1
|
Chang SE, Below JE, Chow HM, Guenther FH, Hampton Wray AM, Jackson ES, Max L, Neef NE, SheikhBahaei S, Shekim L, Tichenor SE, Walsh B, Watkins KE, Yaruss JS, Bernstein Ratner N. Stuttering: Our Current Knowledge, Research Opportunities, and Ways to Address Critical Gaps. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00162. [PMID: 40201450 PMCID: PMC11977836 DOI: 10.1162/nol_a_00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/28/2025] [Indexed: 04/10/2025]
Abstract
Our understanding of the neurobiological bases of stuttering remains limited, hampering development of effective treatments that are informed by basic science. Stuttering affects more than 5% of all preschool-age children and remains chronic in approximately 1% of adults worldwide. As a condition that affects a most fundamental human ability to engage in fluid and spontaneous verbal communication, stuttering can have substantial psychosocial, occupational, and educational impacts on those who are affected. This article summarizes invited talks and breakout sessions that were held in June 2023 as part of a 2-day workshop sponsored by the US National Institute on Deafness and Other Communication Disorders. The workshop encompassed topics including neurobiology, genetics, speech motor control, cognitive, social, and emotional impacts, and intervention. Updates on current research in these areas were summarized by each speaker, and critical gaps and priorities for future research were raised, and then discussed by participants. Research talks were followed by smaller, moderated breakout sessions intended to elicit diverse perspectives, including on the matter of defining therapeutic targets for stuttering. A major concern that emerged following participant discussion was whether priorities for treatment in older children and adults should focus on targeting core speech symptoms of stuttering, or on embracing effective communication regardless of whether the speaker exhibits overt stuttering. This article concludes with accumulated convergent points endorsed by most attendees on research and clinical priorities that may lead to breakthroughs with substantial potential to contribute to bettering the lives of those living with this complex speech disorder.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Jennifer E. Below
- The Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Frank H. Guenther
- Departments of Speech, Language, & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Amanda M. Hampton Wray
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, USA
| | - Ludo Max
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Nicole E. Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lana Shekim
- National Institute on Deafness and other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Seth E. Tichenor
- Department of Speech-Language Pathology, Duquesne University, Pittsburgh, PA, USA
| | - Bridget Walsh
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - J. Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Nan Bernstein Ratner
- Department of Hearing and Speech Sciences & Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Margolis ET, Nelson PM, Fiske A, Champaud JLY, Olson HA, Gomez MJC, Dineen ÁT, Bulgarelli C, Troller-Renfree SV, Donald KA, Spann MN, Howell B, Scheinost D, Korom M. Modality-level obstacles and initiatives to improve representation in fetal, infant, and toddler neuroimaging research samples. Dev Cogn Neurosci 2025; 72:101505. [PMID: 39954600 PMCID: PMC11875194 DOI: 10.1016/j.dcn.2024.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025] Open
Abstract
Fetal, infant, and toddler (FIT) neuroimaging researchers study early brain development to gain insights into neurodevelopmental processes and identify early markers of neurobiological vulnerabilities to target for intervention. However, the field has historically excluded people from global majority countries and from marginalized communities in FIT neuroimaging research. Inclusive and representative samples are essential for generalizing findings across neuroimaging modalities, such as magnetic resonance imaging, magnetoencephalography, electroencephalography, functional near-infrared spectroscopy, and cranial ultrasonography. These FIT neuroimaging techniques pose unique and overlapping challenges to equitable representation in research through sampling bias, technical constraints, limited accessibility, and insufficient resources. The present article adds to the conversation around the need to improve inclusivity by highlighting modality-specific historical and current obstacles and ongoing initiatives. We conclude by discussing tangible solutions that transcend individual modalities, ultimately providing recommendations to promote equitable FIT neuroscience.
