1
|
Fokas R, Giormezis N, Vantarakis A. Synergistic Approaches to Foodborne Pathogen Control: A Narrative Review of Essential Oils and Bacteriophages. Foods 2025; 14:1508. [PMID: 40361591 PMCID: PMC12071951 DOI: 10.3390/foods14091508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The emergence of antimicrobial resistance among foodborne pathogens has intensified the search for alternative biocontrol strategies. Among these, essential oils (EOs) and bacteriophages have gained increasing attention, due to their natural origin and antimicrobial potential. This narrative review investigates their individual and combined use as innovative tools for improving food safety. We discuss the mechanisms of action, current food applications, and regulatory or technical limitations associated with both EOs and phages. Particular emphasis is placed on their complementary characteristics, which may enhance efficacy when used together. An in-depth analysis of five key studies investigating synergistic EO-phage combinations against Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium is presented. These studies, conducted in both in vitro and food-based systems, reveal that antimicrobial synergy is often dose- and temperature-dependent. Optimized combinations lead to enhanced bacterial reduction and reduced resistance development. However, several challenges remain, including sensory alterations in food products, phage inactivation by EO compounds, and host cell destruction at high EO doses. The review concludes that while EOs and phages face limitations when applied independently, their strategic combination shows substantial promise. Future research should focus on formulation development, delivery systems, and regulatory alignment to unlock their full synergistic potential.
Collapse
Affiliation(s)
- Rafail Fokas
- Department of Public Health, Medical School, University of Patras, 26504 Patras, Greece
| | - Nikolaos Giormezis
- Department of Microbiology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Theuretzbacher U. The global resistance problem and the clinical antibacterial pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01169-8. [PMID: 40210708 DOI: 10.1038/s41579-025-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
A comprehensive analysis of the clinical antibacterial pipeline demonstrates that there is a limited range of strategies that are primarily focused on modified versions of widely used chemical classes. These modifications aim to circumvent class-specific resistance mechanisms and reduce resistance rates in certain multidrug-resistant pathogens. Owing to the great variation in resistance rates and mechanisms, the clinical success of current approaches varies substantially across different countries, regions, and economic and environmental conditions, which affects the global societal value of these antibiotics that remain vulnerable to cross-resistance. Although there has been some progress in developing urgently needed antibiotics with novel targets and chemical structures, some of which have advanced to phase I/II trials, further breakthroughs are required. Additionally, adjunctive agents designed to enhance the outcome of conventional antibiotic therapies, along with bacteriophages that offer targeted and personalized treatments, are also under investigation. However, the potential of adjunctive therapeutics, such as antivirulence agents, and bacteriophages has yet to be realized in terms of feasibility and global societal impact.
Collapse
|
3
|
Fu SY, Chen XZ, Yi PC, Gao J, Wang WX, Gu SL, Gao JH, Liu DX, Xu HF, Zeng Y, Hu CM, Zheng Q, Chen W. Optimizing phage therapy for carbapenem-resistant Enterobacter cloacae bacteremia: insights into dose and timing. Antimicrob Agents Chemother 2025; 69:e0168324. [PMID: 40008877 PMCID: PMC11963603 DOI: 10.1128/aac.01683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The increase in multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) infections, particularly those resistant to carbapenems, underscores the urgent need for alternative therapies. Phage therapy, with its specific bactericidal action, offers a promising solution. However, there remains a shortage of well-characterized ECC-targeting phages, and dosing and timing optimization for ECC-specific phage cocktails is largely unexplored. In this study, we isolated and characterized three novel lytic phages with diverse genome sizes and host ranges. Notably, ФEBU8 demonstrated broad-spectrum activity, lysing both Enterobacter species and Acinetobacter baumannii. ФECL22 displayed stability across a wide temperature range (4-50°C), pH tolerance (6-10), and a burst size of 19 PFU/cell, with OmpA identified as its receptor. Our formulated phage cocktail, comprising ФEBU8, ФECL22, and ФECL30, effectively rescued mice with E. cloacae bacteremia in a dose-dependent manner, with a mid-dose regimen showing particularly strong efficacy. Immediate phage administration achieved full survival, whereas a combined prophylactic and therapeutic regimen ("-24 + 6") also resulted in 100% survival. These findings highlight the critical roles of dosing and timing in optimizing phage therapy for carbapenem-resistant Enterobacter infections, with prophylactic use providing a valuable window for delayed treatment and a promising strategy for combating severe bacterial infections.
