1
|
Jiang Y, Chen Y, Chen Y, Gong X, Chen Z, Zhang X. Ketogenic Diet and Gut Microbiota: Exploring New Perspectives on Cognition and Mood. Foods 2025; 14:1215. [PMID: 40238374 PMCID: PMC11988741 DOI: 10.3390/foods14071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The ketogenic diet (KD) is a dietary regimen characterized by low carbohydrate intake and moderate protein levels, designed to simulate a fasting state and induce ketosis for the production of ketone bodies from fat. Emerging research underscores KD's potential in improving cognitive functions and regulating mood. Investigations into its safety and efficacy have centered on its anti-inflammatory properties and its impact on neurological health and the gut-brain axis (GBA). This review delves into the relationship between the KD and gut microbiota, emphasizing its potential role in cognitive enhancement and mood stabilization, particularly for managing mood disorders and depression. The investigation of the KD's physiological effects and its role in promoting cognition and emotion through gut microbiota will pave the way for innovative approaches to personalized dietary interventions.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yili Chen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Youmeng Chen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xinrong Gong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyu Chen
- Ningbo Institute for Drug Control, Ningbo 315048, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Idowu OK, Dosumu OO, Boboye AS, Oremosu AA, Mohammed AA. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav 2024; 14:e70001. [PMID: 39245995 PMCID: PMC11381577 DOI: 10.1002/brb3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.
Collapse
Affiliation(s)
- Olumayowa K Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodeji S Boboye
- Department of Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
4
|
Kumar M, Bhatt B, Gusain C, Mahajan N, Bishnoi M. Sex-specific effects of ketogenic diet on anxiety-like behavior and neuroimmune response in C57Bl/6J mice. J Nutr Biochem 2024; 127:109591. [PMID: 38311044 DOI: 10.1016/j.jnutbio.2024.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The ketogenic diet (KD) has been shown to reduce anxiety and enhance cognitive functions in neurological diseases. However, the sex-specific effects of KD on anxiety-like behavior in healthy individuals and the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are unelucidated. This study investigated the sex-specific effects of KD on anxiety-like behavior and the neuroimmune response in the prefrontal cortex (PFC) and hippocampus of healthy C57BL/6J male and female mice. Animals were fed either a control diet (CD- 17% fat, 65% carb, 18% protein) or a KD (80% fat, 5% carb, 15% protein) for 4 weeks. KD increased the levels of circulating β-hydroxybutyrate (BHB) both in males and females. However, PFC BHB levels were found to be elevated only in KD males. Moreover, KD did not affect the behavior of females but improved motor abilities and reduced anxiety levels in males. KD suppressed the mRNA expression of the pan microglial markers (Cd68, P2ry12) and induced morphological changes in the male PFC microglia. A sex-specific decrease in IL1β and an increase in IL-10 levels was found in the PFC of KD males. A similar trend was observed in the hippocampus of males where KD reduced the mRNA expression of P2ry12, Il1β, and cFos. Additionally, BHB increased the production of IL-10 whereas it decreased the production of IL1β from human microglia in in-vitro conditions. In summary, these results demonstrate that the anxiolytic and motor function enhancement abilities of KD are male-specific. Reduced pro-inflammatory and improved anti-inflammatory factors in the male PFC and hippocampus may underlie these effects.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India; Adjunct faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Chitralekha Gusain
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Nayan Mahajan
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| |
Collapse
|
5
|
Arora N, Shastri DH, Patel UP, Bhatia K. Modulation of beta-hydroxybutyrate in traumatic brain injury. Curr Opin Clin Nutr Metab Care 2024; 27:168-177. [PMID: 38170686 DOI: 10.1097/mco.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a significant public health concern with substantial morbidity and mortality rates in the United States. Current management strategies primarily focus on symptomatic approaches and prevention of secondary complications. However, recent research highlights the potential role of ketone bodies, particularly beta-hydroxybutyrate (BHB), in modulating cellular processes involved in TBI. This article reviews the metabolism of BHB, its effect in TBI, and its potential therapeutic impact in TBI. RECENT FINDINGS BHB can be produced endogenously through fasting or administered exogenously through ketogenic diets, and oral or intravenous supplements. Studies suggest that BHB may offer several benefits in TBI, including reducing oxidative stress, inflammation, controlling excitotoxicity, promoting mitochondrial respiration, and supporting brain regeneration. Various strategies to modulate BHB levels are discussed, with exogenous ketone preparations emerging as a rapid and effective option. SUMMARY BHB offers potential therapeutic advantages in the comprehensive approach to improve outcomes for TBI patients. However, careful consideration of safety and efficacy is essential when incorporating it into TBI treatment protocols. The timing, dosage, and long-term effects of ketone use in TBI patients require further investigation to fully understand its potential benefits and limitations.
Collapse
Affiliation(s)
- Niraj Arora
- Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Jawad SF, Swelum AA, Hadi NR. Role of ketogenic diet in neurodegenerative diseases focusing on Alzheimer diseases: The guardian angle. Ageing Res Rev 2024; 95:102233. [PMID: 38360180 DOI: 10.1016/j.arr.2024.102233] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Majid S Jabir
- Department of Applied Science, University of Technology Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq; Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-iraq, PO.Box13, Kufa, Iraq.
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq.
