1
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles AÁO. Pannexin 1 channels: A Bridge Between Synaptic Plasticity and Learning and Memory Processes. Neurosci Biobehav Rev 2025:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Valparaíso, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
3
|
Lovatt C, O'Sullivan TJ, Luis CODS, Ryan TJ, Frank RAW. Memory engram synapse 3D molecular architecture visualized by cryoCLEM-guided cryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632151. [PMID: 39829918 PMCID: PMC11741270 DOI: 10.1101/2025.01.09.632151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Memory is incorporated into the brain as physicochemical changes to engram cells. These are neuronal populations that form complex neuroanatomical circuits, are modified by experiences to store information, and allow for memory recall. At the molecular level, learning modifies synaptic communication to rewire engram circuits, a mechanism known as synaptic plasticity. However, despite its functional role on memory formation, the 3D molecular architecture of synapses within engram circuits is unknown. Here, we demonstrate the use of engram labelling technology and cryogenic correlated light and electron microscopy (cryoCLEM)-guided cryogenic electron tomography (cryoET) to visualize the in-tissue 3D molecular architecture of engram synapses of a contextual fear memory within the CA1 region of the mouse hippocampus. Engram cells exhibited structural diversity of macromolecular constituents and organelles in both pre- and postsynaptic compartments and within the synaptic cleft, including in clusters of membrane proteins, synaptic vesicle occupancy, and F-actin copy number. This 'engram to tomogram' approach, harnessing in vivo functional neuroscience and structural biology, provides a methodological framework for testing fundamental molecular plasticity mechanisms within engram circuits during memory encoding, storage and recall.
Collapse
Affiliation(s)
- Charlie Lovatt
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Thomas J O'Sullivan
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| | - René A W Frank
- Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Li JZ, Ramalingam N, Li S. Targeting epigenetic mechanisms in amyloid-β-mediated Alzheimer's pathophysiology: unveiling therapeutic potential. Neural Regen Res 2025; 20:54-66. [PMID: 38767476 PMCID: PMC11246147 DOI: 10.4103/nrr.nrr-d-23-01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia. Growing evidence suggests that Alzheimer's disease is associated with accumulating various amyloid-β oligomers in the brain, influenced by complex genetic and environmental factors. The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer's disease are believed to primarily result from synaptic dysfunction. Throughout life, environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders. These changes, known as epigenetic modifications, also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity. In this context, we highlight recent advances in understanding the roles played by key components of the epigenetic machinery, specifically DNA methylation, histone modification, and microRNAs, in the development of Alzheimer's disease, synaptic function, and activity-dependent synaptic plasticity. Moreover, we explore various strategies, including enriched environments, exposure to non-invasive brain stimulation, and the use of pharmacological agents, aimed at improving synaptic function and enhancing long-term potentiation, a process integral to epigenetic mechanisms. Lastly, we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer's disease. We suggest that addressing Alzheimer's disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.
Collapse
Affiliation(s)
- Jennie Z. Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cui M, Pan X, Fan Z, Wu S, Ji R, Wang X, Kong X, Wu Z, Song L, Song W, Yang JX, Zhang H, Zhang H, Ding HL, Cao JL. Dysfunctional S1P/S1PR1 signaling in the dentate gyrus drives vulnerability of chronic pain-related memory impairment. eLife 2024; 13:RP99862. [PMID: 39699949 DOI: 10.7554/elife.99862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Memory impairment in chronic pain patients is substantial and common, and few therapeutic strategies are available. Chronic pain-related memory impairment has susceptible and unsusceptible features. Therefore, exploring the underlying mechanisms of its vulnerability is essential for developing effective treatments. Here, combining two spatial memory tests (Y-maze test and Morris water maze), we segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations in a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve. RNA-Seq analysis and gain/loss-of-function study revealed that S1P/S1PR1 signaling is a determinant for vulnerability to chronic pain-related memory impairment. Knockdown of the S1PR1 in the dentate gyrus (DG) promoted a susceptible phenotype and led to structural plasticity changes of reduced excitatory synapse formation and abnormal spine morphology as observed in susceptible mice, while overexpression of the S1PR1 and pharmacological administration of S1PR1 agonist in the DG promoted an unsusceptible phenotype and prevented the occurrence of memory impairment, and rescued the morphological abnormality. Finally, the Gene Ontology (GO) enrichment analysis and biochemical evidence indicated that downregulation of S1PR1 in susceptible mice may impair DG structural plasticity via interaction with actin cytoskeleton rearrangement-related signaling pathways including Itga2 and its downstream Rac1/Cdc42 signaling and Arp2/3 cascade. These results reveal a novel mechanism and provide a promising preventive and therapeutic molecular target for vulnerability to chronic pain-related memory impairment.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhijie Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shulin Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xianlei Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Weiyi Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Zhao YB, Wang SZ, Guo WT, Wang L, Tang X, Li JN, Xu L, Zhou QX. Hippocampal dipeptidyl peptidase 9 bidirectionally regulates memory associated with synaptic plasticity. J Adv Res 2024:S2090-1232(24)00433-8. [PMID: 39369958 DOI: 10.1016/j.jare.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Subtypes of the dipeptidyl peptidase (DPP) family, such as DPP4, are reportedly associated with memory impairment. DPP9 is widely distributed in cells throughout the body, including the brain. However, whether DPP9 regulates memory has not yet been elucidated. OBJECTIVES This study aimed to elucidate the role of DPP9 in memory, as well as the underlying molecular mechanism. METHODS We performed immunofluorescence on mouse brains to explore the distribution of DPP9 in different brain regions and used AAV vectors to construct knockdown and overexpression models. The effects of changing DPP9 expression on memory were demonstrated through behavioral experiments. Finally, we used electrophysiology, proteomics and affinity purification mass spectrometry (AP-MS) to study the molecular mechanism by which DPP9 affects memory. RESULTS Here, we report that DPP9, which is found almost exclusively in neurons, is expressed and has enzyme activity in many brain regions, especially in the hippocampus. Hippocampal DPP9 expression increases after fear memory formation. Fear memory was impaired by DPP9 knockdown and enhanced by DPP9 protein overexpression in the hippocampus. According to subsequent hippocampal proteomics, multiple pathways, including the peptidase pathway, which can be bidirectionally regulated by DPP9. DPP9 directly interacts with its enzymatic substrate neuropeptide Y (NPY) in neurons. Hippocampal long-term potentiation (LTP) is also bidirectionally regulated by DPP9. Moreover, inhibiting DPP enzyme activity impaired both LTP and memory. In addition, AP-MS revealed that DPP9-interacting proteins are involved in the functions of dendritic spines and axons. By combining AP-MS and proteomics, DPP9 was shown to play a role in regulating actin functions. CONCLUSION Taken together, our findings reveal that DPP9 affects the CNS not only through enzymatic activity but also through protein-protein interactions. This study provides new insights into the molecular mechanisms of memory and DPP family functions.