Collapse
Affiliation(s)
- Emma T Margolis
- Department of Psychology, Northeastern University, Boston, MA, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Paige M Nelson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Abigail Fiske
- Department of Psychology, Lancaster University, Lancaster, UK
| | - Juliette L Y Champaud
- Department of Neuroscience, Psychology and Pharmacology, University College London, UK; Centre for the Developing Brain, King's College London, UK
| | - Halie A Olson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - María José C Gomez
- Research Institute of the McGill University Health Centre, McGill University, Montreal QC, Canada
| | - Áine T Dineen
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Chiara Bulgarelli
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | | | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town; The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Statistics & Data Science, Yale University, New Haven, CT, United States; Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Marta Korom
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Peverill M, Russell JD, Keding TJ, Rich HM, Halvorson MA, King KM, Birn RM, Herringa RJ. Balancing Data Quality and Bias: Investigating Functional Connectivity Exclusions in the Adolescent Brain Cognitive Development℠ (ABCD Study) Across Quality Control Pathways. Hum Brain Mapp 2025; 46:e70094. [PMID: 39788921 PMCID: PMC11717557 DOI: 10.1002/hbm.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025] Open
Abstract
Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data. In order to explore how researcher QC decisions might bias rs-fMRI findings and inform future research design, we investigated how a broad spectrum of participant characteristics in the Adolescent Brain and Cognitive Development (ABCD) study were related to participant inclusion/exclusion across versions of the dataset (the ABCD Community Collection and ABCD Release 4) and QC choices (specifically, motion scrubbing thresholds). Across all these conditions, we found that the odds of a participant's exclusion related to a broad spectrum of behavioral, demographic, and health-related variables, with the consequence that rs-fMRI analyses using these variables are likely to produce biased results. Consequently, we recommend that missing data be formally accounted for when analyzing rs-fMRI data and interpreting results. Our findings demonstrate the urgent need for better data acquisition and analysis techniques which minimize the impact of motion on data quality. Additionally, we strongly recommend including detailed information about quality control in open datasets such as ABCD.
Collapse
Affiliation(s)
- Matthew Peverill
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Justin D. Russell
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Taylor J. Keding
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
- Department of
PsychologyYale UniversityNew Haven, CTUSA
| | - Hailey M. Rich
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | | | - Kevin M. King
- Department of
PsychologyUniversity of WashingtonSeattle, WAUSA
| | - Rasmus M. Birn
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Ryan J. Herringa
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| |
Collapse
|
4
|
Wu KC, Hong S, Cross FL, Sypher I, McLoyd VC, Huntley ED, Hyde LW, Mitchell C, Monk CS. Increasing diversity in neuroimaging research: Participant-driven recommendations from a qualitative study of an under-represented sample. Dev Cogn Neurosci 2024; 70:101474. [PMID: 39541798 DOI: 10.1016/j.dcn.2024.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Enhancing the generalizability of neuroimaging studies requires actively engaging participants from under-represented communities. This paper leverages qualitative data to outline participant-driven recommendations for incorporating under-represented populations in neuroimaging protocols. Thirty-one participants, who had participated in neuroimaging research or could be eligible for one as part of an ongoing longitudinal study, engaged in semi-structured one-on-one interviews (84 % under-represented ethnic-racial identities and low-income backgrounds). Through thematic analysis, we identified nine relevant research practices from participants' reports, highlighting aspects of their experience that they appreciated and suggestions for improvement: (1) forming a diverse research team comprising members with whom participants can interact as equals; (2) increasing accessibility to research by providing transportation and flexible scheduling; (3) providing family-oriented spaces; (4) enriching the campus visits to include optional on-campus activities to connect with the University; (5) developing safe strategies to accommodate participants with tattoos during the MRI; (6) incorporating engaging and interactive tasks during neuroimaging sessions; (7) providing small gifts, such as a picture of one's brain, in addition to financial compensation; (8) sharing research findings with the research participants; and (9) fostering long-term bidirectional relationships. The findings may be used to develop best practices for enhancing participant diversity in future neuroimaging studies.