| | - Ayman A Swelum
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
7
|
Liu Y, Fan L, Yang H, Wang D, Liu R, Shan T, Xia X. Ketogenic therapy towards precision medicine for brain diseases. Front Nutr 2024; 11:1266690. [PMID: 38450235 PMCID: PMC10915067 DOI: 10.3389/fnut.2024.1266690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Danli Wang
- Zhoushan People’s Hospital, Zhoushan, China
| | - Runhan Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Tikun Shan
- Neurosurgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Sun X, Zhang B, Sun K, Li F, Hu D, Chen J, Kong F, Xie Y. Liver-Derived Ketogenesis via Overexpressing HMGCS2 Promotes the Recovery of Spinal Cord Injury. Adv Biol (Weinh) 2024; 8:e2300481. [PMID: 37990936 DOI: 10.1002/adbi.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The liver is the major ketogenic organ of the body, and ketones are reported to possess favorable neuroprotective effects. This study aims to elucidate whether ketone bodies generated from the liver play a critical role in bridging the liver and spinal cord. Mice model with a contusive spinal cord injury (SCI) surgery is established, and SCI induces significant histological changes in mice liver. mRNA-seq of liver tissue shows the temporal changes of ketone bodies-related genes, β-hydroxybutyrate dehydrogenase (BDH1) and solute carrier family 16 (monocarboxylic acid transporters), member 6 (SLC16A6). Then, an activated ketogenesis model is created with adult C57BL/6 mice receiving the tail intravenous injection of GPAAV8-TBG-Mouse-Hmgcs2-CMV- mCherry -WPRE (HMGCS2liver ) and mice receiving equal AAV8-Null being the control group (Vectorliver ). Then, the mice undergo either a contusive SCI or sham surgery. The results show that overexpression of HMG-CoA synthase (Hmgcs2) in mice liver dramatically alleviates SCI-mediated pathological changes and promotes ketogenesis in the liver. Amazingly, liver-derived ketogenesis evidently alleviates neuron apoptosis and inflammatory microglia activation and improves the recovery of motor function of SCI mice. In conclusion, a liver-spinal cord axis can be bridged via ketone bodies, and enhancing the production of the ketone body within the liver has neuroprotective effects on traumatic SCI.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Bin Zhang
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Kaiqiang Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Fudong Li
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Dongping Hu
- Shanghai Zechong Biotechnology Co., Ltd., Shanghai, China
| | - Juxiang Chen
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Fanqi Kong
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yang Xie
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
9
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
10
|
Zhuang H, Fujikura Y, Ohkura N, Higo-Yamamoto S, Mishima T, Oishi K. A ketogenic diet containing medium-chain triglycerides reduces REM sleep duration without significant influence on mouse circadian phenotypes. Food Res Int 2023; 169:112852. [PMID: 37254426 DOI: 10.1016/j.foodres.2023.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Ketogenic diets (KDs) affect the circadian rhythms of behavior and clock gene expression in experimental animals. However, these diets were designed to simulate a fasting state; thus, whether these effects are caused by diet-induced ketogenesis or persistent starvation is difficult to distinguish. The present study aimed to define the effects of a KD containing medium-chain triglycerides (MCT-KD) that increase blood ketone levels without inducing carbohydrate starvation, on circadian rhythms and sleep regulation. Mice were fed with a normal diet (CTRL) or MCT-KD for 2 weeks. Blood β-hydroxybutyrate levels were significantly increased up to 2 mM by the MCT-KD, whereas body weight gain and blood glucose levels were identical between the groups, suggesting that ketosis accumulated without carbohydrate starvation in the MCT-KD mice. Circadian rhythms of wheel-running activity and core body temperature were almost identical, although wheel-running was slightly reduced in the MCT-KD mice. The circadian expression of the core clock genes, Per1, Per2, Bmal1, and Dbp in the hypothalamus, heart, liver, epididymal adipose tissues, and skeletal muscle were almost identical between the CTRL and MCT-KD mice, whereas the amplitude of hepatic Per2 and adipose Per1 expression was increased in MCT-KD mice. The MCT-KD reduced the duration of rapid-eye-movement (REM) sleep without affecting the duration of non-REM sleep and the duration of wakefulness. These findings suggested that the impact of ketone bodies on circadian systems are limited, although they might reduce locomotor activity and REM sleep duration.
Collapse
Affiliation(s)
- Haotong Zhuang
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Naoki Ohkura
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Taiga Mishima
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Bai L, Zhou Y, Zhang J, Ma J. The Role of a Ketogenic Diet in the Treatment of Dementia in Type 2 Diabetes Mellitus. Nutrients 2023; 15:nu15081971. [PMID: 37111190 PMCID: PMC10142932 DOI: 10.3390/nu15081971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) shares a common molecular mechanism and underlying pathology with dementia, and studies indicate that dementia is widespread in people with T2DM. Currently, T2DM-induced cognitive impairment is characterized by altered insulin and cerebral glucose metabolism, leading to a shorter life span. Increasing evidence indicates that nutritional and metabolic treatments can possibly alleviate these issues, as there is a lack of efficient preventative and treatment methods. The ketogenic diet (KD) is a very high-fat, low-carbohydrate diet that induces ketosis in the body by producing a fasting-like effect, and neurons in the aged brain are protected from damage by ketone bodies. Moreover, the creation of ketone bodies may improve brain neuronal function, decrease inflammatory expression and reactive oxygen species (ROS) production, and restore neuronal metabolism. As a result, the KD has drawn attention as a potential treatment for neurological diseases, such as T2DM-induced dementia. This review aims to examine the role of the KD in the prevention of dementia risk in T2DM patients and to outline specific aspects of the neuroprotective effects of the KD, providing a rationale for the implementation of dietary interventions as a therapeutic strategy for T2DM-induced dementia in the future.
Collapse
Affiliation(s)
- Lin Bai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital of Sichuan University, Chengdu 610041, China
- Core Facility of West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu 610500, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital of Sichuan University, Chengdu 610041, China
- Core Facility of West China Hospital of Sichuan University, Chengdu 610041, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Perrelle JM, Boreland AJ, Gamboa JM, Gowda P, Murthy NS. Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:21-37. [PMID: 38343513 PMCID: PMC10857769 DOI: 10.1007/s44174-022-00039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2024]
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
Collapse
Affiliation(s)
- Jeremy M. Perrelle
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, USA
| | - Jasmine M. Gamboa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Prarthana Gowda
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - N. Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Bedlack R, Barkhaus PE, Barnes B, Beauchamp M, Bertorini T, Bromberg MB, Carter GT, Chaudry V, Cudkowicz M, Jackson C, Levitsky G, Lund I, McDermott C, Novella S, Olby N, Ostrow L, Pattee GL, Heiman-Patterson T, Ratner D, Salmon K, Steves S, Terrelonge M, Wicks P, Wills AM. ALSUntangled #63: ketogenic diets. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:159-163. [PMID: 34645313 DOI: 10.1080/21678421.2021.1990346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off label treatments with a goal of helping patients make more informed decisions about them. Here we review ketogenic diets. We shows that these have plausible mechanisms, including augmenting cellular energy balance and reducing excitotoxicity, neuroinflammation and oxidative stress. We review a mouse model study, anecdotal reports and trials in ALS and other diseases. We conclude that there is yet not enough data to recommend ketogenic diets for patients with ALS, especially in light of the many side effects these can have.
