1
|
Langer Horvat L, Španić Popovački E, Babić Leko M, Zubčić K, Mustapić M, Hof PR, Šimić G. Biochemical characterization of Tau protein changes and amyloid dynamics in a novel non-transgenic rat model of tauopathy. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02909-z. [PMID: 40095078 DOI: 10.1007/s00702-025-02909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
In this study, we further characterized a non-transgenic model of tauopathy by examining tau protein changes using ELISA and Western blot upon inoculation of human tau oligomers (TO) and human tau synthetic pre-formed fibrils (TF) into the medial entorhinal cortex of Wistar rats. Our analyses showed that inoculation with TO did not significantly alter the ratio of phosphorylated tau at AT8 epitopes (pSer202/pThr205) to total tau protein in the hippocampus and entorhinal cortex, but only resulted in a decrease of phosphorylation at AT100 epitopes (pThr212/pSer214). As we previously observed an increase in AT8 immunostaining in both regions, this suggests method-dependent conformational alterations. In contrast, eleven months after inoculation, TF caused significant AT8 and PHF-1 (pSer396/pSer404) epitope-specific changes in tau phosphorylation in the hippocampus, but not in the entorhinal cortex, reflecting a more advanced stage of Alzheimer's disease (AD)-like changes compared to TO. Importantly, amyloid plaques appeared as early as four months post-inoculation with TO, preceding significant phosphorylation changes of tau, thus indicating that amyloid probably facilitates early tau seeding and spreading. This was corroborated by the observed dynamic changes in Aβ1-42 levels in cerebrospinal fluid, with initial decreases followed by increases, similar to patterns seen in transgenic mouse models of AD and in AD patients. Altogether, these findings lead us to conclude that changes in tau protein induce amyloid changes and vice versa, which is actually what defines AD as a unique neurodegenerative disease.
Collapse
Affiliation(s)
- Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
- Department of Medical Biology, University of Split Faculty of Science, Split, 21000, Croatia
| | - Klara Zubčić
- Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, 10000, Croatia
| | - Maja Mustapić
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, 10000, Croatia.
| |
Collapse
|
2
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
3
|
Chinnathambi S, Rangappa N, Chandrashekar M. Internalization of extracellular Tau oligomers in Alzheimer's disease. Adv Clin Chem 2025; 126:1-29. [PMID: 40185532 DOI: 10.1016/bs.acc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
A key factor in the progression of Alzheimer's disease (AD) is internalization of extracellular Tau oligomers (ecTauOs) by neuroglial cells. Aberrant hyperphosphorylation of Tau results in their dissociation from microtubules and formation of toxic intracellular Tau oligomers (icTauOs). These are subsequently released to the extracellular space following neuronal dysfunction and death. Although receptor mediated internalization of these ecTauOs by other neurons, microglia and astrocytes can facilitate elimination, incomplete degradation thereof promotes inflammation, exacerbates pathologic spread and accelerates neurodegeneration. Targeting Tau oligomer degradation pathways, blocking internalization receptors, and mitigating neuroinflammation are proposed as therapeutic strategies to control Tau propagation and toxicity. This review highlights the urgent need for innovative approaches to prevent the spread of Tau pathology, emphasizing its implications for AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| | - Nagaraj Rangappa
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Torok J, Maia PD, Anand C, Raj A. Searching for the cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease. Commun Biol 2025; 8:195. [PMID: 39920421 PMCID: PMC11806020 DOI: 10.1038/s42003-025-07575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion. However, the cellular underpinnings of regional vulnerability are poorly understood, in part because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical cells in the mouse, and then used these maps to identify general principles of cell-type-based selective vulnerability in PS19 mouse models. We found that hippocampal glutamatergic neurons as a whole were significantly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. We also identified oligodendrocytes as the single-most strongly negatively associated cell type. Further, cell-type distributions were more predictive of end-time-point tau pathology than AD-risk-gene expression. Using gene ontology analysis, we found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have elucidated cell-type correlates of tau deposition across mouse models of tauopathy, advancing our understanding of selective cellular vulnerability at a whole-brain level.
Collapse
Affiliation(s)
- Justin Torok
- University of CAlifornia, San Francisco, Department of Radiology, San Francisco, CA, 94143, USA
| | - Pedro D Maia
- University of Texas at Arlington, Department of Mathematics, Arlington, TX, 76019, USA
| | - Chaitali Anand
- University of CAlifornia, San Francisco, Institute for Neurodegenerative Diseases, San Francisco, CA, 94143, USA
| | - Ashish Raj
- University of CAlifornia, San Francisco, Department of Radiology, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
6
|
Walkiewicz G, Ronisz A, Ospitalieri S, Tsaka G, Tomé SO, Vandenberghe R, von Arnim CAF, Rousseau F, Schymkowitz J, De Groef L, Thal DR. pTau pathology in the retina of TAU58 mice: association with ganglion cell degeneration and implications on seeding and propagation of pTau from human brain lysates. Acta Neuropathol Commun 2024; 12:194. [PMID: 39707519 DOI: 10.1186/s40478-024-01907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons. To address these questions, we (1) characterized pTau pathology in the retina of TAU58 mice, (2) determined the impact of pTau pathology on retinal ganglion cell density, and (3) used this mouse model to test whether brain lysates from AD and/or non-AD control cases induce seeding in the retina and/or propagation into the brain. TAU58 mice developed retinal pTau pathology at 6 months of age, increasing in severity and extent with age. TAU58 mice showed reduced retinal ganglion cell density compared to wild-type mice, which declined with age and pTau pathology progression. Brain lysates from non-AD Braak neurofibrillary tangle (NFT) stage I controls increased retinal pTau pathology after subretinal injection compared to phosphate-buffered saline (PBS) but did not accelerate pTau pathology in the brain. In contrast, subretinally injected AD brain lysates accelerated pTau pathology in the retina and the contralateral superior colliculus. Subretinal injection of AD brain lysates, but not of non-AD brain, induced in this context a neuroinflammatory response in the retina and in the contralateral primary visual cortex. These results lead to the following conclusions: (1) Brain lysates from AD and non-AD sources can accelerate tauopathy within the retina. (2) The anterograde propagation of pTau pathology from the retina to the brain can be triggered by subretinal injections of AD brain lysates. (3) Such subretinal injections also provoke a neuroinflammatory response in both the retina and the visual cortex. (4) The accumulation of retinal pTau is associated with the degeneration of the involved ganglion cells, indicating that retinal tauopathy might contribute to vision impairment in the elderly and underscore the retina's potential role in spreading tau pathology to the brain.