Collapse
Affiliation(s)
- Kefan C Wu
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Sunghyun Hong
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States; School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | - Fernanda L Cross
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | | | - Vonnie C McLoyd
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, United States
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States; Survey Research Center, Institute for Social Research, University of Michigan, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, United States; Population Studies Center, Institute for Social Research, University of Michigan, United States
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States; Survey Research Center, Institute for Social Research, University of Michigan, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
5
|
Hong SH, Hardi FA, Tillem S, Goetschius LG, Brooks-Gunn J, McLoyd V, Lopez-Duran NL, Mitchell C, Hyde LW, Monk CS. Mother-child closeness and adolescent structural neural networks: a prospective longitudinal study of low-income families. Soc Cogn Affect Neurosci 2024; 19:nsae083. [PMID: 39512200 PMCID: PMC11631430 DOI: 10.1093/scan/nsae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024] Open
Abstract
Mother-child closeness, a mutually trusting and affectionate bond, is an important factor in shaping positive youth development. However, little is known about the neural pathways through which mother-child closeness is related to brain organization. Utilizing a longitudinal sample primarily from low-income families (N = 181; 76% African American youth and 54% female), this study investigated the associations between mother-child closeness at ages 9 and 15 years and structural connectivity organization (network integration, robustness, and segregation) at age 15 years. The assessment of mother-child closeness included perspectives from both mother and child. The results revealed that greater mother-child closeness is linked with increased global efficiency and transitivity, but not with modularity. Specifically, both the mother's and child's reports of closeness at age 15 years predicted network metrics, but report at age 9 years did not. Our findings suggest that mother-child closeness is associated with neural white matter organization, as adolescents who experienced greater mother-child closeness displayed topological properties indicative of more integrated and robust structural networks.
Collapse
Affiliation(s)
- Sunghyun H Hong
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
- School of Social Work, University of Michigan, Ann Arbor, MI 48109, United States
| | - Felicia A Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Leigh G Goetschius
- The Hilltop Institute, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Jeanne Brooks-Gunn
- Teachers College, Columbia University, New York, NY 10027, United States
- College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Vonnie McLoyd
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nestor L Lopez-Duran
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, United States
- Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, United States
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, United States
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, United States
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
6
|
Harden BJ, McKelvey LM, Poehlmann JA, Edwards RC, Anunziata F, Beasley L, Bomberger M, Chinaka O, De La Cruz S, Gurka K, Parkinson M. The HEALthy Brain and Child Development Study (HBCD) experience: Recruiting and retaining diverse families in a longitudinal, multi-method early childhood study. Dev Cogn Neurosci 2024; 69:101421. [PMID: 39106549 PMCID: PMC11347061 DOI: 10.1016/j.dcn.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Given its aim to examine the impact of adversity and protective factors on children's outcomes, the recruitment and retention of families who have a wide diversity in experiences are essential. However, the unfortunate history of inequitable treatment of underrepresented families in research and the risks with which some participants will contend (e.g., substance use) makes their recruitment and retention in social science and neuroscience research particularly challenging. This article explores strategies that the HBCD Study has developed to recruit and retain participants, including marginalized, underserved, and hard-to-reach populations, capitalizing on the extant literature and the researchers' own experiences. In this paper, we address strategies to recruit and retain families within HBCD, including: 1) creating experiences that engender trust and promote relationships; 2) maintaining connections with participants over time; 3) ensuring appropriate compensation and supports; 4) considerations for study materials and procedures; and 5) community engagement. The implementation of these strategies may increase representation and inclusiveness, as well as improve the quality of the resulting data.
Collapse
Affiliation(s)
- Brenda Jones Harden
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States.