Collapse
Affiliation(s)
- Richard Bedlack
- Neurology Department, Duke University, Durham, NC, United States
| | - Paul E Barkhaus
- Neurology Department, Froedtert & the Medical College of Wisconsin, Kenosha, WI, United States
| | - Benjamin Barnes
- Neurology Department, Augusta University Medical College of Georgia, Augusta, GA, United States
| | | | - Tulio Bertorini
- Neurology Department, The University of Tennessee Health Science Center VolShop Memphis, Memphis, TN, United States
| | - Mark B Bromberg
- Neurology Department, University of Utah Health Hospitals and Clinics, Salt Lake City, UT, United States
| | - Gregory T Carter
- St Lukes Rehabilitation Hospital, Physical Medicine and Rehabilitation, Chesterfield, MO, United States
| | - Vinay Chaudry
- Neurology Department, University of North Carolina School of Medicine Neuroscience Center, Chapel Hill, NC, United States
| | - Merit Cudkowicz
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| | - Ce Jackson
- Neurology Department, The University of Texas Health Science Center at San Antonio - Greehey Academic and Research Campus, San Antonio, TX, United States
| | | | - Isaac Lund
- Green Hope High School, Cary, NC, United States
| | - Christopher McDermott
- The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Steven Novella
- Neurology Department, Yale University, New Haven, CT, United States
| | - Natasha Olby
- Neurology Department, North Carolina State University, Raleigh, NC, United States
| | - Lyle Ostrow
- Neurology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Gary L Pattee
- Neurology Department, University of Nebraska Medical Center College of Medicine, Omaha, NE, United States
| | | | - Dylan Ratner
- Longmeadow High School, Longmeadow, MA, United States
| | - Kristiana Salmon
- Neurology Department, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Susan Steves
- Nutrition Department, Duke University, Durham, NC, United States
| | - Mark Terrelonge
- Neurology Department, University of California San Francisco, San Francisco, CA, United States
| | | | - Anne-Marie Wills
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| |
Collapse
|
15
|
Wang Y, Zhang J, Zhang Y, Yao J. Bibliometric analysis of global research profile on ketogenic diet therapies in neurological diseases: Beneficial diet therapies deserve more attention. Front Endocrinol (Lausanne) 2023; 13:1066785. [PMID: 36686482 PMCID: PMC9846225 DOI: 10.3389/fendo.2022.1066785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background The protective effects of Ketogenic Diet Therapies (KDTs) on neurological diseases have been extensively studied over the past two decades. The purpose of this study was to quantitatively and qualitatively analyze the publication of KDTs in the neurological field from 2000 to 2021. Methods A literature search was performed on June 7th, 2022, using the search terms: (("ketone" OR "ketogenic" OR "*hydroxybuty*") AND ("neuro*")) in the WoSCC database. Collected data were further analyzed using VOSviewer, CiteSpace and other online bibliometric websites. The annual publication volume and citation trends were summarized. The collaborations among highly cited countries, institutions, authors and journals were visualized. The co-citation analysis of highly cited references and journals were also visualized. Moreover, the research focuses and fronts were revealed by co-occurrence analysis and burst keywords detection. Results A total of 2808 publications with 88,119 citations were identified. From 2000-2021, the number of publications and citations presented rising trends. The United States was the country with an overwhelming number of publications and cited times. Johns Hopkins University was the most contributory institution. Kossoff Eric H was the author with the largest number of publications. And Epilepsia was both the largest publisher and the most frequently cited journal. The keywords of intense interest involved "Modified Atkins Diet", "Temporal Lobe Epilepsy", "Alzheimer's Disease", "Parkinson's Disease", "Cerebral Blood Flow", "Neuroinflammation", "Oxidative Stress", "Metabolism" and "Mitochondria". Conclusion We presented the global trend of KDTs in neurological diseases and provided important information for relevant researchers in a bibliometric way. This bibliometric study revealed that treating epilepsy, neuroprotection and functional effects of KDTs on mitochondria and oxidative stress have been the spotlight from 2000 to 2021. These have emerged as the basis for transformation from basic research to clinical application of KDTs.
Collapse
Affiliation(s)
| | | | | | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
17
|
The Anti-Inflammatory Effect of Preventive Intervention with Ketogenic Diet Mediated by the Histone Acetylation of mGluR5 Promotor Region in Rat Parkinson’s Disease Model: A Dual-Tracer PET Study. PARKINSON'S DISEASE 2022; 2022:3506213. [PMID: 36105302 PMCID: PMC9467749 DOI: 10.1155/2022/3506213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Materials and Methods The neuroprotective effect of ketosis state prior to the onset of PD (preventive KD, KDp) was compared with that receiving KD after the onset (therapeutic KD, KDt) in the lipopolysaccharide- (LPS-) induced rat PD model. A total of 100 rats were randomly assigned to the following 4 groups: sham, LPS, LPS + KDp, and LPS + KDt groups. Results Significant dopamine deficient behaviors (rotational behavior and contralateral forelimb akinesia), upregulation of proinflammatory mediators (TNF-α, IL-1β, and IL-6), loss of dopaminergic neurons, reduction of mGluR5+ microglia cells, increase of TSPO+ microglia cells, reduction of H3K9 acetylation in the mGluR5 promoter region and mGluR5 mRNA expression, and decline in the phosphorylation levels of Akt/GSK-3β/CREB pathway were observed after the intervention of LPS (P < 0.01). TSPO and DAT PET imaging revealed the increased uptake of 18F-DPA-714 in substantia nigra and decreased uptake of 18F-FP-CIT in substantia nigra and striatum in LPS-treated rats (P < 0.001). These impairments were alleviated by the dietary intervention of KD, especially with the strategy of KDp (P < 0.05). Conclusions The anti-inflammatory effect of KD on PD was supposed to be related to the modulation of Akt/GSK-3β/CREB signaling pathway mediated by the histone acetylation of mGluR5 promotor region. The KD intervention should be initiated prior to the PD onset in high-risk population to achieve a more favorable outcome.
Collapse
|
18
|
Widiatmaja DM, Lutvyani A, Sari DR, Kurniasari H, Meiliana ID, Fasitasari M, Yamaoka Y, Rejeki PS. The effect of long-term ketogenic diet on serum adiponectin and insulin-like growth factor-1 levels in mice. J Basic Clin Physiol Pharmacol 2022; 33:611-618. [PMID: 34674405 DOI: 10.1515/jbcpp-2021-0287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Noncommunicable disease (NCD) including obesity, cancer, and diabetes has become particular concern worldwide due to its morbidity and mortality which keep increasing annually. Adiponectin and insulin-like growth factor-1 (IGF-1) are known to be substances that are involved in the development of NCD. Several diet regimens have been developed to treat NCD, one of which is the ketogenic diet (KD). This study aimed to analyze the long-term KD effect on serum adiponectin and IGF-1 levels in mice. METHODS This study was a real experimental with post-test only controls group design. The subjects were 14 male mice (2-3 months, 20-30 g) were randomly divided into two groups, K1 (n=7, standard diet) and K2 (n=7, KD with a composition of 60% fat, 30% protein, and 10% fiber). All subjects were given diet intervention for 8 weeks ad libitum. Serum adiponectin and IGF levels were measured in post-intervention using Enzyme-Linked Immunosorbent Assay. Distribution of normality was analyzed by the Shapiro-Wilk Test, mean difference using Independent T-Test, and linear correlation using Pearson's Correlation Test. Data analysis was performed using Statistic Package for Social Science Version 16. RESULTS Serum adiponectin levels in K1 (0.080 ± 0.012) pg/mL and K2 (0.099 ± 0.005) pg/mL, with p=0.003. Serum IGF-1 levels in K1 (133.535 ± 25.702) ng/mL and K2 (109.987 ± 27.118) ng/mL, with p=0.121. Coefficient correlation between serum adiponectin and serum IGF-1 levels [r]=-0.401, with p=0.155. CONCLUSIONS Long-term KD increases serum adiponectin levels and has no effect on serum IGF-1 levels. There was no significant correlation between serum adiponectin and serum IGF-1 levels.
