1
|
Cao J, Yuan J, Liu N, Huang K, Guo M. Microglial dynamics and emerging therapeutic strategies in CNS homeostasis and pathology. Front Pharmacol 2025; 16:1577809. [PMID: 40432891 PMCID: PMC12106359 DOI: 10.3389/fphar.2025.1577809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are highly dynamic and play critical roles in maintaining CNS homeostasis. Under normal conditions, microglia continuously monitor their environment, clear cellular debris, and regulate homeostasis. In response to disease or injury, however, they undergo rapid morphological and functional changes, often adopting an amoeboid shape that facilitates phagocytosis of abnormal cells, pathogens, and external antigens. Microglia also proliferate in areas of injury or pathology, contributing to immune responses and tissue remodeling. Recently, pharmacological approaches targeting microglial depletion and repopulation have gained attention as a means to reset or modulate microglial function. Techniques such as CSF1R inhibition enable transient depletion of microglia, followed by rapid repopulation, potentially restoring homeostatic functions and mitigating chronic inflammation. This review explores the current understanding of microglial dynamics and highlights emerging therapeutic applications of microglial depletion and repopulation within the CNS.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | | | | | - Mingwei Guo
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Christ R, Siemes D, Zhao S, Widera L, Spangenberg P, Lill J, Thiebes S, Bottek J, Borgards L, Pinho AG, Silva NA, Monteiro S, Jorch SK, Gunzer M, Siebels B, Voss H, Schlüter H, Shevchuk O, Chen J, Engel DR. Inhibition of tumour necrosis factor alpha by Etanercept attenuates Shiga toxin-induced brain pathology. J Neuroinflammation 2025; 22:33. [PMID: 39920757 PMCID: PMC11804009 DOI: 10.1186/s12974-025-03356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Infection with enterohemorrhagic E. coli (EHEC) causes severe changes in the brain leading to angiopathy, encephalopathy and microglial activation. In this study, we investigated the role of tumour necrosis factor alpha (TNF-α) for microglial activation and brain pathology using a preclinical mouse model of EHEC infection. LC-MS/MS proteomics of mice injected with a combination of Shiga toxin (Stx) and lipopolysaccharide (LPS) revealed extensive alterations of the brain proteome, in particular enrichment of pathways involved in complement activation and coagulation cascades. Inhibition of TNF-α by the drug Etanercept strongly mitigated these changes, particularly within the complement pathway, suggesting TNF-α-dependent vasodilation and endothelial injury. Analysis of microglial populations using a novel human-in-the-loop deep learning algorithm for the segmentation of microscopic imaging data indicated specific morphological changes, which were reduced to healthy condition after inhibition of TNF-α. Moreover, the Stx/LPS-mediated angiopathy was significantly attenuated by inhibition of TNF-α. Overall, our findings elucidate the critical role of TNF-α in EHEC-induced brain pathology and highlight a potential therapeutic target for mitigating neuroinflammation, microglial activation and injury associated with EHEC infection.
Collapse
Affiliation(s)
- Robin Christ
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Devon Siemes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Shuo Zhao
- Leibniz-Institut Für Analytische Wissenschaften, ISAS, E.V., Dortmund, Germany
| | - Lars Widera
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Philippa Spangenberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Julia Lill
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Stephanie Thiebes
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Jenny Bottek
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Lars Borgards
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Andreia G Pinho
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
- Life and Health Sciences Research Institute (ICVS),, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS),, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS),, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Selina K Jorch
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
- Leibniz-Institut Für Analytische Wissenschaften, ISAS, E.V., Dortmund, Germany
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hannah Voss
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Olga Shevchuk
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Jianxu Chen
- Leibniz-Institut Für Analytische Wissenschaften, ISAS, E.V., Dortmund, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.
| |
Collapse
|
3
|
Zhang R, Guo S, Zhou J, Lin X, Wang Y, Wang Y, Li M, Zhao K, Bao W, Shui K, Liu C, Liu C, Dong Z. Monitoring of single-nucleus chromatin landscape of ischemic stroke in mouse cerebral cortex across time. Sci Data 2025; 12:47. [PMID: 39794343 PMCID: PMC11724039 DOI: 10.1038/s41597-025-04367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Ischemic stroke constitutes a multifaceted neurological affliction that spans various cellular types. Lack of dynamic chromatin accessibility data after stroke is one of the obstacles to understanding this process. To gain insights into the variations in transcriptional regulation among various cell types subsequent to a stroke, we employed single-nucleus ATAC-seq to curate a chromatin accessibility compendium from the cerebral cortex of mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Tissue samples were collected at various time points including 0, 6, 12, 24 hours, and 7, 14 days post-reperfusion, in addition to Sham control group. We obtained 99,271 high-quality nuclei across nine cell types, thereby establishing the single-nucleus chromatin accessibility atlas. This atlas provides data for interpreting the regulatory mechanisms that pervade the continuum of ischemic stroke. The data presented herein constitutes a valuable resource for the comprehension of regulatory interplays within the pathology-afflicted cerebrum.