| | - Lorraine M McKelvey
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Julie A Poehlmann
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Renee C Edwards
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Florencia Anunziata
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Lana Beasley
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Melissa Bomberger
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Oziomachukwu Chinaka
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Sheila De La Cruz
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Kelly Gurka
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Micaela Parkinson
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| |
Collapse
|
7
|
Li Q, Lai X, Li T, Madsen KH, Xiao J, Hu K, Feng C, Fu D, Liu X. Brain responses to self- and other- unfairness under resource distribution context: Meta-analysis of fMRI studies. Neuroimage 2024; 297:120707. [PMID: 38942102 DOI: 10.1016/j.neuroimage.2024.120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Under resource distribution context, individuals have a strong aversion to unfair treatment not only toward themselves but also toward others. However, there is no clear consensus regarding the commonality and distinction between these two types of unfairness. Moreover, many neuroimaging studies have investigated how people evaluate and respond to unfairness in the abovementioned two contexts, but the consistency of the results remains to be investigated. To resolve these two issues, we sought to summarize existing findings regarding unfairness to self and others and to further elucidate the neural underpinnings related to distinguishing evaluation and response processes through meta-analyses of previous neuroimaging studies. Our results indicated that both types of unfairness consistently activate the affective and conflict-related anterior insula (AI) and dorsal anterior cingulate cortex/supplementary motor area (dACC/SMA), but the activations related to unfairness to self appeared stronger than those related to others, suggesting that individuals had negative reactions to both unfairness and a greater aversive response toward unfairness to self. During the evaluation process, unfairness to self activated the bilateral AI, dACC, and right dorsolateral prefrontal cortex (DLPFC), regions associated with unfairness aversion, conflict, and cognitive control, indicating reactive, emotional and automatic responses. In contrast, unfairness to others activated areas associated with theory of mind, the inferior parietal lobule and temporoparietal junction (IPL-TPJ), suggesting that making rational judgments from the perspective of others was needed. During the response, unfairness to self activated the affective-related left AI and striatum, whereas unfairness to others activated cognitive control areas, the left DLPFC and the thalamus. This indicated that the former maintained the traits of automaticity and emotionality, whereas the latter necessitated cognitive control. These findings provide a fine-grained description of the common and distinct neurocognitive mechanisms underlying unfairness to self and unfairness to others. Overall, this study not only validates the inequity aversion model but also provides direct evidence of neural mechanisms for neurobiological models of fairness.
Collapse
Affiliation(s)
- Qi Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, PR China
| | - Xinyu Lai
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China; Sino-Danish Center for Education and Research, Beijing, PR China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, PR China; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, PR China
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Jing Xiao
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, PR China
| | - Kesong Hu
- Department of Psychology, University of Arkansas, Little Rock, AR, USA
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Di Fu
- School of Psychology, University of Surrey, Surrey, England.
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Toenders YJ, Green KH, Te Brinke LW, van der Cruijsen R, van de Groep S, Crone EA. From developmental neuroscience to policy: A novel framework based on participatory research. Dev Cogn Neurosci 2024; 67:101398. [PMID: 38850964 PMCID: PMC11200278 DOI: 10.1016/j.dcn.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Insights from developmental neuroscience are not always translated to actionable policy decisions. In this review, we explore the potential of bridging the gap between developmental neuroscience and policy through youth participatory research approaches. As the current generation of adolescents lives in an increasingly complex and rapidly changing society, their lived experiences are crucial for both research and policy. Moreover, their active involvement holds significant promise, given their heightened creativity and need to contribute. We therefore advocate for a transdisciplinary framework that fosters collaboration between developmental scientists, adolescents, and policy makers in addressing complex societal challenges. We highlight the added value of adolescents' lived experiences in relation to two pressing societal issues affecting adolescents' mental health: performance pressure and social inequality. By integrating firsthand lived experiences with insights from developmental neuroscience, we provide a foundation for progress in informed policy decisions.
Collapse
Affiliation(s)
- Yara J Toenders
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands.
