1
|
Clain J, Couret D, Bringart M, Meilhac O, Lefebvre d’Hellencourt C, Diotel N. Effect of metabolic disorders on reactive gliosis and glial scarring at the early subacute phase of stroke in a mouse model of diabetes and obesity. IBRO Neurosci Rep 2025; 18:16-30. [PMID: 39816479 PMCID: PMC11733059 DOI: 10.1016/j.ibneur.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring. In the present study, by performing a 30-minute middle cerebral artery occlusion (MCAO) on db/db (obese diabetics mice) and db/+ (controls) mice, we demonstrated that obese and diabetic mice displayed larger lesions (i.e. increased infarct volume, ischemic core, apoptotic cell number) and worsened neurological outcomes compared to their control littermates. We then investigated the formation of the glial scar in control and db/db mice 7 days post-stroke. Our observations argue in favor of a stronger and more persistent activation of astrocytes and microglia in db/db mice. Furthermore, an increased deposition of extracellular matrix (ECM) was observed in db/db vs control mice (i.e. chondroitin sulfate proteoglycan and collagen type IV). Consequently, we demonstrated for the first time that the db/db status is associated with increased astrocytic and microglial activation 7 days after stroke and resulted in higher deposition of ECM within the damaged area. Interestingly, the injury-induced neurogenesis appeared stronger in db/db as shown by the labeling of migrating neuroblast. This increase appeared correlated to the larger size of lesion. It nevertheless raises the question of the functional integration of the new neurons in db/db mice given the observed dense ECM, known to be repulsive for neuronal migration. Carefully limiting glial scar formation after stroke represents a promising area of research for reducing neuronal loss and limiting disability in diabetic/obese patients.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Christian Lefebvre d’Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| |
Collapse
|
2
|
Zhang T, Sun Y, Xia J, Fan H, Shi D, Wu Q, Huang M, Hou XY. Targeting HPK1 inhibits neutrophil responses to mitigate post-stroke lung and cerebral injuries. EMBO Mol Med 2025; 17:1018-1040. [PMID: 40169896 DOI: 10.1038/s44321-025-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
Circulating neutrophils are responsible for poor neurological outcomes and have been implicated in respiratory morbidity after acute ischemic stroke (AIS). However, the molecular mechanisms regulating neutrophil responses and their pathological relevance in post-stroke complications remain unclear. In this study, we investigated the involvement of hematopoietic progenitor kinase 1 (HPK1) in neutrophil responses and mobilization, as well as subsequent lung and cerebral injuries following AIS. We found that lipopolysaccharide treatment triggered neutrophil activation in an HPK1-dependent manner. HPK1 enhanced intrinsic NF-κB/STAT3/p38-MAPK pathways and gasdermin D cleavage, leading to neutrophil hyperactivation. Following AIS, HPK1 promoted the mobilization of CXCR2high bone marrow neutrophils. HPK1 loss inhibited peripheral neutrophil hyperactivation, neutrophil infiltration, and aggregation of neutrophil extracellular traps, progressively alleviating systemic inflammation and impairments in mouse pulmonary and neurological functions. Furthermore, HPK1 pharmacological inhibition attenuated post-stroke pulmonary and neurological impairments in mice. Our findings revealed that HPK1 upregulates neutrophil mobilization and various responses, promoting post-stroke systemic inflammation and tissue injury. This study highlights HPK1 as a therapeutic target for improving pulmonary and neurological functions after AIS.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qian Wu
- The Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ming Huang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
3
|
Tang XS, He LY, Li SN, Zhang WC, Wu ZY, Hui AL. Design, Synthesis, and Anti-Inflammatory Activity Evaluation of Novel Indanone Derivatives for the Treatment of Vascular Dementia. Chem Biodivers 2025; 22:e202401931. [PMID: 39482800 DOI: 10.1002/cbdv.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Vascular dementia (VaD) is a neurodegenerative disease resulting from cerebral vascular obstruction, leading to cognitive impairment, and currently lacks effective treatment options. Due to its complex pathogenesis, multi-target drug design (MTDLs) strategies are considered among the most promising therapeutic approaches. In this study, we designed and synthesized a series of novel indanone derivatives targeting targets related to vascular health and dementia. The results indicated that compound C5 exhibited excellent acetylcholinesterase inhibitory activity (IC50 =1.16 0.41 μM) and anti-platelet aggregation activity (IC50 =4.92±0.10 μM) within ranges of 0.1-1000 μM and 0.03-300 μM, respectively, possibly mediated by molecular docking interactions. Furthermore, compound C5 demonstrated protective effects on cells at concentrations ≤50 μM, significantly reducing the release of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) in a concentration-dependent manner, showcasing its potent neuroinflammatory inhibitory effects. Anti-inflammatory therapies are regarded as effective strategies for treating VaD. Therefore, compound C5 holds promise as a novel candidate drug for further investigation into the treatment of vascular dementia.
Collapse
Affiliation(s)
- Xue-Song Tang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Lin-Yu He
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Sheng-Nan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Wen-Cheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ze-Yu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ai-Ling Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| |
Collapse
|
4
|
Hajinejad M, Far BF, Gorji A, Sahab-Negah S. The effects of self-assembling peptide on glial cell activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1391-1402. [PMID: 39305327 DOI: 10.1007/s00210-024-03415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/26/2024] [Indexed: 02/14/2025]
Abstract
Glial cells play a critical role in the healthy and diseased phases of the central nervous system (CNS). CNS diseases involve a wide range of pathological conditions characterized by poor recovery of neuronal function. Glial cell-related target therapies are progressively gaining interest in inhibiting secondary injury-related death. Modulation of the extracellular matrix by artificial scaffolds plays a critical role in the behavior of glial cells after injury. Among numerous types of scaffolds, self-assembling peptides (SAPs) notably give attention to the design of a proper biophysical and biomechanical microenvironment for cellular homeostasis and tissue regeneration. Implementing SAPs in an injured brain can induce neural differentiation in transplanted stem cells, reducing inflammation and inhibiting glial scar formation. In this review, we investigate the recent findings to elucidate the pivotal role of SAPs in orchestrating the most pivotal secondary response following CNS injury. Notably, we explore their impact on the activation of glial cells and their modulatory effects on microglial and astrocytic polarization.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Neurosurgery Department, Münster University, Münster, Germany
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
5
|
Cheng R, Luo X, Wu X, Wang Z, Chen Z, Zhang S, Xiao H, Zhong J, Zhang R, Cao Y, Qin X. Artificial Microglia Nanoplatform Loaded With Anti-RGMa in Acoustic/Magnetic Feld for Recanalization and Neuroprotection in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410529. [PMID: 39475454 DOI: 10.1002/advs.202410529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Indexed: 12/28/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, and the main goals of stroke treatment are to destroy the thrombus to recanalize blood vessels and protect tissue from ischemia/reperfusion injury. However, current recanalization therapies have serious limitations and there are few neuroprotection methods. Hence, an artificial nanoplatform loaded with anti-Repulsive Guidance Molecule a monoclonal antibody (anti-RGMa) and coated with microglia membrane (MiCM) is reported for stroke treatment, namely MiCM@PLGA/anti-RGMa/Fe3O4@PFH (MiCM-NPs). Tail vein injection of MiCM-NPs targeted the ischemia-damaged endothelial cells because of the MiCM, then superparamagnetic iron oxide (Fe3O4) and anti-RGMa are released after external low-intensity focused ultrasound (LIFU) exposure. The thrombus is destroyed by LIFU-induced "liquid-to-gas" phase transition and cavitation of perfluorohexane (PFH) as well as Fe3O4 movements induced by an external magnetic field. Anti-RGMa protected the ischemic region from ischemia/reperfusion injury. The nanoplatform enabled visualization of the thrombus by ultrasound/photoacoustic imaging when the clot is in an extracranial artery. Importantly, in vivo animal studies revealed good safety for MiCM-NPs treatment. In conclusion, this nanoplatform shows promise as an ischemic stroke treatment strategy combining targeted delivery, recanalization, and neuroprotection.