Collapse
Affiliation(s)
- Ruolin Zhang
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Jie Zhou
- BGI Research, Hangzhou, 310030, China
| | | | - Ying Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqi Wang
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muyang Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Shui
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Chang Liu
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhiqiang Dong
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Awogbindin I, ŠimonČiČová E, Vidal V, Ash C, Tremblay ME. Neuroglial responses to bacterial, viral, and fungal neuroinfections. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:213-238. [PMID: 40148046 DOI: 10.1016/b978-0-443-19102-2.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Evidence regarding the host's response to peripheral pathogens in humans abound, whereas studies on the pathogenesis of central nervous system-penetrating infections are relatively scarce. However, given the spate of epidemic and pandemic neuroinfections in the 21st century, the field has experienced a renewed interest lately. This chapter discusses a timely and exciting topic on the roles of glial cells, mainly microglia and astrocytes, in neuroinvasive infections. This chapter considered fungal, viral, and bacterial neuroinfections, X-raying their neuroinvasiveness, neurotropism, and neurovirulence before focusing on specific examples notable for each category, including Escherichia coli, Cryptococcus neoformans, and SARS-CoV-2. These infections are renowned worldwide for a high case-fatality rate, leaving many survivors with life-long morbidity and others with a bleak future neurologic prognosis. Importantly, the chapter discusses possible ways microglia and astrocytes are culpable in these infections and provides approaches by which they can be manipulated for therapeutic purposes, identifying viable research gaps in the process. Additionally, it offers a synopsis of ongoing works considering microglial selective targeting to attenuate the pathology, morbidity, and mortality associated with these neuroinfections. Considering that microglia and astrocytes are first responders in the central nervous system, targeting these glial cells could be the game changer in managing existing and emerging neuroinvasive infections.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| | - Eva ŠimonČiČová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Virginie Vidal
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Science and Technology Department, University of Bordeaux, Bordeaux, France
| | - Chantaille Ash
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
5
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Obukohwo OM, Oreoluwa OA, Andrew UO, Williams UE. Microglia-mediated neuroinflammation in traumatic brain injury: a review. Mol Biol Rep 2024; 51:1073. [PMID: 39425760 DOI: 10.1007/s11033-024-09995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, characterized by a complex interplay of primary and secondary injury mechanisms. Microglia, the resident immune cells of the central nervous system, play a crucial role in the inflammatory response following TBI. To review the current understanding of microglia-mediated neuroinflammation in TBI, exploring its dual nature as a protective and detrimental process. A comprehensive literature review was conducted using databases such as PubMed, Scopus, and Google Scholar. Relevant studies investigating the role of microglia in TBI were included. In the early stages of TBI, microglia exhibit a protective response, releasing cytokines and chemokines to promote neuronal survival and tissue repair. However, prolonged or excessive microglial activation can lead to neurotoxicity and exacerbate secondary injury. Microglia-mediated neuroinflammation involves complex signaling pathways, including Toll-like receptors, purinergic receptors, and the complement system. Microglia-mediated neuroinflammation in TBI is a double-edged sword. While acute microglial activation can promote repair, chronic or excessive inflammation contributes to neuronal damage and functional deficits. Understanding the temporal and molecular dynamics of microglial responses is crucial for developing therapeutic strategies to modulate neuroinflammation and improve outcomes after TBI.
Collapse
Affiliation(s)
- Oyovwi Mega Obukohwo
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | - Oyelere Abosede Oreoluwa
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Udi Onoriode Andrew
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| | - Ugwuishi Emeka Williams
- Department of Physiology, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| |
Collapse
|
7
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
8
|
Scher MS. Neonatal Encephalopathy is a Complex Phenotype Representing Reproductive and Pregnancy Exposome Effects on the Maternal-Placental-Fetal Triad. Clin Perinatol 2024; 51:535-550. [PMID: 39095094 DOI: 10.1016/j.clp.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Reproductive, pregnancy, and placental exposomes influence the fetal neural exposome through toxic stressor interplay, impairing the maternal-placental-fetal (MPF) triad. Neonatal encephalopathy represents different clinical presentations based on complex time-dependent etiopathogenetic mechanisms including hypoxia-ischemia that challenge diagnosis and prognosis. Reproductive, pregnancy, and placental exposomes impair the fetal neural exposome through toxic stressor interplay within the MPF triad. Long intervals often separate disease onset from phenotype. Interdisciplinary fetal-neonatal neurology training, practice, and research closes this knowledge gap. Maintaining reproductive health preserves MPF triad health with life-course benefits.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Department of Pediatrics, Fetal/Neonatal Neurology Program, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital/ MacDonald Hospital for Women, University Hospitals Cleveland Medical Center, 22315 Canterbury Lane, Shaker Heights, OH 44122, USA.