| | - Kayla H Green
- Developmental Neuroscience in Society, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | - Lysanne W Te Brinke
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | | | - Suzanne van de Groep
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | - Eveline A Crone
- Developmental Neuroscience in Society, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
11
|
Crone EA, Bol T, Braams BR, de Rooij M, Franke B, Franken I, Gazzola V, Güroğlu B, Huizenga H, Hulshoff Pol H, Keijsers L, Keysers C, Krabbendam L, Jansen L, Popma A, Stulp G, van Atteveldt N, van Duijvenvoorde A, Veenstra R. Growing Up Together in Society (GUTS): A team science effort to predict societal trajectories in adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101403. [PMID: 38852381 PMCID: PMC11214182 DOI: 10.1016/j.dcn.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Our society faces a great diversity of opportunities for youth. The 10-year Growing Up Together in Society (GUTS) program has the long-term goal to understand which combination of measures best predict societal trajectories, such as school success, mental health, well-being, and developing a sense of belonging in society. Our leading hypothesis is that self-regulation is key to how adolescents successfully navigate the demands of contemporary society. We aim to test these questions using socio-economic, questionnaire (including experience sampling methods), behavioral, brain (fMRI, sMRI, EEG), hormonal, and genetic measures in four large cohorts including adolescents and young adults. Two cohorts are designed as test and replication cohorts to test the developmental trajectory of self-regulation, including adolescents of different socioeconomic status thereby bridging individual, family, and societal perspectives. The third cohort consists of an entire social network to examine how neural and self-regulatory development influences and is influenced by whom adolescents and young adults choose to interact with. The fourth cohort includes youth with early signs of antisocial and delinquent behavior to understand patterns of societal development in individuals at the extreme ends of self-regulation and societal participation, and examines pathways into and out of delinquency. We will complement the newly collected cohorts with data from existing large-scale population-based and case-control cohorts. The study is embedded in a transdisciplinary approach that engages stakeholders throughout the design stage, with a strong focus on citizen science and youth participation in study design, data collection, and interpretation of results, to ensure optimal translation to youth in society.
Collapse
Affiliation(s)
- Eveline A Crone
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Leiden University, Institute of Psychology, the Netherlands.
| | - Thijs Bol
- Department of Sociology, University of Amsterdam, the Netherlands
| | - Barbara R Braams
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Mark de Rooij
- Leiden University, Institute of Psychology, the Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Cognitive Neuroscience and Human Genetics, Nijmegen, the Netherlands
| | - Ingmar Franken
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Berna Güroğlu
- Leiden University, Institute of Psychology, the Netherlands
| | - Hilde Huizenga
- Department of Psychology, University of Amsterdam, the Netherlands
| | | | - Loes Keijsers
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Lydia Krabbendam
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Lucres Jansen
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Arne Popma
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Gert Stulp
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | | | - René Veenstra
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| |
Collapse
|
12
|
Mlandu N, McCormick SA, Davel L, Zieff MR, Bradford L, Herr D, Jacobs CA, Khumalo A, Knipe C, Madi Z, Mazubane T, Methola B, Mhlakwaphalwa T, Miles M, Nabi ZG, Negota R, Nkubungu K, Pan T, Samuels R, Williams S, Williams SR, Avery T, Foster G, Donald KA, Gabard-Durnam LJ. Evaluating a novel high-density EEG sensor net structure for improving inclusivity in infants with curly or tightly coiled hair. Dev Cogn Neurosci 2024; 67:101396. [PMID: 38820695 PMCID: PMC11170222 DOI: 10.1016/j.dcn.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024] Open
Abstract
Electroencephalography (EEG) is an important tool in the field of developmental cognitive neuroscience for indexing neural activity. However, racial biases persist in EEG research that limit the utility of this tool. One bias comes from the structure of EEG nets/caps that do not facilitate equitable data collection across hair textures and types. Recent efforts have improved EEG net/cap design, but these solutions can be time-intensive, reduce sensor density, and are more difficult to implement in younger populations. The present study focused on testing EEG sensor net designs over infancy. Specifically, we compared EEG data quality and retention between two high-density saline-based EEG sensor net designs from the same company (Magstim EGI, Whitland, UK) within the same infants during a baseline EEG paradigm. We found that within infants, the tall sensor nets resulted in lower impedances during collection, including lower impedances in the key online reference electrode for those with greater hair heights and resulted in a greater number of usable EEG channels and data segments retained during pre-processing. These results suggest that along with other best practices, the modified tall sensor net design is useful for improving data quality and retention in infant participants with curly or tightly-coiled hair.
