1
|
Ma S, Chen X, Wang Y, Guo Y. Mechanisms of congenital hearing loss caused by GJB2 gene mutations and current progress in gene therapy. Gene 2025; 946:149326. [PMID: 39947265 DOI: 10.1016/j.gene.2025.149326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
GJB2 gene is a common pathogenic gene for non-syndromic hearing loss, located on chromosome 13q12.11, and primarily encodes connexin 26 (Cx26). Cx26, a member of the gap-junction protein family, is mainly expressed in the supporting cells of the cochlea, where it is responsible for intercellular material transfer and signal exchange. Gene therapy, a treatment method that repairs or reconstructs genetic material, has emerged as the most effective approach for hereditary hearing loss. During the initial stages of exploration, researchers need to conduct animal experiments first. By elucidating the mechanisms of GJB2 gene-induced congenital hearing loss, we summarize the commonly used experimental animals (zebrafish, mice) for current research on the Gjb2 gene, and further promote the advancement of gene therapy strategies.
Collapse
Affiliation(s)
- Sijie Ma
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaowan Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou 730030, China
| | - Yanli Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
2
|
Gadenstaetter AJ, Krumpoeck PE, Landegger LD. Inner Ear Gene Therapy: An Overview from Bench to Bedside. Mol Diagn Ther 2025; 29:161-181. [PMID: 39625555 PMCID: PMC11861411 DOI: 10.1007/s40291-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
Hearing loss represents a highly prevalent and debilitating sensory disorder affecting roughly one in five people worldwide. In a majority of patients with congenital hearing loss, genetic mutations cause the disease. Up until recently, therapeutic options for individuals with hearing loss were limited to hearing aids and different types of auditory implants. However, after numerous years of intensive basic and translational research, gene therapy strategies are now being investigated in clinical trials. First results show significant hearing improvement in treated patients, highlighting gene therapy's role as a promising treatment for certain forms of genetic hearing loss. In this article, we provide an overview of genetic hearing loss and inner ear gene therapy research including relevant strategies that have been established in animal models and will likely be investigated in human patients soon. Furthermore, we summarize and contextualize the novel findings of recently completed and ongoing clinical trials, and discuss future hurdles needed to be overcome to allow for a broad and safe clinical application of inner ear gene therapy.
Collapse
Affiliation(s)
- Anselm Joseph Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Paul Emmerich Krumpoeck
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas David Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2025; 5:192-202. [PMID: 40166123 PMCID: PMC11955060 DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The number of patients with hearing loss is on the rise due to congenital abnormalities, degenerative changes in old age, and acquired injuries such as virus or ototoxic drug-induced diseases. Hearing loss is a refractory and disabling disease that has serious negative effects on quality of life. The pathology of hearing loss in the inner ear is characterized by varying degrees of damage to the cochlear sensory epithelium cells (such as hair cells and supporting cells), stria vascularis (including marginal, intermediate and basal cells) and spiral ganglion neurons. Regeneration or direct repair of damaged cells in the inner ear is an effective way to treat sensorineural deafness. It is currently possible to regenerate hair cells to treat sensorineural hearing loss by FX-322, a small molecule drug in clinical trials. With the development of genetic engineering technology, gene therapy has brought a promising treatment strategy for many previously intractable diseases. Gene therapy has been regarded as a promising method in the treatment and rehabilitation of sensorineural hearing loss, and recombinant adeno-associated virus gene therapy has been widely used in fundamental research into hearing loss treatments. At present, gene therapy for hearing loss is transitioning from feasibility studies to explorations of its safety and its therapeutic potential. The present article reviews the concepts, strategies, and applications of gene therapy mediated by recombinant adeno-associated viruses in the field of hearing loss treatment.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaojie Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen 518063, China
| |
Collapse
|
4
|
Gil Y, Ryu J, Yang H, Ma Y, Nam KH, Jang SW, Shim S. Molecular Characterization of Subdomain Specification of Cochlear Duct Based on Foxg1 and Gata3. Int J Mol Sci 2024; 25:12700. [PMID: 39684410 DOI: 10.3390/ijms252312700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct. Herein, based on the dynamic expression pattern of FOXG1 in the apical and basal regions of the E13.5 cochlear duct, we identified detailed expression regions through an open-source analysis of single-cell RNA analysis data and demonstrated a clinical correlation with hearing loss. The distinct expression patterns of FOXG1 and GATA3 during the patterning process of the cochlear duct provide important clues to understanding how the fates of the apical and basal regions are divided. These results are expected to be extremely important not only for understanding the molecular mechanisms involved in the early development of the cochlear duct, but also for identifying potential genes that cause hearing loss.