Collapse
Affiliation(s)
- Grzegorz Walkiewicz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Alicja Ronisz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Grigoria Tsaka
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Liu N, Yu W, Sun M, Li X, Zhang W, Wang M. Dabrafenib mitigates the neuroinflammation caused by ferroptosis in experimental autoimmune encephalomyelitis by up regulating Axl receptor. Eur J Pharmacol 2024; 973:176600. [PMID: 38643834 DOI: 10.1016/j.ejphar.2024.176600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| | - Wuhan Yu
- Department of general Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, China; The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523000, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
9
|
Lee C, Friedman A. Generating PET scan patterns in Alzheimer's by a mathematical model. PLoS One 2024; 19:e0299637. [PMID: 38625863 PMCID: PMC11020767 DOI: 10.1371/journal.pone.0299637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 04/18/2024] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Mathematics, Kyonggi University, Suwon, Republic of Korea
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
10
|
Sinha T, Bokhari SFH, Khan MU, Sarim Shaheer M, Amir M, Zia BF, Bakht D, Javed MA, Almadhoun MKIK, Burhanuddin M, Puli ST. Gazing Beyond the Horizon: A Systematic Review Unveiling the Theranostic Potential of Quantum Dots in Alzheimer's Disease. Cureus 2024; 16:e58677. [PMID: 38770476 PMCID: PMC11103116 DOI: 10.7759/cureus.58677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline, poses a significant healthcare challenge worldwide. The accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein drives neuronal degeneration and neuroinflammation, perpetuating disease progression. Despite advancements in understanding the cellular and molecular mechanisms, treatment hurdles persist, emphasizing the need for innovative intervention strategies. Quantum dots (QDs) emerge as promising nanotechnological tools with unique photo-physical properties, offering advantages over conventional imaging modalities. This systematic review endeavors to elucidate the theranostic potential of QDs in AD by synthesizing preclinical and clinical evidence. A comprehensive search across electronic databases yielded 20 eligible studies investigating the diagnostic, therapeutic, or combined theranostic applications of various QDs in AD. The findings unveil the diverse roles of QDs, including inhibiting Aβ and tau aggregation, modulating amyloidogenesis pathways, restoring membrane fluidity, and enabling simultaneous detection of AD biomarkers. The review highlights the potential of QDs in targeting multiple pathological hallmarks, delivering therapeutic payloads across the blood-brain barrier, and facilitating real-time imaging and high-throughput screening. While promising, challenges such as biocompatibility, surface modifications, and clinical translation warrant further investigation. This systematic review provides a comprehensive synthesis of the theranostic potential of QDs in AD, paving the way for translational research and clinical implementation.
Collapse
Affiliation(s)
- Tanya Sinha
- Medical Education, Tribhuvan University, Kathmandu, NPL
| | | | | | - Muhammad Sarim Shaheer
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
- Biochemistry, ABWA Medical College, Faisalabad, PAK
| | - Maaz Amir
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Beenish Fatima Zia
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Danyal Bakht
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | | | - Sai Teja Puli
- Internal Medicine, Bhaskar Medical College, Hyderabad, IND
| |
Collapse
|
11
|
Dutta D, Tripathi D, Asthana P, Rana K, Jain N, Sharma R, Naithani U, Jauhari D, Rachana. Therapeutic Effects of Capsaicin on Central Nervous Disorders with Special Emphasis on Parkinson’s and Alzheimer’s Diseases. CAPSAICINOIDS 2024:489-510. [DOI: 10.1007/978-981-99-7779-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Qaiser H, Uzair M, Al-Regaiey K, Rafiq S, Arshad M, Yoo WK, Arain OZ, Kaleem I, Abualait T, Wang L, Wang R, Bashir S. Role of Thioredoxin System in Regulating Cellular Redox Status in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S97-S108. [PMID: 37545242 DOI: 10.3233/jad-230394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a public health problem. It exhibits significant oxidative stress and redox alterations. The antioxidant enzyme systems defend the cellular environment from oxidative stress. One of the redox systems is the thioredoxin system (TS), which exerts decisive control over the cellular redox environment. We aimed to review the protective effects of TS, which include thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. In the following, we discussed the physiological functioning and the role of the TS in maintaining the cellular redox-homeostasis in the AD-damaged brain. Trx protects the cellular environment from oxidative stress, while TrxR is crucial for the cellular detoxification of reactive oxygen species in the brain. However, TS dysregulation increases the susceptibility to cellular death. The changes in Trx and TrxR levels are significantly associated with AD progression. Though the data from human, animal, and cellular models support the neuroprotective role of TS in the brain of AD patients, the translational potential of these findings to clinical settings is not yet applied. This review summarizes the current knowledge on the emerging role of the TrxR-Trx system in AD.
Collapse
Affiliation(s)
- Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shafia Rafiq
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Osama Zahid Arain
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Lan Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
14
|
Torok J, Maia PD, Anand C, Raj A. Cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548027. [PMID: 38076913 PMCID: PMC10705232 DOI: 10.1101/2023.07.06.548027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion, but the cellular and molecular underpinnings of regional vulnerability are currently poorly understood. Recent work has identified certain subpopulations of neurons in a few focal regions of interest, such as the entorhinal cortex, that are selectively vulnerable to tau pathology in AD. However, the cellular underpinnings of regional susceptibility to tau pathology are currently unknown, primarily because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical neuronal and non-neuronal cells in the mouse using recently available single-cell RNA sequencing (scRNAseq) data. We then performed a robust set of analyses to identify general principles of cell-type-based selective vulnerability using these cell-type distributions, utilizing 5 transgenic mouse studies that quantified regional tau in 12 distinct PS19 mouse models. Using our approach, which constitutes the broadest exploration of whole-brain selective vulnerability to date, we were able to discover cell types and cell-type classes that conferred vulnerability and resilience to tau pathology. Hippocampal glutamatergic neurons as a whole were strongly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. Among glia, we identified oligodendrocytes as the single-most strongly negatively associated cell type, whereas microglia were consistently positively correlated. Strikingly, we found that there was no association between the gene expression relationships between cell types and their vulnerability or resilience to tau pathology. When we looked at the explanatory power of cell types versus GWAS-identified AD risk genes, cell type distributions were consistently more predictive of end-timepoint tau pathology than regional gene expression. To understand the functional enrichment patterns of the genes that were markers of the identified vulnerable or resilient cell types, we performed gene ontology analysis. We found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have demonstrated that regional cell-type composition is a compelling explanation for the selective vulnerability observed in tauopathic diseases at a whole-brain level and is distinct from that conferred by risk genes. These findings may have implications in identifying cell-type-based therapeutic targets.