Collapse
Affiliation(s)
- Nwabisa Mlandu
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Sarah A McCormick
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA.
| | - Lauren Davel
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Michal R Zieff
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Layla Bradford
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Donna Herr
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Chloë A Jacobs
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Anele Khumalo
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Candice Knipe
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Zamazimba Madi
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa; Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Thandeka Mazubane
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Bokang Methola
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Tembeka Mhlakwaphalwa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa; Department of Psychology, Rhodes University, Makhanda, South Africa
| | - Marlie Miles
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Zayaan Goolam Nabi
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Rabelani Negota
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Khanyisa Nkubungu
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Tracy Pan
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa; Stanford University School of Medicine, Stanford, CA, USA
| | - Reese Samuels
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Sadeeka Williams
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Simone R Williams
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Kirsten A Donald
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
13
|
Cardenas-Iniguez C, Gonzalez MR. Recommendations for the responsible use and communication of race and ethnicity in neuroimaging research. Nat Neurosci 2024; 27:615-628. [PMID: 38519749 PMCID: PMC11698468 DOI: 10.1038/s41593-024-01608-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
The growing availability of large-population human biomedical datasets provides researchers with unique opportunities to conduct rigorous and impactful studies on brain and behavioral development, allowing for a more comprehensive understanding of neurodevelopment in diverse populations. However, the patterns observed in these datasets are more likely to be influenced by upstream structural inequities (that is, structural racism), which can lead to health disparities based on race, ethnicity and social class. This paper addresses the need for guidance and self-reflection in biomedical research on conceptualizing, contextualizing and communicating issues related to race and ethnicity. We provide recommendations as a starting point for researchers to rethink race and ethnicity choices in study design, model specification, statistical analysis and communication of results, implement practices to avoid the further stigmatization of historically minoritized groups, and engage in research practices that counteract existing harmful biases.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
14
|
Taylor EK, Abdurokhmonova G, Romeo RR. Socioeconomic Status and Reading Development: Moving from "Deficit" to "Adaptation" in Neurobiological Models of Experience-Dependent Learning. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:324-333. [PMID: 38148924 PMCID: PMC10750966 DOI: 10.1111/mbe.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 12/28/2023]
Abstract
Childhood socioeconomic status (SES) is one of the strongest predictors of student reading outcomes, and these disparities have persisted for decades. Relatedly, two underlying skills that are required for successful reading-oral language and executive function (EF)-are also the two neurocognitive domains most affected by SES. In this review, we summarize current knowledge on how SES influences the neurobiology of language, EF, and their intersection, including the proximal factors that drive these relationships. We then consider the burgeoning evidence that SES systematically moderates certain brain-behavior relationships for language and EF, underscoring the importance of considering context in investigations of the neurobiological underpinnings of reading development. Finally, we discuss how disparities in reading may be conceptualized as neurobiological adaptations to adversity rather than deficit models. We conclude by suggesting that by harnessing children's stress-adapted relative strengths to support reading development, we may address opportunity gaps both ethically and efficaciously.
Collapse
|
15
|
van Woudenberg TJ, Rozendaal E, Buijzen M. Parents' perceptions of parental consent procedures for social science research in the school context. INTERNATIONAL JOURNAL OF SOCIAL RESEARCH METHODOLOGY 2023; 27:545-557. [PMID: 39247580 PMCID: PMC11378491 DOI: 10.1080/13645579.2023.2222539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/23/2023] [Indexed: 09/10/2024]
Abstract
Typically, parents or other legal guardians are asked for an active declaration that the participation of their child in scientific research is informed and voluntary. However, asking for active parental consent leads to lower quality studies and passive parental consent might be preferable. In this study, we used an online survey in which parents (N = 156) watched video vignettes of multiple types of research in the classroom and asked them to rate the appropriateness of using active and passive parental consent. The results indicated that parents perceived active consent procedures as more appropriate in most types of research. However, particularly for secondary school children passive consent was rated as comparably appropriate for several types of research (e.g. observation and questionnaire studies). Other aspects of providing consent are displayed in a supplementary online dashboard. We conclude with recommendations for parental consent procedures for social science research in the school context.