Collapse
Affiliation(s)
- Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
5
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
6
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
7
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
9
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
10
|
Hrncirik F, Roberts IV, Swords C, Christopher PJ, Chhabu A, Gee AH, Bance ML. Impact of Scala Tympani Geometry on Insertion Forces during Implantation. BIOSENSORS 2022; 12:999. [PMID: 36354508 PMCID: PMC9688204 DOI: 10.3390/bios12110999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 05/07/2023]
Abstract
(1) Background: During a cochlear implant insertion, the mechanical trauma can cause residual hearing loss in up to half of implantations. The forces on the cochlea during the insertion can lead to this mechanical trauma but can be highly variable between subjects which is thought to be due to differing anatomy, namely of the scala tympani. This study presents a systematic investigation of the influence of different geometrical parameters of the scala tympani on the cochlear implant insertion force. The influence of these parameters on the insertion forces were determined by testing the forces within 3D-printed, optically transparent models of the scala tympani with geometric alterations. (2) Methods: Three-dimensional segmentations of the cochlea were characterised using a custom MATLAB script which parametrised the scala tympani model, procedurally altered the key shape parameters (e.g., the volume, vertical trajectory, curvature, and cross-sectional area), and generated 3D printable models that were printed using a digital light processing 3D printer. The printed models were then attached to a custom insertion setup that measured the insertion forces on the cochlear implant and the scala tympani model during a controlled robotic insertion. (3) Results: It was determined that the insertion force is largely unaffected by the overall size, curvature, vertical trajectory, and cross-sectional area once the forces were normalised to an angular insertion depth. A Capstan-based model of the CI insertion forces was developed and matched well to the data acquired. (4) Conclusion: By using accurate 3D-printed models of the scala tympani with geometrical alterations, it was possible to demonstrate the insensitivity of the insertion forces to the size and shape of the scala tympani, after controlling for the angular insertion depth. This supports the Capstan model of the cochlear implant insertion force which predicts an exponential growth of the frictional force with an angular insertion depth. This concludes that the angular insertion depth, rather than the length of the CI inserted, should be the major consideration when evaluating the insertion force and associated mechanical trauma caused by cochlear implant insertion.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Iwan V. Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Akil Chhabu
- Clinical School, University of Cambridge, Cambridge CB2 0SP, UK
| | - Andrew H. Gee
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | - Manohar L. Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
11
|
Costa A, Powell LM, Malaguti M, Soufi A, Lowell S, Jarman AP. Repurposing the lineage-determining transcription factor Atoh1 without redistributing its genomic binding sites. Front Cell Dev Biol 2022; 10:1016367. [PMID: 36420143 PMCID: PMC9676683 DOI: 10.3389/fcell.2022.1016367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Although the lineage-determining ability of transcription factors is often modulated according to cellular context, the mechanisms by which such switching occurs are not well known. Using a transcriptional programming model, we found that Atoh1 is repurposed from a neuronal to an inner ear hair cell (HC) determinant by the combined activities of Gfi1 and Pou4f3. In this process, Atoh1 maintains its regulation of neuronal genes but gains ability to regulate HC genes. Pou4f3 enables Atoh1 access to genomic locations controlling the expression of sensory (including HC) genes, but Atoh1 + Pou4f3 are not sufficient for HC differentiation. Gfi1 is key to the Atoh1-induced lineage switch, but surprisingly does not alter Atoh1's binding profile. Gfi1 acts in two divergent ways. It represses the induction by Atoh1 of genes that antagonise HC differentiation, a function in keeping with its well-known repressor role in haematopoiesis. Remarkably, we find that Gfi1 also acts as a co-activator: it binds directly to Atoh1 at existing target genes to enhance its activity. These findings highlight the diversity of mechanisms by which one TF can redirect the activity of another to enable combinatorial control of cell identity.
