.e., 40.96% (34/83) for dogs and 27.28% (15/54) for cats. Isolates resistant to trimethoprim-sulfamethoxazole (49.40% and 44.44%), amoxicillin-clavulanic acid (42.17% and 38.89%), and nalidixic acid (40.96% and 35.19%) were the most prevalent in dogs and cats. Interestingly, comparable prevalence of MDR E. coli was observed in pet dogs and cats regardless of the health condition and the history of antibiotic use. Genetic diversity analysis indicates a total of 86 sequencing types (23 clonal complexes), with ST12 being the most dominant. Further genomic investigation of a carbapenem-resistant E. coli ST410 isolate reveals abundant antimicrobial-resistance genes and a plasmid-borne carbapenemase gene (NDM-5) flanked by insertion sequences of IS91 and IS31, suggesting the plasmid and insertion sequences may be involved in carbapenem-resistance dissemination. These data show that companion animal-derived MDR bacteria could threaten public health, and further regulation and supervision of antimicrobial use in pet clinics should be established in China. IMPORTANCE MDR Escherichia coli are considered a global threat because of the decreasing options for antimicrobial therapy. Companion animals could be a reservoir of MDR E. coli, and the numbers of pets and households owning pets in China are booming. However, the prevalence and risk factors of MDR E. coli carriage in Chinese pets were rarely studied. Here, we investigated the prevalence of MDR E. coli in pets in Hangzhou, one of the leading cities with the most established pet market in China, and explored the factors that affected the prevalence. Our findings showed high prevalences of MDR E. coli in pet dogs and cats regardless of their health condition and the history of antibiotic use, suggesting their potential role of public health risk. A call-to-action for improved regulation of antimicrobial use in companion animal is needed in China.
Collapse
Affiliation(s)
- Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihao Liao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Zheng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xin Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
17
|
Ding Y, Zhuang H, Zhou J, Xu L, Yang Y, He J, Liang M, Jia S, Guo X, Han X, Liu H, Zhang L, Jiang Y, Yu Y. Epidemiology and Genetic Characteristics of Carbapenem-Resistant Escherichia coli in Chinese Intensive Care Unit Analyzed by Whole-Genome Sequencing: a Prospective Observational Study. Microbiol Spectr 2023; 11:e0401022. [PMID: 36802220 PMCID: PMC10100791 DOI: 10.1128/spectrum.04010-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
This 4-month-long prospective observational study investigated the epidemiological characteristics, genetic composition, transmission pattern, and infection control of carbapenem-resistant Escherichia coli (CREC) colonization in patients at an intensive care unit (ICU) in China. Phenotypic confirmation testing was performed on nonduplicated isolates from patients and their environments. Whole-genome sequencing was performed for all E. coli isolates, followed by multilocus sequence typing (MLST), and antimicrobial resistance genes and single nucleotide polymorphisms (SNPs) were screened. The colonization rates of CREC were 7.29% from the patient specimens and 0.39% from the environmental specimens. Among the 214 E. coli isolates tested, 16 were carbapenem resistant, with the blaNDM-5 gene identified as the dominant carbapenemase-encoding gene. Among the low-homology sporadic strains isolated in this study, the main sequence type (ST) of carbapenem-sensitive Escherichia coli (CSEC) was ST1193, whereas the majority of CREC isolates belonged to ST1656, followed by ST131. CREC isolates were more sensitive to disinfectants than were the carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates obtained in the same period, which may explain the lower separation rate. Therefore, effective interventions and active screening are beneficial to the prevention and control of CREC. IMPORTANCE CREC represents a public health threat worldwide, and its colonization precedes or occurs simultaneously with infection; once the colonization rate increases, the infection rate rises sharply. In our hospital, the colonization rate of CREC remained low, and almost all of the CREC isolates detected were ICU acquired. Contamination of the surrounding environment by CREC carrier patients shows a very limited spatiotemporal distribution. As the dominant ST of the CSEC isolates found, ST1193 CREC might be considered a strain of notable concern with potential to cause a future outbreak. ST1656 and ST131 also deserve attention, as they comprised the majority of the CREC isolates found, while blaNDM-5 gene screening should play an important role in medication guidance as the main carbapenem resistance gene identified. The disinfectant chlorhexidine, which is used commonly in the hospital, is effective for CREC rather than CRKP, possibly explaining the lower positivity rate for CREC than for CRKP.
Collapse
Affiliation(s)
- Ying Ding
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Qiantang Campus, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lijie Xu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Qiantang Campus, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Department of Pharmacy, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Liang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Qiantang Campus, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shicheng Jia
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiuliu Guo
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital Qiantang Campus, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Elankumuran P, Browning GF, Marenda MS, Kidsley A, Osman M, Haenni M, Johnson JR, Trott DJ, Reid CJ, Djordjevic SP. Identification of genes influencing the evolution of Escherichia coli ST372 in dogs and humans. Microb Genom 2023; 9:mgen000930. [PMID: 36752777 PMCID: PMC9997745 DOI: 10.1099/mgen.0.000930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/10/2022] [Indexed: 02/09/2023] Open
Abstract
ST372 are widely reported as the major Escherichia coli sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 E. coli whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, 'cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the pdu propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the pdu operon and acquisition of K antigen virulence genes characterize human-restricted lineages.