Collapse
Affiliation(s)
- Ruiqi Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zijie Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongmei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiaju Zhong
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
7
|
Li Y, Wu J, Du F, Tang T, Lim JCW, Karuppiah T, Liu J, Sun Z. Neuroprotective Potential of Glycyrrhizic Acid in Ischemic Stroke: Mechanisms and Therapeutic Prospects. Pharmaceuticals (Basel) 2024; 17:1493. [PMID: 39598404 PMCID: PMC11597102 DOI: 10.3390/ph17111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ischemic stroke is a leading cause of disability and mortality worldwide, with current therapies limited in addressing its complex pathophysiological mechanisms, such as inflammation, oxidative stress, apoptosis, and impaired autophagy. Glycyrrhizic acid (GA), a bioactive compound from licorice (Glycyrrhiza glabra L.), has demonstrated neuroprotective properties in preclinical studies. This review consolidates current evidence on GA's pharmacological mechanisms and assesses its potential as a therapeutic agent for ischemic stroke. Methods: This review examines findings from recent preclinical studies and reviews on GA's neuroprotective effects, focusing on its modulation of inflammation, oxidative stress, apoptosis, and autophagy. Studies were identified from major scientific databases, including PubMed, Web of Science, and Embase, covering research from January 2000 to August 2024. Results: GA has demonstrated significant neuroprotective effects through the modulation of key pathways, including HMGB1/TLR4/NF-κB and Keap1/Nrf2, thereby reducing neuroinflammation, oxidative stress, and apoptosis. Additionally, GA promotes autophagy and modulates immune responses, suggesting it could serve as an adjunct therapy to enhance the efficacy and safety of existing treatments, such as thrombolysis. Conclusions: Current findings underscore GA's potential as a multi-targeted neuroprotective agent in ischemic stroke, highlighting its anti-inflammatory, antioxidant, and anti-apoptotic properties. However, while preclinical data are promising, further clinical trials are necessary to validate GA's therapeutic potential in humans. This review provides a comprehensive overview of GA's mechanisms of action, proposing directions for future research to explore its role in ischemic stroke management.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Juan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Fang Du
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Tao Tang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| | - Thilakavathy Karuppiah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jiaxin Liu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| |
Collapse
|
8
|
Ma BDY, Chan TYH, Lo BWY. Unveiling the hidden culprit: How the brain-gut axis fuels neuroinflammation in ischemic stroke. Surg Neurol Int 2024; 15:394. [PMID: 39640340 PMCID: PMC11618647 DOI: 10.25259/sni_703_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Background The brain-gut axis represents a bidirectional communication network between the gut microbiome and the central nervous system that plays an important role in homeostasis. Compelling evidence now confirms that ischemic stroke disrupts this delicate balance by inducing gut dysbiosis. Methods A comprehensive literature search was performed in PubMed, Web of Science, and Google Scholar for articles published between January 2000 and January 2023 using relevant keywords. Studies were limited to English and included original studies, literature, and systematic reviewers from peer-reviewed journals which discussed gut microbiota composition in models/subjects with ischemic stroke or assessed stroke impact on gut microbiota. Comments, meeting abstracts, and case reports were excluded. From the 80 relevant articles, we summarized key findings related to gut microbiota changes after stroke and their association with stroke outcomes. Results Emerging preclinical evidence underscores the pivotal role of the gut microbiome in glial cell development and function. Germ-free models exhibit compromised microglial activation and impaired cellular debris clearance, exacerbating tissue damage following ischemic stroke. Targeted interventions, including prebiotics, probiotics, and fecal microbiota transplantation, have demonstrated efficacy in rescuing glial phenotypes in preclinical stroke models. Beyond its local effects, the gut microbiome significantly influences systemic immunity. Ischemic stroke polarizes pro-inflammatory phenotypes of neutrophils and T cells, amplifying neurovascular inflammation. Microbiota manipulation modulates leukocyte trafficking and metabolic signaling, offering potential avenues to mitigate infarct pathology. Conclusion Our review demonstrates that in preclinical stroke models, modulating the lipopolysaccharide, short-chain fatty acid, and trimethylamine N-oxide pathways through the gut-brain axis reduces infarct sizes and edema and improves functional recovery after ischemic stroke. Further exploration of this important axis may unveil additional adjunctive stroke therapies by elucidating the complex interplay between the microbiome and the brain. Rigorously controlled clinical studies are now warranted to translate these promising preclinical findings and investigate whether manipulating the microbiome-brain relationship can help improve outcomes for stroke patients. Overall, continued research on the gut-brain axis holds exciting possibilities for developing novel treatment strategies that may enhance recovery after stroke.
Collapse
Affiliation(s)
- Brian D. Y. Ma
- Department of Neurosurgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Travis Y. H. Chan
- Department of Neurosurgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Benjamin W. Y. Lo
- Department of Neurosurgery, Queen Mary Hospital, Pok Fu Lam, Hong Kong Hospital Authority, Hong Kong
| |
Collapse
|
9
|
Huang L, Li X, Li Z, Zhu H, Han Y, Zeng J, Wen M, Zeng H. PD-1 mediates microglia polarization via the MAPK signaling pathway to protect blood-brain barrier function during cerebral ischemia/reperfusion. Brain Res Bull 2024; 216:111055. [PMID: 39173779 DOI: 10.1016/j.brainresbull.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Cerebral ischemia is characterized by its rapid onset and high rates of recurrence, morbidity, and mortality, with blood-brain barrier (BBB) permeability playing a vital role in brain injury. Therefore, it is important to understand the molecular mechanism which regulates the BBB during cerebral ischemia. MATERIALS AND METHODS An in vitro model of oxygen-glucose deprivation (OGD) and an in vivo model of cerebral ischemia/reperfusion (I/R) were constructed. PD-1 overexpression vectors and vectors containing si-RNA were transfected and injected into in vitro and in vivo models. Western blotting, real-time quantitative PCR (qPCR), immunofluorescence (IF) analysis, and immunohistochemical staining were employed to evaluate the expression levels of programmed cell death-1 (PD-1), microglia M1 and M2 biomarkers, and tight junction proteins. Flow cytometry and ELISA were used to measure the levels of pro-inflammatory cytokines. The BBB permeability of brain tissues was evaluated by Evans blue dye (EBD) extravasation and transendothelial electrical resistance (TEER). Brain water content was measured to assess the extent of inflammatory exudation. The infarct volume and neurological severity score (NSS) were used to assess the severity of brain injury. Brain cell apoptosis was assessed by the TUNEL assay and hematoxylin-eosin (H&E) staining. RESULTS PD-1 helped to convert the microglia M1 phenotype to the M2 phenotype and to reduce BBB permeability both in vitro and in vivo. Overexpression of PD-1 promoted a shift of the M1 phenotype to the M2 phenotype and reduced BBB permeability via the ERK and p38 MAPK signaling pathways. PD-1 reduced inflammatory exudation, BBB permeability, cell apoptosis, and brain injury in vivo. CONCLUSION Our present study verified that PD-1 exerts an anti-inflammatory effect by converting the microglia M1 phenotype to the M2 phenotype, reducing BBB permeability, and thereby relieves brain injury caused by cerebral ischemia. PD-1 is potential therapeutic target for brain injury caused by cerebral ischemia.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xinping Li
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Zhuo Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Huishan Zhu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Juhao Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Miaoyun Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China.
| |
Collapse
|
10
|
Nedelea G, Muşat MI, Mitran SI, Ciorbagiu MC, Cătălin B. Acute liver damage generates age independent microglia morphology changes in mice. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:679-685. [PMID: 39957030 PMCID: PMC11924902 DOI: 10.47162/rjme.65.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a silent global epidemic, frequently contributing to systemic inflammation. As the primary immune cells of the central nervous system (CNS), microglia undergo morphological changes that serve as critical indicators of CNS health. In this study, we aimed to quantify alterations in microglial morphology within the cortex of young and aged mice with liver damage. Our results demonstrated that hepatic dysfunction leads to a significant increase in total branch length in both young (285.79±68.23 μm) and aged animals (268.67±69.06 μm), compared to their respective controls (164.07±33.05 μm and 140.96±27.18 μm) (p<0.0001). Additionally, aged animals with liver damage exhibited a mean branch length of 5.84±0.66 μm, higher than 2.63±0.19 μm observed in those without liver injury. The number of primary branches in aged mice with liver damage decreased from 6.6±1.2 branches to 3.1±1.5 (p<0.0001). In addition, we have shown a decrease in the number of secondary branches in aged animals with liver damage. This suggests that microglia not only respond to CNS-specific injuries but also to chronic systemic pathologies like NAFLD. These findings highlight the importance of better understanding the liver-brain axis in order to better understand the neuroimmune consequences of systemic diseases.