| |
Collapse
|
9
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Green TRF, Rowe RK. Quantifying microglial morphology: an insight into function. Clin Exp Immunol 2024; 216:221-229. [PMID: 38456795 PMCID: PMC11097915 DOI: 10.1093/cei/uxae023] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Microglia are specialized immune cells unique to the central nervous system (CNS). Microglia have a highly plastic morphology that changes rapidly in response to injury or infection. Qualitative and quantitative measurements of ever-changing microglial morphology are considered a cornerstone of many microglia-centric research studies. The distinctive morphological variations seen in microglia are a useful marker of inflammation and severity of tissue damage. Although a wide array of damage-associated microglial morphologies has been documented, the exact functions of these distinct morphologies are not fully understood. In this review, we discuss how microglia morphology is not synonymous with microglia function, however, morphological outcomes can be used to make inferences about microglial function. For a comprehensive examination of the reactive status of a microglial cell, both histological and genetic approaches should be combined. However, the importance of quality immunohistochemistry-based analyses should not be overlooked as they can succinctly answer many research questions.
Collapse
Affiliation(s)
- Tabitha R F Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
13
|
Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka KF, Hiroi N, Makinodan M. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol Psychiatry 2024; 29:1338-1349. [PMID: 38243072 PMCID: PMC11189755 DOI: 10.1038/s41380-024-02413-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | | | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Mori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
14
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
15
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
16
|
Scher MS. Interdisciplinary fetal-neonatal neurology training applies neural exposome perspectives to neurology principles and practice. Front Neurol 2024; 14:1321674. [PMID: 38288328 PMCID: PMC10824035 DOI: 10.3389/fneur.2023.1321674] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.
Collapse
Affiliation(s)
- Mark S. Scher
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
17
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
18
|
Marín-Teva JL, Sepúlveda MR, Neubrand VE, Cuadros MA. Microglial Phagocytosis During Embryonic and Postnatal Development. ADVANCES IN NEUROBIOLOGY 2024; 37:151-161. [PMID: 39207691 DOI: 10.1007/978-3-031-55529-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia play decisive roles during the development of the central nervous system (CNS). Phagocytosis is one of the classical functions attributed to microglia, being involved in nearly all phases of the embryonic and postnatal development of the brain, such as rapid clearance of cell debris to avoid an inflammatory response, controlling the number of neuronal and glial cells or their precursors, contribution to axon guidance and to refinement of synaptic connections. To carry out all these tasks, microglial cells are equipped with a panoply of receptors, that convert microglia to the "professional phagocytes" of the nervous parenchyma. These receptors are modulated by spatiotemporal cues that adapt the properties of microglia to the needs of the developing CNS. Thus, in this chapter, we will discuss the role of microglial phagocytosis in all the aforementioned processes. First, we will explain the general phagocytic process, to describe afterward the performance of microglial cells in detail.