Collapse
Affiliation(s)
- Paarthiphan Elankumuran
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Amanda Kidsley
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marisa Haenni
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Cameron J. Reid
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
19
|
Li C, Chen X, Ju Z, Li C, Xu Y, Ding J, Wang Y, Ma P, Gu K, Lei C, Tang Y, Wang H. Comparative Analysis of Phylogenetic Relationships and Virulence Factor Characteristics between Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Derived from Clinical Sites and Chicken Farms. Microbiol Spectr 2022; 10:e0255722. [PMID: 36374015 PMCID: PMC9769871 DOI: 10.1128/spectrum.02557-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance in bacteria is the most urgent global threat to public health, with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli) being one of the most documented examples. Nonetheless, the ESBL-E. coli transmission relationship among clinical sites and chicken farms remains unclear. Here, 408 ESBL-E. coli strains were isolated from hospitals and chicken farms in Sichuan Province and Yunnan Province in 2021. We detected blaCTX-M genes in 337 (82.62%) ESBL-E. coli strains. Although the isolation rate, prevalent sequence type (ST) subtypes, and blaCTX-M gene subtypes of ESBL-E. coli varied based on regions and sources, a few strains of CTX-ESBL-E. coli derived from clinical sites and chicken farms in Sichuan Province displayed high genetic similarity. This indicates a risk of ESBL-E. coli transmission from chickens to humans. Moreover, we found that the high-risk clonal strains ST131 and ST1193 primarily carried blaCTX-M-27. This indicates that drug-resistant E. coli from animal and human sources should be monitored. As well, the overuse of β-lactam antibiotics should be avoided in poultry farms to ensure public health and build an effective regulatory mechanism of "farm to fork" under a One Health perspective. IMPORTANCE Bacterial drug resistance has become one of the most significant threats to human health worldwide, especially for extended-spectrum β-lactamase-producing E. coli (ESBL-E. coli). Timely and accurate epidemiological surveys can provide scientific guidance for the adoption of treatments in different regions and also reduce the formation of drug-resistant bacteria. Our study showed that the subtypes of ESBL-E. coli strains prevalent in different provinces are somewhat different, so it is necessary to individualize treatment regimens in different regions, and it is especially important to limit and reduce antibiotic use in poultry farming since chicken-derived ESBL-E. coli serves as an important reservoir of drug resistance genes and has the potential to spread to humans, thus posing a threat to human health. The use of antibiotics in poultry farming should be particularly limited and reduced.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijing Ju
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ying Xu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiawei Ding
- Clinical Laboratory Department, Yan’an Hospital Affiliated with Kunming Medical University, Kunming, Yunnan, China
| | - Yuting Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Wyrsch ER, Bushell RN, Marenda MS, Browning GF, Djordjevic SP. Global Phylogeny and F Virulence Plasmid Carriage in Pandemic Escherichia coli ST1193. Microbiol Spectr 2022; 10:e0255422. [PMID: 36409140 PMCID: PMC9769970 DOI: 10.1128/spectrum.02554-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Lower urinary tract, renal, and bloodstream infections caused by phylogroup B2 extraintestinal pathogenic Escherichia coli (ExPEC) are a leading cause of morbidity and mortality. ST1193 is a phylogroup B2, multidrug-resistant sequence type that has risen to prominence globally, but a comprehensive analysis of the F virulence plasmids it carries is lacking. We performed a phylogenomic analysis of ST1193 (n = 707) whole-genome sequences from EnteroBase using entries with comprehensive isolation metadata. The data set comprised isolates from humans (n = 634 [90%]), including 339 (48%) from extraintestinal infection sites, and isolates from companion animals, wastewater, and wildlife. Phylogenetic analyses combined with gene detection and genotyping resolved an ST1193 clade structure segregated by serotype and F plasmid carriage. Most F plasmids fell into one of three related plasmid subtypes: F-:A1:B10 (n = 444 [65.97%]), F-:A1:B1 (n = 84 [12.48%]), and F-:A1:B20 (n = 80 [11.89%]), all of which carry the virulence genes cjrABC colocalized with senB (cjrABC-senB), a trademark signature of F29:A-:B10 subtype plasmids (pUTI89). To examine the phylogenetic relationship of these plasmids with pUTI89, complete sequences of F-:A1:B1 and F-:1:B20 plasmids were resolved. Unlike pUTI89, the most dominant and widely disseminated F plasmid that carries cjrABC-senB, F plasmids in ST1193 often carry a complex resistance region with an integron truncation (intI1Δ745) signature embedded within a structure assembled by IS26. Plasmid analysis shows that ST1193 has F plasmids that carry cjrABC-senB and ARG-encoding genes but lack tra regions and are likely derivatives of pUTI89. Further epidemiological investigation of ST1193 should seek to confirm its presence in human-associated environments and identify any potential agricultural links, which are currently lacking. IMPORTANCE We have generated an updated ST1193 phylogeny using publicly available sequences, reinforcing previous assertions that Escherichia coli ST1193 is a human-associated lineage, with many examples sourced from human extraintestinal infections. ST1193 from urban-adapted birds, wastewater, and companion animals are frequent, but isolates from animal agriculture are notably absent. Phylogenomic analysis identified several clades segregated by serogroup, all noted to carry highly similar F plasmids and antimicrobial resistance (AMR) signatures. Investigation of these plasmids revealed virulence regions with similarity to pUTI89, a key F virulence plasmid among dominant pandemic extraintestinal pathogenic E. coli lineages, and encoding a complex antibiotic resistance structure mobilized by IS26. This work has uncovered a series of F virulence plasmids in ST1193 and shows that the lineage mimics the host range and virulence attributes of other E. coli strains that carry pUTI89. These observations have significant ramifications for epidemiological source tracking of emerging and established pandemic ExPEC lineages.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Rhys N. Bushell
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
21
|
Gastrophysics for pets: Tackling the growing problem of overweight/obese dogs. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Osman M, Albarracin B, Altier C, Gröhn YT, Cazer C. Antimicrobial resistance trends among canine Escherichia coli isolated at a New York veterinary diagnostic laboratory between 2007 and 2020. Prev Vet Med 2022; 208:105767. [PMID: 36181749 PMCID: PMC9703301 DOI: 10.1016/j.prevetmed.2022.105767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/21/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Dogs are a potential source of drug-resistant Escherichia coli, but very few large-scale antimicrobial resistance surveillance studies have been conducted in the canine population. Here, we assess the antimicrobial susceptibility patterns, identify temporal resistance and minimum inhibitory concentration (MIC) trends, and describe associations between resistance phenotypes among canine clinical E. coli isolates in the northeastern United States. Through a retrospective study design, we collected MICs from 7709 E. coli isolates from canine infections at the Cornell University Animal Health Diagnostic Center between 2007 and 2020. The available clinical data were limited to body site. Isolates were classified as resistant or susceptible to six (urinary) and 22 (non-urinary) antimicrobials based on Clinical and Laboratory Standards Institute breakpoints. We used the Mann-Kendall test (MKT) and Sen's slope to identify the presence of a significant trend in the percent of resistant isolates over the study period. Multivariable logistic regression (MLR) models were built with ceftiofur, enrofloxacin, or trimethoprim-sulfamethoxazole resistance as the outcome and either body site and isolation date, or resistance to other antimicrobials as predictors. MIC trends were characterized with survival analysis models, controlling for body site and year of isolation. Overall, 16.4% of isolates were resistant to enrofloxacin, 14.3% to ceftiofur, and 14% to trimethoprim-sulfamethoxazole. The MKT and Sen's slope revealed a significant decreasing temporal trend for gentamicin and trimethoprim-sulfamethoxazole resistance among non-urinary isolates. No significant temporal resistance trends were detected by MKT for other antimicrobials. However, controlling for body-site in MLR models identified a decrease in resistance rates to enrofloxacin and trimethoprim-sulfamethoxazole after 2010. Similarly, survival analysis data confirmed these findings and showed a decrease in MIC values after 2010 for gentamicin and trimethoprim-sulfamethoxazole, but an increase in cephalosporin MICs. MLR showed that non-urinary isolates were significantly more likely than urinary isolates to demonstrate in vitro resistance to ceftiofur, enrofloxacin, and trimethoprim-sulfamethoxazole after controlling for year of isolation. We identified a higher level of ceftiofur resistance among enrofloxacin resistant isolates from urinary and non-urinary origins. Our findings confirmed that dogs are still a non-negligeable reservoir of drug-resistant E. coli in the northeastern United States. The increase in extended-spectrum cephalosporin MIC values in 2018-2020 compared to 2007-2010 constitutes a particularly worrying issue; the relationship between ceftiofur and enrofloxacin resistance suggests that the use of fluoroquinolones could contribute to this trend. Trimethoprim-sulfamethoxazole may be a good first-line choice for empiric treatment of E. coli infections; it is already recommended for canine urinary tract infections.