Collapse
Affiliation(s)
- Gabriel Nedelea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | |
Collapse
|
11
|
Huang SC, Huang HC, Liao WL, Kao ST, Cheng CY. Neuroprotective effects of Gastrodia elata Blume on promoting M2 microglial polarization by inhibiting JNK/TLR4/T3JAM/NF-κB signaling after transient ischemic stroke in rats. Front Pharmacol 2024; 15:1469602. [PMID: 39391701 PMCID: PMC11465390 DOI: 10.3389/fphar.2024.1469602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Gastrodia elata Blume, also called Tian Ma (TM), has been used to treat stroke for centuries. However, its effects on inflammation in acute cerebral ischemic injury and underlying mechanisms involved in microglial polarization remain unknown. The present study explored the effects of the TM extract on the modulation of microglial M1/M2 polarization 2 days after transient cerebral ischemia. Methods Male Sprague Dawley rats were intracerebroventricularly administered with 1% dimethyl sulfoxide 25 min before cerebral ischemia and subsequently intraperitoneally administered 0.25 g/kg (DO + TM-0.25 g), 0.5 g/kg (DO + TM-0.5 g), or 1 g/kg (DO + TM-1 g) of the TM extract after cerebral ischemia onset. Results DO + TM-0.5 g and DO + TM-1 g treatments downregulated the following: phospho-c-Jun N-terminal kinase (p-JNK)/JNK, tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3), TRAF3-interacting JNK-activating modulator (T3JAM), p-nuclear factor-kappa B p65 (p-NF-κB p65)/NF-κB p65, ionized calcium-binding adapter molecule 1 (Iba1), CD86, TNF-α, interleukin (IL)-1β, and IL-6 expression and toll-like receptor 4 (TLR4)/Iba1, CD86/Iba1, and p-NF-κB p65/Iba1 coexpression. These treatments also upregulated IL-10, nerve growth factor, and vascular endothelial growth factor A expression and YM-1/2/Iba1 and IL-10/neuronal nuclei coexpression in the cortical ischemic rim. The JNK inhibitor SP600125 exerted similar treatment effects as the DO + TM-0.5 g and DO + TM-1 g treatments. Conclusion DO + TM-0.5 g and DO + TM-1 g/kg treatments attenuate cerebral infarction by inhibiting JNK-mediated signaling. TM likely exerts the neuroprotective effects of promoting M1 to M2 microglial polarization by inhibiting JNK/TLR4/T3JAM/NF-κB-mediated signaling in the cortical ischemic rim 2 days after transient cerebral ischemia.
Collapse
Affiliation(s)
- Shang-Chih Huang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Shi Y, Ma Y, Liao J. Advancements in the mechanisms of Naotai formula in treating stroke: A multi-target strategy. Heliyon 2024; 10:e36748. [PMID: 39296232 PMCID: PMC11408019 DOI: 10.1016/j.heliyon.2024.e36748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Stroke represents a significant global health challenge, characterized by high incidence, mortality, disability, and recurrence rates, leading to substantial socioeconomic burdens. Despite advancements in acute management and prevention, effective post-stroke recovery strategies remain limited. Naotai Formula (NTF), a traditional Chinese medicine compound, has garnered attention for its potential in stroke treatment, encompassing both ischemic and hemorrhagic types. This review synthesizes recent advancements in basic and clinical research on NTF, focusing on its mechanisms of action in stroke therapy. The formula's multifaceted effects include promoting neuronal regeneration, combating oxidative stress, regulating lipid metabolism, and modulating iron homeostasis. Through a multi-target approach, NTF addresses the complex pathophysiology of stroke, suggesting a promising complementary strategy for stroke recovery. Despite promising findings, further research is required to elucidate its active components, potential side effects, and optimized therapeutic protocols. The integration of traditional Chinese medicine, like NTF, with conventional treatments may enhance stroke management strategies, urging the need for high-quality clinical trials and evidence-based guidelines.
Collapse
Affiliation(s)
- Yongmei Shi
- Anatomy Teaching Center of Hunan University of Traditional Chinese Medicine, China
| | - Yingmin Ma
- Department of Otolaryngology, Head and Neck Surgery, Changsha Hospital Affiliated to University of South China, China
| | - Jun Liao
- Anatomy Teaching Center of Hunan University of Traditional Chinese Medicine, China
| |
Collapse
|
13
|
Hammer MF, Bahramnejad E, Watkins JC, Ronaldson PT. Candesartan restores blood-brain barrier dysfunction, mitigates aberrant gene expression, and extends lifespan in a knockin mouse model of epileptogenesis. Clin Sci (Lond) 2024; 138:1089-1110. [PMID: 39092536 DOI: 10.1042/cs20240771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
Blockade of Angiotensin type 1 receptor (AT1R) has potential therapeutic utility in the treatment of numerous detrimental consequences of epileptogenesis, including oxidative stress, neuroinflammation, and blood-brain barrier (BBB) dysfunction. We have recently shown that many of these pathological processes play a critical role in seizure onset and propagation in the Scn8a-N1768D mouse model. Here we investigate the efficacy and potential mechanism(s) of action of candesartan (CND), an FDA-approved angiotensin receptor blocker (ARB) indicated for hypertension, in improving outcomes in this model of pediatric epilepsy. We compared length of lifespan, seizure frequency, and BBB permeability in juvenile (D/D) and adult (D/+) mice treated with CND at times after seizure onset. We performed RNAseq on hippocampal tissue to quantify differences in genome-wide patterns of transcript abundance and inferred beneficial and detrimental effects of canonical pathways identified by enrichment methods in untreated and treated mice. Our results demonstrate that treatment with CND gives rise to increased survival, longer periods of seizure freedom, and diminished BBB permeability. CND treatment also partially reversed or 'normalized' disease-induced genome-wide gene expression profiles associated with inhibition of NF-κB, TNFα, IL-6, and TGF-β signaling in juvenile and adult mice. Pathway analyses reveal that efficacy of CND is due to its known dual mechanism of action as both an AT1R antagonist and a PPARγ agonist. The robust effectiveness of CND across ages, sexes and mouse strains is a positive indication for its translation to humans and its suitability of use for clinical trials in children with SCN8A epilepsy.
Collapse
Affiliation(s)
- Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Neurology, University of Arizona, Tucson, AZ, U.S.A
| | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, AZ, U.S.A
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ, U.S.A
| | | |
Collapse
|
14
|
Del Águila Á, Zhang R, Yu X, Dang L, Xu F, Zhang J, Jain V, Tian J, Zhong XP, Sheng H, Yang W. Microglial heterogeneity in the ischemic stroke mouse brain of both sexes. Genome Med 2024; 16:95. [PMID: 39095897 PMCID: PMC11295600 DOI: 10.1186/s13073-024-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.
Collapse
Affiliation(s)
- Ángela Del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Ran Zhang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Xinyuan Yu
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Lihong Dang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Feng Xu
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Jin Zhang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jilin Tian
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xiao-Ping Zhong
- Departments of Pediatrics and Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, 303 Research Drive, Box 3094, Durham, NC, 27710, USA.
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Zeng T, Liu J, Zhang W, Yu Y, Ye X, Huang Q, Li P, Jiang Q. Update on the mechanism of microglia involvement in post-stroke cognitive impairment. Front Aging Neurosci 2024; 16:1366710. [PMID: 38887610 PMCID: PMC11181926 DOI: 10.3389/fnagi.2024.1366710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical syndrome characterized by cognitive deficits that manifest following a stroke and persist for up to 6 months post-event. This condition is grave, severely compromising patient quality of life and longevity, while also imposing substantial economic burdens on societies worldwide. Despite significant advancements in identifying risk factors for PSCI, research into its underlying mechanisms and therapeutic interventions remains inadequate. Microglia, the brain's primary immune effector cells, are pivotal in maintaining, nurturing, defending, and repairing neuronal function, a process intrinsically linked to PSCI's progression. Thus, investigating microglial activation and mechanisms in PSCI is crucial. This paper aims to foster new preventive and therapeutic approaches for PSCI by elucidating the roles, mechanisms, and characteristics of microglia in the condition.