Collapse
Affiliation(s)
- Deandra M Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alif Lutvyani
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Desi R Sari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hamidah Kurniasari
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ismi D Meiliana
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Minidian Fasitasari
- Department of Nutrition, Faculty of Medicine, Universitas Islam Sultan Agung/Sultan Agung Islamic Hospital, Semarang, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Purwo S Rejeki
- Physiology Division, Department of Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
19
|
Şimşek H, Uçar A. Is Ketogenic Diet Therapy a Remedy for Alzheimer’s Disease or Mild Cognitive Impairments?: A Narrative Review of Randomized Controlled Trials. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Abstract
PURPOSE OF REVIEW We explore recent developments in the prevention and treatment of migraine through dietary interventions. RECENT FINDINGS Healthier diets (defined in multiple ways), meal regularity, and weight loss are associated with decreased headache burden. Specific diets including the ketogenic diet, the low-glycemic index diet, and the DASH diet are supported by modest evidence for the prevention of migraine. Neither a gluten-free diet, in patients without celiac disease, nor elimination diets have sufficient evidence for their routine consideration. Diet remains a crucial, but underexplored, component of comprehensive migraine management. Multiple interventions exist for providers and patients to consider integrating into their treatment plan. Larger studies are needed to support stronger recommendations for utilization of specific dietary interventions for the prevention and treatment of migraine.
Collapse
Affiliation(s)
- Leon S Moskatel
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Niushen Zhang
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Zhu H, Bi D, Zhang Y, Kong C, Du J, Wu X, Wei Q, Qin H. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct Target Ther 2022; 7:11. [PMID: 35034957 PMCID: PMC8761750 DOI: 10.1038/s41392-021-00831-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, adequate-protein, and very-low-carbohydrate diet regimen that mimics the metabolism of the fasting state to induce the production of ketone bodies. The KD has long been established as a remarkably successful dietary approach for the treatment of intractable epilepsy and has increasingly garnered research attention rapidly in the past decade, subject to emerging evidence of the promising therapeutic potential of the KD for various diseases, besides epilepsy, from obesity to malignancies. In this review, we summarize the experimental and/or clinical evidence of the efficacy and safety of the KD in different diseases, and discuss the possible mechanisms of action based on recent advances in understanding the influence of the KD at the cellular and molecular levels. We emphasize that the KD may function through multiple mechanisms, which remain to be further elucidated. The challenges and future directions for the clinical implementation of the KD in the treatment of a spectrum of diseases have been discussed. We suggest that, with encouraging evidence of therapeutic effects and increasing insights into the mechanisms of action, randomized controlled trials should be conducted to elucidate a foundation for the clinical use of the KD.
Collapse
Affiliation(s)
- Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Youhua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Kong
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahao Du
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xiawei Wu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Ciaffi J, Mitselman D, Mancarella L, Brusi V, Lisi L, Ruscitti P, Cipriani P, Meliconi R, Giacomelli R, Borghi C, Ursini F. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front Med (Lausanne) 2021; 8:792846. [PMID: 34970568 PMCID: PMC8712653 DOI: 10.3389/fmed.2021.792846] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
The principle of ketogenic diet (KD) is restriction of carbohydrates to a maximum of 5-10% of the total daily caloric intake, aiming at shifting body metabolism toward ketone bodies. Different studies suggested promising results of KD to help patients to lose weight, to reduce insulin requirements in diabetes, to supplement cancer protocols, to treat neurological conditions and to optimize control of metabolic and cardiovascular diseases. However, literature about the anti-inflammatory properties of KD in rheumatic diseases is still limited. The beneficial effects of weight loss in patients with inflammatory arthritis can be explained by biomechanical and biochemical factors. Obesity is associated with macrophage activation and production of pro-inflammatory cytokines including TNF-α, IL-1b, and IL-6. The clinical effect of KD may be primarily attributed to improvement of insulin sensitivity. Insulin resistance is associated with an increase of TNF-α, IL-1α, IL-1β, IL-6, and leptin. Moreover, reduction of body's adipose tissue and weight loss account for part of the anti-inflammatory effects and for the impact of KD on cardiovascular health. In rheumatoid arthritis, fasting was shown to be effective in reducing disease symptoms, possibly through the production of β-hydroxybutyrate (BHB), the main ketone body. BHB may exert inhibitory effects also on IL-17 and intermittent fasting improved the clinical manifestations of psoriatic arthritis. In ankylosing spondylitis, current literature doesn't allow to draw conclusion about the effects of KD. Future prospective studies will be needed to elucidate the potential beneficial effects of KD on specific domains and clinical outcomes in patients with inflammatory arthritis.