Collapse
Affiliation(s)
- Aida Costa
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynn M. Powell
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdenour Soufi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Preoperative Evaluation of Otosclerosis: A National Survey of Otologists. Otol Neurotol 2022; 43:e963-e968. [PMID: 36047701 DOI: 10.1097/mao.0000000000003669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Describe practice patterns in preoperative assessment for stapedectomy. STUDY DESIGN Survey. SETTING Tertiary referral center. SUBJECTS Active members of the American Neurotologic Society and American Otologic Society. INTERVENTION Survey. MAIN OUTCOME MEASURES Percent of respondents performing preoperative testing with acoustic reflexes (ARs), electrocochleography, vestibular evoked myogenic potentials, and computed tomography (CT). Further analysis of those not ordering routine CT to determine whether imaging would be ordered for previous ear surgery, vestibular complaints, childhood hearing loss, AR inconsistent with otosclerosis, possible advanced otosclerosis, or atypical complaints, including autophony. Further subgroup analysis based on years in practice and practice setting (private versus academic). RESULTS Most respondents (56.5%) had practiced more than 15 years and worked in academic settings (69.4%). Rates of routine use of preoperative AR, vestibular evoked myogenic potential, and electrocochleography were 80, 4.7, and 0%, respectively. There were no significant differences based on time in practice or practice settings. For CT, 35.3% reported routine use with a statistically significant difference between academic and private practice respondents (42.4% versus 19.2%, p = 0.040). For CT contingent on specific clinical factors, only AR inconsistent with otosclerosis showed a statistically significant difference between academic and private practice providers (85.3% versus 57.1%, p = 0.020). CONCLUSION Most otologists routinely obtain AR before stapedectomy. Academic providers more commonly order CT routinely and for AR inconsistent with otosclerosis. Most respondents not ordering routine CT ordered imaging in specific clinical scenarios. Overall, there is a high level of consistency in preoperative testing regardless of practice setting or time in practice.
Collapse
|
13
|
Gene Therapy for Congenital Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Le Prell CG, Brewer CC, Campbell KCM. The audiogram: Detection of pure-tone stimuli in ototoxicity monitoring and assessments of investigational medicines for the inner ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:470. [PMID: 35931504 PMCID: PMC9288270 DOI: 10.1121/10.0011739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pure-tone thresholds have long served as a gold standard for evaluating hearing sensitivity and documenting hearing changes related to medical treatments, toxic or otherwise hazardous exposures, ear disease, genetic disorders involving the ear, and deficits that develop during aging. Although the use of pure-tone audiometry is basic and standard, interpretation of thresholds obtained at multiple frequencies in both ears over multiple visits can be complex. Significant additional complexity is introduced when audiometric tests are performed within ototoxicity monitoring programs to determine if hearing loss occurs as an adverse reaction to an investigational medication and during the design and conduct of clinical trials for new otoprotective agents for noise and drug-induced hearing loss. Clinical trials using gene therapy or stem cell therapy approaches are emerging as well with audiometric outcome selection further complicated by safety issues associated with biological therapies. This review addresses factors that must be considered, including test-retest variability, significant threshold change definitions, use of ototoxicity grading scales, interpretation of early warning signals, measurement of notching in noise-induced hearing loss, and application of age-based normative data to interpretation of pure-tone thresholds. Specific guidance for clinical trial protocols that will assure rigorous methodological approaches and interpretable audiometric data are provided.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Washington D.C. 20892, USA
| | - Kathleen C M Campbell
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| |
Collapse
|
15
|