Collapse
Affiliation(s)
- Tianxiang Zeng
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Jun Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Recovery Medicine, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Yanyan Yu
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Xinyun Ye
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Qianliang Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuhua Jiang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
17
|
Lee S, Kim J, You JS, Hyun YM, Kim JY, Lee JE. Ischemic stroke outcome after promoting CD4+CD25+ Treg cell migration through CCR4 overexpression in a tMCAO animal model. Sci Rep 2024; 14:10201. [PMID: 38702399 PMCID: PMC11068779 DOI: 10.1038/s41598-024-60358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.
Collapse
Affiliation(s)
- Seowoo Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Che J, Wang H, Dong J, Wu Y, Zhang H, Fu L, Zhang J. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF-κB/NLRP3 pathway. CNS Neurosci Ther 2024; 30:e14454. [PMID: 37697971 PMCID: PMC10916441 DOI: 10.1111/cns.14454] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
AIMS We investigated whether human umbilical cord mesenchymal stem cell (hUC-MSC)-derived exosomes bear therapeutic potential against lipopolysaccharide (LPS)-induced neuroinflammation. METHODS Exosomes were isolated from hUC-MSC supernatant by ultra-high-speed centrifugation and characterized by transmission electron microscopy and western blotting. Inflammatory responses were induced by LPS in BV-2 cells, primary microglial cultures, and C57BL/6J mice. H2 O2 was also used to induce inflammation and oxidative stress in BV-2 cells. The effects of hUC-MSC-derived exosomes on inflammatory cytokine expression, oxidative stress, and microglia polarization were studied by immunofluorescence and western blotting. RESULTS Treatment with hUC-MSC-derived exosomes significantly decreased the LPS- or H2 O2 -induced oxidative stress and expression of pro-inflammatory cytokines (IL-6 and TNF-α) in vitro, while promoting an anti-inflammatory (classical M2) phenotype in an LPS-treated mouse model. Mechanistically, the exosomes increased the NRF2 levels and inhibited the LPS-induced NF-κB p65 phosphorylation and NLRP3 inflammasome activation. In contrast, the reactive oxygen species scavenger NAC and NF-κB inhibitor BAY 11-7082 also inhibited the LPS-induced NLRP3 inflammasome activation and switched to the classical M2 phenotype. Treatment with the NRF2 inhibitor ML385 abolished the anti-inflammatory and anti-oxidative effects of the exosomes. CONCLUSION hUC-MSC-derived exosomes ameliorated LPS/H2 O2 -induced neuroinflammation and oxidative stress by inhibiting the microglial NRF2/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Ji Che
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hui Wang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jing Dong
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuanyuan Wu
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Haichao Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong HospitalFudan UniversityShanghaiChina
| | - Lei Fu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Wen Q, Zha F, Shan L, Zhang S, Xiao P, Zhang C, Yu H, Wang Y. Electroacupuncture attenuates middle cerebral artery occlusion-induced learning and memory impairment by regulating microglial polarization in hippocampus. Int J Neurosci 2024:1-13. [PMID: 38315119 DOI: 10.1080/00207454.2024.2313664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND As a traditional medical therapy, electroacupuncture (EA) has been demonstrated to have beneficial effects on ischemic stroke-induced cognitive impairment. However, the underlying mechanism is largely unclear. METHODS Adult rats received occlusion of the middle cerebral artery and reperfusion (MCAO/R) to establish the ischemic stroke model. Morris water maze test was performed following EA stimulation at the GV20, PC6, and KI1 acupoints in rats to test the learning and memory ability. Western blot, immunofluorescent staining, and enzyme-linked immunosorbent assay were conducted to assess the cellular and molecular mechanisms. RESULTS EA stimulation attenuated neurological deficits. In the Morris water maze test, EA treatment ameliorated the MCAO/R-induced learning and memory impairment. Moreover, we observed that MCAO/R induced microglial activation and polarization in the ischemic hippocampus, whereas, EA treatment dampened microglial activation and inhibited M1 microglial polarization but enhanced M2 microglial polarization. EA treatment inhibited the increased expression of proinflammatory cytokines and enhanced the increased expression of anti-inflammatory cytokines. Finally, we found that EA treatment dampened microglial p38 mitogen-activated protein kinase (MAPK) phosphorylation. CONCLUSION Collectively, our data suggested that EA treatment ameliorated cognitive impairment induced by MCAO/R and the underlying mechanism may be p38-mediated microglia polarization and neuroinflammation.
Collapse
Affiliation(s)
- Qiong Wen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Fubing Zha
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Linlin Shan
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Peng Xiao
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Chunxia Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yulong Wang
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
22
|
Romaus-Sanjurjo D, Castañón-Apilánez M, López-Arias E, Custodia A, Martin-Martín C, Ouro A, López-Cancio E, Sobrino T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxidants (Basel) 2024; 13:138. [PMID: 38397735 PMCID: PMC10885962 DOI: 10.3390/antiox13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is an important cause of mortality and disability worldwide. Given that current treatments do not allow a remarkably better outcome in patients after stroke, it is mandatory to seek new approaches to preventing stroke and/or complementing the current treatments or ameliorating the ischemic insult. Multiple preclinical and clinical studies highlighted the potential beneficial roles of exercise and a Mediterranean diet following a stroke. Here, we investigated the effects of a pre-stroke Mediterranean-like diet supplemented with hydroxytyrosol and with/without physical exercise on male rats undergoing transient middle cerebral artery occlusion (tMCAO). We also assessed a potential synergistic effect with physical exercise. Our findings indicated that the diet reduced infarct and edema volumes, modulated acute immune response by altering cytokine and chemokine levels, decreased oxidative stress, and improved acute functional recovery post-ischemic injury. Interestingly, while physical exercise alone improved certain outcomes compared to control animals, it did not enhance, and in some aspects even impaired, the positive effects of the Mediterranean-like diet in the short term. Overall, these data provide the first preclinical evidence that a preemptive enriched Mediterranean diet modulates cytokines/chemokines levels downwards which eventually has an important role during the acute phase following ischemic damage, likely mediating neuroprotection.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Castañón-Apilánez
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Esteban López-Arias
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Martin-Martín
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena López-Cancio
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Kim DW, Lim JH, Cho S, Kim SH. Effects of Banhabaekchulcheonma-Tang on Brain Injury and Cognitive Function Impairment Caused by Bilateral Common Carotid Artery Stenosis in a Mouse Model. Int J Med Sci 2024; 21:644-655. [PMID: 38464836 PMCID: PMC10920841 DOI: 10.7150/ijms.90167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.
Collapse
Affiliation(s)
- Da-Woon Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Jung-Hwa Lim
- Department of Neuropsychiatry, School of Korean Medicine, Pusan National University, 49, Busandaehak-ro, Yangsan-si 50612, Republic of Korea
- Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Yangsan-si 50612, Republic of Korea
| | - Suin Cho
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Republic of Korea
| | - Sang-Ho Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
24
|
Dou H, Brandon NR, Koper KE, Xu Y. Fingerprint of Circulating Immunocytes as Biomarkers for the Prognosis of Brain Inflammation and Neuronal Injury after Cardiac Arrest. ACS Chem Neurosci 2023; 14:4115-4127. [PMID: 37967214 DOI: 10.1021/acschemneuro.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Cardiac arrest is one of the most dangerous health problems in the world. Outcome prognosis is largely based on cerebral performance categories determined by neurological evaluations. Few systemic tests are currently available to predict survival to hospital discharge. Here, we present the results from the preclinical studies of cardiac arrest and resuscitation (CAR) in mice to identify signatures of circulating immune cells as blood-derived biomarkers to predict outcomes after CAR. Two flow cytometry panels for circulating blood lymphocytes and myeloid-derived cells, respectively, were designed to correlate with neuroinflammation and neuronal and dendritic losses in the selectively vulnerable regions of bilateral hippocampi. We found that CD4+CD25+ regulatory T cells, CD11b+CD11c- and CD11b+Ly6C+Ly6G+ myeloid-derived cells, and cells positive for the costimulatory molecules CD80 and CD86 in the blood were correlated with activation of microglia and astrocytosis, and CD4+CD25+ T cells are additionally correlated with neuronal and dendritic losses. A fingerprint pattern of blood T cells and monocytes is devised as a diagnostic tool to predict CAR outcomes. Blood tests aimed at identifying these immunocyte patterns in cardiac arrest patients will guide future clinical trials to establish better prognostication tools to avoid unnecessary early withdrawal from life-sustaining treatment.