Collapse
Affiliation(s)
- Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Shi-Zhe Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Ting Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Le Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xun Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China; KIZ-SU Joint Laboratory of Animal Model and Drug Development, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
8
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
10
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
11
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The Small G-Protein Rac1 in the Dorsomedial Striatum Promotes Alcohol-Dependent Structural Plasticity and Goal-Directed Learning in Mice. J Neurosci 2024; 44:e1644232024. [PMID: 38886056 PMCID: PMC11255432 DOI: 10.1523/jneurosci.1644-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.
Collapse
Affiliation(s)
- Zachary W Hoisington
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Alexandra Salvi
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Sophie Laguesse
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège 4000, Belgium
| | - Yann Ehinger
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Chhavi Shukla
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Khanhky Phamluong
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Dorit Ron
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| |
Collapse
|
12
|
Shi R, Ho XY, Tao L, Taylor CA, Zhao T, Zou W, Lizzappi M, Eichel K, Shen K. Stochastic growth and selective stabilization generate stereotyped dendritic arbors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591205. [PMID: 38766073 PMCID: PMC11100716 DOI: 10.1101/2024.05.08.591205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stereotyped dendritic arbors are shaped by dynamic and stochastic growth during neuronal development. It remains unclear how guidance receptors and ligands coordinate branch dynamic growth, retraction, and stabilization to specify dendritic arbors. We previously showed that extracellular ligand SAX-7/LICAM dictates the shape of the PVD sensory neuron via binding to the dendritic guidance receptor DMA-1, a single transmembrane adhesion molecule. Here, we perform structure-function analyses of DMA-1 and unexpectedly find that robust, stochastic dendritic growth does not require ligand-binding. Instead, ligand-binding inhibits growth, prevents retraction, and specifies arbor shape. Furthermore, we demonstrate that dendritic growth requires a pool of ligand-free DMA-1, which is maintained by receptor endocytosis and reinsertion to the plasma membrane via recycling endosomes. Mutants defective of DMA-1 endocytosis show severely truncated dendritic arbors. We present a model in which ligand-free guidance receptor mediates intrinsic, stochastic dendritic growth, while extracellular ligands instruct dendrite shape by inhibiting growth.
Collapse
|
13
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The small G-protein Rac1 in the dorsomedial striatum promotes alcohol-dependent structural plasticity and goal-directed learning in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555562. [PMID: 37693512 PMCID: PMC10491244 DOI: 10.1101/2023.08.30.555562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The small G-protein Rac1 promotes the formation of filamentous actin (F-Actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice, or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an AAV expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning. Significance Statement Addiction, including alcohol use disorder, is characterized by molecular and cellular adaptations that promote maladaptive behaviors. We found that Rac1 was activated by alcohol in the dorsomedial striatum (DMS) of male mice. We show that alcohol-mediated Rac1 signaling is responsible for alterations in actin dynamics and neuronal morphology. We also present data to suggest that Rac1 is important for alcohol-associated learning processes. These results suggest that Rac1 in the DMS is an important contributor to adaptations that promote alcohol use disorder.
Collapse
|
14
|
Pandey S, Miller CA. Targeting the cytoskeleton as a therapeutic approach to substance use disorders. Pharmacol Res 2024; 202:107143. [PMID: 38499081 PMCID: PMC11034636 DOI: 10.1016/j.phrs.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
15
|
Zhang L, Chen Y, Fan Y, Shi L. Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in vascular dementia rat and improved recognition memory. Sci Rep 2024; 14:7116. [PMID: 38531892 PMCID: PMC10965903 DOI: 10.1038/s41598-024-57080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
This study aimed to investigate structural synaptic plasticity in the medial prefrontal cortex of rats under treadmill exercise pretreatment or naive conditions in a vascular dementia model, followed by recognition memory performance in a novel object recognition task. In this study, 24 Sprague-Dawley rats were obtained and randomly assigned into 4 groups as follows: control group (Con group, n = 6), vascular dementia (VD group, n = 6), exercise and vascular dementia group (Exe + VD group, n = 6), and exercise group (Exe group, n = 6). Initially, 4 weeks of treadmill exercise intervention was administered to the rats in the Exe + VD and Exe groups. Then, to establish the vascular dementia model, the rats both in the VD and Exe + VD groups were subjected to bilateral common carotids arteries surgery. One week later, open-field task and novel recognition memory task were adopted to evaluate anxiety-like behavior and recognition memory in each group. Then, immunofluorescence and Golgi staining were used to evaluate neuronal number and spine density in the rat medial prefrontal cortex. Transmission electron microscopy was used to observe the synaptic ultrastructure. Finally, microdialysis coupled with high-performance liquid chromatography was used to assess the levels of 5-HT and dopamine in the medial prefrontal cortex. The behavior results showed that 4 weeks of treadmill exercise pretreatment significantly alleviated recognition memory impairment and anxiety-like behavior in VD rats (P < 0.01), while the rats in VD group exhibited impaired recognition memory and anxiety-like behavior when compared with the Con group (P < 0.001). Additionally, NeuN immunostaining results revealed a significant decrease of NeuN-marked neuron in the VD group compared to Con group (P < 0.01), but a significantly increase in this molecular marker was found in the Exe + VD group compared to the Con group (P < 0.01). Golgi staining results showed that the medial prefrontal cortex neurons in the VD group displayed fewer dendritic spines than those in the Con group (P < 0.01), and there were more spines on the dendrites of medial prefrontal cortex cells in Exe + VD rats than in VD rats (P < 0.01). Transmission electron microscopy further revealed that there was a significant reduction of synapses intensity in the medial prefrontal cortex of rats in the VD group when compared with the Con group(P < 0.01), but physical exercise was found to significantly increased synapses intensity in the VD model (P < 0.01). Lastly, the levels of dopamine and 5-HT in the medial prefrontal cortex of rats in the VD group was significantly lower compared to the Con group (P < 0.01), and treadmill exercise was shown to significantly increased the levels of dopamine and 5-HT in the VD rats (P < 0.05). Treadmill exercise pretreatment ameliorated structural synaptic plasticity impairments of medial prefrontal cortex in VD rat and improved recognition memory.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Yuanyuan Chen