Collapse
Affiliation(s)
- José L Marín-Teva
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Miguel A Cuadros
- Department of Cell Biology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Catalano F, Vlaar EC, Katsavelis D, Dammou Z, Huizer TF, van den Bosch JC, Hoogeveen-Westerveld M, van den Hout HJ, Oussoren E, Ruijter GJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Tagged IDS causes efficient and engraftment-independent prevention of brain pathology during lentiviral gene therapy for Mucopolysaccharidosis type II. Mol Ther Methods Clin Dev 2023; 31:101149. [PMID: 38033460 PMCID: PMC10684800 DOI: 10.1016/j.omtm.2023.101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen C. van den Bosch
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - George J.G. Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| |
Collapse
|
20
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. RESEARCH SQUARE 2023:rs.3.rs-3459515. [PMID: 37961257 PMCID: PMC10635322 DOI: 10.21203/rs.3.rs-3459515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
21
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562508. [PMID: 37905036 PMCID: PMC10614777 DOI: 10.1101/2023.10.16.562508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
22
|
Makinodan M, Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka K, Hiroi N. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. RESEARCH SQUARE 2023:rs.3.rs-3094335. [PMID: 37461488 PMCID: PMC10350236 DOI: 10.21203/rs.3.rs-3094335/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglia Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglia BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administration of doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological functions; this was not observed when BDNF was normalized from a later age (p45-p50). To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible substitute for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. Thus, microglia BDNF might regulate sociability and mPFC maturation in mice during the juvenile period. Furthermore, childhood experiences in humans may be related to BDNF secretion from macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - T Ito
- Keio University School of Medicine
| | | | | | | | | | - Noboru Hiroi
- University of Texas Health Science Center at San Antonio
| |
Collapse
|
23
|
Zhang R, Ye Y, Wu J, Gao J, Huang W, Qin H, Tian H, Han M, Zhao B, Sun Z, Chen X, Dong X, Liu K, Liu C, Tu Y, Zhao S. Immunostimulant In Situ Fibrin Gel for Post-operative Glioblastoma Treatment by Macrophage Reprogramming and Photo-Chemo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17627-17640. [PMID: 37000897 DOI: 10.1021/acsami.3c00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianing Wu
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingyang Han
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Boyan Zhao
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Zhenying Sun
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xingli Dong
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| |
Collapse
|
24
|
Sierra-Martín A, Navascués J, Neubrand VE, Sepúlveda MR, Martín-Oliva D, Cuadros MA, Marín-Teva JL. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front Cell Neurosci 2023; 17:1120400. [PMID: 37006469 PMCID: PMC10050569 DOI: 10.3389/fncel.2023.1120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.
Collapse
|
25
|
Beckmann N, Neuhaus A, Zurbruegg S, Volkmer P, Patino C, Joller S, Feuerbach D, Doelemeyer A, Schweizer T, Rudin S, Neumann U, Berth R, Frieauff W, Gasparini F, Shimshek DR. Genetic models of cleavage-reduced and soluble TREM2 reveal distinct effects on myelination and microglia function in the cuprizone model. J Neuroinflammation 2023; 20:29. [PMID: 36755323 PMCID: PMC9909920 DOI: 10.1186/s12974-022-02671-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell-surface immunoreceptor expressed on microglia, osteoclasts, dendritic cells and macrophages. Heterozygous loss-of-function mutations in TREM2, including mutations enhancing shedding form the cell surface, have been associated with myelin/neuronal loss and neuroinflammation in neurodegenerative diseases, such as Alzheimer`s disease and Frontotemporal Dementia. Using the cuprizone model, we investigated the involvement of soluble and cleavage-reduced TREM2 on central myelination processes in cleavage-reduced (TREM2-IPD), soluble-only (TREM2-sol), knockout (TREM2-KO) and wild-type (WT) mice. The TREM2-sol mouse is a new model with selective elimination of plasma membrane TREM2 and a reduced expression of soluble TREM2. In the acute cuprizone model demyelination and remyelination events were reflected by a T2-weighted signal intensity change in magnetic resonance imaging (MRI), most prominently in the external capsule (EC). In contrast to WT and TREM2-IPD, TREM2-sol and TREM2-KO showed an additional increase in MRI signal during the recovery phase. Histological analyses of TREM2-IPD animals revealed no recovery of neuroinflammation as well as of the lysosomal marker LAMP-1 and displayed enhanced cytokine/chemokine levels in the brain. TREM2-sol and, to a much lesser extent, TREM2-KO, however, despite presenting reduced levels of some cytokines/chemokines, showed persistent microgliosis and astrocytosis during recovery, with both homeostatic (TMEM119) as well as activated (LAMP-1) microglia markers increased. This was accompanied, specifically in the EC, by no myelin recovery, with appearance of myelin debris and axonal pathology, while oligodendrocytes recovered. In the chronic model consisting of 12-week cuprizone administration followed by 3-week recovery TREM2-IPD displayed sustained microgliosis and enhanced remyelination in the recovery phase. Taken together, our data suggest that sustained microglia activation led to increased remyelination, whereas microglia without plasma membrane TREM2 and only soluble TREM2 had reduced phagocytic activity despite efficient lysosomal function, as observed in bone marrow-derived macrophages, leading to a dysfunctional phenotype with improper myelin debris removal, lack of remyelination and axonal pathology following cuprizone intoxication.