Collapse
Affiliation(s)
- Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Belen Albarracin
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yrjö T Gröhn
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Casey Cazer
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Sealey JE, Hammond A, Mounsey O, Gould VC, Reyher KK, Avison MB. Molecular ecology and risk factors for third-generation cephalosporin-resistant Escherichia coli carriage by dogs living in urban and nearby rural settings. J Antimicrob Chemother 2022; 77:2399-2405. [PMID: 35858661 PMCID: PMC9410662 DOI: 10.1093/jac/dkac208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives To compare faecal third-generation cephalosporin-resistant (3GC-R) Escherichia coli isolates from dogs living in a city and in a rural area ∼30 km away; to compare isolates from dogs, cattle and humans in these regions; and to determine risk factors associated with 3GC-R E. coli carriage in these two cohorts of dogs. Methods Six hundred dogs were included, with faecal samples processed to recover 3GC-R E. coli using 2 mg/L cefotaxime. WGS was by Illumina and risk factor analyses were by multivariable linear regression using the results of an owner-completed survey. Results 3GC-R E. coli were excreted by 20/303 rural and 31/297 urban dogs. The dominant canine 3GC-R ST was ST963 (blaCMY-2), which also accounted for 25% of CMY-2-producing E. coli in humans. Phylogenetic overlap between cattle and rural dog CTX-M-14-producing E. coli ST117 was observed as well as acquisition of pMOO-32-positive E. coli ST10 by a rural dog, a plasmid common on cattle farms in the area. Feeding raw meat was associated with carrying 3GC-R E. coli in rural dogs, but not in urban dogs, where swimming in rivers was a weak risk factor. Conclusions Given clear zoonotic potential for resistant canine E. coli, our work suggests interventions that may reduce this threat. In rural dogs, carriage of 3GC-R E. coli, particularly CTX-M producers, was phylogenetically associated with interaction with local cattle and epidemiologically associated with feeding raw meat. In urban dogs, sources of 3GC-R E. coli appear to be more varied and include environments such as rivers.
Collapse
Affiliation(s)
- Jordan E Sealey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| | - Oliver Mounsey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Virginia C Gould
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Kristen K Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Matthew B Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Genomic and Temporal Trends in Canine ExPEC Reflect Those of Human ExPEC. Microbiol Spectr 2022; 10:e0129122. [PMID: 35674442 PMCID: PMC9241711 DOI: 10.1128/spectrum.01291-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Companion animals and humans are known to share extraintestinal pathogenic Escherichia coli (ExPEC), but the extent of E. coli sequence types (STs) that cause extraintestinal diseases in dogs is not well understood. Here, we generated whole-genome sequences of 377 ExPEC collected by the University of Melbourne Veterinary Hospital from dogs over an 11-year period from 2007 to 2017. Isolates were predominantly from urogenital tract infections (219, 58.1%), but isolates from gastrointestinal specimens (51, 13.5%), general infections (72, 19.1%), and soft tissue infections (34, 9%) were also represented. A diverse collection of 53 STs were identified, with 18 of these including at least five sequences. The five most prevalent STs were ST372 (69, 18.3%), ST73 (31, 8.2%), ST127 (22, 5.8%), ST80 (19, 5.0%), and ST58 (14, 3.7%). Apart from ST372, all of these are prominent human ExPEC STs. Other common ExPEC STs identified included ST12, ST131, ST95, ST141, ST963, ST1193, ST88, and ST38. Virulence gene profiles, antimicrobial resistance carriage, and trends in plasmid carriage for specific STs were generally reflective of those seen in humans. Many of the prominent STs were observed repetitively over an 11-year time span, indicating their persistence in the dogs in the community, which is most likely driven by household sharing of E. coli between humans and their pets. The case of ST372 as a dominant canine lineage observed sporadically in humans is flagged for further investigation. IMPORTANCE Pathogenic E. coli that causes extraintestinal infections (ExPEC) in humans and canines represents a significant burden in hospital and veterinary settings. Despite the obvious interrelationship between dogs and humans favoring both zoonotic and anthropozoonotic infections, whole-genome sequencing projects examining large numbers of canine-origin ExPEC are lacking. In support of anthropozoonosis, we found that most STs from canine infections are dominant human ExPEC STs (e.g., ST73, ST127, ST131) with similar genomic traits, such as plasmid carriage and virulence gene burden. In contrast, we identified ST372 as the dominant canine ST and a sporadic cause of infection in humans, supporting zoonotic transfer. Furthermore, we highlight that, as is the case in humans, STs in canine disease are consistent over time, implicating the gastrointestinal tract as the major community reservoir, which is likely augmented by exposure to human E. coli via shared diet and proximity.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Max L. Cummins
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
25
|