- Department of Psychology and Education, Shantou Polytechnic, Shantou, 515071, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Lin Shi
- Department of Physical Education and Sport, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
16
|
Eberhardt F. Ion-concentration gradients induced by synaptic input increase the voltage depolarization in dendritic spines. J Comput Neurosci 2024; 52:1-19. [PMID: 38349479 PMCID: PMC10924734 DOI: 10.1007/s10827-024-00864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
The vast majority of excitatory synaptic connections occur on dendritic spines. Due to their extremely small volume and spatial segregation from the dendrite, even moderate synaptic currents can significantly alter ionic concentrations. This results in chemical potential gradients between the dendrite and the spine head, leading to measurable electrical currents. In modeling electric signals in spines, different formalisms were previously used. While the cable equation is fundamental for understanding the electrical potential along dendrites, it only considers electrical currents as a result of gradients in electrical potential. The Poisson-Nernst-Planck (PNP) equations offer a more accurate description for spines by incorporating both electrical and chemical potential. However, solving PNP equations is computationally complex. In this work, diffusion currents are incorporated into the cable equation, leveraging an analogy between chemical and electrical potential. For simulating electric signals based on this extension of the cable equation, a straightforward numerical solver is introduced. The study demonstrates that this set of equations can be accurately solved using an explicit finite difference scheme. Through numerical simulations, this study unveils a previously unrecognized mechanism involving diffusion currents that amplify electric signals in spines. This discovery holds crucial implications for both numerical simulations and experimental studies focused on spine neck resistance and calcium signaling in dendritic spines.
Collapse
Affiliation(s)
- Florian Eberhardt
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
- Bernstein Center for Computational Neuroscience, Großhaderner Straße 2, Planegg-Martinsried, 82152, Germany.
| |
Collapse
|
17
|
Srapyan S, Tran DP, Loo JA, Grintsevich EE. Mapping Molecular Interaction Interface Between Diaphanous Formin-2 and Neuron-Specific Drebrin A. J Mol Biol 2023; 435:168334. [PMID: 37898384 DOI: 10.1016/j.jmb.2023.168334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Actin cytoskeleton is critical for neuronal shape and function. Drebrin and formins are key regulators of neuronal actin networks. Neuron-specific drebrin A is highly enriched in dendritic spines (postsynaptic terminals) of mature excitatory neurons. Decreased levels of drebrin in dendritic spines is a hallmark of Alzheimer's disease, epilepsy, and other complex disorders, which calls for better understanding of its regulatory functions. Drebrin A was previously shown to inhibit actin nucleation and bundling by the diaphanous formin-2 (mDia2) - an actin nucleator that is involved in the initiation of dendritic spines. Characterization of the molecular binding interface between mDia2 and drebrin is necessary to better understand the functional consequences of this interaction and its biological relevance. Prior work suggested a multi-pronged interface between mDia2 and drebrin, which involves both N-terminal and C-terminal regions of the drebrin molecule. Here we used mass spectrometry analysis, deletion mutagenesis, and an array of synthetic peptides of neuronal drebrin A to map its formin-binding interface. The mDia2-interacting interface on drebrin was narrowed down to three highly conserved 9-16 residue sequences that were used to identify some of the key residues involved in this interaction. Deletion of the C-terminal region of drebrin greatly reduces its binding to mDia2 and the extent of its inhibition of formin-driven actin assembly. Moreover, our experiments with formins from different subfamilies showed that drebrin is a specific rather than general inhibitor of these proteins. This work contributes to a molecular level understanding of the formin-drebrin interaction and will help to unravel its biological significance.
Collapse
Affiliation(s)
- Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Denise P Tran
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Sydney Mass Spectrometry, The University of Sydney (USyd), Sydney, New South Wales 2006, Australia
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA.
| |
Collapse
|
18
|
Morimoto K, Watanuki S, Eguchi R, Kitano T, Otsuguro KI. Short-term memory impairment following recovery from systemic inflammation induced by lipopolysaccharide in mice. Front Neurosci 2023; 17:1273039. [PMID: 37920299 PMCID: PMC10618367 DOI: 10.3389/fnins.2023.1273039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
The relationship between neuroinflammation and mental disorders has been recognized and investigated for over 30 years. Diseases of systemic or peripheral inflammation, such as sepsis, peritonitis, and infection, are associated with increased risk of mental disorders with neuroinflammation. To elucidate the pathogenesis, systemic administration of lipopolysaccharide (LPS) in mice is often used. LPS-injected mice exhibit behavioral abnormalities with glial activation. However, these studies are unlikely to recapitulate the clinical pathophysiology of human patients, as most studies focus on the acute inflammatory response with systemic symptoms occurring within 24 h of LPS injection. In this study, we focus on the effects of LPS on behavioral abnormalities following recovery from systemic symptoms and investigate the mechanisms of pathogenesis. Several behavioral tests were performed in LPS-injected mice, and to assess neuroinflammation, the time course of the morphological change and expression of inflammatory factors in neurons, astrocytes, and microglia were investigated. At 7 days post-LPS injection, mice exhibited short-term memory impairment accompanied by the suppression of neuronal activity and increases in morphologically immature spines. Glial cells were transiently activated in the hippocampus concomitant with upregulation of the microglial phagocytosis marker CD68 3 days after injection. Here we show that transient glial cell activation in the acute response phase affects neuronal activity and behavior following recovery from systemic symptoms. These findings provide novel insights for studies using the LPS-induced inflammation model and that will contribute to the development of treatments for mental disorders of this etiology.