Collapse
Affiliation(s)
- Nicolau Beckmann
- grid.419481.10000 0001 1515 9979Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Anna Neuhaus
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefan Zurbruegg
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Pia Volkmer
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Claudia Patino
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefanie Joller
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Dominik Feuerbach
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Arno Doelemeyer
- grid.419481.10000 0001 1515 9979Musculoskeletal Diseases Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Tatjana Schweizer
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefan Rudin
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Ulf Neumann
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Ramon Berth
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Wilfried Frieauff
- grid.419481.10000 0001 1515 9979Preclinical Safety, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Fabrizio Gasparini
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Derya R. Shimshek
- grid.419481.10000 0001 1515 9979Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| |
Collapse
|
26
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Zhang W, Jiang J, Xu Z, Yan H, Tang B, Liu C, Chen C, Meng Q. Microglia-containing human brain organoids for the study of brain development and pathology. Mol Psychiatry 2023; 28:96-107. [PMID: 36474001 PMCID: PMC9734443 DOI: 10.1038/s41380-022-01892-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Microglia are resident immune cells in the central nervous system, playing critical roles in brain development and homeostasis. Increasing evidence has implicated microglia dysfunction in the pathogenesis of various brain disorders ranging from psychiatric disorders to neurodegenerative diseases. Using a human cell-based model to illuminate the functional mechanisms of microglia will promote pathological studies and drug development. The recently developed microglia-containing human brain organoids (MC-HBOs), in-vitro three-dimensional cell cultures that recapitulate key features of the human brain, have provided a new avenue to model brain development and pathology. However, MC-HBOs generated from different methods differ in the origin, proportion, and fidelity of microglia within the organoids, and may have produced inconsistent results. To help researchers to develop a robust and reproducible model that recapitulates in-vivo signatures of human microglia to study brain development and pathology, this review summarized the current methods used to generate MC-HBOs and provided opinions on the use of MC-HBOs for disease modeling and functional studies.
Collapse
Affiliation(s)
- Wendiao Zhang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Jiamei Jiang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Zhenhong Xu
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Hongye Yan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| | - Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
28
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
29
|
Bohnert S, Trella S, Preiß U, Heinsen H, Bohnert M, Zwirner J, Tremblay MÈ, Monoranu CM, Ondruschka B. Density of TMEM119-positive microglial cells in postmortem cerebrospinal fluid as a surrogate marker for assessing complex neuropathological processes in the CNS. Int J Legal Med 2022; 136:1841-1850. [PMID: 35821334 PMCID: PMC9576655 DOI: 10.1007/s00414-022-02863-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany.
| | - Stefanie Trella
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Ulrich Preiß
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Helmut Heinsen
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany.,Department of Oral Sciences, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Medical Sciences Building, Victoria, BC V8P5C2, Canada
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Josef-Schneider Str. 2, 97080, Wuerzburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
30
|
|
31
|
Li M, Ding R, Yang X, Ran D. Study on Biomarkers Related to the Treatment of Post-Stroke Depression and Alternative Medical Treatment Methods. Neuropsychiatr Dis Treat 2022; 18:1861-1873. [PMID: 36052274 PMCID: PMC9426768 DOI: 10.2147/ndt.s370848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE PSD is a syndrome that occurs after a stroke, which manifests as a series of depressive symptoms and corresponding physiological symptoms. Relevant studies have shown that the drug therapy is often accompanied by drug side effects and patient resistance. Acupuncture has attracted attention as a treatment method without adverse reactions of patients. The purpose of this study was to investigate the possible mechanism of action of acupuncture in PSD. PATIENTS AND METHODS Download depression and stroke datasets from public databases. Bioinformatics methods were used to analyze the key gene targets related to stroke and depression. Functional enrichment analysis assesses important pathways. Further screen PSD-related biological pathways and genes. After the experimental model was established, the expression differences of key genes and related pathways were compared between the model group and the control group through acupuncture treatment and qPCR verification. RESULTS Depression and stroke-related genes were obtained by bioinformatics methods, and then important biological processes and biological pathways related to depression and stroke were analyzed by GO and KEGG. And further screen out the disease targets closely related to PSD. In the follow-up animal experiments, we confirmed that acupuncture can intervene on these key pathways and targets, and then play a role in the targeted therapy of diseases. CONCLUSION The results of this study show that five genes ("NRBP1", "SIRT1", "BDNF", "MAPK3", "CREB1".) and key biological pathways such as NFkB, PI3K/AKT activation, and MAPK are the keys to the occurrence and development of PSD biomarkers, which can also be therapeutically intervened by acupuncture.
Collapse
Affiliation(s)
- Menghan Li
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinming Yang
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Dawei Ran
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|