Zhang L, Wang W, Kim SM, Wang J, Zhou B, Kong W, Zheng J, Lin X. Virally Mediated Connexin 26 Expression in Postnatal Scala Media Significantly and Transiently Preserves Hearing in Connexin 30 Null Mice. Front Cell Dev Biol 2022; 10:900416. [PMID: 35573684 PMCID: PMC9091169 DOI: 10.3389/fcell.2022.900416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Non-sensory cells in the sensory epithelium of the cochlea are connected extensively by gap junctions. Functionally null mutations in GJB6 (encoding Cx30) cause hearing loss in humans. In this study, we injected AAV1-CB7-Gjb2 into the scala media between P0-2 in the cochlea of Gjb6−/− mice. The injection increased Cx26 expression and significantly preserved auditory functions. However, the hearing preservation gradually declined and essentially disappeared 3 months after the injections. In contrast, the morphological preservation was still significant at 3 months post-injection. We found that the expression of Cx26, at both the mRNA and protein levels, showed substantial decreases during the 3-month period. Curiously, treatments by injecting AAV1-CB7-Gjb6 with the identical approach failed to yield any hearing preservation. Our results demonstrated the first successful cochlear gene therapy treatment in mouse models by virally expressing a companion gene of Gjb6.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianjun Wang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Binfei Zhou
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Zheng
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Xi Lin,
| |
Collapse
|
16
|
Said MB, Ayed IB, Elloumi I, Hasnaoui M, Souissi A, Idriss N, Aloulou H, Chabchoub I, Maâlej B, Driss D, Masmoudi S. Custom Next-Generation Sequencing Identifies Novel Mutations Expanding the Molecular and clinical spectrum of isolated Hearing Impairment or along with defects of the retina, the thyroid, and the kidneys. Mol Genet Genomic Med 2022; 10:e1868. [PMID: 34997822 PMCID: PMC8830811 DOI: 10.1002/mgg3.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background In the Tunisian population, the molecular analysis of hearing impairment remains based on conventional approaches, which makes the task laborious and enormously expensive. Exploration of the etiology of Hearing Impairment and the early diagnosis of causal mutations by next‐generation sequencing help significantly alleviate social and economic problems. Methods We elaborated a custom SureSelectQXT panel for next‐generation sequencing of the coding sequences of 42 genes involved in isolated hearing impairment or along with defects of the retina, the thyroid, and the kidneys. Results We report eight pathogenic variants, four of which are novel in patients with isolated hearing impairment, hearing impairment, and renal tubular acidosis, Usher syndrome and Pendred syndrome. Functional studies using molecular modeling showed the severe impact of the novel missense mutations on the concerned proteins. Basically, we identified mutations in nuclear as well as mitochondrial genes in a Tunisian family with isolated hearing impairment, which explains definitely the phenotype detected since 2006. Conclusion Our results expanded the mutation spectrum and genotype‒phenotype correlation of isolated and syndromic hearing loss and also emphasized the importance of combining both targeted next‐generation sequencing and detailed clinical evaluation to elaborate a more accurate diagnosis for hearing impairment and related phenotypes especially in North African populations.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.,Medical Genetics Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mehdi Hasnaoui
- Department of Otorhinolaryngology, Tahar Sfar University Hospital of Mahdia, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nabil Idriss
- Department of Otorhinolaryngology, Tahar Sfar University Hospital of Mahdia, Sfax, Tunisia
| | - Hajer Aloulou
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Imen Chabchoub
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Bayen Maâlej
- Pediatric Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Dorra Driss
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
18
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
19
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Gene therapy via canalostomy approach preserves auditory and vestibular functions in a mouse model of Jervell and Lange-Nielsen syndrome type 2. Nat Commun 2021; 12:697. [PMID: 33514733 PMCID: PMC7846845 DOI: 10.1038/s41467-020-20808-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
Mutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2. Jervell and Lange-Nielsen syndrome is characterised by congenital deafness and vestibular dysfunction, and is caused by mutations in KCNE1 or KCNQ1. Here, the authors show that gene therapy via canalostomy at early postnatal stage can preserve the morphology of inner ear and auditory and vestibular functions in a mouse model of human JLNS2.