Collapse
Affiliation(s)
- Shi-Yong Fu
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Zhen Chen
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng-Cheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Gao
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Xiao Wang
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang-Lin Gu
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Han Gao
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Du-Xian Liu
- Department of Pathology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Han-Feng Xu
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zeng
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Zheng
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Janesomboon S, Sawaengwong T, Muangsombut V, Vanaporn M, Santanirand P, Kritsiriwuthinan K, Gundogdu O, Chantratita N, Nale JY, Korbsrisate S, Withatanung P. Synergistic antibacterial activity of curcumin and phage against multidrug-resistant Acinetobacter baumannii. Sci Rep 2025; 15:8959. [PMID: 40089540 PMCID: PMC11910616 DOI: 10.1038/s41598-025-94040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Acinetobacter baumannii is a priority bacterial pathogen and leading cause of nosocomial infections, particularly in intensive care units (ICUs). The average incidence of carbapenem-resistant A. baumannii infections in ICUs is 41.7 cases/1,000 patients, highlighting the urgent need for more effective alternative therapies to replace carbapenems. Thus, this study aimed to investigate for the first time the antibacterial activity of curcumin in combination with the novel phage vB_AbaSI_1 to combat multidrug-resistant (MDR) A. baumannii in vitro. Phage vB_AbaSI_1 (capsid diameter 91 nm, contractile tail 94/20 nm) was isolated from sewage and infects ~ 29% of the 131 bacterial isolates examined. The 52,783 kb phage genome has 75 ORFs, encodes an integrase, lacks tRNAs/virulence genes, and belongs to the Caudoviricetes. Commercially sourced curcumin (400 µg/mL), combined with phage vB_AbaSI_1 (MOI 100) reduced MDR A. baumannii 131 to undetectable levels 1 h post-treatment at 37 °C, and this efficacy was further extended for 5 h in double-dosed phage/curcumin-treated cultures. In contrast, treatment with just phage vB_AbaSI_1 reduced bacterial growth but rebounded within 3 h, while curcumin-only treated cultures showed only 1-log bacterial reduction compared to untreated control. The phage/curcumin synergy occurred exclusively with phage-susceptible strains pre-curcumin exposure. This suggests the potential disruption of bacterial cell membrane during phage infection allowing curcumin entry, as no synergy was observed with phage-resistant strains. This innovative strategy of combining phage and curcumin showed great efficacy at controlling MDR A. baumannii and has a potential for therapeutic deployment. Future work will focus on engineering the phage to make it therapeutically acceptable.
Collapse
Affiliation(s)
- Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanchanok Sawaengwong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Ozan Gundogdu
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janet Yakubu Nale
- Centre for Epidemiology and Planetary Health, Scotland's Rural College, Inverness, UK
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Opperman CJ, Brink AJ. Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential. Infect Dis Rep 2025; 17:24. [PMID: 40126330 PMCID: PMC11932251 DOI: 10.3390/idr17020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Bacteriophage (phage) therapy is emerging as a promising alternative to traditional antibiotics for treating drug-resistant mycobacterial infections, including Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) [...].
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town 8005, South Africa;
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town 7505, South Africa
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Adrian J. Brink
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town 8005, South Africa;
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Echterhof A, Dharmaraj T, Blankenberg P, Targ B, Bollyky PL, Smith NM, Blankenberg F. Whole-body Bacteriophage Distribution Characterized by a Physiologically based Pharmacokinetic Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636931. [PMID: 39975270 PMCID: PMC11839030 DOI: 10.1101/2025.02.06.636931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In 2019 there were over 2.8 million cases of antibiotic-resistant bacterial infection in the US with gram negative organisms having up to a 6% rate of mortality. Bacteriophage (phage) therapy holds great promise to treat such infections. However, the biologic features which influence the pharmacokinetics (PK) of phage have been difficult to characterize due to a lack of standardized protocols of phage purification, tissue assay, and labeling. Here we present robust methods for ultrapure phage preparation as well as non-destructive highly stable attachment of radio-iodide to phage using the well described Sulfo-SHPP linker. We purified and radiolabeled the phage strains, PAML-31-1, OMKO1, and Luz24 lytic to drug-resistant Pseudomonas aeruginosa for biodistribution assay in normal young adult CD-1 mice injected via penile vein. Groups of 5 mice were euthanized and tissues/organs removed for weighing and scintillation well counting of I-125 activity at 30 min, 1h, 2h, 4h, 8h, and 24h. A physiologically based PK (PBPK) model was then constructed focusing on compartments describing blood, lung, muscle, bone, liver, stomach, spleen, small intestines, large intestines, and kidney. Model permeability coefficient (PS) was estimated across all organs as being 0.0227. Tissue partition coefficients (KP) were estimated for high perfusion organs (lung and kidney) as 0.000138, GI organs (liver, spleen, and stomach) as 0.627, and all other organs as 0.220. Elimination was governed by MPS-mediated elimination (TMPS,deg) and active secretion at epithelial barriers (CLActive), which were estimated as 0.00301 h and 0.0145 L/h/kg, respectively. Monte Caro simulations showed that the rapid elimination phage in humans is expected, resulting in phage blood concentrations being lower than 102 PFU/mL (limit of quantification by plaque assay) by 12 hours. As such, multi-dose regimens and continuous infusion regimens were the only strategies that allowed continuously detectible phage concentrations. Evaluation of different dose levels showed that at a maximum dose of 1012 PFU, phage concentrations are expected to be approximately 107 PFU/g. Our physiologically based PK model of phage represents the first rigorous pre-clinical assessment of phage PK utilizing contemporary pharmacometric approaches amenable to both pre-clinical and clinical study design.