Collapse
Affiliation(s)
- Jacopo Ciaffi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dmitri Mitselman
- Department of Medical and Surgical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S.Orsola, University of Bologna, Bologna, Italy
| | - Luana Mancarella
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Veronica Brusi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Lisi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberto Giacomelli
- Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) S.Orsola, University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Medicine and Rheumatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Sridharan B, Lee MJ. Ketogenic diet: A promising neuroprotective composition for managing Alzheimer's diseases and its pathological mechanisms. Curr Mol Med 2021; 22:640-656. [PMID: 34607541 DOI: 10.2174/1566524021666211004104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
Ketogenic diet and ketone bodies gained significant attention in recent years due to their ability to influence the specific energy metabolism and restoration of mitochondrial homeostasis that can help in hindering the progression of many metabolic diseases including diabetes and neurodegenerative diseases. Ketogenic diet consists of high fat and low carbohydrate contents which makes the body glucose deprived and rely on alternative sources (ketone bodies) for energy. It has been initially designed and supplemented for the treatment of epilepsy and later its influence on many energy-deriving biochemical pathways made it a highly sorted food supplement for many metabolic diseases and even by healthy individuals for body building and calorie restriction. Among the reported therapeutic action over a range of diseases, neurodegenerative disorders especially Alzheimer's disease gained the attention of many researchers and clinicians because of its potency and its easier supplementation as a food additive. Complex pathology and multiple influencing factors of Alzheimer's disease make exploration of its therapeutic strategies a demanding task. It was a common phenomenon that energy deprivation in neurological disorders including Alzheimer's disease, to progress rapidly. The ability of ketone bodies to stabilize the mitochondrial energy metabolism makes it a suitable intervening agent. In this review, we will discuss various research progress made with regards to ketone bodies/ketogenic diet for management of Alzheimer's disease and elaborate in detail about the mechanisms that are influenced during their therapeutic action.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| |
Collapse
|
24
|
Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci Rep 2021; 11:16359. [PMID: 34381166 PMCID: PMC8357839 DOI: 10.1038/s41598-021-96003-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
A better understanding of the secondary injury mechanisms that occur after traumatic spinal cord injury (SCI) is essential for the development of novel neuroprotective strategies linked to the restoration of metabolic deficits. We and others have shown that Ketogenic diet (KD), a high fat, moderate in proteins and low in carbohydrates is neuroprotective and improves behavioural outcomes in rats with acute SCI. Ketones are alternative fuels for mitochondrial ATP generation, and can modulate signaling pathways via targeting specific receptors. Here, we demonstrate that ad libitum administration of KD for 7 days after SCI rescued mitochondrial respiratory capacity, increased parameters of mitochondrial biogenesis, affected the regulation of mitochondrial-related genes, and activated the NRF2-dependent antioxidant pathway. This study demonstrates that KD improves post-SCI metabolism by rescuing mitochondrial function and supports the potential of KD for treatment of acute SCI in humans.
Collapse
|
25
|
Ketogenic Diet, Physical Activity, and Hypertension-A Narrative Review. Nutrients 2021; 13:nu13082567. [PMID: 34444726 PMCID: PMC8398985 DOI: 10.3390/nu13082567] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies link cardiovascular diseases (CVD) with unhealthy lifestyles (unhealthy dietary habits, alcohol consumption, smoking, and low levels of physical activity). Therefore, the strong need for CVD prevention may be pursued through an improved control of CVD risk factors (impaired lipid and glycemic profiles, high blood pressure, and obesity), which is achievable through an overall intervention aimed to favor a healthy lifestyle. Focusing on diet, different recommendations emphasize the need to increase or avoid consumption of entire classes of food, with only partly known and only partly foreseeable consequences on the overall level of health. In recent years, the ketogenic diet (KD) has been proposed to be an effective lifestyle intervention for metabolic syndrome, and although the beneficial effects on weight loss and glucose metabolism seems to be well established, the effects of a prolonged KD on the ability to perform different types of exercise and the influence of KD on blood pressure (BP) levels, both in normotensives and in hypertensives, are not so well understood. The objective of this review is to analyze, on the basis of current evidence, the relationship between KD, regular physical activity, and BP.
Collapse
|
26
|
Kuter KZ, Olech Ł, Głowacka U, Paleczna M. Increased Beta-Hydroxybutyrate Level Is Not Sufficient for the Neuroprotective Effect of Long-Term Ketogenic Diet in an Animal Model of Early Parkinson's Disease. Exploration of Brain and Liver Energy Metabolism Markers. Int J Mol Sci 2021; 22:ijms22147556. [PMID: 34299176 PMCID: PMC8307513 DOI: 10.3390/ijms22147556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
The benefits of a ketogenic diet in childhood epilepsy steered up hope for neuroprotective effects of hyperketonemia in Parkinson’s disease (PD). There are multiple theoretical reasons but very little actual experimental proof or clinical trials. We examined the long-term effects of the ketogenic diet in an animal model of early PD. A progressive, selective dopaminergic medium size lesion was induced by 6-OHDA injection into the medial forebrain bundle. Animals were kept on the stringent ketogenic diet (1% carbohydrates, 8% protein, 70% fat) for 3 weeks prior and 4 weeks after the brain operation. Locomotor activity, neuron count, dopaminergic terminal density, dopamine level, and turnover were analyzed at three time-points post-lesion, up to 4 weeks after the operation. Energy metabolism parameters (glycogen, mitochondrial complex I and IV, lactate, beta-hydroxybutyrate, glucose) were analyzed in the brain and liver or plasma. Protein expression of enzymes essential for gluconeogenesis (PEPCK, G6PC) and glucose utilization (GCK) was analyzed in the liver. Despite long-term hyperketonemia pre- and post-lesion, the ketogenic diet did not protect against 6-OHDA-induced dopaminergic neuron lesions. The ketogenic diet only tended to improve locomotor activity and normalize DA turnover in the striatum. Rats fed 7 weeks in total with a restrictive ketogenic diet maintained normoglycemia, and neither gluconeogenesis nor glycogenolysis in the liver was responsible for this effect. Therefore, potentially, the ketogenic diet could be therapeutically helpful to support the late compensatory mechanisms active via glial cells but does not necessarily act against the oxidative stress-induced parkinsonian neurodegeneration itself. A word of caution is required as the stringent ketogenic diet itself also carries the risk of unwanted side effects, so it is important to study the long-term effects of such treatments. More detailed metabolic long-term studies using unified diet parameters are required, and human vs. animal differences should be taken under consideration.