Collapse
Affiliation(s)
- Justin Torok
- University of California, San Francisco, Department of Radiology, San Francisco, CA, 94143, United States
| | - Pedro D. Maia
- University of Texas at Arlington, Department of Mathematics, Arlington, TX, 76019, United States
| | - Chaitali Anand
- University of California, San Francisco, Institute for Neurodegenerative Diseases, San Francisco, CA, 94143, United States
| | - Ashish Raj
- University of California, San Francisco, Department of Radiology, San Francisco, CA, 94143, United States
| |
Collapse
|
15
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
16
|
Huang M, Tallon C, Zhu X, Huizar KDJ, Picciolini S, Thomas AG, Tenora L, Liyanage W, Rodà F, Gualerzi A, Kannan RM, Bedoni M, Rais R, Slusher BS. Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice. Pharmaceutics 2023; 15:2364. [PMID: 37765332 PMCID: PMC10536502 DOI: 10.3390/pharmaceutics15092364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukas Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Španić Popovački E, Babić Leko M, Langer Horvat L, Brgić K, Vogrinc Ž, Boban M, Klepac N, Borovečki F, Šimić G. Soluble TREM2 Concentrations in the Cerebrospinal Fluid Correlate with the Severity of Neurofibrillary Degeneration, Cognitive Impairment, and Inflammasome Activation in Alzheimer's Disease. Neurol Int 2023; 15:842-856. [PMID: 37489359 PMCID: PMC10366813 DOI: 10.3390/neurolint15030053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Individuals with specific TREM2 gene variants that encode for a Triggering Receptor Expressed on Myeloid cells 2 have a higher prevalence of Alzheimer's disease (AD). By interacting with amyloid and apolipoproteins, the TREM2 receptor regulates the number of myeloid cells, phagocytosis, and the inflammatory response. Higher TREM2 expression has been suggested to protect against AD. However, it is extremely difficult to comprehend TREM2 signaling in the context of AD. Previous results are variable and show distinct effects on diverse pathological changes in AD, differences between soluble and membrane isoform signaling, and inconsistency between animal models and humans. In addition, the relationship between TREM2 and inflammasome activation pathways is not yet entirely understood. OBJECTIVE This study aimed to determine the relationship between soluble TREM2 (sTREM2) levels in cerebrospinal fluid (CSF) and plasma samples and other indicators of AD pathology. METHODS Using the Enzyme-Linked Immunosorbent Assay (ELISA), we analyzed 98 samples of AD plasma, 35 samples of plasma from individuals with mild cognitive impairment (MCI), and 11 samples of plasma from healthy controls (HC), as well as 155 samples of AD CSF, 90 samples of MCI CSF, and 50 samples of HC CSF. RESULTS CSF sTREM2 levels were significantly correlated with neurofibrillary degeneration, cognitive decline, and inflammasome activity in AD patients. In contrast to plasma sTREM2, CSF sTREM2 levels in the AD group were higher than those in the MCI and HC groups. Moreover, concentrations of sTREM2 in CSF were substantially higher in the MCI group than in the HC group, indicating that CSF sTREM2 levels could be used not only to distinguish between HC and AD patients but also as a biomarker to detect earlier changes in the MCI stage. CONCLUSIONS The results indicate CSF sTREM2 levels reliably predict neurofibrillary degeneration, cognitive decline, and inflammasome activation, and also have a high diagnostic potential for distinguishing diseased from healthy individuals. To add sTREM2 to the list of required AD biomarkers, future studies will need to include a larger number of patients and utilize a standardized methodology.
Collapse
Affiliation(s)
- Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Klara Brgić
- Department of Neurosurgery, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Marina Boban
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:1027-1041. [PMID: 37051650 PMCID: PMC10291450 DOI: 10.1177/0271678x231170041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and β-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Osse AML, Pandey RS, Wirt RA, Ortiz AA, Salazar A, Kimmich M, Toledano Strom EN, Oblak A, Lamb B, Hyman JM, Carter GW, Kinney J. Reduction in GABAB on glia induce Alzheimer's disease related changes. Brain Behav Immun 2023; 110:260-275. [PMID: 36906075 PMCID: PMC10115139 DOI: 10.1016/j.bbi.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques (Aβ), neurofibrillary tangles (NFT), and neuroinflammation. Data have demonstrated that neuroinflammation contributes to Aβ and NFT onset and progression, indicating inflammation and glial signaling is vital to understanding AD. A previous investigation demonstrated a significant decrease of the GABAB receptor (GABABR) in APP/PS1 mice (Salazar et al., 2021). To determine if changes in GABABR restricted to glia serve a role in AD, we developed a mouse model with a reduction of GABABR restricted to macrophages, GAB/CX3ert. This model exhibits changes in gene expression and electrophysiological alterations similar to amyloid mouse models of AD. Crossing the GAB/CX3ert mouse with APP/PS1 resulted in significant increases in Aβ pathology. Our data demonstrates that decreased GABABR on macrophages leads to several changes observed in AD mouse models, as well as exacerbation of AD pathology when crossed with existing models. These data suggest a novel mechanism in AD pathogenesis.
Collapse
Affiliation(s)
- Amanda M Leisgang Osse
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States.
| | - Ravi S Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Ryan A Wirt
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Andrew A Ortiz
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Arnold Salazar
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Michael Kimmich
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Erin N Toledano Strom
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Adrian Oblak
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - Bruce Lamb
- Indiana University, School of Medicine, 340 W 10(th) Street, Indianapolis, IN 46202, United States
| | - James M Hyman
- University of Nevada, Las Vegas, Department of Psychology, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Gregory W Carter
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, United States
| | - Jefferson Kinney
- University of Nevada, Las Vegas, Department of Brain Health, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| |
Collapse
|
20
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
21
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Lin L, Petralia RS, Holtzclaw L, Wang YX, Abebe D, Hoffman DA. Alzheimer's disease/dementia-associated brain pathology in aging DPP6-KO mice. Neurobiol Dis 2022; 174:105887. [PMID: 36209950 PMCID: PMC9617781 DOI: 10.1016/j.nbd.2022.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Recently, we have described novel structures in hippocampal area CA1 in aging mice, apparently derived from degenerating presynaptic terminals, that are significantly more prevalent in DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice. These novel structures appear as clusters of large puncta that colocalize NeuN, synaptophysin, and chromogranin A, and also partially label for MAP2, amyloid β, APP, α-synuclein, and phosphorylated tau, with synapsin-1 and VGluT1 labeling on their periphery. In this current study, using immunofluorescence and electron microscopy, we confirm that both APP and amyloid β are prevalent in these structures; and we show with immunofluorescence the presence of similar structures in humans with Alzheimer's disease. Here we also found evidence that aging DPP6-KO mutants show additional changes related to Alzheimer's disease. We used in vivo MRI to show reduced size of the DPP6-KO brain and hippocampus. Aging DPP6-KO hippocampi contained fewer total neurons and greater neuron death and had diagnostic biomarkers of Alzheimer's disease present including accumulation of amyloid β and APP and increase in expression of hyper-phosphorylated tau. The amyloid β and phosphorylated tau pathologies were associated with neuroinflammation characterized by increases in microglia and astrocytes. And levels of proinflammatory or anti-inflammatory cytokines increased in aging DPP6-KO mice. We finally show that aging DPP6-KO mice display circadian dysfunction, a common symptom of Alzheimer's disease. Together these results indicate that aging DPP6-KO mice show symptoms of enhanced neurodegeneration reminiscent of dementia associated with a novel structure resulting from synapse loss and neuronal death. This study continues our laboratory's work in discerning the function of DPP6 and here provides compelling evidence of a direct role of DPP6 in Alzheimer's disease.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne Holtzclaw
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Blood Analytes as Biomarkers of Mechanisms Involved in Alzheimer’s Disease Progression. Int J Mol Sci 2022; 23:ijms232113289. [DOI: 10.3390/ijms232113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, but the pathogenetic factors are not yet well known, and the relationships between brain and systemic biochemical derangements and disease onset and progression are unclear. We aim to focus on blood biomarkers for an accurate prognosis of the disease. We used a dataset characterized by longitudinal findings collected over the past 10 years from 90 AD patients. The dataset included 277 observations (both clinical and biochemical ones, encompassing blood analytes encompassing routine profiles for different organs, together with immunoinflammatory and oxidative markers). Subjects were grouped into four severity classes according to the Clinical Dementia Rating (CDR) Scale: mild (CDR = 0.5 and CDR = 1), moderate (CDR = 2), severe (CDR = 3) and very severe (CDR = 4 and CDR = 5). Statistical models were used for the identification of potential blood markers of AD progression. Moreover, we employed the Pathfinder tool of the Reactome database to investigate the biological pathways in which the analytes of interest could be involved. Statistical results reveal an inverse significant relation between four analytes (high-density cholesterol, total cholesterol, iron and ferritin) with AD severity. In addition, the Reactome database suggests that such analytes could be involved in pathways that are altered in AD progression. Indeed, the identified blood markers include molecules that reflect the heterogeneous pathogenetic mechanisms of AD. The combination of such blood analytes might be an early indicator of AD progression and constitute useful therapeutic targets.