Collapse
Affiliation(s)
- Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, and Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, Texas 79905, United States
| | - Nicole R Brandon
- Departments of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Kerryann E Koper
- Departments of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Yan Xu
- Departments of Anesthesiology and Perioperative Medicine, Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Xie J, Tuo P, Zhang W, Wang S. Inhibition of the TLR4/NF-κB pathway promotes the polarization of LPS-induced BV2 microglia toward the M2 phenotype. Neuroreport 2023; 34:834-844. [PMID: 37938926 DOI: 10.1097/wnr.0000000000001961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This study aimed to investigate whether the inhibition of the TLR4/NF-κB pathway can promote lipopolysaccharide (LPS)-induced microglial polarization from the M1 to M2 phenotype, and thus exert neuroprotection. LPS-induced microglia were used as a model for inflammation in vitro. TLR4-specific inhibitor resatorvid (TAK-242) and NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) were used to verify the effect of the TLR4/NF-κB pathway on microglia activation and polarization. Cell proliferation was measured by cell counting, and nitric oxide (NO) and reactive oxygen species (ROS) release was measured using the Griess reagent and ROS kit, respectively. Immunofluorescence and RT-qPCR analyses were used to detect the expression of microglial activation markers, phenotypic markers, related pathway molecules, and inflammatory factors. TLR4 specific inhibitor TAK-242 and NF-κB inhibitor PDTC alleviated LPS-induced microglia over-activation by inhibiting the TLR4/NF-κB pathway, and reduced LPS-stimulated cell proliferation and the release of NO, ROS, TNF-a, and IL-6 and IL-1β. Meanwhile, TAK-242 and PDTC promoted LPS-induced polarization of microglia from M1 to M2 phenotype, decreased the expression of microglial activation marker Iba1 and M1 phenotypic markers (TNF-a and CD86), and increased the expression of M2 phenotypic markers (Arg-1 and CD206). The mechanism may be related to inhibiting the TLR4/NF-κB pathway. The inhibition of the TLR4/NF-κB pathway can promote LPS-induced polarization of BV2 microglia from M1 phenotype to M2 phenotype.
Collapse
Affiliation(s)
- Jiehong Xie
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
26
|
Mohamed SK, Ahmed AAE, Elkhoely A. Sertraline Pre-Treatment Attenuates Hemorrhagic Transformation Induced in Rats after Cerebral Ischemia Reperfusion via Down Regulation of Neuronal CD163: Involvement of M1/M2 Polarization Interchange and Inhibiting Autophagy. J Neuroimmune Pharmacol 2023; 18:657-673. [PMID: 37955765 PMCID: PMC10770270 DOI: 10.1007/s11481-023-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Cerebral ischemia reperfusion (I/R) is one of the neurovascular diseases which leads to severe brain deterioration. Haemorrhagic transformation (HT) is the main complication of ischemic stroke. It exacerbates by reperfusion, causing a more deleterious effect on the brain and death. The current study explored the protective effect of sertraline (Sert) against cerebral I/R in rats by inhibiting HT, together with the molecular pathways involved in this effect. Forty-eight wister male rats were divided into 4 groups: Sham, Sert + Sham, I/R, and Sert + I/R. The ischemic model was induced by bilateral occlusion of the common carotid artery for 20 min, then reperfusion for 24 h. Sertraline (20 mg/kg, p.o.) was administrated for 14 days before exposure to ischemia. Pre-treatment with Sert led to a significant attenuation of oxidative stress and inflammation. In addition, Sert attenuated phosphorylation of extracellular regulated kinases and nuclear factor kappa-p65 expression, consequently modulating microglial polarisation to M2 phenotype. Moreover, Sert prevented the hemorrhagic transformation of ischemic stroke as indicated by the notable decrease in neuronal expression of CD163, activity of Heme oxygenase-2 and matrix metalloproteinase-2 and 9 levels. In the same context, Sert decreased levels of autophagy and apoptotic markers. Furthermore, histological examination, Toluidine blue, and Prussian blue stain aligned with the results. In conclusion, Sert protected against cerebral I/R damage by attenuating oxidative stress, inflammation, autophagy, and apoptotic process. It is worth mentioning that our study was the first to show that Sert inhibited hemorrhagic transformation. The protective effect of sertraline against injury induced by cerebral ischemia reperfusion via inhibiting Hemorrhagic transformation.
Collapse
Affiliation(s)
- Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Abeer Elkhoely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
27
|
Ciaccio AM, Tuttolomondo A. Exosomal miRNAs as Biomarkers of Ischemic Stroke. Brain Sci 2023; 13:1647. [PMID: 38137095 PMCID: PMC10741776 DOI: 10.3390/brainsci13121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are small lipid bilayer membrane particles released from all living cells into the extracellular environment. They carry several molecules and have a critical role in cell-cell communication under physiological and pathological conditions. In recent decades, exosomes, and especially their cargo, have emerged as a promising tool for several clinical conditions. However, the literature has become increasingly unambiguous in defining the role of exosomes in chronic cerebrovascular diseases. Because they can pass through the blood-brain barrier, they have great potential to reflect intracerebral changes. They can, thus, provide valuable insight into the mechanisms of central nervous system diseases. The purpose of this review is to describe the literature on the role of exosomal miRNA, which represents the most widely investigated exosomal biomarker, in strokes. First, we provide an overview of exosomes, from biology to isolation and characterization. Then, we describe the relationship between exosomes and stroke pathogenesis. Finally, we summarize the human studies evaluating exosomal miRNA biomarkers of stroke. Although the collective literature supports the potential use of exosomal miRNA as biomarkers of ischemic stroke, there are still several limitations hampering their introduction into clinical practice.
Collapse
Affiliation(s)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Regional Reference Center for Diagnosis and Treatment of Anderson-Fabry Disease, Department of Health Promotion, Maternal and Child Health, Internal Medicine, and Specialty Excellence “G. D’Alessandro” (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
28
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Reid MM, Kautzmann MAI, Andrew G, Obenaus A, Mukherjee PK, Khoutorova L, Ji JX, Roque CR, Oria RB, Habeb BF, Belayev L, Bazan NG. NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes. Cell Mol Neurobiol 2023; 43:3555-3573. [PMID: 37270727 PMCID: PMC10477115 DOI: 10.1007/s10571-023-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gethein Andrew
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92618, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Cassia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bola F Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St, Suite 9B16, Room 935A, New Orleans, LA, 70112, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, Neuroscience Center of Excellence, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
30
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Reid MM, Belayev L, Khoutorova L, Mukherjee PK, Obenaus A, Shelvin K, Knowles S, Hong SH, Bazan NG. Integrated inflammatory signaling landscape response after delivering Elovanoid free-fatty-acid precursors leading to experimental stroke neuroprotection. Sci Rep 2023; 13:15841. [PMID: 37740008 PMCID: PMC10516907 DOI: 10.1038/s41598-023-42126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kierany Shelvin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Stacey Knowles
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Sung-Ha Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
- UT Health, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
32
|
Li Z, Chen Z, Peng J. Neural stem cell-derived exosomal FTO protects neuron from microglial inflammatory injury by inhibiting microglia NRF2 mRNA m6A modification. J Neurogenet 2023; 37:103-114. [PMID: 37812019 DOI: 10.1080/01677063.2023.2259995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
Ischemic stroke (IS) can cause neuronal cell loss and function defects. Exosomes derived from neural stem cells (NSC-Exos) improve neural plasticity and promote neural function repair following IS. However, the potential mechanism remains unclear. In this study, NSC-Exos were characterized and co-cultured with microglia. We found that NSC-Exos increased NRF2 expression in oxygen-glucose deprivation/reoxygenation and LPS-induced microglia and converted microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. NSC-Exos reduced m6A methylation modification of nuclear factor erythroid 2-related factor 2 (NRF2) mRNA via obesity-associated gene (FTO). Furthermore, NSC-Exos reduced the damage to neurons caused by microglia's inflammatory response. Finally, the changes in microglia polarization and neuron damage caused by FTO knockdown in NSE-Exos were attenuated by NRF2 overexpression in microglia. These findings revealed that NSC-Exos promotes NRF2 expression and M2 polarization of microglial via transferring FTO, thereby resulting in neuroprotective effects.