Collapse
Affiliation(s)
- Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick Blankenberg
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Bobby Targ
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas M Smith
- Division of Clinical and Translational Therapeutics, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Francis Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children's Hospital, Stanford, California, USA
| |
Collapse
|
8
|
Zhang S, Ye Q, Wang M, Zhu D, Jia R, Chen S, Liu M, Yang Q, Zhao X, Wu Y, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A. Isolation and characterization of a broad-spectrum bacteriophage against multi-drug resistant Escherichia coli from waterfowl field. Poult Sci 2025; 104:104787. [PMID: 39823837 PMCID: PMC11786737 DOI: 10.1016/j.psj.2025.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health. Traditional antibiotic therapy is becoming increasingly ineffective, highlighting the urgent need for innovative control strategies. This study explores the potential of bacteriophages as a sustainable alternative to traditional antibiotics. From 2021 to 2022, a total of 183 non-repetitive duck source fecal samples were collected from Mianyang City, Sichuan Province, and 126 strains of E. coli were isolated. The minimum inhibitory concentration (MIC) test showed that these strains exhibited high resistance to piperacillin (96.8%), tetracycline (88.9%), and chloramphenicol (86.5%). It is concerning that 93.7% of the isolates are classified as multidrug-resistant (MDR), posing a significant threat to existing treatment options. 20 bacteriophages were isolated from fecal and soil samples, among which 5 bacteriophages were selected for further analysis. Bacteriophage YP6 showed excellent lytic effects on MDR strains, especially strain MY104, as well as representative serotypes O1 (E. coli MY51) and O18 (E. coli MY106). The identification of YP6 as a member of the Myoviridae family was conducted using transmission electron microscopy, and it was found to have an optimal infection factor of 0.1. Bacteriophages exhibit significant thermal and pH stability, maintaining survival at temperatures up to 60 °C and pH ranges of 4 to 10. Whole genome sequencing confirmed that YP6 has a double stranded DNA genome of 139,323 base pairs (bp), and no antibiotic resistance or virulence genes were found, indicating a low possibility of horizontal gene transfer. In addition, YP6 effectively inhibits the formation of E. coli biofilm, which is a key factor in chronic infections. The in vivo experiments using Galleria mellonella (G. mellonella) larvae have shown that it has a significant protective effect against MDR E. coli infection. In summary, bacteriophage YP6 is expected to become a therapeutic agent against MDR E. coli infection due to its broad host range, environmental stability, and biofilm inhibition properties. Future research should optimize bacteriophage preparations, evaluate the safety and efficacy of animal models, and establish clinical application plans in the field of food safety.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Qiang Ye
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China.
| |
Collapse
|
9
|
Lee HJ, Jeong SH, Lee SJ. Single nucleotide genome recognition and selective bacterial lysis using synthetic phages loaded with CRISPR-Cas12f1-truncated sgRNA. J Microbiol 2025; 63:e2501012. [PMID: 40044139 DOI: 10.71150/jm.2501012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/07/2025] [Indexed: 05/13/2025]
Abstract
Phage specificity primarily relies on host cell-surface receptors. However, integrating cas genes and guide RNAs into phage genomes could enhance their target specificity and regulatory effects. In this study, we developed a CRISPR-Cas12f1 system-equipped bacteriophage λ model capable of detecting Escherichia coli target genes. We demonstrated that synthetic λ phages carrying Cas12f1-sgRNA can effectively prevent lysogen formation. Furthermore, we showcased that truncating the 3-end of sgRNA enables precise identification of single-nucleotide variations in the host genome. Moreover, infecting E. coli strains carrying various stx2 gene subtypes encoding Shiga toxin with bacteriophages harboring Cas12f1 and truncated sgRNAs resulted in the targeted elimination of strains with matching subtype genes. These findings underscore the ability of phages equipped with the CRISPR-Cas12f1 system to precisely control microbial hosts by recognizing genomic sequences with high resolution.