Collapse
|
24
|
Casaletto KB, Nichols E, Aslanyan V, Simone SM, Rabin JS, La Joie R, Brickman AM, Dams-O’Connor K, Palta P, Kumar RG, George KM, Satizabal CL, Schneider J, Pa J. Sex-specific effects of microglial activation on Alzheimer's disease proteinopathy in older adults. Brain 2022; 145:3536-3545. [PMID: 35869598 PMCID: PMC10233295 DOI: 10.1093/brain/awac257] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023] Open
Abstract
Females show a disproportionate burden of Alzheimer's disease pathology and higher Alzheimer's disease dementia prevalences compared to males, yet the mechanisms driving these vulnerabilities are unknown. There is sexual dimorphism in immunological functioning, and neuroimmune processes are implicated in Alzheimer's disease genesis. Using neuropathology indicators from human brain tissue, we examined the mediational role of microglial activation on the relationship between amyloid and tau and how it differs by sex. 187 decedents (64% female; 89 mean age at death; 62% non-demented) from the Rush Memory and Aging Project completed neuropathological evaluations with brain tissue quantified for microglial activation, amyloid-β and tau. Proportion of morphologically activated microglia was determined via immunohistochemistry (HLA-DP-DQ-DR) and morphological staging (stage I, II or III). Amyloid-β and tau burden were quantified via immunohistochemistry (M00872 or AT8, respectively). Using causal counterfactual modelling, we estimated the mediational effect of microglial activation on the amyloid-β to tau relationship in the whole sample and stratified by sex (amyloid-β → microglial activation → tau). Alternative models tested the role of microglia activation as the precipitating event (microglial activation → amyloid-β → tau). Microglial activation significantly mediated 33% [95% confidence interval (CI) 10-67] of the relationship between amyloid-β and tau in the whole sample; stratified analyses suggested this effect was stronger and only statistically significant in females. 57% (95% CI 22-100) of the effect of amyloid-β on tau was mediated through microglial activation in females, compared to 19% (95% CI 0-64) in males. Regional analyses suggested that mediational effects were driven by greater cortical versus subcortical microglial activation. Relationships were independent of cerebrovascular disease indices. Alternative models suggested that in females, microglial activation was a significant exposure both preceding the amyloid-β to tau relationship (mediational effect: 50%, 95% CI 23-90) and directly related to tau burden (microglia direct effect: 50%, 95% CI 10-77). By contrast, in males, only the direct effect of microglial activation to tau reached significance (74%, 95% CI 32-100) (mediational effect: 26%, 95% CI 0-68). Our models suggest a reciprocal, bidirectional relationship between amyloid-β and microglial activation that significantly accounts for tau burden in females. By contrast, in males, direct independent (non-mediational) relationships between microglial activation or amyloid-β with tau were observed. Microglial activation may be disproportionately important for Alzheimer's disease pathogenesis in females. Determining sex-specific vulnerabilities to Alzheimer's disease development both inform fundamental pathophysiology and support precision health approaches for this heterogeneous disease.
Collapse
Affiliation(s)
- Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vahan Aslanyan
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya Palta
- Department of Medicine, Division of General Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Raj G Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen M George
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, USA
| | - Claudia L Satizabal
- Department of Population Health Science and Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Julie Schneider
- Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, USA
| | - Judy Pa
- Department of Neurosciences, Alzheimer’s Disease Cooperative Study (ADCS), University of California, San Diego, CA, USA
| |
Collapse
|
25
|
Liu X, Ye M, Ma L. The emerging role of autophagy and mitophagy in tauopathies: From pathogenesis to translational implications in Alzheimer's disease. Front Aging Neurosci 2022; 14:1022821. [PMID: 36325189 PMCID: PMC9618726 DOI: 10.3389/fnagi.2022.1022821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting more than 55 million individuals worldwide in 2021. In addition to the "amyloid hypothesis," an increasing number of studies have demonstrated that phosphorylated tau plays an important role in AD pathogenesis. Both soluble tau oligomers and insoluble tau aggregates in the brain can induce structural and functional neuronal damage through multiple pathways, eventually leading to memory deficits and neurodegeneration. Autophagy is an important cellular response to various stress stimuli and can generally be categorized into non-selective and selective autophagy. Recent studies have indicated that both types of autophagy are involved in AD pathology. Among the several subtypes of selective autophagy, mitophagy, which mediates the selective removal of mitochondria, has attracted increasing attention because dysfunctional mitochondria have been suggested to contribute to tauopathies. In this review, we summarize the latest findings on the bidirectional association between abnormal tau proteins and defective autophagy, as well as mitophagy, which might constitute a vicious cycle in the induction of neurodegeneration. Neuroinflammation, another important feature in the pathogenesis and progression of AD, has been shown to crosstalk with autophagy and mitophagy. Additionally, we comprehensively discuss the relationship between neuroinflammation, autophagy, and mitophagy. By elucidating the underlying molecular mechanisms governing these pathologies, we highlight novel therapeutic strategies targeting autophagy, mitophagy and neuroinflammation, such as those using rapamycin, urolithin, spermidine, curcumin, nicotinamide, and actinonin, for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaolan Liu
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Meng Ye
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Liang Ma
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| |
Collapse
|
26
|
Španić E, Langer Horvat L, Ilić K, Hof PR, Šimić G. NLRP1 Inflammasome Activation in the Hippocampal Formation in Alzheimer's Disease: Correlation with Neuropathological Changes and Unbiasedly Estimated Neuronal Loss. Cells 2022; 11:2223. [PMID: 35883667 PMCID: PMC9324749 DOI: 10.3390/cells11142223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is one of the core pathological features of Alzheimer's disease (AD) as both amyloid β (Aβ) and tau monomers and oligomers can trigger the long-term pro-inflammatory phenotype of microglial cells with consequent overactivation of the inflammasomes. To investigate the NLRP1 inflammasome activation in AD, we analyzed the expression of NLRP1, ASC, cleaved gasdermin (cGSDMD), and active caspase-6 (CASP-6) proteins in each hippocampal subdivision (hilar part of CA3, CA2/3, CA1, subiculum) of postmortem tissue of 9 cognitively healthy controls (HC) and 11 AD patients whose disease duration varied from 3 to 7 years after the clinical diagnosis. The total number of neurons, along with the total number of neurofibrillary tangles (NFTs), were estimated in Nissl- and adjacent modified Bielschowsky-stained sections, respectively, using the optical disector method. The same 9 HC and 11 AD cases were additionally semiquantitatively analyzed for expression of IBA1, HLA-DR, and CD68 microglial markers. Our results show that the expression of NLRP1, ASC, and CASP-6 is present in a significantly greater number of hippocampal formation neurons in AD brains compared to controls, suggesting that the NLRP1 inflammasome is more active in the AD brain. None of the investigated inflammasome and microglial markers were found to correlate with the age of the subjects or the duration of AD. However, besides positive correlations with microglial IBA1 expression in the subiculum and with microglial CD68 expression in the CA1 field and subiculum in the AD group, the overall NLRP1 expression in the hippocampal formation was positively correlated with the number of NFTs, thus providing a causal link between neuroinflammation and neurofibrillary degeneration. The accumulation of AT8-immunoreactive phosphorylated tau proteins that we observed at nuclear pores of large pyramidal neurons of the Ammon's horn further supports their role in the extent of neuronal dysfunction and degeneration in AD. This is important because unlike fibrillar amyloid-β deposits that are not related to dementia severity, total NFTs and neuron numbers in the hippocampal formation, especially in the CA1 field, are the best correlates of cognitive deterioration in both human brain aging and AD. Our findings also support the notion that the CA2 field vulnerability is strongly linked to specific susceptibilities to different tauopathies, including primary age-related tauopathy. Altogether, these findings contrast with reports of nonsignificant microglial activation in aged nonhuman primates and indicate that susceptibility to inflammasome activation may render the human brain comparatively more vulnerable to neurodegenerative changes and AD. In conclusion, our results confirm a key role of NLRP1 inflammasome in AD pathogenesis and suggest NLRP1 as a potential diagnostic marker and therapeutic target to slow or prevent AD progression.