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shu Watanuki
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Taisuke Kitano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Bittencourt LO, Dionizio A, Ferreira MKM, Aragão WAB, de Carvalho Cartágenes S, Puty B, do Socorro Ferraz Maia C, Zohoori FV, Buzalaf MAR, Lima RR. Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 2023; 13:11083. [PMID: 37422569 PMCID: PMC10329641 DOI: 10.1038/s41598-023-38096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Fluoride is added to water due to its anticariogenic activity. However, due to its natural presence in soils and reservoirs at high levels, it could be a potential environmental toxicant. This study investigated whether prolonged exposure to fluoride from adolescence to adulthood-at concentrations commonly found in artificially fluoridated water and in fluorosis endemic areas-is associated with memory and learning impairments in mice, and assessed the molecular and morphological aspects involved. For this endeavor, 21-days-old mice received 10 or 50 mg/L of fluoride in drinking water for 60 days and the results indicated that the increased plasma fluoride bioavailability was associated with the triggering of short- and long-term memory impairments after high F concentration levels. These changes were associated with modulation of the hippocampal proteomic profile, especially of proteins related to synaptic communication, and a neurodegenerative pattern in the CA3 and DG. From a translational perspective, our data provide evidence of potential molecular targets of fluoride neurotoxicity in the hippocampus at levels much higher than that in artificially fluoridated water and reinforce the safety of exposure to low concentrations of fluoride. In conclusion, prolonged exposure to the optimum fluoride level of artificially fluoridated water was not associated with cognitive impairments, while a higher concentration associated with fluorosis triggered memory and learning deficits, associated with a neuronal density reduction in the hippocampus.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fatemeh Vida Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil.
| |
Collapse
|
20
|
Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, Pedini G, De Rubeis S, Longo F, Klann E, Smit AB, Grant SGN, Achsel T, Bagni C. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron 2023; 111:1760-1775.e8. [PMID: 36996810 DOI: 10.1016/j.neuron.2023.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
Collapse
Affiliation(s)
- Valentina Mercaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Barbora Vidimova
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Esperanza Fernández
- VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy; Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Seth G N Grant
- Center for the Clinical Brain Sciences and Simons Initiatives for the Developing Brain, The University of Edinburgh, Edinburgh EH16 4SB, Scotland
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland; Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
21
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
22
|
Diab AM, Wigerius M, Quinn DP, Qi J, Shahin I, Paffile J, Krueger K, Karten B, Krueger SR, Fawcett JP. NCK1 Modulates Neuronal Actin Dynamics and Promotes Dendritic Spine, Synapse, and Memory Formation. J Neurosci 2023; 43:885-901. [PMID: 36535770 PMCID: PMC9908320 DOI: 10.1523/jneurosci.0495-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Memory formation and maintenance is a dynamic process involving the modulation of the actin cytoskeleton at synapses. Understanding the signaling pathways that contribute to actin modulation is important for our understanding of synapse formation and function, as well as learning and memory. Here, we focused on the importance of the actin regulator, noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1), in hippocampal dependent behaviors and development. We report that male mice lacking NCK1 have impairments in both short-term and working memory, as well as spatial learning. Additionally, we report sex differences in memory impairment showing that female mice deficient in NCK1 fail at reversal learning in a spatial learning task. We find that NCK1 is expressed in postmitotic neurons but is dispensable for neuronal proliferation and migration in the developing hippocampus. Morphologically, NCK1 is not necessary for overall neuronal dendrite development. However, neurons lacking NCK1 have lower dendritic spine and synapse densities in vitro and in vivo EM analysis reveal increased postsynaptic density (PSD) thickness in the hippocampal CA1 region of NCK1-deficient mice. Mechanistically, we find the turnover of actin-filaments in dendritic spines is accelerated in neurons that lack NCK1. Together, these findings suggest that NCK1 contributes to hippocampal-dependent memory by stabilizing actin dynamics and dendritic spine formation.SIGNIFICANCE STATEMENT Understanding the molecular signaling pathways that contribute to memory formation, maintenance, and elimination will lead to a better understanding of the genetic influences on cognition and cognitive disorders and will direct future therapeutics. Here, we report that the noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) adaptor protein modulates actin-filament turnover in hippocampal dendritic spines. Mice lacking NCK1 show sex-dependent deficits in hippocampal memory formation tasks, have altered postsynaptic densities, and reduced synaptic density. Together, our work implicates NCK1 in the regulation of actin cytoskeleton dynamics and normal synapse development which is essential for memory formation.