Johnston BD, Gordon DM, Burn S, Johnson TJ, Weber BP, Miller EA, Johnson JR. Novel Multiplex PCR Method and Genome Sequence-Based Analog for High-Resolution Subclonal Assignment and Characterization of Escherichia coli Sequence Type 131 Isolates. Microbiol Spectr 2022; 10:e0106422. [PMID: 35604132 PMCID: PMC9241916 DOI: 10.1128/spectrum.01064-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a pandemic, multidrug-resistant extraintestinal pathogen. The multiple distinctive ST131 subclones differ for rfb and fliC alleles (O and H antigens), fimH allele (type-1 fimbriae adhesin), resistance phenotype and genotype, clinical correlates, and host predilection. Current PCR assays for detecting ST131 and its main subclones offer limited sub-ST characterization. Here we combined 22 novel and 14 published primers for a multiplex PCR assay to detect and extensively characterize ST131 isolates. The primers target mdh36, gyrB47, trpA72, sbmA, plsB, nupC, rmuC, kefC, ybbW, the O16 and O25b rfb variants, five fimH alleles (fimH22, fimH27, fimH30, fimH35, and fimH41), two fliC alleles (H4 and H5), a (subclone-specific) fluoroquinolone resistance-associated parC allele, and a (subclone-specific) prophage marker. The resulting amplicons resolve 15 molecular subsets within ST131, including 3 within clade A (H41 subclone), 5 within clade B (H22 subclone), and 7 within clade C (H30 subclone), which includes subclones C0 (H30S: 2 subsets), C1 and C1-M27 (H30R1: 2 subsets), and C2 (H30Rx: 3 subsets). Validation in three laboratories showed that this assay provides a rapid, accurate, and portable method for rapidly detecting and characterizing E. coli ST131 and its key subsets. Additionally, for users with whole genome sequencing (WGS) capability, we developed a command-line executable called ST131Typer, an in silico version of the extended multiplex PCR assay. Its accuracy was 87.8%, with most issues due to incomplete or fragmented input genome assemblies. These two novel assays should facilitate detailed ST131 subtyping using either endpoint PCR or WGS. IMPORTANCE These novel assays provide greater subclonal resolution and characterization of E. coli ST131 isolates than do the available comparable PCR assays, plus offer a novel sequence-based alternative to PCR. They may prove useful for molecular epidemiological studies, surveillance, and, potentially, clinical management.
Collapse
Affiliation(s)
- Brian D. Johnston
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- University of Minnesota, Minneapolis, Minnesota, USA
| | - David M. Gordon
- Research School of Biology, The Australian National University Australia, Canberra, Australian Capital Territory, Australia
| | - Samantha Burn
- Research School of Biology, The Australian National University Australia, Canberra, Australian Capital Territory, Australia
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Bonnie P. Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - James R. Johnson
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Nobrega D, Peirano G, Pitout JDD. Escherichia coli sequence type 73 bloodstream infections in a centralized Canadian region and their association with companion animals: an ecological study. Infection 2022; 50:1579-1585. [PMID: 35657530 DOI: 10.1007/s15010-022-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Extraintestinal pathogenic E. coli (ExPEC) are important pathogens causing community-acquired infections in humans, including bloodstream infections (BSIs), and may also colonize and infect animals. Our aim was to investigate associations between incidence rates (IRs) of BSIs caused by ExPEC and number of dogs and cats in communities in Calgary. METHODS We used a well-characterized collection of blood isolates (n = 685) from Calgary, Alberta, Canada (2016). We used a combination of a seven-single-nucleotide-polymorphism quantitative PCR to type ExPEC into sequence types (STs). Calgary census data were used to estimate IRs per city community, as well as to investigate associations between number of companion animals per community, as obtained from licensing data, and IR of BSIs caused by each dominant ST. RESULTS From the 685 isolates available, ExPEC ST131 was most prevalent (21.3% of included isolates), followed by ST73 (13.7%), ST69 (8.2%), ST95 (6.7%), and ST1193 (5.3%), respectively. Incidence of BSIs caused by ExPECs among Calgary residents was 48.8 cases per 100,000 resident-years, whereas communities had on average of 1.7 companion animals per 10 residents. No association between the number of dogs and IR of BSIs caused by ExPECs was detected for any ST. Conversely, the incidence rate of BSIs caused by ST73 was 3.6 times higher (95%CI 1.3-9.99) for every increase of 1 cat per 10 habitants in communities. CONCLUSIONS Number of cats per habitant was positively associated with the incidence of BSIs caused by ExPEC ST73.
Collapse
Affiliation(s)
- Diego Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Gisele Peirano
- Division of Microbiology, Alberta Precision Laboratories, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Cummings School of Medicine, Calgary, AB, Canada
| | - Johann D D Pitout
- Division of Microbiology, Alberta Precision Laboratories, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Cummings School of Medicine, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Cummings School of Medicine, Calgary, AB, Canada.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Mounsey O, Wareham K, Hammond A, Findlay J, Gould VC, Morley K, Cogan TA, Turner KM, Avison MB, Reyher KK. Evidence that faecal carriage of resistant Escherichia coli by 16-week-old dogs in the United Kingdom is associated with raw feeding. One Health 2022; 14:100370. [PMID: 35146110 PMCID: PMC8802057 DOI: 10.1016/j.onehlt.2022.100370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
We report a survey (August 2017 to March 2018) and risk factor analysis of faecal carriage of antibacterial-resistant (ABR) Escherichia coli in 223 16-week-old dogs in the United Kingdom. Raw feeding was associated with the presence of fluoroquinolone-resistant (FQ-R) E. coli and those resistant to tetracycline, amoxicillin, and streptomycin, but not to cefalexin. Whole genome sequencing of 36 FQ-R E. coli isolates showed a wide range of sequence types (STs), with almost exclusively mutational FQ-R dominated by ST744 and ST162. Comparisons between E. coli isolates from puppies known to be located within a 50 × 50 km region with those isolated from human urinary tract infections (isolated in parallel in the same region) identified an ST744 FQ-R lineage that was carried by one puppy and caused one urinary tract infection. Accordingly, we conclude that raw feeding is associated with carriage of ABR E. coli in dogs even at 16 weeks of age and that bacteria carried by puppies are shared with humans. We therefore suggest that those who feed their dogs raw meat seriously consider the potential ABR-transmission threat their pet may become as a result and deploy appropriate hygiene practices in mitigation.