Collapse
Affiliation(s)
- Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| | - Katarina Ilić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
- BRAIN Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| |
Collapse
|
27
|
Ano Y, Takaichi Y, Ohya R, Uchida K, Nakayama H, Takashima A. Tryptophan-tyrosine dipeptide improves tau-related symptoms in tauopathy mice. Nutr Neurosci 2022:1-12. [PMID: 35816407 DOI: 10.1080/1028415x.2022.2090075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurodegenerative diseases involving pathological tau protein aggregation are collectively known as tauopathies and include Alzheimer's disease and Pick's disease. Recent studies show that the intake of tryptophan-tyrosine (Trp-Tyr)-related β-lactopeptides, including β-lactolin, attenuates cognitive decline in the elderly and prevents the amyloid pathology in mouse models of Alzheimer's disease. However, the effects of Trp-Tyr-related β-lactopeptides on tau-related pathology have not been investigated. In the present study, we examined the effects of Trp-Tyr dipeptide intake on tauopathy in PS19 transgenic mice, a well-established tauopathy model. Intake of Trp-Tyr dipeptide improved the behavioral deficits observed in the open field test, prevented tau phosphorylation, and increased the dopamine turnover and synaptophysin expression in the frontal cortex. Levels of short-chain fatty acids in the cecum were lower in PS19 mice than those in wild-type mice and were increased by treatment with Trp-Tyr dipeptide. In addition, intake of Trp-Tyr dipeptide extended the lifespan of PS19 mice. These findings suggest that the intake of Trp-Tyr-related peptides improves tauopathy symptoms, resulting in improvements in behavioral deficits and longevity. Hence, the intake of Trp-Tyr-related peptides, including β-lactolin, may be beneficial for preventing dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
28
|
Zhang L, Liu Y, Wang X, Wang D, Wu H, Chen H, Chen J, Liu Y. Treadmill exercise improve recognition memory by TREM2 pathway to inhibit hippocampal microglial activation and neuroinflammation in Alzheimer's disease model. Physiol Behav 2022; 251:113820. [PMID: 35452628 DOI: 10.1016/j.physbeh.2022.113820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/16/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease-related cognition impairment is correlated with increased neuroinflammation. Studies show that physical exercises improve cognitive function and regulate neuroinflammation. However, no sufficient studies have been performed to directly observe the mechanism of exercise-related effects on microglia and neuroinflammation, in association with memory function under Alzheimer's disease. This study aims to explore the relationship of TREM2, microglia activation and neuroinflammation in the development of Alzheimer's disease, followed by investigating why physical exercises improve cognition in the Alzheimer's disease model by means of the adeno-associated virus (AAV) injection. We found that: 1) Recognition memory impairment in Aβ-induced Alzheimer's disease model was associated with the reduction in TREM2 which induced microglial activation and neuroinflammation; 2) Exercise activated the TREM2 pathway, which was necessary for inhibiting microglial activation and neuroinflammation, leading to improved recognition memory in the Alzheimer's disease model. Together, the improvement of AD-associated recognition memory by exercises is associated with up-regulation of the TREM2 pathway which promotes the phenotypic conversion of microglia and decreases the level of neuroinflammation.
Collapse
Affiliation(s)
- Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China; Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Yanzhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Wu
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Haichun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Jiaxin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yiping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
29
|
Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:878987. [PMID: 35783096 PMCID: PMC9240317 DOI: 10.3389/fncel.2022.878987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases of different etiologies have been associated with acute and long-term neurological consequences. The primary cause of these consequences appears to be an inflammatory process characterized primarily by a pro-inflammatory microglial state. Microglial cells, the local effectors' cells of innate immunity, once faced by a stimulus, alter their morphology, and become a primary source of inflammatory cytokines that increase the inflammatory process of the brain. This inflammatory scenario exerts a critical role in the pathogenesis of neurodegenerative diseases. In recent years, several studies have shown the involvement of the microglial inflammatory response caused by infections in the development of neurodegenerative diseases. This has been associated with a transitory microglial state subsequent to an inflammatory response, known as microglial priming, in which these cells are more responsive to stimuli. Thus, systemic inflammation and infections induce a transitory state in microglia that may lead to changes in their state and function, making priming them for subsequent immune challenges. However, considering that microglia are long-lived cells and are repeatedly exposed to infections during a lifetime, microglial priming may not be beneficial. In this review, we discuss the relationship between infections and neurodegenerative diseases and how this may rely on microglial priming.