Collapse
|
21
|
Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020; 15:e0242599. [PMID: 33227033 PMCID: PMC7682903 DOI: 10.1371/journal.pone.0242599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Sensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV). However, AAV efficacy in transducing cochlear cells can vary for a number of reasons including serotype, species, and methodology, and oftentimes requires high multiplicity of infection which can damage the sensory cells. Reports in other systems suggest multiple approaches can be used to enhance AAV transduction including self-complementary vector design and pharmacological inhibition of degradation. Here we produced AAV to drive green fluorescent protein (GFP) expression in explanted neonatal mouse cochleae. Treatment with eeyarestatin I, tyrphostin 23, or lipofectamine 2000 did not result in increased transduction, however, self-complementary vector design resulted in significantly more GFP positive cells when compared to single-stranded controls. Similarly, self-complementary AAV2 vectors demonstrated enhanced transduction efficiency compared to single stranded AAV2 when injected via the posterior semicircular canal, in vivo. Self-complementary vectors for AAV1, 8, and 9 serotypes also demonstrated robust GFP transduction in cochlear cells in vivo, though these were not directly compared to single stranded vectors. These findings suggest that second-strand synthesis may be a rate limiting step in AAV transduction of cochlear tissues and that self-complementary AAV can be used to effectively target large numbers of cochlear cells in vitro and in vivo.
Collapse
|
22
|
Chaudhry D, Chaudhry A, Muzaffar J, Monksfield P, Bance M. Cochlear Implantation Outcomes in Post Synaptic Auditory Neuropathies: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2020; 16:411-431. [PMID: 33136025 DOI: 10.5152/iao.2020.9035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To establish outcomes following cochlear implantation (CI) in patients with postsynaptic auditory neuropathy (AN). Systematic review and narrative synthesis. Databases searched: MEDLINE, PubMed, EMBASE, Web of Science, Cochrane Collection and ClinicalTrials.gov. No limits placed on language or year of publication. Review conducted in accordance with the PRISMA statement. Searches identified 98 studies in total, of which 14 met the inclusion criteria reporting outcomes in 25 patients with at least 28 CIs. Of these, 4 studies focused on Charcot-Marie-Tooth disease (CMT), 3 on Brown-Vialetto-Van-Laere syndrome (BVVL), 2 on Friedreich Ataxia (FRDA), 2 on Syndromic dominant optic atrophy (DOA+), 2 on Cerebellar ataxia - areflexia - pes cavus - optic atrophy - sensorineural hearing loss (CAPOS) syndrome, and 1 on Deafness-dystonia-optic neuronopathy (DDON) syndrome. All studies were Oxford Centre for Evidence Based Medicine (OCEBM) grade IV. Overall trend was towards good post-CI outcomes with 22 of the total 25 patients displaying modest to significant benefit. Hearing outcomes following CI in postsynaptic ANs are variable but generally good with patients showing improvements in hearing thresholds and speech perception. In the future, development of a clearer stratification system into pre, post, and central AN would have clinical and academic benefits. Further research is required to understand AN pathophysiology and develop better diagnostic tools for more accurate identification of lesion sites. Multicenter longitudinal studies with standardized comprehensive outcome measures including health-related quality of life data will be key in establishing a better understanding of short and long-term post-CI outcomes.
Collapse
Affiliation(s)
- Daoud Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Abdullah Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
24
|
Gene therapy development in hearing research in China. Gene Ther 2020; 27:349-359. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Sensorineural hearing loss, the most common form of hearing impairment, is mainly attributable to genetic mutations or acquired factors, such as aging, noise exposure, and ototoxic drugs. In the field of gene therapy, advances in genetic and physiological studies and profound increases in knowledge regarding the underlying mechanisms have yielded great progress in terms of restoring the auditory function in animal models of deafness. Nonetheless, many challenges associated with the translation from basic research to clinical therapies remain to be overcome before a total restoration of auditory function can be expected. In recent years, Chinese research teams have promoted various developmental efforts in this field, including gene sequencing to identify additional potential loci that cause deafness, studies to elucidate the underlying molecular mechanisms, and research to optimize vectors and delivery routes. In this review, we summarize the state of the field and focus mainly on the progress of gene therapy in animal model studies and the optimization of therapeutic strategies in China.