Collapse
Affiliation(s)
- Oliver Mounsey
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kezia Wareham
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Ashley Hammond
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Jacqueline Findlay
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Virginia C. Gould
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Katy Morley
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Tristan A. Cogan
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| | - Katy M.E. Turner
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
- University of Bristol Medical School, Population Health Sciences, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
| | - Matthew B. Avison
- University of Bristol School of Cellular & Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kristen K. Reyher
- University of Bristol Veterinary School, Langford House, Langford, Bristol BS40 5DU, United Kingdom
| |
Collapse
|
28
|
Prevalence and Genomic Investigation of Multidrug-Resistant Salmonella Isolates from Companion Animals in Hangzhou, China. Antibiotics (Basel) 2022; 11:antibiotics11050625. [PMID: 35625269 PMCID: PMC9137667 DOI: 10.3390/antibiotics11050625] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022] Open
Abstract
Salmonella is a group of bacteria that constitutes the leading cause of diarrheal diseases, posing a great disease burden worldwide. There are numerous pathways for zoonotic Salmonella transmission to humans; however, the role of companion animals in spreading these bacteria is largely underestimated in China. We aimed to investigate the prevalence of Salmonella in pet dogs and cats in Hangzhou, China, and characterize the antimicrobial resistance profile and genetic features of these pet-derived pathogens. In total, 137 fecal samples of pets were collected from an animal hospital in Hangzhou in 2018. The prevalence of Salmonella was 5.8% (8/137) in pets, with 9.3% (5/54) of cats and 3.6% (3/83) of dogs being Salmonella positive. By whole-genome sequencing (WGS), in silico serotyping, and multilocus sequence typing (MLST), 26 pet-derived Salmonella isolates were identified as Salmonella Dublin (ST10, n = 22) and Salmonella Typhimurium (ST19, n = 4). All of the isolates were identified as being multidrug-resistant (MDR), by conducting antimicrobial susceptibility testing under both aerobic and anaerobic conditions. The antibiotics of the most prevalent resistance were streptomycin (100%), cotrimoxazole (100%), tetracycline (96.20%), and ceftriaxone (92.30%). Versatile antimicrobial-resistant genes were identified, including floR (phenicol-resistant gene), blaCTX-M-15, and blaCTX-M-55 (extended-spectrum beta-lactamase genes). A total of 11 incompatible (Inc) plasmids were identified, with IncA/C2, IncFII(S), and IncX1 being the most predominant among Salmonella Dublin, and IncFIB(S), IncFII(S), IncI1, and IncQ1 being the most prevailing among Salmonella Typhimurium. Our study applied WGS to characterize pet-derived Salmonella in China, showing the presence of MDR Salmonella in pet dogs and cats with a high diversity of ARGs and plasmids. These data indicate a necessity for the regular surveillance of pet-derived pathogens to mitigate zoonotic diseases.
Collapse
|
29
|
Tóth K, Tóth Á, Kamotsay K, Németh V, Szabó D. Population snapshot of the extended-spectrum β-lactamase-producing Escherichia coli invasive strains isolated from a Hungarian hospital. Ann Clin Microbiol Antimicrob 2022; 21:3. [PMID: 35144632 PMCID: PMC8829994 DOI: 10.1186/s12941-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background This study was carried out to determine the prevalence and the genetic background of extended-spectrum β-lactamase-producing Escherichia coli invasive isolates obtained from a tertiary-care hospital in Budapest, Hungary. Methods Between October–November 2018, all invasive ESBL-producing E. coli isolates were collected from Central Hospital of Southern Pest. The antimicrobial susceptibility testing was performed according to the EUCAST guidelines. The possible clonal relationships were investigated by core genome (cg)MLST (SeqSphere +) using whole-genome sequencing (WGS) data of isolates obtained from Illumina 251-bp paired-end sequencing. From WGS data acquired antimicrobial resistance genes, virulence genes and replicon types were retrieved using ResFinder3.1, PlasmidFinder2.1, pMLST-2.0, VirulenceFinder2.0 and Virulence Factors Database online tools. Results Overall, six E. coli isolates proved to be resistant to third-generation cephalosporins and ESBL-producers in the study period. Full genome sequence analysis showed that five E. coli isolates belonged to the ST131 clone: two to C1-M27 subclade with blaCTX-M-27 and three to C2/H30Rx subclade with blaCTX-M-15. One isolate belonged to ST1193 with blaCTX-M-27. According to cgMLST, all C2/H30Rx isolates formed a cluster (≤ 6 allele differences), while the blaCTX-M-27-producing C1-M27 isolates differed at least 35 alleles from each other. Both C2/H30Rx and C1-M27 ST131 isolates harbored similar antimicrobial resistance gene sets. However, only C2/H30Rx isolates had the qnrB and aac(3)-IIa. The isolates carried similar extraintestinal virulence gene set but differed in some genes encoding siderophores, protectins and toxins. Moreover, only one C2/H30Rx isolate carried salmochelin siderophore system and showed virotype B. All isolates showed resistance against ceftriaxone, cefotaxime, and ciprofloxacin, and the C2/H30Rx isolates were also resistant to gentamicin, tobramycin, and ceftazidime. Conclusions Out of six ESBL-producing E. coli, five belonged to the ST131 clone. This study indicates, that the C2/H30Rx and C1-M27 subclades of the ST131 appear to be the dominant clones collected in a Hungarian hospital.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary. .,Department of Bacteriology, Mycology, and Parasitology, National Public Health Center, Budapest, Hungary.