Collapse
Affiliation(s)
- Maiara N. Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Maria C. Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
31
|
Šimić G, Krsnik Ž, Knezović V, Kelović Z, Mathiasen ML, Junaković A, Radoš M, Mulc D, Španić E, Quattrocolo G, Hall VJ, Zaborszky L, Vukšić M, Olucha Bordonau F, Kostović I, Witter MP, Hof PR. Prenatal development of the human entorhinal cortex. J Comp Neurol 2022; 530:2711-2748. [DOI: 10.1002/cne.25344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Goran Šimić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Željka Krsnik
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Vinka Knezović
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Zlatko Kelović
- Department of Anatomy University of Zagreb Medical School, Zagreb, HR Croatia
| | - Mathias Lysholt Mathiasen
- Department of Veterinary and Animal Sciences Faculty of Health Sciences University of Copenhagen, Frederiksberg C, DK Denmark
| | - Alisa Junaković
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Milan Radoš
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Damir Mulc
- Psychiatric Hospital Vrapče University of Zagreb Medical School, Zagreb, HR Croatia
| | - Ena Španić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation Norwegian University of Science and Technology Trondheim NO Norway
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences Faculty of Health Sciences University of Copenhagen, Frederiksberg C, DK Denmark
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience Rutgers, The State University of New Jersey Newark New Jersey USA
| | - Mario Vukšić
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Francisco Olucha Bordonau
- Department of Medicine School of Medical Sciences Universitat Jaume I Castellón de la Plana ES Spain
| | - Ivica Kostović
- Department of Neuroscience Croatian Institute for Brain Research University of Zagreb Medical School, Zagreb, HR Croatia
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation Norwegian University of Science and Technology Trondheim NO Norway
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute Icahn School of Medicine at Mount Sinai New York New York USA
| |
Collapse
|
32
|
Ma WY, Wang SS, Wu QL, Zhou X, Chu SF, Chen NH. The versatile role of TREM2 in regulating of microglia fate in the ischemic stroke. Int Immunopharmacol 2022; 109:108733. [PMID: 35525233 DOI: 10.1016/j.intimp.2022.108733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are the earliest activated and the longest lasting immune cells after stroke, and they participate in almost all the pathological reactions after stroke. However, their regulatory mechanism has not been fully elucidated. Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor that is mainly expressed in microglia of the central nervous system. The receptor plays an important role in regulating microglia energy metabolism and phenotypic transformation. At present, TREM2 has been developed as a potential target for AD, coronary atherosclerosis and other diseases. However, TREM2 does not provide a systematic summary of the functional transformation and intrinsic molecular mechanisms of microglia after stroke. In this paper, we have summarized the functional changes of TREM2 in microglia after stroke in recent years, and found that TREM2 has important effects on energy metabolism, phagocytosis and anti-inflammatory function of microglia after stroke, suggesting that TREM2 is a potential therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
33
|
Brezovakova V, Sykova E, Jadhav S. Astrocytes Derived from Familial and Sporadic Alzheimer's Disease iPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells 2022; 11:cells11091429. [PMID: 35563735 PMCID: PMC9101114 DOI: 10.3390/cells11091429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate important functions in the brain, and their dysregulation has been linked to the etiology of neurodegenerative diseases, such as Alzheimer’s disease (AD). The role of astroglia in human AD remains enigmatic, owing to the limitations of animal models, which, while recreating some pathological aspects of the disease, do not fully mirror its course. In addition, the recognition of major structural and functional differences between human and mouse astrocytes has also prompted research into human glial cells. In the current study, astrocytes were generated using human iPSCs from patients with sporadic Alzheimer’s disease (sAD), familial Alzheimer’s disease (fAD) and non-demented controls (NDC). All clones gained astrocyte-specific morphological and proteomic characteristics upon in vitro differentiation, without considerable inter-clonal variances. In comparison to NDC, AD astrocytes displayed aberrant calcium dynamics in response to glutamate. When exposed to monomeric and aggregated tau, AD astrocytes demonstrated hypertrophy and elevated GFAP expression, differential expression of select signaling and receptor proteins, and the enhanced production of metalloproteinases (MMPs). Moreover, astrocytic secretomes were able to degrade tau in both monomeric and pathologically aggregated forms, which was mediated by MMP-2 and -9. The capacity to neutralize tau varied considerably between clones, with fAD astrocytes having the lowest degradability relative to sAD and healthy astrocytes. Importantly, when compared to aggregated tau alone, astrocytic secretome pretreatment of tau differentially reduced its detrimental effects on neurons. Our results show crucial differences in sporadic and familial AD astrocytes and suggests that these cells may play distinctive roles in the pathogenesis of early and late onset Alzheimer’s disease.
Collapse
|
34
|
Sun M, Li X, Sun J, Wang H, Xie Q, Wang M. The Top-Cited Original Articles on the Role of Microglia in Neurodegenerative Diseases: A Bibliometric and Visualized Study. Front Aging Neurosci 2022; 14:869964. [PMID: 35478696 PMCID: PMC9037152 DOI: 10.3389/fnagi.2022.869964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 01/23/2023] Open
Abstract
BackgroundMicroglia participants to neuronal loss during brain development, inflammation, ischemia, and neurodegeneration. This bibliometric and visualized study aimed to confirm the top 100 cited original research in the field and to analyze their characteristics.MethodsThe Web of Science database (WOS) was retrieved using the specific search strategy. The top 100 cited original articles that focused on the role of microglia in neurodegenerative diseases (NDs) were filtered by two researchers independently. The trend of yearly publications and citations, citation densities, languages, and global contributions were analyzed. The highly cited countries, authors, institutions, and journals were visualized by bibliographic coupling analysis. The highly cited authors and journals in the references were visualized by co-citation analysis. The research hotspots were revealed by co-occurrence analysis and burst detection of author keywords.ResultsThe top 100 cited articles were published during the period 1988 to 2019. The peak of publication occurred in 2005 and 2006. The yearly total citations presented a rising trend. The highly cited articles were contributed by 26 countries, the United States was the country with the overwhelming number of publications and cited times. Stevens, Beth was the author with the largest number of cited times. Mcgeer PL was the author most frequently cited in the references. Harvard University was the institution with the greatest number of cited times and publications. Nature was the journal with the largest number of cited times. Journal of neuroscience was both the most often published and most frequently cited journal in the references. “Microglia”, “inflammation”, “Alzheimer’s disease” were the most frequently used keywords, and their average occurred time was around 2005. “Dementia,” “delirium,” “priming” were keywords that averagely occurred around 2010. The burst detection revealed that “TNF-beta,” “macrophage,” and “inflammation” were keywords that frequently burst in recent years.ConclusionThis bibliometric and visualized study revealed the top 100 cited original research that discussed the role of microglia in NDs. The United States was the biggest contributor, Harford University was the most influential institution. Journal of Neuroscience was the most often published and cited journal. Alzheimer’s disease was the hotspot in microglia and NDs. Recent research mainly focused on inflammation.
Collapse
|
35
|
Fixemer S, Ameli C, Hammer G, Salamanca L, Uriarte Huarte O, Schwartz C, Gérardy JJ, Mechawar N, Skupin A, Mittelbronn M, Bouvier DS. Microglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:36. [PMID: 35296366 PMCID: PMC8925098 DOI: 10.1186/s40478-022-01342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer’s disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration pattern of the hippocampus differs between AD and DLB with the CA1 subfield being more severely affected in AD. The activation of microglia, the brain immune cells, could play a role in its selective volume loss. How subregional microglia populations vary within AD or DLB and across these conditions remains poorly understood. Furthermore, how the nature of the hippocampal local pathological imprint is associated with microglia responses needs to be elucidated. To this purpose, we employed an automated pipeline for analysis of 3D confocal microscopy images to assess CA1, CA3 and DG/CA4 subfields microglia responses in post-mortem hippocampal samples from late-onset AD (n = 10), DLB (n = 8) and age-matched control (CTL) (n = 11) individuals. In parallel, we performed volumetric analyses of hyperphosphorylated tau (pTau), amyloid-β (Aβ) and phosphorylated α-synuclein (pSyn) loads. For each of the 32,447 extracted microglia, 16 morphological features were measured to classify them into seven distinct morphological clusters. Our results show similar alterations of microglial morphological features and clusters in AD and DLB, but with more prominent changes in AD. We identified two distinct microglia clusters enriched in disease conditions and particularly increased in CA1 and DG/CA4 of AD and CA3 of DLB. Our study confirms frequent concomitance of pTau, Aβ and pSyn loads across AD and DLB but reveals a specific subregional pattern for each type of pathology, along with a generally increased severity in AD. Furthermore, pTau and pSyn loads were highly correlated across subregions and conditions. We uncovered tight associations between microglial changes and the subfield pathological imprint. Our findings suggest that combinations and severity of subregional pTau, Aβ and pSyn pathologies transform local microglia phenotypic composition in the hippocampus. The high burdens of pTau and pSyn associated with increased microglial alterations could be a factor in CA1 vulnerability in AD.