Collapse
Affiliation(s)
- Zhiyong Li
- Medical Quality Management Department, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Zhenggang Chen
- Neurosurgery Department, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Jun Peng
- Neurosurgery Department, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| |
Collapse
|
33
|
Wang H, Li X, Wang Q, Ma J, Gao X, Wang M. TREM2, microglial and ischemic stroke. J Neuroimmunol 2023; 381:578108. [PMID: 37302170 DOI: 10.1016/j.jneuroim.2023.578108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Immunity and inflammation are key factors in the pathophysiology of IS. The inflammatory response is involved in all stages of stroke, and microglia are the predominant cells involved in the post-stroke inflammatory response. Resident microglia are the main immune cells of the brain and the first line of defense of the nervous system. After IS, activated microglia can be both advantageous and detrimental to surrounding tissue; they can be divided into the harmful M1 types or the neuro-protective M2 type. Currently, with the latest progress of transcriptomics analysis, different and more complex phenotypes of microglia activation have been described, such as disease-related microglia (DAM) associated with Alzheimer's disease (AD), white matter associated microglia (WAMs) in aging, and stroke-related microglia (SAM) etc. The triggering receptor expressed on myeloid cell 2 (TREM2) is an immune-related receptor on the surface of microglia. Its expression increases after IS, which is related to microglial inflammation and phagocytosis, however, its relationship with the microglia phenotype is not clear. This paper reviews the following: 1) the phenotypic changes of microglia in various pathological stages after IS and its relationship with inflammatory factors; 2) the relationship between the expression of the TREM2 receptor and inflammatory factors; 3) the relationship between phenotypic changes of microglia and its surface receptor TREM2; 4) the TREM2-related signalling pathway of microglia after IS and treatment for TREM2 receptor; and finally 5) To clarify the relationship among TREM2, inflammation, and microglia phenotype after IS, as well as the mechanism among them and the some possible treatment of IS targeting TREM2. Moreover, the relationship between the new phenotype of microglia such as SAM and TREM2 has also been systematically summarized, but there are no relevant research reports on the relationship between TREM2 and SAM after IS.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaohong Gao
- Department of Neurology, Wuwei people's Hospital, North side of Xuanwu Street, Liangzhou District, Wuwei, Gansu 733000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
34
|
Ramírez-Carreto RJ, Rodríguez-Cortés YM, Torres-Guerrero H, Chavarría A. Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. Cell Mol Neurobiol 2023; 43:2473-2490. [PMID: 36935429 PMCID: PMC10025068 DOI: 10.1007/s10571-023-01329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are essential players during physiological and pathological processes. Although they participate in synaptic pruning and maintenance of neuronal circuits, microglia are mainly studied by their activity modulating inflammatory environment and adapting their phenotype and mechanisms to insults detected in the brain parenchyma. Changes in microglial phenotypes are reflected in their morphology, membrane markers, and secreted substances, stimulating neighbor glia and leading their responses to control stimuli. Understanding how microglia react in various microenvironments, such as chronic inflammation, made it possible to establish therapeutic windows and identify synergic interactions with acute damage events like stroke. Obesity is a low-grade chronic inflammatory state that gradually affects the central nervous system, promoting neuroinflammation development. Obese patients have the worst prognosis when they suffer a cerebral infarction due to basal neuroinflammation, then obesity-induced neuroinflammation could promote the priming of microglial cells and favor its neurotoxic response, potentially worsening patients' prognosis. This review discusses the main microglia findings in the obesity context during the course and resolution of cerebral infarction, involving the temporality of the phenotype changes and balance of pro- and anti-inflammatory responses, which is lost in the swollen brain of an obese subject. Obesity enhances proinflammatory responses during a stroke. Obesity-induced systemic inflammation promotes microglial M1 polarization and priming, which enhances stroke-associated damage, increasing M1 and decreasing M2 responses.
Collapse
Affiliation(s)
- Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydee Torres-Guerrero
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
35
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
36
|
Moya-Gómez A, Font LP, Burlacu A, Alpizar YA, Cardonne MM, Brône B, Bronckaers A. Extremely Low-Frequency Electromagnetic Stimulation (ELF-EMS) Improves Neurological Outcome and Reduces Microglial Reactivity in a Rodent Model of Global Transient Stroke. Int J Mol Sci 2023; 24:11117. [PMID: 37446295 DOI: 10.3390/ijms241311117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Extremely low-frequency electromagnetic stimulation (ELF-EMS) was demonstrated to be significantly beneficial in rodent models of permanent stroke. The mechanism involved enhanced cerebrovascular perfusion and endothelial cell nitric oxide production. However, the possible effect on the neuroinflammatory response and its efficacy in reperfusion stroke models remains unclear. To evaluate ELF-EMS effectiveness and possible immunomodulatory response, we studied neurological outcome, behavior, neuronal survival, and glial reactivity in a rodent model of global transient stroke treated with 13.5 mT/60 Hz. Next, we studied microglial cells migration and, in organotypic hippocampal brain slices, we assessed neuronal survival and microglia reactivity. ELF-EMS improved the neurological score and behavior in the ischemia-reperfusion model. It also improved neuronal survival and decreased glia reactivity in the hippocampus, with microglia showing the first signs of treatment effect. In vitro ELF-EMS decreased (Lipopolysaccharide) LPS and ATP-induced microglia migration in both scratch and transwell assay. Additionally, in hippocampal brain slices, reduced microglial reactivity, improved neuronal survival, and modulation of inflammation-related markers was observed. Our study is the first to show that an EMF treatment has a direct impact on microglial migration. Furthermore, ELF-EMS has beneficial effects in an ischemia/reperfusion model, which indicates that this treatment has clinical potential as a new treatment against ischemic stroke.
Collapse
Affiliation(s)
- Amanda Moya-Gómez
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | | | | | - Miriam Marañón Cardonne
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| | - Bert Brône
- BIOMED, UHasselt, Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Engineering Department, Facultad de Ingeniería Informática, Telecomunicaciones y Biomédica, Universidad de Oriente, Santiago de Cuba 90 400, Cuba
| |
Collapse
|
37
|
Daniele E, Nazer Y, Kortebi I, Casasbuenas DL, Fan Y, Trinh M, Tompkins TA, Faiz M. Oral probiotic therapy improves motor function in a rodent model of sensorimotor stroke. Exp Brain Res 2023:10.1007/s00221-023-06651-4. [PMID: 37358570 DOI: 10.1007/s00221-023-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Ischemic stroke is a debilitating neurological disease with few effective therapeutics. Previous work has shown that oral probiotic treatment prior to stroke can attenuate cerebral infarction and neuroinflammation, highlighting the gut-microbiota-brain axis as a novel therapeutic target. Whether a more clinically relevant, post-stroke, administration of probiotics can improve stroke outcomes is unknown. In this study, we examined the effect of post-stroke oral probiotic therapy on motor behavior in the pre-clinical mouse endothelin-1 (ET-1) model of sensorimotor stroke. We found that post-stroke oral probiotic therapy with Cerebiome® (Lallemand, Montreal, Canada), containing B. longum R0175 and L. helveticus R0052, improved functional recovery and changed the composition of the post-stroke gut microbiota. Interestingly, oral Cerebiome® administration did not result in alterations of lesion volume or the number of CD8+/Iba1+ cells in the injured tissue. Overall, these findings suggest that probiotic treatment following injury can improve sensorimotor function.