| | - Ákos Tóth
- Department of Bacteriology, Mycology, and Parasitology, National Public Health Center, Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, Central Hospital of Southern Pest National Institute of Hematology and Infectious Disease, Budapest, Hungary
| | - Viktória Németh
- Central Microbiology Laboratory, Central Hospital of Southern Pest National Institute of Hematology and Infectious Disease, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Coppola N, Cordeiro NF, Trenchi G, Esposito F, Fuga B, Fuentes-Castillo D, Lincopan N, Iriarte A, Bado I, Vignoli R. Imported One-Day-Old Chicks as Trojan Horses for Multidrug-Resistant Priority Pathogens Harboring mcr-9, rmtG, and Extended-Spectrum β-Lactamase Genes. Appl Environ Microbiol 2022; 88:e0167521. [PMID: 34731047 PMCID: PMC8788672 DOI: 10.1128/aem.01675-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance is a critical issue that is no longer restricted to hospital settings but also represents a growing problem involving intensive animal production systems. In this study, we performed a microbiological and molecular investigation of priority pathogens carrying transferable resistance genes to critical antimicrobials in 1-day-old chickens imported from Brazil to Uruguay. Bacterial identification was performed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and antibiotic susceptibility was determined by Sensititre. Antimicrobial resistance genes were sought by PCR, and clonality was assessed by pulsed-field gel electrophoresis (PFGE). Four multidrug-resistant (MDR) representative strains were sequenced by an Illumina and/or Oxford Nanopore Technologies device. Twenty-eight MDR isolates were identified as Escherichia coli (n = 14), Enterobacter cloacae (n = 11), or Klebsiella pneumoniae (n = 3). While resistance to oxyiminocephalosporins was due to blaCTX-M-2, blaCTX-M-8, blaCTX-M-15, blaCTX-M-55, and blaCMY-2, plasmid-mediated quinolone resistance was associated with the qnrB19, qnrE1, and qnrB2 genes. Finally, resistance to aminoglycosides and fosfomycin was due to the presence of 16S rRNA methyltransferase rmtG and fosA-type genes, respectively. Short- and long-read genome sequencing of E. cloacae strain ODC_Eclo3 revealed the presence of IncQ/rmtG (pUR-EC3.1; 7,400 bp), IncHI2A/mcr-9.1/blaCTX-M-2 (pUR-EC3.2, ST16 [pMLST; 408,436 bp), and IncN2/qnrB19/aacC3/aph(3″)-Ib (pUR-EC3.3) resistance plasmids. Strikingly, the blaCTX-M-2 gene was carried by a novel Tn1696-like composite transposon designated Tn7337. In summary, we report that imported 1-day-old chicks can act as Trojan horses for the hidden spread of WHO critical-priority MDR pathogens harboring mcr-9, rmtG, and extended-spectrum β-lactamase genes in poultry farms, which is a critical issue from a One Health perspective. IMPORTANCE Antimicrobial resistance is considered a significant problem for global health, including within the concept of One Health; therefore, the food chain connects human health and animal health directly. In this work, we searched for microorganisms resistant to antibiotics considered critical for human health in intestinal microbiota of 1-day-old baby chicks imported to Uruguay from Brazil. We describe genes for resistance to antibiotics whose use the WHO has indicated to "watch" or "reserve" (AWaRe classification), such as rmtG and mcr9.1, which confer resistance to all the aminoglycosides and colistin, respectively, among other genes, and their presence in new mobile genetic elements that favor its dissemination. The sustained entry of these microorganisms evades the sanitary measures implemented by the countries and production establishments to reduce the selection of resistant microorganisms. These silently imported resistant microorganisms could explain a considerable part of the antimicrobial resistance problems found in the production stages of the system.
Collapse
Affiliation(s)
- Nadia Coppola
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nicolás F. Cordeiro
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Fernanda Esposito
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Inés Bado
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Hata A, Fujitani N, Ono F, Yoshikawa Y. Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. Sci Rep 2022; 12:773. [PMID: 35031646 PMCID: PMC8760262 DOI: 10.1038/s41598-021-04435-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.
Collapse
Affiliation(s)
- Akihisa Hata
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
- Biomedical Science Examination and Research Center, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| | - Noboru Fujitani
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan.
- Biomedical Science Examination and Research Center, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan.
| | - Fumiko Ono
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| |
Collapse
|
32
|
Kurittu P, Khakipoor B, Jalava J, Karhukorpi J, Heikinheimo A. Whole-Genome Sequencing of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli From Human Infections in Finland Revealed Isolates Belonging to Internationally Successful ST131-C1-M27 Subclade but Distinct From Non-human Sources. Front Microbiol 2022; 12:789280. [PMID: 35058905 PMCID: PMC8764355 DOI: 10.3389/fmicb.2021.789280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern in public health, particularly for the clinically relevant extended-spectrum beta-lactamase (ESBL) and AmpC-producing Enterobacteriaceae. Studies describing ESBL-producing Escherichia coli clinical samples from Finland to the genomic level and investigation of possible zoonotic transmission routes are scarce. This study characterizes ESBL-producing E. coli from clinical samples in Finland using whole genome sequencing (WGS). Comparison is made between animal, food, and environmental sources in Finland to gain insight into potential zoonotic transmission routes and to recognize successful AMR genes, bacterial sequence types (STs), and plasmids. ESBL-producing E. coli isolates (n = 30) obtained from the Eastern Finland healthcare district between 2018 and 2020 underwent WGS and were compared to sequences from non-human and healthy human sources (n = 67) isolated in Finland between 2012 and 2018. A majority of the clinical isolates belonged to ST131 (n = 21; 70%), of which 19 represented O25:H4 and fimH30 allele, and 2 O16:H5 and fimH41 allele. Multidrug resistance was common, and the most common bla gene identified was bla CTX-M-27 (n = 14; 47%) followed by bla CTX-M-15 (n = 10; 33%). bla CTX-M-27 was identified in 13 out of 21 isolates representing ST131, with 12 isolates belonging to a recently discovered international E. coli ST131 C1-M27 subclade. Isolates were found to be genetically distinct from non-human sources with core genome multilocus sequence typing based analysis. Most isolates (n = 26; 87%) possessed multiple replicons, with IncF family plasmids appearing in 27 (90%) and IncI1 in 5 (17%) isolates. IncF[F1:A2:B20] replicon was identified in 11, and IncF[F-:A2:B20] in 4 isolates. The results indicate the ST131-C1-M27 clade gaining prevalence in Europe and provide further evidence of the concerning spread of this globally successful pathogenic clonal group. This study is the first to describe ESBL-producing E. coli in human infections with WGS in Finland and provides important information on global level of the spread of ESBL-producing E. coli belonging to the C1-M27 subclade. The results will help guide public health actions and guide future research.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Jalava