Collapse
Affiliation(s)
- Antonios M Diab
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael Wigerius
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dylan P Quinn
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jiansong Qi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Julia Paffile
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kavita Krueger
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stefan R Krueger
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
23
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
24
|
Álvarez A, Gutiérrez D, Chandía-Cristi A, Yáñez M, Zanlungo S. c-Abl kinase at the crossroads of healthy synaptic remodeling and synaptic dysfunction in neurodegenerative diseases. Neural Regen Res 2023; 18:237-243. [PMID: 35900397 PMCID: PMC9396477 DOI: 10.4103/1673-5374.346540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Our ability to learn and remember depends on the active formation, remodeling, and elimination of synapses. Thus, the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring. The structural reorganization of synaptic complexes, changes in actin cytoskeleton and organelle dynamics, as well as modulation of gene expression, determine synaptic plasticity. It has been proposed that dysregulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases. Much is known about downstream signaling of activated N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoazolepropionate receptors; however, other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory. The non-receptor tyrosine kinase c-Abl (ABL1) is a key signal transducer of intra and extracellular signals, and it shuttles between the cytoplasm and the nucleus. This review focuses on c-Abl and its synaptic and neuronal functions. Here, we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons, promoting the development of neurodegenerative diseases. Nevertheless, c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity, regulating dendritic spines remodeling and gene expression after cognitive training, and synaptic dysfunction and loss in neurodegenerative diseases. Thus, c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice, but its absence provides dendritic spines resiliency against damage. Therefore, the present review has been designed to elucidate the common links between c-Abl regulation of structural changes that involve the actin cytoskeleton and organelles dynamics, and the transcriptional program activated during synaptic plasticity. By summarizing the recent discoveries on c-Abl functions, we aim to provide an overview of how its inhibition could be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.
Collapse
|
25
|
Nebeling FC, Poll S, Justus LC, Steffen J, Keppler K, Mittag M, Fuhrmann M. Microglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice. eLife 2023; 12:83176. [PMID: 36749020 PMCID: PMC9946443 DOI: 10.7554/elife.83176] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Microglia, the resident immune cells of the brain, play a complex role in health and disease. They actively survey the brain parenchyma by physically interacting with other cells and structurally shaping the brain. Yet, the mechanisms underlying microglial motility and significance for synapse stability, especially in the hippocampus during adulthood, remain widely unresolved. Here, we investigated the effect of neuronal activity on microglial motility and the implications for the formation and survival of dendritic spines on hippocampal CA1 neurons in vivo. We used repetitive two-photon in vivo imaging in the hippocampus of awake and anesthetized mice to simultaneously study the motility of microglia and their interaction with dendritic spines. We found that CA3 to CA1 input is sufficient to modulate microglial process motility. Simultaneously, more dendritic spines emerged in mice after awake compared to anesthetized imaging. Interestingly, the rate of microglial contacts with individual dendritic spines and dendrites was associated with the stability, removal, and emergence of dendritic spines. These results suggest that microglia might sense neuronal activity via neurotransmitter release and actively participate in synaptic rewiring of the hippocampal neural network during adulthood. Further, this study has profound relevance for hippocampal learning and memory processes.
Collapse
Affiliation(s)
| | - Stefanie Poll
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Lena Christine Justus
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Julia Steffen
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Kevin Keppler
- Light Microscopy Facility, German Center for Neurodegenerative DiseasesBonnGermany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative DiseasesBonnGermany
| |
Collapse
|
26
|
de Veij Mestdagh CF, Koopmans F, Breiter JC, Timmerman JA, Vogelaar PC, Krenning G, Mansvelder HD, Smit AB, Henning RH, van Kesteren RE. The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer's disease mouse model. Alzheimers Res Ther 2022; 14:183. [PMID: 36482297 PMCID: PMC9733344 DOI: 10.1186/s13195-022-01127-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. METHODS Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. RESULTS SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. CONCLUSION Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,grid.16872.3a0000 0004 0435 165XAlzheimer Center Amsterdam, Vrije Universiteit Amsterdam and Amsterdam UMC location VUmc , Amsterdam, The Netherlands
| | - Frank Koopmans
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jonathan C. Breiter
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jaap A. Timmerman
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter C. Vogelaar
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands
| | - Guido Krenning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Huibert D. Mansvelder
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert H. Henning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald E. van Kesteren
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Hogestyn JM, Salois G, Xie L, Apa C, Youngyunpipatkul J, Pröschel C, Mayer-Pröschel M. Expression of the human herpesvirus 6A latency-associated transcript U94A impairs cytoskeletal functions in human neural cells. Mol Cell Neurosci 2022; 123:103770. [PMID: 36055520 PMCID: PMC10124163 DOI: 10.1016/j.mcn.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/30/2022] Open
Abstract
Many neurodegenerative diseases have a multifactorial etiology and variable course of progression that cannot be explained by current models. Neurotropic viruses have long been suggested to play a role in these diseases, although their exact contributions remain unclear. Human herpesvirus 6A (HHV-6A) is one of the most common viruses detected in the adult brain, and has been clinically associated with multiple sclerosis (MS), and, more recently, Alzheimer's disease (AD). HHV-6A is a ubiquitous viral pathogen capable of infecting glia and neurons. Primary infection in childhood is followed by the induction of latency, characterized by expression of the U94A viral transcript in the absence of viral replication. Here we examine the effects of U94A on cells of the central nervous system. We found that U94A expression inhibits the migration and impairs cytoplasmic maturation of human oligodendrocyte precursor cells (OPCs) without affecting their viability, a phenotype that may contribute to the failure of remyelination seen in many patients with MS. A subsequent proteomics analysis of U94A expression OPCs revealed altered expression of genes involved in tubulin associated cytoskeletal regulation. As HHV-6A seems to significantly be associated with early AD pathology, we extended our initially analysis of the impact of U94A on human derived neurons. We found that U94A expression inhibits neurite outgrowth of primary human cortical neurons and impairs synapse maturation. Based on these data we suggest that U94A expression by latent HHV-6A in glial cells and neurons renders them susceptible to dysfunction and degeneration. Therefore, latent viral infections of the brain represent a unique pathological risk factor that may contribute to disease processes.