Collapse
Affiliation(s)
- Ho Joung Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Song Hee Jeong
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
10
|
Chaudhary N, Sharma K, Kaur H, Prajapati S, Mohan B, Taneja N. CRISPR-Cas-assisted phage engineering for personalized antibacterial treatments. Indian J Med Microbiol 2025; 53:100771. [PMID: 39667702 DOI: 10.1016/j.ijmmb.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND In the age of modern medicine, CRISPR-Cas system-aided phage engineering has emerged as a major game changer for developing personalized antibacterial treatments. Modifying genomic DNA at a specific location leads to the inactivation of target genes, the acquisition of novel genetic features, and the correction of lethal gene mutations. Phages can be modified to precisely detect and control bacteria because of the vast possibilities of CRISPR-Cas-based genetic engineering. OBJECTIVES The primary objective of this review is to explore the basic principles, mechanisms, limitations, and perspectives of CRISPR-Cas system-aided phage engineering in producing tailored antibacterial therapeutics. Furthermore, this study will address how editing phage genomes using CRISPR-Cas technology allows for precise bacteria targeting, broadening phage host range, and improving infection control tactics. CONTENT The arrival of the CRISPR-Cas system has transformed the field of phage engineering and aided in the precise modification of phagе genomes to broaden the phage host range. This novel strategy uses the accuracy of the CRISPR-Cas system to design engineered bacteriophages, giving targeted options for infection control. These recent advancements have the potential to alter the era of modern medicine.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Kritika Sharma
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Harpreet Kaur
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Surender Prajapati
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
11
|
Washizaki A, Sakiyama A, Ando H. Phage-specific antibodies: are they a hurdle for the success of phage therapy? Essays Biochem 2024; 68:633-644. [PMID: 39254211 PMCID: PMC11652166 DOI: 10.1042/ebc20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Phage therapy has attracted attention again owing to the increasing number of drug-resistant bacteria. Although the efficacy of phage therapy has been reported, numerous studies have indicated that the generation of phage-specific antibodies resulting from phage administration might have an impact on clinical outcomes. Phage-specific antibodies promote phage uptake by macrophages and contribute to their rapid clearance from the body. In addition, phage-specific neutralizing antibodies bind to the phages and diminish their antibacterial activity. Thus, phage-specific antibody production and its role in phage therapy have been analyzed both in vitro and in vivo. Strategies for prolonging the blood circulation time of phages have also been investigated. However, despite these efforts, the results of clinical trials are still inconsistent, and a consensus on whether phage-specific antibodies influence clinical outcomes has not yet been reached. In this review, we summarize the phage-specific antibody production during phage therapy. In addition, we introduce recently performed clinical trials and discuss whether phage-specific antibodies affect clinical outcomes and what we can do to further improve phage therapy regimens.