Collapse
|
36
|
Abstract
Alzheimer’s disease (AD) is prevalent throughout the world and is the leading cause of dementia in older individuals (aged ≥ 65 years). To gain a deeper understanding of the recent literature on the epidemiology of AD and its progression, we conducted a review of the PubMed-indexed literature (2014–2021) in North America, Europe, and Asia. The worldwide toll of AD is evidenced by rising prevalence, incidence, and mortality due to AD—estimates which are low because of underdiagnosis of AD. Mild cognitive impairment (MCI) due to AD can ultimately progress to AD dementia; estimates of AD dementia etiology among patients with MCI range from 40% to 75% depending on the populations studied and whether the MCI diagnosis was made clinically or in combination with biomarkers. The risk of AD dementia increases with progression from normal cognition with no amyloid-beta (Aβ) accumulation to early neurodegeneration and subsequently to MCI. For patients with Aβ accumulation and neurodegeneration, lifetime risk of AD dementia has been estimated to be 41.9% among women and 33.6% among men. Data on progression from preclinical AD to MCI are sparse, but an analysis of progression across the three preclinical National Institute on Aging and Alzheimer’s Association (NIA-AA) stages suggests that NIA-AA stage 3 (subtle cognitive decline with AD biomarker positivity) could be useful in combination with other tools for treatment decision-making. Factors shown to increase risk include lower Mini-Mental State Examination (MMSE) score, higher Alzheimer’s Disease Assessment Scale (ADAS-cog) score, positive APOE4 status, white matter hyperintensities volume, entorhinal cortex atrophy, cerebrospinal fluid (CSF) total tau, CSF neurogranin levels, dependency in instrumental activities of daily living (IADL), and being female. Results suggest that use of biomarkers alongside neurocognitive tests will become an important part of clinical practice as new disease-modifying therapies are introduced.
Collapse
|
37
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Blaudin de Thé FX, Lassus B, Schaler AW, Fowler SL, Goulbourne CN, Jeggo R, Mannoury la Cour C, Millan MJ, Duff KE. P62 accumulates through neuroanatomical circuits in response to tauopathy propagation. Acta Neuropathol Commun 2021; 9:177. [PMID: 34727983 PMCID: PMC8561893 DOI: 10.1186/s40478-021-01280-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease and related tauopathies, trans-synaptic transfer and accumulation of pathological tau from donor to recipient neurons is thought to contribute to disease progression, but the underlying mechanisms are poorly understood. Using complementary in vivo and in vitro models, we examined the relationship between these two processes and neuronal clearance. Accumulation of p62 (a marker of defective protein clearance) correlated with pathological tau accumulation in two mouse models of tauopathy spread; Entorhinal Cortex-tau (EC-Tau) mice where tau pathology progresses in time from EC to other brain regions, and PS19 mice injected with tau seeds. In both models and in several brain regions, p62 colocalized with human tau in a pathological conformation (MC1 antibody). In EC-Tau mice, p62 accumulated before overt tau pathology had developed and was associated with the presence of aggregation-competent tau seeds identified using a FRET-based assay. Furthermore, p62 accumulated in the cytoplasm of neurons in the dentate gyrus of EC-Tau mice prior to the appearance of MC1 positive tauopathy. However, MC1 positive tau was shown to be present at the synapse and to colocalize with p62 as shown by immuno electron microscopy. In vitro, p62 colocalized with tau inclusions in two primary cortical neuron models of tau pathology. In a three-chamber microfluidic device containing neurons overexpressing fluorescent tau, seeding of tau in the donor chamber led to tau pathology spread and p62 accumulation in both the donor and the recipient chamber. Overall, these data are in accordance with the hypothesis that the accumulation and trans-synaptic spread of pathological tau disrupts clearance mechanisms, preceding the appearance of obvious tau aggregation. A vicious cycle of tau accumulation and clearance deficit would be expected to feed-forward and exacerbate disease progression across neuronal circuits in human tauopathies.
Collapse
Affiliation(s)
- François-Xavier Blaudin de Thé
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Benjamin Lassus
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- HiFiBiO Therapeutics Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ari W. Schaler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UCLA – Physiology Department, 10833 Le Conte Ave, CHS76200, CA 90095 Los Angeles, USA
| | - Stephanie L. Fowler
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| | - Chris N. Goulbourne
- Nathan Kline Institute: Center for Dementia Research, 140 Old Orangeburg Road, NY 10962 Orangeburg, USA
| | - Ross Jeggo
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mark J. Millan
- Neuroscience and Immunoinflammation Therapeutic Area, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
- Present Address: Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Science, Glasgow University, Glasgow, G12 8QQ United Kingdom
| | - Karen E. Duff
- Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, 630 W 168th St, NY 10032 New York, USA
- UK Dementia Research Institute at UCL, University College London, 90 Gower St, W1T 7NF London, UK
| |
Collapse
|
39
|
Natale G, Clouston S, Smith D. Elevated C-Reactive Protein in Alzheimer's Disease without Depression in Older Adults: Findings from the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2021; 77:673-682. [PMID: 34671810 DOI: 10.1093/gerona/glab282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
We examined the association between differential diagnoses of major stroke and probable Alzheimer's disease (AD) and Mixed AD on c-reactive protein (CRP) in older adults with and without depression. Secondary data analyses examined associations between blood-based measures of probable peripheral inflammation using CRP collected from dried blood spots in the Health and Retirement Study (HRS), a nationally representative sample of individuals aged 50 and older. A validated pattern recognition algorithm was utilized to identify cognitive decline indicative of probable AD, Mixed AD, and major stroke. Negative binomial regressions were utilized to model concentrations of serologic CRP. On average, participants (N=4,601) were 70 years old, female, and non-Hispanic white. Mixed AD participants had 0.26 mg/dL increase in CRP compared to unimpaired participants, controlling for demographics, health behaviors and comorbidities. Those with Mixed AD had 2.14 times increased odds of having high CRP (OR=2.14; [1.19-3.85]). In analyses stratified by depression, adults with Mixed AD and without depression had an additional 0.37 mg/dL increase in CRP (SE=0.06; p<0.001) compared to unimpaired adults. Those with AD without depression had an 0.20 mg/dL increase in CRP (SE=0.07; p<0.01). Age was not associated with increased CRP in non-depressed older adults. Depressed adults with major stroke had a -0.26 mg/dL decrease in CRP (SE=0.11; p=0.02), controlling for hypertension, alcoholic drinks/beverages per week and smoking status. Concentration modeling revealed that participants with major stroke, probable AD and probable mixed AD without depression had significantly higher CRP concentrations when compared to unimpaired older adults.