Collapse
Affiliation(s)
- Jessica M Hogestyn
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Garrick Salois
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Li Xie
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Connor Apa
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Justin Youngyunpipatkul
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Stem cell and Regenerative Medicine Institute, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 633, University of Rochester, Rochester, NY 14642, USA,.
| |
Collapse
|
28
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
29
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
30
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
The Genomic Architecture of Pregnancy-Associated Plasticity in the Maternal Mouse Hippocampus. eNeuro 2022; 9:ENEURO.0117-22.2022. [PMID: 36239981 PMCID: PMC9522463 DOI: 10.1523/eneuro.0117-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is associated with extraordinary plasticity in the maternal brain. Studies in humans and other mammals suggest extensive structural and functional remodeling of the female brain during and after pregnancy. However, we understand remarkably little about the molecular underpinnings of this natural phenomenon. To gain insight into pregnancy-associated hippocampal plasticity, we performed single nucleus RNA sequencing (snRNA-seq) and snATAC-seq from the mouse hippocampus before, during, and after pregnancy. We identified cell type-specific transcriptional and epigenetic signatures associated with pregnancy and postpartum adaptation. In addition, we analyzed receptor-ligand interactions and transcription factor (TF) motifs that inform hippocampal cell type identity and provide evidence of pregnancy-associated adaption. In total, these data provide a unique resource of coupled transcriptional and epigenetic data across a dynamic time period in the mouse hippocampus and suggest opportunities for functional interrogation of hormone-mediated plasticity.
Collapse
|
32
|
Electroacupuncture Enhances Cognitive Deficits in a Rat Model of Rapid Eye Movement Sleep Deprivation via Targeting MiR-132. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044208. [PMID: 36159559 PMCID: PMC9507748 DOI: 10.1155/2022/7044208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Deprivation of rapid eye movement sleep (REMSD) reduces the potential for learning and memory. The neuronal foundation of cognitive performance is synapse plasticity. MicroRNA-132 (MiR-132) is an important microRNA related to cognitive and synapse plasticity. Acupuncture is effective at improving cognitive impairment caused by sleep deprivation. Furthermore, its underlying principle is still unclear. Herein, whether electroacupuncture (EA) helps alleviate cognitive impairment in REMSD by targeting miR-132 was assessed. A rat model of REMSD was constructed using the developing multiplatform water environment technique, as well as EA therapy in Baihui (GV20) and Dazhui (GV14) was performed for 15 minutes, once daily for 7 days. Agomir or antagomir of MiR-132 was injected into the hippocampal CA1 areas to assess the EA mechanism in rats with REMSD. Then, the learning and memory abilities were detected by behavioral tests; synapse structure was assessed by transmission electron microscope (TCM); and dendrites branches and length were examined by Golgi staining. MiR-132-3p was assessed by real-time quantitative polymerase chain reaction (qRT-PCR). P250GAP, ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division cycle 42 (Cdc42) expression levels in hippocampal tissues were evaluated by immunohistochemistry and Western blot. According to the research, EA therapy enhanced cognitive in REMSD rats, as evidenced by reduced escape latency; upregulated the performance of platform crossings and prolonged duration in the goal region; and improved spontaneous alternation. EA administration restored synaptic and dendritic structural damage in hippocampal neurons, enhanced miR-132 expression, and reduced p250GAP mRNA and protein levels. Additionally, EA boosted the protein level of Rac1 and Cdc42 associated with synaptic plasticity. MiR-132 agomir enhanced this effect, whereas miR-13 antagomir reversed this action. The current data demonstrate that EA at GV20 and GV14 attenuates cognitive impairment and modulates synaptic plasticity in hippocampal neurons via miR-132 in a sleep-deprived rat model.
Collapse
|
33
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
34
|
Eberhardt F, Bushong EA, Phan S, Peltier S, Monteagudo-Mesas P, Weinkauf T, Herz AVM, Stemmler M, Ellisman M. A Uniform and Isotropic Cytoskeletal Tiling Fills Dendritic Spines. eNeuro 2022; 9:ENEURO.0342-22.2022. [PMID: 36216507 PMCID: PMC9617608 DOI: 10.1523/eneuro.0342-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are submicron, subcellular compartments whose shape is defined by actin filaments and associated proteins. Accurately mapping the cytoskeleton is a challenge, given the small size of its components. It remains unclear whether the actin-associated structures analyzed in dendritic spines of neurons in vitro apply to dendritic spines of intact, mature neurons in situ. Here, we combined advanced preparative methods with multitilt serial section electron microscopy (EM) tomography and computational analysis to reveal the full three-dimensional (3D) internal architecture of spines in the intact brains of male mice at nanometer resolution. We compared hippocampal (CA1) pyramidal cells and cerebellar Purkinje cells in terms of the length distribution and connectivity of filaments, their branching-angles and absolute orientations, and the elementary loops formed by the network. Despite differences in shape and size across spines and between spine heads and necks, the internal organization was remarkably similar in both neuron types and largely homogeneous throughout the spine volume. In the tortuous mesh of highly branched and interconnected filaments, branches exhibited no preferred orientation except in the immediate vicinity of the cell membrane. We found that new filaments preferentially split off from the convex side of a bending filament, consistent with the behavior of Arp2/3-mediated branching of actin under mechanical deformation. Based on the quantitative analysis, the spine cytoskeleton is likely subject to considerable mechanical force in situ.
Collapse
Affiliation(s)
- Florian Eberhardt
- Faculty of Biology, Ludwig-Maximilians-Universität and Bernstein Center for Computational Neuroscience Munich, Munich, Planegg-Martinsried D-82152, Germany
| | - Eric A Bushong
- Department of Neurosciences and National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, 92093 CA
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093 CA
| | - Sébastien Phan
- Department of Neurosciences and National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, 92093 CA
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093 CA
| | - Steven Peltier
- Department of Neurosciences and National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, 92093 CA
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093 CA
| | - Pablo Monteagudo-Mesas
- Faculty of Biology, Ludwig-Maximilians-Universität and Bernstein Center for Computational Neuroscience Munich, Munich, Planegg-Martinsried D-82152, Germany
| | - Tino Weinkauf
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 100 44 Sweden
| | - Andreas V M Herz
- Faculty of Biology, Ludwig-Maximilians-Universität and Bernstein Center for Computational Neuroscience Munich, Munich, Planegg-Martinsried D-82152, Germany
| | - Martin Stemmler
- Faculty of Biology, Ludwig-Maximilians-Universität and Bernstein Center for Computational Neuroscience Munich, Munich, Planegg-Martinsried D-82152, Germany
| | - Mark Ellisman
- Department of Neurosciences and National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, 92093 CA
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093 CA
| |
Collapse
|
35
|
Ramírez de Mingo D, Pantoja-Uceda D, Hervás R, Carrión-Vázquez M, Laurents DV. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biol 2022; 20:129. [PMID: 35658951 PMCID: PMC9166367 DOI: 10.1186/s12915-022-01310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans. Results We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, M1QDDLLMDKSKTQPQPQQQQRQQQQPQP29, adopt a helical + disordered motif, and residues 86–93: P83QQPPPP93, and 166–175: P166PPPAPAPQP175 form polyproline II (PPII) helices. The (VG)5 repeat motif is completely disordered, and residues 200–250 adopt three partially populated α-helices. Residues 345–355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids. Conclusion Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein–protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones. Areas Biophysics, Structural Biology, Biochemistry & Neurosciences. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01310-6.