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jari Karhukorpi
- Eastern Finland Laboratory Centre Joint Authority Enterprise (ISLAB), Joensuu, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
33
|
Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS, Browning GF, Bushell RN, McKinnon J, Chowdhury PR, Hitchick N, Miller N, Donner E, Drigo B, Baker D, Charles IG, Kudinha T, Jarocki VM, Djordjevic SP. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:000721. [PMID: 34910614 PMCID: PMC8767332 DOI: 10.1099/mgen.0.000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
Collapse
Affiliation(s)
- Dmitriy Li
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ethan R. Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic,Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic,Biomedical Center, Charles University, Czech Republic,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marc S. Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Rhys N. Bushell
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Jessica McKinnon
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nola Hitchick
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Natalie Miller
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | | | | | - Timothy Kudinha
- Central West Pathology Laboratory, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Veronica M. Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Veronica M. Jarocki,
| | - Steven Philip Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Steven Philip Djordjevic,
| |
Collapse
|
34
|
Isolation of Human Lineage, Fluoroquinolone-Resistant and Extended-β-Lactamase-Producing Escherichia coli Isolates from Companion Animals in Japan. Antibiotics (Basel) 2021; 10:antibiotics10121463. [PMID: 34943675 PMCID: PMC8698614 DOI: 10.3390/antibiotics10121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
An increase in human and veterinary fluoroquinolone-resistant Escherichia coli is a global concern. In this study, we isolated fluoroquinolone-resistant E. coli isolates from companion animals and characterized them using molecular epidemiological analysis, multiplex polymerase chain reaction to detect E. coli ST131 and CTX-M type extended-spectrum β-lactamases (ESBL), and multi-locus sequence typing analysis. Using plain-CHROMagar ECC, 101 E. coli isolates were isolated from 34 rectal swabs of dogs and cats. The prevalence of resistance to fluoroquinolone and cefotaxime was 27.7% and 24.8%, respectively. The prevalence of fluoroquinolone-resistant isolates (89.3%) was higher when CHROMagar ECC with CHROMagar ESBL supplement was used for E. coli isolation. The prevalence of cefotaxime resistance was also higher (76.1%) when 1 mg/L of ciprofloxacin-containing CHROMagar ECC was used for isolation. The cefotaxime-resistant isolates possessed CTX-M type β-lactamase genes (CTX-M-14, CTX-M-15, or CTX-M-27). Seventy-five percent of fluoroquinolone-resistant isolates were sequence types ST131, ST10, ST1193, ST38, or ST648, which are associated with extensive spread in human clinical settings. In addition, we isolated three common fluoroquinolone-resistant E. coli lineages (ST131 clade C1-M-27, C1-nM27 and ST2380) from dogs and their respective owners. These observations suggest that companion animals can harbor fluoroquinolone-resistant and/or ESBL-producing E. coli, in their rectums, and that transmission of these isolates to their owners can occur.
Collapse
|
35
|
Nittayasut N, Yindee J, Boonkham P, Yata T, Suanpairintr N, Chanchaithong P. Multiple and High-Risk Clones of Extended-Spectrum Cephalosporin-Resistant and blaNDM-5-Harbouring Uropathogenic Escherichia coli from Cats and Dogs in Thailand. Antibiotics (Basel) 2021; 10:1374. [PMID: 34827312 PMCID: PMC8614778 DOI: 10.3390/antibiotics10111374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016-2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6')-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.
Collapse
Affiliation(s)
- Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
| | - Pongthai Boonkham
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nipattra Suanpairintr
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.N.); (J.Y.)
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Draft Genome Sequence of a Multidrug-Resistant Escherichia coli Sequence Type 1193 Pandemic Clone Isolated from Wastewater in Austria. Microbiol Resour Announc 2021; 10:e0076221. [PMID: 34528819 PMCID: PMC8444965 DOI: 10.1128/mra.00762-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraintestinal Escherichia coli sequence type 1193 (ST1193) is an important source of fluoroquinolone resistance, which has emerged in recent years. We report the first draft genome sequence and annotation of a multidrug-resistant E. coli ST1193 strain obtained from a wastewater treatment plant in Austria.
Collapse
|
37
|
McDougall FK, Boardman WSJ, Power ML. Characterization of beta-lactam-resistant Escherichia coli from Australian fruit bats indicates anthropogenic origins. Microb Genom 2021; 7:000571. [PMID: 33950805 PMCID: PMC8209733 DOI: 10.1099/mgen.0.000571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial-resistant Escherichia coli, particularly those resistant to critically important antimicrobials, are increasingly reported in wildlife. The dissemination of antimicrobial-resistant bacteria to wildlife indicates the far-reaching impact of selective pressures imposed by humans on bacteria through misuse of antimicrobials. The grey-headed flying fox (GHFF; Pteropus poliocephalus), a fruit bat endemic to eastern Australia, commonly inhabits urban environments and encounters human microbial pollution. To determine if GHFF have acquired human-associated bacteria, faecal samples from wild GHFF (n=287) and captive GHFF undergoing rehabilitation following illness or injury (n=31) were cultured to detect beta-lactam-resistant E. coli. Antimicrobial susceptibility testing, PCR and whole genome sequencing were used to determine phenotypic and genotypic antimicrobial resistance profiles, strain type and virulence factor profiles. Overall, 3.8 % of GHFF carried amoxicillin-resistant E. coli (wild 3.5 % and captive 6.5 %), with 38.5 % of the 13 GHFF E. coli isolates exhibiting multidrug resistance. Carbapenem (blaNDM-5) and fluoroquinolone resistance were detected in one E. coli isolate, and two isolates were resistant to third-generation cephalosporins (blaCTX-M-27 and ampC). Resistance to tetracycline and trimethoprim plus sulfamethoxazole were detected in 69.2% and 30.8 % of isolates respectively. Class 1 integrons, a genetic determinant of resistance, were detected in 38.5 % of isolates. Nine of the GHFF isolates (69.2 %) harboured extraintestinal virulence factors. Phylogenetic analysis placed the 13 GHFF isolates in lineages associated with humans and/or domestic animals. Three isolates were human-associated extraintestinal pathogenic E. coli (ST10 O89:H9, ST73 and ST394) and seven isolates belonged to lineages associated with extraintestinal disease in both humans and domestic animals (ST88, ST117, ST131, ST155 complex, ST398 and ST1850). This study provides evidence of anthropogenic multidrug-resistant and pathogenic E. coli transmission to wildlife, further demonstrating the necessity for incorporating wildlife surveillance within the One Health approach to managing antimicrobial resistance.