Collapse
Affiliation(s)
- Ginny Natale
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sean Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Dylan Smith
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
41
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
42
|
Ledreux A, Thomas S, Hamlett ED, Trautman C, Gilmore A, Rickman Hager E, Paredes DA, Margittai M, Fortea J, Granholm AC. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J Clin Med 2021; 10:3931. [PMID: 34501378 PMCID: PMC8432237 DOI: 10.3390/jcm10173931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Sarah Thomas
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Camille Trautman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Emily Rickman Hager
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Daniel A. Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau and Catalan Down Syndrome Foundation, 08041 Barcelona, Spain;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| |
Collapse
|
43
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Svob Strac D, Konjevod M, Sagud M, Nikolac Perkovic M, Nedic Erjavec G, Vuic B, Simic G, Vukic V, Mimica N, Pivac N. Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmgenomics Pers Med 2021; 14:631-653. [PMID: 34093032 PMCID: PMC8169052 DOI: 10.2147/pgpm.s284615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, complex, and multifactorial neurodegenerative disorder, still without effective and stable therapeutic strategies. Currently, available medications for AD are based on symptomatic therapy, which include acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonist. Additionally, medications such as antipsychotic drugs, antidepressants, sedative, and hypnotic agents, and mood stabilizers are used for the management of behavioral and psychological symptoms of dementia (BPSD). Clinical research has been extensively investigated treatments focusing on the hallmark pathology of AD, including the amyloid deposition, tau hyperphosphorylation, neuroinflammation, and vascular changes; however, so far without success, as all new potential drugs failed to show significant clinical benefit. The underlying heterogeneous etiology and diverse symptoms of AD suggest that a precision medicine strategy is required, which would take into account the complex genetic, epigenetic, and environmental landscape of each AD patient. The article provides a comprehensive overview of the literature on AD, the current and potential therapy of both cognitive symptoms as well as BPSD, with a special focus on gut microbiota and epigenetic modifications as new emerging drug targets. Their specific patterns could represent the basis for novel individually tailored approaches aimed to optimize precision medicine strategies for AD prevention and treatment. However, the successful application of precision medicine to AD demands a further extensive research of underlying pathological processes, as well as clinical and biological complexity of this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, Clinical Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Goran Simic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Vana Vukic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
45
|
Babić Leko M, Nikolac Perković M, Klepac N, Štrac DŠ, Borovečki F, Pivac N, Hof PR, Šimić G. IL-1β, IL-6, IL-10, and TNFα Single Nucleotide Polymorphisms in Human Influence the Susceptibility to Alzheimer's Disease Pathology. J Alzheimers Dis 2021; 75:1029-1047. [PMID: 32390629 DOI: 10.3233/jad-200056] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroinflammation plays an important role in Alzheimer's disease (AD). During this process, activated microglia release pro-inflammatory cytokines such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor α (TNFα) that participate in neuron damage, but also anti-inflammatory cytokines (such as IL-10), which maintain homeostasis of immune response. Previous studies showed the association of IL-1α -889C/T (rs1800587), IL-1β-1473G/C (rs1143623), IL-6 -174C/G (rs1800795), IL-10 -1082G/A (rs1800896), and TNFα -308A/G (rs1800629) polymorphisms with AD. OBJECTIVE We aimed to investigate whether people with certain IL-1α, IL-1β, IL-6, IL-10, and TNFα genotypes in these polymorphisms are more prone to develop AD-related pathology, reflected by pathological levels of cerebrospinal fluid (CSF) AD biomarkers including amyloid-β1-42, total tau (t-tau), tau phosphorylated at Thr 181 (p-tau181), Ser 199 (p-tau199), and Thr 231 (p-tau231), and visinin-like protein 1 (VILIP-1). METHODS The study included 115 AD patients, 53 patients with mild cognitive impairment, and 11 healthy controls. The polymorphisms were determined using real-time polymerase chain reaction. Levels of CSF biomarkers were determined by enzyme-linked immunosorbent assay. RESULTS A significant increase in p-tau CSF levels was found in patients with the AA IL-10 -1082G/A and GG TNFα -308A/G genotypes, and in carriers of a G allele in IL-1β -1473C/G and IL-6 -174C/G polymorphisms. t-tau levels were increased in carriers of a G allele in IL-1β -1473C/G polymorphism. An increase in VILIP-1 levels was observed in patients with CG and GG IL-1β -1473C/G, GC IL-6 -174C/G, and GG TNFα -308A/G genotype. CONCLUSION These results suggest that persons carrying certain genotypes in IL10 (-1082G/A), IL1β (1473C/G), IL6 (-174C/G), and TNFIα (-308A/G) could be more vulnerable to development of neuroinflammation, and consequently of AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
46
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
47
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
48
|
Desale SE, Chinnathambi S. α-Linolenic acid induces clearance of Tau seeds via Actin-remodeling in Microglia. MOLECULAR BIOMEDICINE 2021; 2:4. [PMID: 35006402 PMCID: PMC8607384 DOI: 10.1186/s43556-021-00028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is known by characteristic features, extracellular burden of amyloid-β and intracellular neuronal Tau. Microglia, the innate immune cell of the brain has the ability to clear the burden of accumulated proteins via phagocytosis. But the excessive proinflammatory cytokine production, altered cellular signaling and actin remodeling hampers the process of migration and phagocytosis by microglia. Actin remodeling is necessary to initiate the chemotactic migration of microglia towards the target and engulf it. The formation of lamellipodia, filopodia, membrane ruffling and rapid turnover of F-actin is necessary to sense the extracellular target by the cells. Omega-3 fatty acids, are known to impose anti-inflammatory phenotype of microglia by enhancing its ability for migration and phagocytosis. But the role of omega-3 fatty acids in cellular actin remodeling, which is the basis of cellular functions such as migration and phagocytosis, is not well understood. Here, we have focused on the effect of dietary supplement of α-linolenic acid (ALA) on extracellular Tau internalization and assisted actin polymerization for the process. ALA is found to induce membrane ruffling and phagocytic cup formation along with cytoskeletal rearrangement. ALA also enhances the localization of Arp2/3 complex at the leading edge and its colocalization with F-actin to induce the actin polymerization. The excessive actin polymerization might help the cell to protrude forward and perform its migration. The results suggest that dietary supplement of ALA could play a neuroprotective role and slow down the AD pathology.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
49
|
Dorigatti AO, Hussong SA, Hernandez SF, Sills AM, Salmon AB, Galvan V. Primary neuron and astrocyte cultures from postnatal Callithrix jacchus: a non-human primate in vitro model for research in neuroscience, nervous system aging, and neurological diseases of aging. GeroScience 2021; 43:115-124. [PMID: 33063253 PMCID: PMC8050148 DOI: 10.1007/s11357-020-00284-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to generate in vitro cultures of neuronal cells has been instrumental in advancing our understanding of the nervous system. Rodent models have been the principal source of brain cells used in primary cultures for over a century, providing insights that are widely applicable to human diseases. However, therapeutic agents that showed benefit in rodent models, particularly those pertaining to aging and age-associated dementias, have frequently failed in clinical trials. This discrepancy established a potential "translational gap" between human and rodent studies that may at least partially be explained by the phylogenetic distance between rodent and primate species. Several non-human primate (NHP) species, including the common marmoset (Callithrix jacchus), have been used extensively in neuroscience research, but in contrast to rodent models, practical approaches to the generation of primary cell culture systems amenable to molecular studies that can inform in vivo studies are lacking. Marmosets are a powerful model in biomedical research and particularly in studies of aging and age-associated diseases because they exhibit an aging phenotype similar to humans. Here, we report a practical method to culture primary marmoset neurons and astrocytes from brains of medically euthanized postnatal day 0 (P0) marmoset newborns that yield highly pure primary neuron and astrocyte cultures. Primary marmoset neuron and astrocyte cultures can be generated reliably to provide a powerful NHP in vitro model in neuroscience research that may enable mechanistic studies of nervous system aging and of age-related neurodegenerative disorders. Because neuron and astrocyte cultures can be used in combination with in vivo approaches in marmosets, primary marmoset neuron and astrocyte cultures may help bridge the current translational gap between basic and clinical studies in nervous system aging and age-associated neurological diseases.
Collapse
Affiliation(s)
- Angela O Dorigatti
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Stephen F Hernandez
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aubrey M Sills
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 3.200.8, San Antonio, TX, 78245, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
50
|
Barrett T, Stangis KA, Saito T, Saido T, Park KH. Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. J Alzheimers Dis 2021; 82:1683-1702. [PMID: 34219712 PMCID: PMC8461670 DOI: 10.3233/jad-210091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.
Collapse
Affiliation(s)
- Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kevin H.J. Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
- Michigan Alzheimer’s Disease Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|