Collapse
|
36
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Yu SY, Koh EJ, Kim SH, Song B, Lee JS, Son SW, Seo H, Hwang SY. Analysis of multi-omics data on the relationship between epigenetic changes and nervous system disorders caused by exposure to environmentally harmful substances. ENVIRONMENTAL TOXICOLOGY 2022; 37:802-813. [PMID: 34921580 DOI: 10.1002/tox.23444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Environmentally hazardous substances and exposure to these can cause various diseases. Volatile organic compounds can easily evaporate into the atmosphere, thereby exerting toxic effects through either the skin or respiratory tract exposures. Toluene, a neurotoxin, has been widely used in various industries. However, it has a detrimental effect on the nervous system (such as hallucinations or memory impairment), while data on the mechanism underlaying its harmful effects remain limited. Therefore, this study investigates the effect of toluene on the nervous system via epigenetic and genetic changes of toluene-exposed individuals. We identified significant epigenetic changes and confirmed that the affected abnormally expressed genes negatively influenced the nervous system. In particular, we confirmed that the miR-15 family, upregulated by toluene, downregulated ABL2, which could affect the R as signaling pathway resulting in neuronal structural abnormalities. Our study suggests that miR-15a-5p, miR-15b-5p, miR-16-5p, miR-301a-3p, and lncRNA NEAT1 may represent effective epigenomic markers associated with neurodegenerative diseases caused by toluene.
Collapse
Affiliation(s)
- So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Eun Jung Koh
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Seung Hwan Kim
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Byeongwook Song
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University College of Medicine, Seoul, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, South Korea
| |
Collapse
|
38
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
39
|
Westra M, Gutierrez Y, MacGillavry HD. Contribution of Membrane Lipids to Postsynaptic Protein Organization. Front Synaptic Neurosci 2021; 13:790773. [PMID: 34887741 PMCID: PMC8649999 DOI: 10.3389/fnsyn.2021.790773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The precise subsynaptic organization of proteins at the postsynaptic membrane controls synaptic transmission. In particular, postsynaptic receptor complexes are concentrated in distinct membrane nanodomains to optimize synaptic signaling. However, despite the clear functional relevance of subsynaptic receptor organization to synaptic transmission and plasticity, the mechanisms that underlie the nanoscale organization of the postsynaptic membrane remain elusive. Over the last decades, the field has predominantly focused on the role of protein-protein interactions in receptor trafficking and positioning in the synaptic membrane. In contrast, the contribution of lipids, the principal constituents of the membrane, to receptor positioning at the synapse remains poorly understood. Nevertheless, there is compelling evidence that the synaptic membrane is enriched in specific lipid species and that deregulation of lipid homeostasis in neurons severely affects synaptic functioning. In this review we focus on how lipids are organized at the synaptic membrane, with special emphasis on how current models of membrane organization could contribute to protein distribution at the synapse and synaptic transmission. Finally, we will present an outlook on how novel technical developments could be applied to study the dynamic interplay between lipids and proteins at the postsynaptic membrane.
Collapse
Affiliation(s)
- Manon Westra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yolanda Gutierrez
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
41
|
Longatti A, Ponzoni L, Moretto E, Giansante G, Lattuada N, Colombo MN, Francolini M, Sala M, Murru L, Passafaro M. Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Mol Neurobiol 2021; 58:6092-6110. [PMID: 34455539 PMCID: PMC8639580 DOI: 10.1007/s12035-021-02502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/15/2021] [Indexed: 11/03/2022]
Abstract
Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.
Collapse
Affiliation(s)
- Anna Longatti
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | | | - Edoardo Moretto
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Giorgia Giansante
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Norma Lattuada
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maria Nicol Colombo
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| |
Collapse
|
42
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
43
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
44
|
Cornelius J, Rottner K, Korte M, Michaelsen-Preusse K. Cortactin Contributes to Activity-Dependent Modulation of Spine Actin Dynamics and Spatial Memory Formation. Cells 2021; 10:cells10071835. [PMID: 34360003 PMCID: PMC8303107 DOI: 10.3390/cells10071835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023] Open
Abstract
Postsynaptic structures on excitatory neurons, dendritic spines, are actin-rich. It is well known that actin-binding proteins regulate actin dynamics and by this means orchestrate structural plasticity during the development of the brain, as well as synaptic plasticity mediating learning and memory processes. The actin-binding protein cortactin is localized to pre- and postsynaptic structures and translocates in a stimulus-dependent manner between spines and the dendritic compartment, thereby indicating a crucial role for synaptic plasticity and neuronal function. While it is known that cortactin directly binds F-actin, the Arp2/3 complex important for actin nucleation and branching as well as other factors involved in synaptic plasticity processes, its precise role in modulating actin remodeling in neurons needs to be deciphered. In this study, we characterized the general neuronal function of cortactin in knockout mice. Interestingly, we found that the loss of cortactin leads to deficits in hippocampus-dependent spatial memory formation. This impairment is correlated with a prominent dysregulation of functional and structural plasticity. Additional evidence shows impaired long-term potentiation in cortactin knockout mice together with a complete absence of structural spine plasticity. These phenotypes might at least in part be explained by alterations in the activity-dependent modulation of synaptic actin in cortactin-deficient neurons.