Collapse
|
27
|
Zeng H, Lu Y, Huang MJ, Yang YY, Xing HY, Liu XX, Zhou MW. Ketogenic diet-mediated steroid metabolism reprogramming improves the immune microenvironment and myelin growth in spinal cord injury rats according to gene and co-expression network analyses. Aging (Albany NY) 2021; 13:12973-12995. [PMID: 33962394 PMCID: PMC8148504 DOI: 10.18632/aging.202969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/27/2021] [Indexed: 01/08/2023]
Abstract
The ketogenic diet has been widely used in the treatment of various nervous system and metabolic-related diseases. Our previous research found that a ketogenic diet exerts a protective effect and promotes functional recovery after spinal cord injury. However, the mechanism of action is still unclear. In this study, different dietary feeding methods were used, and myelin expression and gene level changes were detected among different groups. We established 15 RNA-seq cDNA libraries from among 4 different groups. First, KEGG pathway enrichment of upregulated differentially expressed genes and gene set enrichment analysis of the ketogenic diet and normal diet groups indicated that a ketogenic diet significantly improved the steroid anabolic pathway in rats with spinal cord injury. Through cluster analysis, protein-protein interaction analysis and visualization of iPath metabolic pathways, it was determined that Sqle, Sc5d, Cyp51, Dhcr24, Msmo1, Hsd17b7, and Fdft1 expression changed significantly. Second, through weighted gene co-expression network analysis showed that rats fed a ketogenic diet showed a significant reduction in the expression of genes involved in immune-related pathways, including those associated with immunity and infectious diseases. A ketogenic diet may improve the immune microenvironment and myelin growth in rats with spinal cord injury through reprogramming of steroid metabolism.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China.,Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu 200011, China
| | - Yao Lu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Meng-Jie Huang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
28
|
Bongiovanni D, Benedetto C, Corvisieri S, Del Favero C, Orlandi F, Allais G, Sinigaglia S, Fadda M. Effectiveness of ketogenic diet in treatment of patients with refractory chronic migraine. Neurol Sci 2021; 42:3865-3870. [PMID: 33527209 DOI: 10.1007/s10072-021-05078-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Ketogenic diet (KD) is based on restriction of carbohydrate intake. Metabolism is forced to obtain energy starting from β-oxidation of fatty acids which, turned into ketone bodies, can also be used by central nervous system (CNS). KD use in treatment of chronic migraine has recently been considered. We set out to verify modification of symptoms in patients with refractory chronic migraine in response to KD. METHODS Fifty patients were enrolled of which 38 completed the procedures the study and 23 were considered in the statistics. All of the patients considered in our study were affected by medication overuse headache (MOH). They were on a KD for 3 months. The following parameters have been checked at t = 0 and every 30 days for 6 months: migraine episode length (n. hours/day), frequency (n. days/month), level of pain of every episode measured on a scale from 1 to 3 (1 = mild; 2 = moderate; 3 = severe), and n. analgesic drugs taken/month. RESULTS Days with symptoms decreased from 30 (median value) to 7.5 with p < 0.0001. The duration of the migraine episodes decreased from 24 h (median value) to 5.5 h with p < 0.0016. The patients' pain level, initially at maximum value for 83% of the participants, improved for 55% of them (p < 0.0024). The number of drugs taken in a month decreased from 30 doses (median value) to 6 doses. CONCLUSIONS It can be stated that a 3-month KD resulted in a reduction of painful symptoms of drug refractory chronic migraine. This result may suggest an improvement in quality of life of the patients, even without a tabulated data collection.
Collapse
Affiliation(s)
- Daria Bongiovanni
- Endocrinology and Metabolism Unit, Humanitas Gradenigo, Turin, Italy
| | - Chiara Benedetto
- Women's Headache Center, Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | | | - Fabio Orlandi
- Endocrinology and Metabolism Unit, Humanitas Gradenigo, Turin, Italy
| | - Gianni Allais
- Women's Headache Center, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Silvia Sinigaglia
- Women's Headache Center, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maurizio Fadda
- Clinical Nutrition Unit, City of Health and Science, Turin, Italy.
| |
Collapse
|
29
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|
30
|
Bennett NK, Nguyen MK, Darch MA, Nakaoka HJ, Cousineau D, Ten Hoeve J, Graeber TG, Schuelke M, Maltepe E, Kampmann M, Mendelsohn BA, Nakamura JL, Nakamura K. Defining the ATPome reveals cross-optimization of metabolic pathways. Nat Commun 2020; 11:4319. [PMID: 32859923 PMCID: PMC7455733 DOI: 10.1038/s41467-020-18084-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
Collapse
Affiliation(s)
- Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Maxwell A Darch
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Derek Cousineau
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bryce A Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
32
|
Ari C, Murdun C, Goldhagen C, Koutnik AP, Bharwani SR, Diamond DM, Kindy M, D’Agostino DP, Kovacs Z. Exogenous Ketone Supplements Improved Motor Performance in Preclinical Rodent Models. Nutrients 2020; 12:nu12082459. [PMID: 32824223 PMCID: PMC7468837 DOI: 10.3390/nu12082459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Nutritional ketosis has been proven effective for neurometabolic conditions and disorders linked to metabolic dysregulation. While inducing nutritional ketosis, ketogenic diet (KD) can improve motor performance in the context of certain disease states, but it is unknown whether exogenous ketone supplements—alternatives to KDs—may have similar effects. Therefore, we investigated the effect of ketone supplements on motor performance, using accelerating rotarod test and on postexercise blood glucose and R-beta-hydroxybutyrate (R-βHB) levels in rodent models with and without pathology. The effect of KD, butanediol (BD), ketone-ester (KE), ketone-salt (KS), and their combination (KE + KS: KEKS) or mixtures with medium chain triglyceride (MCT) (KE + MCT: KEMCT; KS + MCT: KSMCT) was tested in Sprague-Dawley (SPD) and WAG/Rij (WR) rats and in GLUT-1 Deficiency Syndrome (G1D) mice. Motor performance was enhanced by KEMCT acutely, KE and KS subchronically in SPD rats, by KEKS and KEMCT groups in WR rats, and by KE chronically in G1D mice. We demonstrated that exogenous ketone supplementation improved motor performance to various degrees in rodent models, while effectively elevated R-βHB and in some cases offsets postexercise blood glucose elevations. Our results suggest that improvement of motor performance varies depending on the strain of rodents, specific ketone formulation, age, and exposure frequency.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Ketone Technologies, Tampa, FL 33612, USA;
- Correspondence: or ; Tel.: +1-813-240-9925
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Craig Goldhagen
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sahil R. Bharwani
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
| | - David M. Diamond
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
| | - Dominic P. D’Agostino
- Ketone Technologies, Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovacs
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary;
| |
Collapse
|
33
|
Baert F, Matthys C, Mellaerts R, Lemaître D, Vlaemynck G, Foulon V. Dietary Intake of Parkinson's Disease Patients. Front Nutr 2020; 7:105. [PMID: 32793623 PMCID: PMC7385303 DOI: 10.3389/fnut.2020.00105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background and Aims: Dietary management, as an adjuvant therapy in Parkinson's disease (PD), provides clear benefits to patients. However, baseline information about the usual dietary intake of Parkinson's patients is lacking. Methods: We conducted an observational cross-sectional study, investigating the dietary intake in Belgian PD patients, as well as their medication use and knowledge of possible food-drug interactions. A dietary record of 2 non-consecutive days, allowing the calculation of usual intake, was used. Medication use and knowledge of food-drug interactions were investigated using a self-administered questionnaire. Results: The nutrient (both macro and micro) intake in this study was similar to the dietary pattern of the general Belgian population. However, results showed that the PD population had a high dietary fiber intake of 26.2 ± 7.7 g/day, which is in line with the recommended intake. The majority of the PD patients had an inadequate intake of vitamin D and iron (respectively, 55.9 and 76.5% of all participants). When looking into the knowledge about food-drug interactions, the majority of the PD patients claimed to be aware of the food-drug interaction between dietary proteins and levodopa. However, only 18.2% of the patients took all doses of levodopa out of meals. Conclusion: Our results show that monitoring of dietary intake in PD patients is of importance to detect possible micronutrient insufficiencies. Patients should receive professional guidance in optimizing their diet to accommodate for different complaints inherent to PD, including constipation. Furthermore, the knowledge of patients regarding the importance of correct medication intake should be improved.