Collapse
Affiliation(s)
- Fiona K. McDougall
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Wayne S. J. Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5371, Australia
| | - Michelle L. Power
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
38
|
Kimura AH, Koga VL, de Souza Gazal LE, de Brito BG, de Brito KCT, Navarro-Ocaña A, Nakazato G, Kobayashi RKT. Characterization of multidrug-resistant avian pathogenic Escherichia coli: an outbreak in canaries. Braz J Microbiol 2021; 52:1005-1012. [PMID: 33566322 DOI: 10.1007/s42770-021-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022] Open
Abstract
The canary (Serinus canaria) is appreciated for its beautiful song, colors, and docile temperament and drives a lucrative business. However, diseases caused by avian pathogenic Escherichia coli (APEC) compromise the health of canaries, and the inadequate antimicrobial treatment can lead to the emergence of resistant strains. This study aimed to characterize 21 isolates of E. coli obtained from canaries infected with colibacillosis during an outbreak in northern Paraná State, Brazil. APEC and diarrheagenic E. coli (DEC) virulence genes were screened for by polymerase chain reaction (PCR). All isolates were positive for the hlyF, iss, and ompT genes, which are characteristic of APEC. The iroN gene was found in 95.2% of isolates, and none had the iutA gene. The ipaH gene, characteristic of enteroinvasive E. coli (EIEC), was found in 71.4% of isolates, all belonging to the phylogenetic group B1. High genetic similarity (>95%) was found using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The isolates belonged to serotypes O117:H4 (71.4%) and O1:H20 (23.8%). This is the first report of a clonal colibacillosis outbreak in canaries caused by APEC. All isolates were resistant to ampicillin, nalidixic acid, ciprofloxacin, enrofloxacin, norfloxacin, and tetracycline. The high rate of multidrug resistance in our study shows the importance of avoiding the inadequate antibiotic treatment. We suggest that further studies should be conducted to contribute to the understanding of colibacillosis in canaries since the health of animals is linked to human and environmental health, as defined by the concept of One Health.
Collapse
Affiliation(s)
- Angela Hitomi Kimura
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Vanessa Lumi Koga
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Luís Eduardo de Souza Gazal
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Benito Guimarães de Brito
- Avian Health Laboratory, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural Development, Veterinary Research Institute Desidério Finamor, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, 92990-000, Brazil
| | - Kelly Cristina Tagliari de Brito
- Avian Health Laboratory, Agricultural Diagnosis and Research Department, Secretariat of Agriculture Livestock Rural Development, Veterinary Research Institute Desidério Finamor, Estrada Municipal do Conde, 6000, Eldorado do Sul, Rio Grande do Sul, 92990-000, Brazil
| | - Armando Navarro-Ocaña
- Department of Public Health, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Gerson Nakazato
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Laboratory of Basic and Applied Bacteriology, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
39
|
Flament-Simon SC, de Toro M, García V, Blanco JE, Blanco M, Alonso MP, Goicoa A, Díaz-González J, Nicolas-Chanoine MH, Blanco J. Molecular Characteristics of Extraintestinal Pathogenic E. coli (ExPEC), Uropathogenic E. coli (UPEC), and Multidrug Resistant E. coli Isolated from Healthy Dogs in Spain. Whole Genome Sequencing of Canine ST372 Isolates and Comparison with Human Isolates Causing Extraintestinal Infections. Microorganisms 2020; 8:microorganisms8111712. [PMID: 33142871 PMCID: PMC7716232 DOI: 10.3390/microorganisms8111712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
Under a one health perspective and the worldwide antimicrobial resistance concern, we investigated extraintestinal pathogenic Escherichia coli (ExPEC), uropathogenic E. coli (UPEC), and multidrug resistant (MDR) E. coli from 197 isolates recovered from healthy dogs in Spain between 2013 and 2017. A total of 91 (46.2%) isolates were molecularly classified as ExPEC and/or UPEC, including 50 clones, among which (i) four clones were dominant (B2-CH14-180-ST127, B2-CH52-14-ST141, B2-CH103-9-ST372 and F-CH4-58-ST648) and (ii) 15 had been identified among isolates causing extraintestinal infections in Spanish and French humans in 2015 and 2016. A total of 28 (14.2%) isolates were classified as MDR, associated with B1, D, and E phylogroups, and included 24 clones, of which eight had also been identified among the human clinical isolates. We selected 23 ST372 strains, 21 from healthy dogs, and two from human clinical isolates for whole genome sequencing and built an SNP-tree with these 23 genomes and 174 genomes (128 from canine strains and 46 from human strains) obtained from public databases. These 197 genomes were segregated into six clusters. Cluster 1 comprised 74.6% of the strain genomes, mostly composed of canine strain genomes (p < 0.00001). Clusters 4 and 6 also included canine strain genomes, while clusters 2, 3, and 5 were significantly associated with human strain genomes. Finding several common clones and clone-related serotypes in dogs and humans suggests a potentially bidirectional clone transfer that argues for the one health perspective.
Collapse
Affiliation(s)
- Saskia-Camille Flament-Simon
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Vanesa García
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Pilar Alonso
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain
| | - Ana Goicoa
- Servicio de Medicina Interna, Hospital Veterinario Universitario Rof Codina, USC, 27002 Lugo, Spain;
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, USC, 27002 Lugo, Spain
| | - Juan Díaz-González
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
| | | | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (S.-C.F.-S.); (V.G.); (J.E.B.); (M.B.); (J.D.-G.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence:
| |
Collapse
|
40
|
Kidsley AK, O'Dea M, Saputra S, Jordan D, Johnson JR, Gordon DM, Turni C, Djordjevic SP, Abraham S, Trott DJ. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet Microbiol 2020; 248:108783. [PMID: 32827920 DOI: 10.1016/j.vetmic.2020.108783] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022]
Abstract
This study investigated the prevalence of extraintestinal pathogenic E. coli (ExPEC)-associated sequence types (STs) from phylogenetic group B2 among 449 fluoroquinolone-susceptible dog clinical isolates from Australia. Isolates underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 317 so-identified group B2 isolates, 77 underwent whole genome sequencing (WGS), whereas the remainder underwent PCR-based screening for ST complexes (STc) STc12, STc73, STc372, and ST131. The predominant ST was ST372 according to both WGS (31 % of 77) and ST-specific PCR (22 % of 240), followed by (per WGS) ST73 (17 %), ST12 (7 %), and ST80 (7 %). A WGS-based phylogenetic comparison of ST73 isolates from dogs, cats, and humans showed considerable overall phylogenetic diversity. Although most clusters were species-specific, some contained closely related human and animal (dog > cat) isolates. For dogs in Australia these findings both confirm ST372 as the predominant E. coli clonal lineage causing extraintestinal infections and clarify the importance of human-associated group B2 lineage ST73 as a cause of UTI, with some strains possibly being capable of bi-directional (i.e., dog-human and human-dog) transmission.
Collapse
Affiliation(s)
- Amanda K Kidsley
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Sugiyono Saputra
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, NSW, Australia
| | - James R Johnson
- VA Medical Center and University of Minnesota, Minneapolis, MN, USA
| | - David M Gordon
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|