Collapse
Affiliation(s)
- Jonas Cornelius
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
| | - Klemens Rottner
- Research Group Molecular Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Correspondence:
| |
Collapse
|
45
|
Jovasevic V, Zhang H, Sananbenesi F, Guedea AL, Soman KV, Wiktorowicz JE, Fischer A, Radulovic J. Primary cilia are required for the persistence of memory and stabilization of perineuronal nets. iScience 2021; 24:102617. [PMID: 34142063 PMCID: PMC8185192 DOI: 10.1016/j.isci.2021.102617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
It is well established that the formation of episodic memories requires multiple hippocampal mechanisms operating on different time scales. Early mechanisms of memory formation (synaptic consolidation) have been extensively characterized. However, delayed mechanisms, which maintain hippocampal activity as memories stabilize in cortical circuits, are not well understood. Here we demonstrate that contrary to the transient expression of early- and delayed-response genes, the expression of cytoskeleton- and extracellular matrix-associated genes remains dynamic even at remote time points. The most profound expression changes clustered around primary cilium-associated and collagen genes. These genes most likely contribute to memory by stabilizing perineuronal nets in the dorsohippocampal CA1 subfield, as revealed by targeted disruptions of the primary cilium or perineuronal nets. The findings show that nonsynaptic, primary cilium-mediated mechanisms are required for the persistence of context memory.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
| | - Hui Zhang
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| | | | - Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Kizhake V. Soman
- Division of Infectious Disease, Department of Internal Medicine, UTMB – Galveston, Galveston, TX 77555, USA
| | | | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Jelena Radulovic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| |
Collapse
|
46
|
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: The quest continues. Neuropharmacology 2021; 195:108688. [PMID: 34174263 DOI: 10.1016/j.neuropharm.2021.108688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Michael G Stewart
- Dept of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
47
|
Sonawane SK, Chinnathambi S. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network. Oncotarget 2021; 12:1083-1099. [PMID: 34084282 PMCID: PMC8169072 DOI: 10.18632/oncotarget.27963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored. MATERIALS AND METHODS We applied biophysical and biochemical techniques like fluorescence kinetics, oligomerization analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence microscopy in neuroblastoma cells. RESULTS EGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1). CONCLUSIONS We report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
Lee K, Yoo KS, Park YS, Kim HK. Activity of Arhgef4 is modulated through Staufen1 in neurons. Neurosci Lett 2021; 756:135962. [PMID: 34022264 DOI: 10.1016/j.neulet.2021.135962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022]
Abstract
The role of Arhgef4, also known as adenomatous polyposis coli (APC)-stimulated guanine nucleotide exchange factor 1 (Asef1), has been identified in colorectal cancers. Interestingly, Arhgef4 is more highly expressed in brain regions than intestinal regions, suggesting a role in neurons. In our previous study, we reported that Arhgef4 negatively regulates the level of PSD-95 in excitatory post-synaptic regions by binding with Staufen1. However, modulation of Arhgef4 guanine nucleotide exchange factor (GEF) activity in neurons has not been reported. We examined the configuration of protein interactions when Arhgef4 binds to APC and/or Staufen1. Arhgef4 simultaneously binds to Staufen1 with APC. Staufen1 overexpression blocked the GEF activity of Arhgef4. Consistent with this, Staufen1 overexpression blocked the Arhgef4-induced increase in dendritic protrusions in cultured neurons. Taken together, our data suggest that the GEF activity of Arhgef4 could be negatively modulated by Staufen1 binding.
Collapse
Affiliation(s)
- Kina Lee
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki-Seo Yoo
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young-Seok Park
- Department of Neurosurgery, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
49
|
Bączyńska E, Pels KK, Basu S, Włodarczyk J, Ruszczycki B. Quantification of Dendritic Spines Remodeling under Physiological Stimuli and in Pathological Conditions. Int J Mol Sci 2021; 22:4053. [PMID: 33919977 PMCID: PMC8070910 DOI: 10.3390/ijms22084053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.
Collapse
Affiliation(s)
- Ewa Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Katarzyna Karolina Pels
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India;
| | - Jakub Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| | - Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (E.B.); (K.K.P.); (J.W.)
| |
Collapse
|
50
|
Reynolds KE, Wong CR, Scott AL. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021; 69:1816-1832. [PMID: 33754385 DOI: 10.1002/glia.23997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorders. With increasing investigation into the molecular mechanisms underlying FXS, there is growing evidence that perturbations in glial signaling are widely associated with neurological pathology. Purinergic signaling, which utilizes nucleoside triphosphates as signaling molecules, provides one of the most ubiquitous signaling systems for glial-neuronal and glial-glial crosstalk. Here, we sought to identify whether purinergic signaling is dysregulated within the FXS mouse cortex, and whether this dysregulation contributes to aberrant intercellular communication. In primary astrocyte cultures derived from the Fmr1 knockout (KO) mouse model of FXS, we found that application of exogenous ATP and UTP evoked elevated intracellular calcium responses compared to wildtype levels. Accordingly, purinergic P2Y2 and P2Y6 receptor expression was increased in Fmr1 KO astrocytes both in vitro and in acutely dissociated tissue, while P2Y antagonism via suramin prevented intracellular calcium elevations, suggesting a role for these receptors in aberrant FXS astrocyte activation. To investigate the impact of elevated purinergic signaling on astrocyte-mediated synaptogenesis, we quantified synaptogenic protein TSP-1, known to be regulated by P2Y activation. TSP-1 secretion and expression were both heightened in Fmr1 KO vs wildtype astrocytes following UTP application, while naïve TSP-1 cortical expression was also transiently elevated in vivo, indicating increased potential for excitatory TSP-1-mediated synaptogenesis in the FXS cortex. Together, our results demonstrate novel and significant purinergic signaling elevations in Fmr1 KO astrocytes, which may serve as a potential therapeutic target to mitigate the signaling aberrations observed in FXS.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Chloe R Wong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|