Collapse
Affiliation(s)
- Ayaka Washizaki
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Arata Sakiyama
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Venture Unit Engineered Phage Therapy, Discovery Accelerator, Astellas Pharma Inc., Tsukuba City, Ibaraki 305-8585, Japan
| |
Collapse
|
12
|
Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, Uskevich V, Bespiatykh D, Letarova M, Efimov A, Kuznetsov A, Shitikov E, Pushkar D, Letarov A, Zurabov F. Isolation, Characterization, and Unlocking the Potential of Mimir124 Phage for Personalized Treatment of Difficult, Multidrug-Resistant Uropathogenic E. coli Strain. Int J Mol Sci 2024; 25:12755. [PMID: 39684465 DOI: 10.3390/ijms252312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Alla Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Yuriy Kupriyanov
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Ruslan Gabdrakhmanov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Marina Gurkova
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Eugene Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Ilya Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Viktoria Uskevich
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Maria Letarova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Dmitry Pushkar
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Fedor Zurabov
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| |
Collapse
|
13
|
Liu M, Zhang Y, Gu C, Luo J, Shen Y, Huang X, Xu X, Ahmed T, Alodaini HA, Hatamleh AA, Wang Y, Li B. Strain-Specific Infection of Phage AP1 to Rice Bacterial Brown Stripe Pathogen Acidovorax oryzae. PLANTS (BASEL, SWITZERLAND) 2024; 13:3182. [PMID: 39599390 PMCID: PMC11597636 DOI: 10.3390/plants13223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Bacteriophage (phage) AP1 has been reported to effectively lyse Acidovorax oryzae, the causative agent of bacterial brown stripe in rice. However, phage AP1 exhibits strain-specific lysis patterns. In order to enhance the potential of phages for biological control of rice bacterial brown stripe, this study investigated the possible mechanism of strain-specific infection by characterizing phage AP1 and its susceptible (RS-2) and resistant (RS-1) strains. Based on the current classification standards and available database information, phage AP1 was classified into the class Caudoviricetes, and it is a kind of podophage. Comparative analysis of the susceptible and resistant strains showed no significant differences in growth kinetics, motility, biofilm formation, or effector Hcp production. Interestingly, the resistant strain demonstrated enhanced virulence compared to the susceptible strain. Prokaryotic expression studies indicated that six putative structural proteins of phage AP1 exhibited varying degrees of binding affinity (1.90-9.15%) to lipopolysaccharide (LPS). However, pull-down assays and bacterial two-hybrid analyses revealed that only gp66 can interact with four host proteins, which were identified as glycosyltransferase, RcnB, ClpB, and ImpB through immunoprecipitation and mass spectrometry analyses. The role of LPS in the specific infection mechanism of phage AP1 was further elucidated through the construction of knockout mutant strains and complementary strains targeting a unique gene cluster (wbzB, wbzC, wbzE, and wbzF) involved in LPS precursor biosynthesis. These findings provide novel insights into the mechanisms of phage-host specificity, which are crucial for the effective application of phage AP1 in controlling rice bacterial brown stripe.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050070, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| |
Collapse
|
14
|
Narayanan MP, Kumar A, Kumar Verma G, Bairwa A, Mirza AA, Goyal B. Efficacy of Bacteriophages in Wound Healing: An Updated Review. Cureus 2024; 16:e71542. [PMID: 39544596 PMCID: PMC11563050 DOI: 10.7759/cureus.71542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
We have attempted to summarize the efficacy of bacteriophage therapy, highlighting the recent advances and phage delivery methods in different clinical trials and animal studies for wound-associated infections. Bacteriophage therapy is the lyse of bacteria by bacteriophages at the site of invasion. As bacteria become more resistant to antibiotics, discovering an alternative is more important than ever, and bacteriophage therapy has yielded promising outcomes. A clear knowledge of the bacteriophage, microbiota, and human host and their interaction is necessary to implement bacteriophage treatment on a large scale. Much technological advancement and regulatory guidelines increased the credibility of phage therapy (PT). Still, the challenges include the development of efficient bacteriophage screening methods, phage therapy strategies for biofilms, and the quality and safety of phage preparations. However, much consideration is to be taken in designing a novel therapeutic approach for antibiotic-resistant infections by using phages, phage lytic proteins, bioengineered phages, or antibiotics in combination.
Collapse
Affiliation(s)
- M P Narayanan
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Ankur Kumar
- Microbiology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Ganesh Kumar Verma
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Avinash Bairwa
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Anissa A Mirza
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Bela Goyal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| |
Collapse
|
15
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
16
|
Reyneke B, Havenga B, Waso-Reyneke M, Khan S, Khan W. Benefits and Challenges of Applying Bacteriophage Biocontrol in the Consumer Water Cycle. Microorganisms 2024; 12:1163. [PMID: 38930545 PMCID: PMC11205630 DOI: 10.3390/microorganisms12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteria (including disinfection- and antibiotic-resistant bacteria) are abundant in the consumer water cycle, where they may cause disease, and lead to biofouling and infrastructure damage in distributions systems, subsequently resulting in significant economic losses. Bacteriophages and their associated enzymes may then offer a biological control solution for application within the water sector. Lytic bacteriophages are of particular interest as biocontrol agents as their narrow host range can be exploited for the targeted removal of specific bacteria in a designated environment. Bacteriophages can also be used to improve processes such as wastewater treatment, while bacteriophage-derived enzymes can be applied to combat biofouling based on their effectiveness against preformed biofilms. However, the host range, environmental stability, bacteriophage resistance and biosafety risks are some of the factors that need to be considered prior to the large-scale application of these bacterial viruses. Characteristics of bacteriophages that highlight their potential as biocontrol agents are thus outlined in this review, as well as the potential application of bacteriophage biocontrol throughout the consumer water cycle. Additionally, the limitations of bacteriophage biocontrol and corresponding mitigation strategies are outlined, including the use of engineered bacteriophages for improved host ranges, environmental stability and the antimicrobial re-sensitisation of bacteria. Finally, the potential public and environmental risks associated with large-scale bacteriophage biocontrol application are considered, and alternative applications of bacteriophages to enhance the functioning of the consumer water cycle, including their use as water quality or treatment indicators and microbial source tracking markers, are discussed.