Collapse
Affiliation(s)
- Florence Baert
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium.,Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Randy Mellaerts
- Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium.,Parki's KookAtelier, Leuven, Belgium
| | - Dirk Lemaître
- Parki's KookAtelier, Leuven, Belgium.,Nutrition and Dietetics, UC Leuven-Limburg, Leuven, Belgium
| | - Geertrui Vlaemynck
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Veerle Foulon
- Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
MRI spectroscopic and tractography studies indicate consequences of long-term ketogenic diet. Brain Struct Funct 2020; 225:2077-2089. [PMID: 32681181 PMCID: PMC7473966 DOI: 10.1007/s00429-020-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
To maintain its functional abilities, the mature brain obtains energy from glucose produced in carbohydrate metabolism. When carbohydrates are eliminated from the diet, the energy comes from the oxidation of fatty acids. In this metabolic state called ketosis, ketone bodies are formed: β-hydroxybutyric acid (bHb), acetone, and acetoacetate as alternative source of energy passing through the blood–brain barrier easily. The ketosis state can be achieved through various strategies like caloric restriction, supplementation with medium-chain triglycerides, intense physical training, or ketogenic diet (KD). Using KD, drug-resistant epilepsy has been successfully treated in children and adults. It can also exert neuroprotective influences in cases of brain damage, glioblastoma multiforme, and Alzheimer's or Parkinson's diseases. Although many possible mechanisms of KD activity have been proposed, newer hypotheses appear with the research progress, mostly characterizing the brain under pathological but not normal conditions. Since different pathological conditions may affect the mechanism of KD action differently, additional research on the normal brain appears reasonable. For this purpose, young adult rats were treated with 4-month-lasting KD. Then, MRI structural measurements, spectroscopy, and tractography were performed. The procedures revealed significant increases in the concentration of glutamine, glutamate, glutathione and NAA, accompanied by changes in the pattern of neuronal connections of the striatum and hippocampal formation. This implies a possible involvement of these structures in the functional changes occurring in the brain after KD application. Thus, the investigations on the normal brain add important details concerning mechanisms underlying KD effects without their possible modification by a pathological status.
Collapse
|
35
|
Blasco H, Lanznaster D, Veyrat-Durebex C, Hergesheimer R, Vourch P, Maillot F, Andres CR, Pradat PF, Corcia P. Understanding and managing metabolic dysfunction in Amyotrophic Lateral Sclerosis. Expert Rev Neurother 2020; 20:907-919. [PMID: 32583696 DOI: 10.1080/14737175.2020.1788389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron disease that leads to death after a median survival of 36 months. The development of an effective treatment has proven to be extremely difficult due to the inadequate understanding of the pathogenesis of ALS. Energy metabolism is thoroughly involved in the disease based on the discoveries of hypermetabolism, lipid/glucose metabolism, the tricarboxylic acid (TCA) cycle, and mitochondrial impairment. AREA COVERED Many perturbed metabolites within these processes have been identified as promising therapeutic targets. However, the therapeutic strategies targeting these pathways have failed to produce clinically significant results. The authors present in this review the metabolic disturbances observed in ALS and the derived-therapeutics. EXPERT OPINION The authors suggest that this is due to the insufficient knowledge of the relationship between the metabolic targets and the type of ALS of the patient, depending on genetic and environmental factors. We must improve our understanding of the pathological mechanisms and pay attention to the subtle hidden effects of changing diet, for example, and to use this strategy in addition to other drugs or to use metabolism status to determine subgroups of patients.
Collapse
Affiliation(s)
- Helene Blasco
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Debora Lanznaster
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France
| | - Charlotte Veyrat-Durebex
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Rudolf Hergesheimer
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France
| | - Patrick Vourch
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Francois Maillot
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Service de Médecine Interne, CHRU de Tours , Tours, France
| | - Christian R Andres
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Pierre-François Pradat
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Biomedical Imaging Laboratory, CNRS, INSERM, Sorbonne University , Paris, France.,APHP, Department of Neurology, Paris ALS Center, Pitié Salpêtrière Hospital , Paris, France
| | - Phillipe Corcia
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Service de Neurologie, CHRU de Tours , Tours, France
| |
Collapse
|
36
|
Abstract
: Neurological coordination is essential for performing biological and mechanical activities achieved by the cooperation of biomolecules such as carbohydrates, lipids, and proteins. It plays an important role in energy production, which can be fascinatingly improved by ketone bodies. Ketone bodies are small, water-soluble lipid molecules by shifting the glycolytic phase KBs directly enters into the tricarboxylic acid cycle for ATP synthesis. It leads to the production of much more energy levels than a single molecule of glucose. Therefore, it could have a profound effect on neuro-metabolism as well as bioenergetics of ATP production. These neuro-enhancement properties are useful for epilepsy, Alzheimer's, and several neurocognitive disorders treatment. Interestingly, the cancer cells cannot use it for efficiently energy production results in decreasing cancer cells viability. This review summarized ketone bodies generation, related imperative effects on normal cells, and more importantly its application in various neurological disorders treatment by rising neuronal functions.
Collapse
|
37
|
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2019; 24:810-834. [PMID: 31684843 DOI: 10.1080/1028415x.2019.1681088] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive functional loss of neurons in the brain, causing cognitive impairment and motoneuron disability. Although multifactorial interactions are evident, nutrition plays an essential role in the pathogenesis and evolution of these diseases. A systematic literature search was performed, and the prevalence of studies evaluated the effect of the Mediterranean diet (MeDiet), nutritional support, EPA and DHA, and vitamins on memory and cognition impairment. The data showed that malnutrition and low body mass index (BMI) is correlated with the higher development of dementia and mortality. MeDiet, nutritional support, and calorie-controlled diets play a protective effect against cognitive decline, Alzheimer's disease (AD), Parkinson disease (PD) while malnutrition and insulin resistance represent significant risk factors. Malnutrition activates also the gut-microbiota-brain axis dysfunction that exacerbate neurogenerative process. Omega-3 and -6, and the vitamins supplementation seem to be less effective in protecting neuron degeneration. Insulin activity is a prevalent factor contributing to brain health while malnutrition correlated with the higher development of dementia and mortality.