Collapse
Affiliation(s)
- Thabo J van Woudenberg
- Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
| | - Esther Rozendaal
- Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
| | - Moniek Buijzen
- Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, the Netherlands
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Lalani B, Gray S, Mitra-Ganguli T. Systems Thinking in an era of climate change: Does cognitive neuroscience hold the key to improving environmental decision making? A perspective on Climate-Smart Agriculture. Front Integr Neurosci 2023; 17:1145744. [PMID: 37181865 PMCID: PMC10174047 DOI: 10.3389/fnint.2023.1145744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 05/16/2023] Open
Abstract
Systems Thinking (ST) can be defined as a mental construct that recognises patterns and connections in a particular complex system to make the "best decision" possible. In the field of sustainable agriculture and climate change, higher degrees of ST are assumed to be associated with more successful adaptation strategies under changing conditions, and "better" environmental decision making in a number of environmental and cultural settings. Future climate change scenarios highlight the negative effects on agricultural productivity worldwide, particularly in low-income countries (LICs) situated in the Global South. Alongside this, current measures of ST are limited by their reliance on recall, and are prone to possible measurement errors. Using Climate-Smart Agriculture (CSA), as an example case study, in this article we explore: (i) ST from a social science perspective; (ii) cognitive neuroscience tools that could be used to explore ST abilities in the context of LICs; (iii) an exploration of the possible correlates of systems thinking: observational learning, prospective thinking/memory and the theory of planned behaviour and (iv) a proposed theory of change highlighting the integration of social science frameworks and a cognitive neuroscience perspective. We find, recent advancements in the field of cognitive neuroscience such as Near-Infrared Spectroscopy (NIRS) provide exciting potential to explore previously hidden forms of cognition, especially in a low-income country/field setting; improving our understanding of environmental decision-making and the ability to more accurately test more complex hypotheses where access to laboratory studies is severely limited. We highlight that ST may correlate with other key aspects involved in environmental decision-making and posit motivating farmers via specific brain networks would: (a) enhance understanding of CSA practices (e.g., via the frontoparietal network extending from the dorsolateral prefrontal cortex (DLPFC) to the parietal cortex (PC) a control hub involved in ST and observational learning) such as tailoring training towards developing improved ST abilities among farmers and involving observational learning more explicitly and (b) motivate farmers to use such practices [e.g., via the network between the DLPFC and nucleus accumbens (NAc)] which mediates reward processing and motivation by focussing on a reward/emotion to engage farmers. Finally, our proposed interdisciplinary theory of change can be used as a starting point to encourage discussion and guide future research in this space.
Collapse
Affiliation(s)
- Baqir Lalani
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
- *Correspondence: Baqir Lalani
| | - Steven Gray
- Department of Community Sustainability, Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
17
|
Garcini LM, Arredondo MM, Berry O, Church JA, Fryberg S, Thomason ME, McLaughlin KA. Increasing diversity in developmental cognitive neuroscience: A roadmap for increasing representation in pediatric neuroimaging research. Dev Cogn Neurosci 2022; 58:101167. [PMID: 36335807 PMCID: PMC9638728 DOI: 10.1016/j.dcn.2022.101167] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Understanding of human brain development has advanced rapidly as the field of developmental cognitive neuroscience (DCN) has matured into an established scientific discipline. Despite substantial progress, DCN lags behind other related disciplines in terms of diverse representation, standardized reporting requirements for socio-demographic characteristics of participants in pediatric neuroimaging studies, and use of intentional sampling strategies to more accurately represent the socio-demographic, ethnic, and racial composition of the populations from which participants are sampled. Additional efforts are needed to shift DCN towards a more inclusive field that facilitates the study of individual differences across a variety of cultural and contextual experiences. In this commentary, we outline and discuss barriers within our current scientific practice (e.g., research methods) and beliefs (i.e., what constitutes good science, good scientists, and good research questions) that contribute to under-representation and limited diversity within pediatric neuroimaging studies and propose strategies to overcome those barriers. We discuss strategies to address barriers at intrapersonal, interpersonal, community, systemic, and structural levels. Highlighting strength-based models of inclusion and recognition of the value of diversity in DCN research, along with acknowledgement of the support needed to diversify the field is critical for advancing understanding of neurodevelopment and reducing health inequities.
Collapse
Affiliation(s)
- Luz M Garcini
- Department of Psychological Sciences, Rice University, United States
| | - Maria M Arredondo
- Department of Human Development and Family Sciences, The University of Texas at Austin, United States.
| | - Obianuju Berry
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, United States
| | | | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | | |
Collapse
|