Collapse
Affiliation(s)
- Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
17
|
Tang M, Yao Z, Liu Y, Ma Z, Zhao D, Mao Z, Wang Y, Chen L, Zhou T. Host immunity involvement in the outcome of phage therapy against hypervirulent Klebsiella pneumoniae infections. Antimicrob Agents Chemother 2024; 68:e0142923. [PMID: 38742895 PMCID: PMC11620495 DOI: 10.1128/aac.01429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhi Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
McFarlane JA, Garenne D, Noireaux V, Bowden SD. Cell-free synthesis of the Salmonella specific broad host range bacteriophage, felixO1. J Microbiol Methods 2024; 220:106920. [PMID: 38485092 DOI: 10.1016/j.mimet.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Phage-based biocontrol of foodborne Salmonella is limited by the requisite use of Salmonella to propagate the phages. This limitation can be circumvented by producing Salmonella phages using a cell-free gene expression system (CFE) with a non-pathogenic chassis. Here, we produce the Salmonella phage felixO1 using an E. coli-based CFE system.
Collapse
Affiliation(s)
- John A McFarlane
- University of Minnesota, Department of Food Science and Nutrition, 1334 Eckles Avenue, Saint Paul, MN 55108, USA
| | - David Garenne
- University of Minnesota, Physics and Nanotechnology, 115 Union Street SE, Minneapolis, MN 55455, USA
| | - Vincent Noireaux
- University of Minnesota, Physics and Nanotechnology, 115 Union Street SE, Minneapolis, MN 55455, USA
| | - Steven D Bowden
- University of Minnesota, Department of Food Science and Nutrition, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
19
|
Liu Y, Liang Z, Yu S, Ye Y, Lin Z. CRISPR RNA-Guided Transposases Facilitate Dispensable Gene Study in Phage. Viruses 2024; 16:422. [PMID: 38543787 PMCID: PMC10974960 DOI: 10.3390/v16030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Phages provide a potential therapy for multi-drug-resistant (MDR) bacteria. However, a significant portion of viral genes often remains unknown, posing potential dangers. The identification of non-essential genes helps dissect and simplify phage genomes, but current methods have various limitations. In this study, we present an in vivo two-plasmid transposon insertion system to assess the importance of phage genes, which is based on the V. cholerae transposon Tn6677, encoding a nuclease-deficient type I-F CRISPR-Cas system. We first validated the system in Pseudomonas aeruginosa PAO1 and its phage S1. We then used the selection marker AcrVA1 to protect transposon-inserted phages from CRISPR-Cas12a and enriched the transposon-inserted phages. For a pool of selected 10 open-reading frames (2 known functional protein genes and 8 hypothetical protein genes) of phage S1, we identified 5 (2 known functional protein genes and 3 hypothetical protein genes) as indispensable genes and the remaining 5 (all hypothetical protein genes) as dispensable genes. This approach offers a convenient, site-specific method that does not depend on homologous arms and double-strand breaks (DSBs), holding promise for future applications across a broader range of phages and facilitating the identification of the importance of phage genes and the insertion of genetic cargos.
Collapse
Affiliation(s)
- Yanmei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.L.); (Z.L.); (S.Y.)
| | - Zizhen Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.L.); (Z.L.); (S.Y.)
| | - Shuting Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.L.); (Z.L.); (S.Y.)
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.L.); (Z.L.); (S.Y.)
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.L.); (Z.L.); (S.Y.)
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Cui L, Veeranarayanan S, Thitiananpakorn K, Wannigama DL. Bacteriophage Bioengineering: A Transformative Approach for Targeted Drug Discovery and Beyond. Pathogens 2023; 12:1179. [PMID: 37764987 PMCID: PMC10534869 DOI: 10.3390/pathogens12091179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteriophages, the viruses that infect and replicate within bacteria, have long been recognized as potential therapeutic agents against bacterial infections [...].
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (S.V.); (K.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan;
| |
Collapse
|