Collapse
Affiliation(s)
- E Daniele
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Y Nazer
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - I Kortebi
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Y Fan
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - M Trinh
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - M Faiz
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Arutyunov A, Klein RS. Microglia at the scene of the crime: what their transcriptomics reveal about brain health. Curr Opin Neurol 2023; 36:207-213. [PMID: 37078646 PMCID: PMC10867866 DOI: 10.1097/wco.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Microglia, which arise from primitive myeloid precursors that enter the central nervous system (CNS) during early development, are the first responders to any perturbance of homeostasis. Although their activation has become synonymous with neurologic disease, it remains unclear whether microglial responses are the cause of or response to neuropathology. Here, we review new insights in the roles of microglia during CNS health and disease, including preclinical studies that transcriptionally profile microglia to define their functional states. RECENT FINDINGS Converging evidence suggests that innate immune activation of microglia is associated with overlapping alterations in their gene expression profiles regardless of the trigger. Thus, recent studies examining neuroprotective microglial responses during infections and aging mirror those observed during chronic neurologic diseases, including neurodegeneration and stroke. Many of these insights derive from studies of microglial transcriptomes and function in preclinical models, some of which have been validated in human samples. During immune activation, microglia dismantle their homeostatic functions and transition into subsets capable of antigen presentation, phagocytosis of debris, and management of lipid homeostasis. These subsets can be identified during both normal and aberrant microglial responses, the latter of which may persist long-term. The loss of neuroprotective microglia, which maintain a variety of essential CNS functions, may therefore, in part, underlie the development of neurodegenerative diseases. SUMMARY Microglia exhibit a high level of plasticity, transforming into numerous subsets as they respond to innate immune triggers. Chronic loss of microglial homeostatic functions may underlie the development of diseases with pathological forgetting.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases
- Departments of Medicine
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases
- Departments of Medicine
- Departments of Pathology & Immunology
- Departments of Neurosciences
| |
Collapse
|
39
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
40
|
Dhir N, Jain A, Sharma AR, Prakash A, Radotra BD, Medhi B. PERK inhibitor, GSK2606414, ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2ɑ/ATF4/CHOP signaling. Metab Brain Dis 2023; 38:1177-1192. [PMID: 36847967 DOI: 10.1007/s11011-023-01183-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The protein kinase R-like endoplasmic reticulum kinase/eukaryotic initiation factor 2ɑ (PERK/eIF2α), the branch of unfolded protein response (UPR), is responsible for transient arrest in translation to counter the enhanced levels of misfolded or unfolded proteins in the endoplasmic reticulum (ER) following any acute condition. In neurological disorders, overactivation of PERK-P/eIF2-P signaling, leads to a prolonged decline in global protein synthesis resulting in synaptic failure and neuronal death. Our study has shown, PERK/ATF4/CHOP pathway gets activated following cerebral ischemia in rats. We have further demonstrated, PERK inhibitor, GSK2606414 ameliorates ischemia induced neuronal damage by preventing additional neuronal loss, minimizing brain infarct, reducing brain edema, and preventing neurological symptoms from appearing. GSK2606414 was found to improve the neurobehavioral deficits and reduce the pyknotic neurons in ischemic rats. Also, it decreased glial activation and apoptotic protein mRNA expression while enhanced the synaptic protein mRNA expression in rat brain following cerebral ischemia. In conclusion, our findings suggest that PERK/ATF4/CHOP activation play a vital role in cerebral ischemia. Thus, PERK inhibitor, GSK2606414 might be a potential neuroprotective agent in cerebral ischemia.
Collapse
Affiliation(s)
- Neha Dhir
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ashish Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bishan Das Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
41
|
Hao L, Yang Y, Xu X, Guo X, Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front Neurol 2023; 13:1073958. [PMID: 36742051 PMCID: PMC9889551 DOI: 10.3389/fneur.2022.1073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Ischemic stroke accounts for 70-80% of all stroke cases. Immunity plays an important role in the pathophysiology of ischemic stroke. Microglia are the first line of defense in the central nervous system. Microglial functions are largely dependent on their pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotype. Modulating neuroinflammation via targeting microglia polarization toward anti-inflammatory phenotype might be a novel treatment for ischemic stroke. Mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (MSC-EVs) have been demonstrated to modulate microglia activation and phenotype polarization. In this review, we summarize the physiological characteristics and functions of microglia in the healthy brain, the activation and polarization of microglia in stroke brain, the effects of MSC/MSC-EVs on the activation of MSC in vitro and in vivo, and possible underlying mechanisms, providing evidence for a possible novel therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Hao
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Xu
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Xiuming Guo ✉
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China,Qunling Zhan ✉
| |
Collapse
|
42
|
Hahn KR, Kwon HJ, Yoon YS, Kim DW, Hwang IK. Phosphoglycerate kinase 1 protects against ischemic damage in the gerbil hippocampus. Aging (Albany NY) 2022; 14:8886-8899. [PMID: 36260875 PMCID: PMC9740370 DOI: 10.18632/aging.204343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that converts 1,3-diphosphoglycerate to 3-phosphoglycerate. In the current study, we synthesized a PEP-1-PGK1 fusion protein that can cross the blood-brain barrier and cell membrane, and the effects of PEP-1-PGK1 against oxidative stress were investigated HT22 cells and ischemic gerbil brain. The PEP-1-PGK1 protein and its control protein (Con-PGK1) were treated and permeability was evaluated HT22 cells. The PEP-1-PGK1 was introduced into HT22 cells depending on its concentration and incubation time and was gradually degraded over 36 h after treatment. PEP-1-PGK1, but not Con-PGK1, significantly ameliorated H2O2-induced cell damage and reactive oxygen species formation in HT22 cells. Additionally, PEP-1-PGK1, but not Con-PGK1, mitigated ischemia-induced hyperlocomotion 1 d after ischemia and 4 d after ischemia of neuronic cell death. PEP-1-PGK1 treatment significantly alleviated the raised lactate and succinate dehydrogenase activities in the early (15 min to 6 h) and late (4 and 7 d) stages of ischemia, respectively. In addition, PEP-1-PGK1 treatment ameliorated the decrease in ATP and pH levels in the late stage (2-7 d) of ischemia. Nuclear factor erythroid-2-related factor 2 (Nrf2) levels accelerated the ischemia-induced increase in the hippocampus 1 d after ischemia after PEP-1-PGK1 treatment. Neuroprotective and ameliorative effects were prominent at a low concentration (0.1 mg/kg), but not at a high concentration (1 mg/kg), of PEP-1-PGK1. Collectively, low concentrations of PEP-1-PGK1 prevented neuronal stress by increasing energy production.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea,Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
43
|
Neuroinflammation in autism spectrum disorders: potential target for mesenchymal stem cell-based therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00525-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorders (ASD) include a group of neurodevelopmental disorders characterised by repetitive behaviours and impairments in communication, emotional and social skills. This review gives an overview of ASD, focusing on the aetiological and clinical aspects. It also discusses the role of neuroinflammation in ASD, critically examines the current evidence on the therapeutic effects of MSCs in ASD and consolidates key findings in this area of research.
Results
Many environmental and genetic factors have been linked to the aetiology of ASD. It has become increasingly evident that neuroinflammation plays a role in ASD. Conventional treatment of ASD revolves around psychosocial approaches whereas recent studies have turned to alternative approaches such as mesenchymal stem cell (MSC)-based therapy, owing to the well-recognised immunomodulatory characteristics of MSCs. Preclinical and clinical studies have shown that MSCs were able to exert anti-inflammatory effects and alleviate ASD symptoms.
Conclusions
There are many preclinical studies that support the use of MSCs in ASD. However, there are relatively fewer clinical studies concerning the safety and efficacy of MSCs in ASD, which warrants more large-scale clinical studies for future research.