Collapse
Affiliation(s)
| | - Pomares Fredy Herrera
- Director del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia
| | - Rizzi Laura
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy
| |
Collapse
|
38
|
Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019; 11:nu11102497. [PMID: 31627352 PMCID: PMC6836190 DOI: 10.3390/nu11102497] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Diets low in carbohydrates and proteins and enriched in fat stimulate the hepatic synthesis of ketone bodies (KB). These molecules are used as alternative fuel for energy production in target tissues. The synthesis and utilization of KB are tightly regulated both at transcriptional and hormonal levels. The nuclear receptor peroxisome proliferator activated receptor α (PPARα), currently recognized as one of the master regulators of ketogenesis, integrates nutritional signals to the activation of transcriptional networks regulating fatty acid β-oxidation and ketogenesis. New factors, such as circadian rhythms and paracrine signals, are emerging as important aspects of this metabolic regulation. However, KB are currently considered not only as energy substrates but also as signaling molecules. β-hydroxybutyrate has been identified as class I histone deacetylase inhibitor, thus establishing a connection between products of hepatic lipid metabolism and epigenetics. Ketogenic diets (KD) are currently used to treat different forms of infantile epilepsy, also caused by genetic defects such as Glut1 and Pyruvate Dehydrogenase Deficiency Syndromes. However, several researchers are now focusing on the possibility to use KD in other diseases, such as cancer, neurological and metabolic disorders. Nonetheless, clear-cut evidence of the efficacy of KD in other disorders remains to be provided in order to suggest the adoption of such diets to metabolic-related pathologies.
Collapse
|
39
|
Ketogenic Diet in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20163892. [PMID: 31405021 PMCID: PMC6720297 DOI: 10.3390/ijms20163892] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/18/2023] Open
Abstract
At present, the prevalence of Alzheimer's disease, a devastating neurodegenerative disorder, is increasing. Although the mechanism of the underlying pathology is not fully uncovered, in the last years, there has been significant progress in its understanding. This includes: Progressive deposition of amyloid β-peptides in amyloid plaques and hyperphosphorylated tau protein in intracellular as neurofibrillary tangles; neuronal loss; and impaired glucose metabolism. Due to a lack of effective prevention and treatment strategy, emerging evidence suggests that dietary and metabolic interventions could potentially target these issues. The ketogenic diet is a very high-fat, low-carbohydrate diet, which has a fasting-like effect bringing the body into a state of ketosis. The presence of ketone bodies has a neuroprotective impact on aging brain cells. Moreover, their production may enhance mitochondrial function, reduce the expression of inflammatory and apoptotic mediators. Thus, it has gained interest as a potential therapy for neurodegenerative disorders like Alzheimer's disease. This review aims to examine the role of the ketogenic diet in Alzheimer's disease progression and to outline specific aspects of the nutritional profile providing a rationale for the implementation of dietary interventions as a therapeutic strategy for Alzheimer's disease.
Collapse
|
40
|
De Amicis R, Leone A, Lessa C, Foppiani A, Ravella S, Ravasenghi S, Trentani C, Ferraris C, Veggiotti P, De Giorgis V, Tagliabue A, Battezzati A, Bertoli S. Long-Term Effects of a Classic Ketogenic Diet on Ghrelin and Leptin Concentration: A 12-Month Prospective Study in a Cohort of Italian Children and Adults with GLUT1-Deficiency Syndrome and Drug Resistant Epilepsy. Nutrients 2019; 11:nu11081716. [PMID: 31349661 PMCID: PMC6722776 DOI: 10.3390/nu11081716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
The classical ketogenic diet (cKD) is an isocaloric, high fat, very low-carbohydrate diet that induces ketosis, strongly influencing leptin and ghrelin regulation. However, not enough is known about the impact of a long-term cKD. This study evaluated the effects of a 12-month cKD on ghrelin and leptin concentrations in children, adolescents and adults affected by the GLUT1-Deficiency Syndrome or drug resistant epilepsy (DRE). We also investigated the relationship between the nutritional status, body composition and ghrelin and leptin variations. We carried out a longitudinal study on 30 patients: Twenty-five children and adolescents (15 females, 8 ± 4 years), and five adults (two females, 34 ± 16 years). After 12-monoths cKD, there were no significant changes in ghrelin and leptin, or in the nutritional status, body fat, glucose and lipid profiles. However, a slight height z-score reduction (from −0.603 ± 1.178 to −0.953 ± 1.354, p ≤ 0.001) and a drop in fasting insulin occurred. We found no correlations between ghrelin changes and nutritional status and body composition, whereas leptin changes correlated positively with variations in the weight z-score and body fat (ρ = 0.4534, p = 0.0341; ρ = 0.5901, p = 0.0135; respectively). These results suggest that a long-term cKD does not change ghrelin and leptin concentrations independently of age and neurological condition.
Collapse
Affiliation(s)
- Ramona De Amicis
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy.
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Chiara Lessa
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Simone Ravella
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Stefano Ravasenghi
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Claudia Trentani
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Vittore Buzzi Hospital, Via Lodovico Castelvetro 32, 20154 Milan, Italy
- Biomedical and Clinical Sciences Department, Luigi Sacco Hospital, University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Tagliabue
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy
| |
Collapse
|
41
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
42
|
Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: a pilot, randomized safety and feasibility trial. Spinal Cord Ser Cases 2018; 4:88. [PMID: 30275980 DOI: 10.1038/s41394-018-0121-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023] Open
Abstract
Study design Longitudinal, randomized study. Objectives (1) Test the safety and feasibility of a ketogenic diet (KD) intervention in the acute stages of spinal cord injury (SCI), (2) assess the effects of a KD on neurological recovery, and (3) identify potential serum biomarkers associated with KD-induced changes in neurological recovery. Setting Acute care and rehabilitation facility. Methods The KD is a high-fat, low-carbohydrate diet that includes ≈70-80% total energy as fat. Seven participants with acute complete and incomplete SCI (AIS A-D) were randomly assigned to KD (n = 4) or standard diet (SD, n = 3). Neurological examinations, resting energy expenditure analysis, and collection of blood for evaluation of circulating ketone levels were performed within 72 h of injury and before discharge. Untargeted metabolomics analysis was performed on serum samples to identify potential serum biomarkers that may explain differential responses between groups. Results Our pilot findings primarily demonstrated that KD is safe and feasible to be administered in acute SCI. Furthermore, upper extremity motor scores were higher (p < 0.05) in the KD vs. SD group and an anti-inflammatory lysophospholipid, lysoPC 16:0, was present at higher levels, and an inflammatory blood protein, fibrinogen, was present at lower levels in the KD serum samples vs. SD serum samples. Conclusion Taken together, these preliminary results suggest that a KD may have anti-inflammatory effects that may promote neuroprotection, resulting in improved neurological recovery in SCI. Future studies with larger sample size are warranted for demonstrating efficacy of KD for improving neurological recovery.
Collapse
|