Collapse
|
44
|
Li C, Hu J, Liu W, Ke C, Huang C, Bai Y, Pan B, Wang J, Wan C. Exercise Intervention Modulates Synaptic Plasticity by Inhibiting Excessive Microglial Activation via Exosomes. Front Cell Neurosci 2022; 16:953640. [PMID: 35928570 PMCID: PMC9345504 DOI: 10.3389/fncel.2022.953640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Exosomes can activate microglia to modulate neural activity and synaptic plasticity by phagocytosis of neural spines or synapses. Our previous research found that an early 4-week exercise intervention in middle cerebral artery occlusion (MCAO) rats can promote the release of exosomes and protect the brain. This study intended to further explore the intrinsic mechanism of neuroprotection by exosome release after exercise. Methods Rats were randomly divided into four groups: the sham operation (SHAM), middle cerebral artery occlusion (MCAO) with sedentary intervention (SED-MCAO), MCAO with exercise intervention (EX-MCAO), and MCAO with exercise intervention and exosome injection (EX-MCAO-EXO). Modified neurological severity score (mNSS), cerebral infarction volume ratio, microglial activation, dendritic complexity, and expression of synaptophysin (Syn) and postsynaptic density protein 95 (PSD-95) were detected after 28 days of intervention. Results (1) The exercise improved body weight and mNSS score, and the survival state of the rats after exosome infusion was better. (2) Compared with the SED-MCAO group, the EX-MCAO (P = 0.039) and EX-MCAO-EXO groups (P = 0.002) had significantly lower cerebral infarct volume ratios (P < 0.05), among which the EX-MCAO-EXO group had the lowest (P = 0.031). (3) Compared with the SED-MCAO group, the EX-MCAO and EX-MCAO-EXO groups had a significantly decreased number of microglia (P < 0.001) and significantly increased process length/cell (P < 0.01) and end point/cell (P < 0.01) values, with the EX-MCAO-EXO group having the lowest number of microglia (P = 0.036) and most significantly increased end point/cell value (P = 0.027). (4) Compared with the SED-MCAO group, the total number of intersections and branches of the apical and basal dendrites in the EX-MCAO and EX-MCAO-EXO groups was increased significantly (P < 0.05), and the increase was more significant in the EX-MCAO-EXO group (P < 0.05). (5) The expression levels of Syn and PSD-95 in the EX-MCAO (PSyn = 0.043, PPSD−95 = 0.047) and EX-MCAO-EXO groups were significantly higher than those in the SED-MCAO group (P < 0.05), and the expression levels in the EX-MCAO-EXO group were significantly higher than those in the EX-MCAO group (P < 0.05). Conclusion Early exercise intervention after stroke can inhibit the excessive activation of microglia and regulate synaptic plasticity by exosome release.
Collapse
Affiliation(s)
- Chen Li
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayi Hu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenhong Liu
- Tianjin Rehabilitation Center, Tianjin, China
| | - Changkai Ke
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Huang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Bai
- Department of Rehabilitation Medicine, School of Medicine Technology, Tianjin Medical University, Tianjin, China
| | - Bingchen Pan
- Department of Rehabilitation Medicine, School of Medicine Technology, Tianjin Medical University, Tianjin, China
| | - Junyi Wang
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Chunxiao Wan
| |
Collapse
|
45
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
46
|
Luo J, Li J, Xiong L, Fan L, Peng L, Yang Y, Lu D, Shao J. MicroRNA-27a-3p relieves inflammation and neurologic impairment after cerebral ischemia reperfusion via inhibiting LITAF and the TLR4/NF-κB pathway. Eur J Neurosci 2022; 56:4013-4030. [PMID: 35584745 DOI: 10.1111/ejn.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Cerebral ischemia reperfusion (CIR) affects microRNA (miR) expression and causes substantial inflammation. Here, we investigated the influence and underlying mechanism of miR-27a-3p in rats with CIR. Firstly, Biliverdin treatment relieved cerebral infarction and decreased the levels of serum interleukin (IL)-1β, IL-6 and TNF-α. Through our previous study, we found key miR-27a-3p and its targeted gene LITAF might involve in the molecular mechanism of CIR. Then, the regulation between miR-27a-3p and LITAF was verified by the temporal miR-27a-3p and LITAF expression profiles and luciferase assay. Moreover, intracerebroventricular injection of the miR-27a-3p mimic significantly decreased the LITAF, TLR4, NF-κB and IL-6 levels at 24h post-surgery, whereas miR-27a-3p inhibitor reversed these effects. Furthermore, miR-27a-3p mimic could relieve cerebral infarct and neurologic deficit after CIR. In addition, injection of miR-27a-3p mimic decreased neuronal damage induced by CIR. Taken together, our results suggest that miR-27a-3p protect against CIR by relieving inflammation, neuronal damage and neurologic deficit via regulating LITAF and the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Li Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Linna Fan
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Lijia Peng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Di Lu
- Incubation center for Scientific and technological achievements, Kunming Medical University
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
47
|
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H, Yang S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia–Reperfusion Injury. Front Mol Neurosci 2022; 15:847440. [PMID: 35600078 PMCID: PMC9122020 DOI: 10.3389/fnmol.2022.847440] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.
Collapse
Affiliation(s)
- Lixia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingjuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianzhu Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhou
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Houping Xu
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang
| |
Collapse
|
48
|
Emerging Roles for the Orphan GPCRs, GPR37 and GPR37 L1, in Stroke Pathophysiology. Int J Mol Sci 2022; 23:ijms23074028. [PMID: 35409385 PMCID: PMC9000135 DOI: 10.3390/ijms23074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.
Collapse
|
49
|
Lin CH, Wu JS, Hsieh PC, Chiu V, Lan CC, Kuo CY. Wild Bitter Melon Extract Abrogates Hypoxia-Induced Cell Death via the Regulation of Ferroptosis, ER Stress, and Apoptosis in Microglial BV2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1072600. [PMID: 35449822 PMCID: PMC9017512 DOI: 10.1155/2022/1072600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Microglial cells are well-known phagocytic cells that are resistant to the central nervous system (CNS) and play an important role in the maintenance of CNS homeostasis. Activated microglial cells induce neuroinflammation under hypoxia and typically cause neuronal damage in CNS diseases. In this study, we propose that wild bitter melon extract (WBM) has a protective effect on hypoxia-induced cell death via regulation of ferroptosis, ER stress, and apoptosis. The results demonstrated that hypoxia caused microglial BV-2 the accumulation of lipid ROS, ferroptosis, ER stress, and apoptosis. In this study, we investigated the pharmacological effects of WBM on BV-2 cells following hypoxia-induced cell death. The results indicated that WBM reversed hypoxia-downregulated antiferroptotic molecules Gpx4 and SLC7A11, as well as upregulated the ER stress markers CHOP and Bip. Moreover, WBM alleviated hypoxia-induced apoptosis via the regulation of cleaved-caspase 3, Bax, and Bcl-2. Our results suggest that WBM may be a good candidate for preventing CNS disorders in the future.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiunn-Sheng Wu
- Division of Infectious Diseases, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Valeria Chiu
- Division of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chou-Chin Lan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City 231, Taiwan
| |
Collapse
|
50
|
Cytokine profile in drug-naïve panic disorder patients. Transl Psychiatry 2022; 12:75. [PMID: 35194013 PMCID: PMC8863842 DOI: 10.1038/s41398-022-01835-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Although accumulating evidence suggests that inflammatory processes play a role in the pathophysiology of mental disorders, few studies have investigated this matter in panic disorder (PD). Furthermore, no studies to date have evaluated cytokine levels in drug-naïve patients with PD. Therefore, little is known about the presence of inflammation at the onset of this disorder. The aim of the present study was to determine the levels of the proinflammatory interleukins IL-1B and IL-2R and the anti-inflammatory cytokine IL-10 in drug-naïve PD patients. Analysis of serum chemokine levels revealed increased proinflammatory activity in the early phase of PD through increased IL-2R and IL-1B levels and a decrease in IL-10 levels in drug-naïve PD patients compared to matched healthy controls. Neurotransmitters and neurocircuits that are targets of inflammatory responses are discussed, followed by an examination of brain-immune interactions as risk factors for PD. This study is the first to identify a proinflammatory cytokine response in drug-naïve PD subjects. These findings indicate that treatments targeting proinflammatory markers may ameliorate anxiety symptoms in PD patients.
Collapse
|