Collapse
|
25
|
High Frequency of AIFM1 Variants and Phenotype Progression of Auditory Neuropathy in a Chinese Population. Neural Plast 2020; 2020:5625768. [PMID: 32684920 PMCID: PMC7350177 DOI: 10.1155/2020/5625768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
To decipher the genotype-phenotype correlation of auditory neuropathy (AN) caused by AIFM1 variations, as well as the phenotype progression of these patients, exploring the potential molecular pathogenic mechanism of AN. A total of 36 families of individuals with AN (50 cases) with AIFM1 variations were recruited and identified by Sanger sequencing or next-generation sequencing; the participants included 30 patients from 16 reported families and 20 new cases. We found that AIFM1-positive cases accounted for 18.6% of late-onset AN cases. Of the 50 AN patients with AIFM1 variants, 45 were male and 5 were female. The hotspot variation of this gene was p.Leu344Phe, accounting for 36.1%. A total of 19 AIFM1 variants were reported in this study, including 7 novel ones. A follow-up study was performed on 30 previously reported AIFM1-positive subjects, 16 follow-up cases (53.3%) were included in this study, and follow-up periods were recorded from 1 to 23 years with average 9.75 ± 9.89 years. There was no hearing threshold increase during the short-term follow-up period (1-10 years), but the low-frequency and high-frequency hearing thresholds showed a significant increase with the prolongation of follow-up time. The speech discrimination score progressed gradually and significantly along with the course of the disease and showed a more serious decline, which was disproportionately worse than the pure tone threshold. In addition to the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is also observed in AIFM1-related AN and affects females. In conclusion, we confirmed that AIFM1 is the primary related gene among late-onset AN cases, and the most common recurrent variant is p.Leu344Phe. Except for the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is another probability of AIFM1-related AN, with females affected. Phenotypical features of AIFM1-related AN suggested that auditory dyssynchrony progressively worsened over time.
Collapse
|
26
|
Richardson RT, Ibbotson MR, Thompson AC, Wise AK, Fallon JB. Optical stimulation of neural tissue. Healthc Technol Lett 2020; 7:58-65. [PMID: 32754339 PMCID: PMC7353819 DOI: 10.1049/htl.2019.0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Electrical stimulation has been used for decades in devices such as pacemakers, cochlear implants and more recently for deep brain and retinal stimulation and electroceutical treatment of disease. However, current spread from the electrodes limits the precision of neural activation, leading to a low quality therapeutic outcome or undesired side-effects. Alternative methods of neural stimulation such as optical stimulation offer the potential to deliver higher spatial resolution of neural activation. Direct optical stimulation is possible with infrared light, while visible light can be used to activate neurons if the neural tissue is genetically modified with a light sensitive ion channel. Experimentally, both methods have resulted in highly precise stimulation with little spread of activation at least in the cochlea, each with advantages and disadvantages. Infrared neural stimulation does not require modification of the neural tissue, but has very high power requirements. Optogenetics can achieve precision of activation with lower power, but only in conjunction with targeted insertion of a light sensitive ion channel into the nervous system via gene therapy. This review will examine the advantages and limitations of optical stimulation of neural tissue, using the cochlea as an exemplary model and recent developments for retinal and deep brain stimulation.
Collapse
Affiliation(s)
- Rachael Theresa Richardson
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, and Department of Optometry and Vision Science, University of Melbourne, Melbourne, Australia
| | | | - Andrew K Wise
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - James B Fallon
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| |
Collapse
|
27
|
Lan Y, Tao Y, Wang Y, Ke J, Yang Q, Liu X, Su B, Wu Y, Lin CP, Zhong G. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther 2020; 27:329-337. [PMID: 32424232 PMCID: PMC7445886 DOI: 10.1038/s41434-020-0155-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Gene therapy for auditory diseases is gradually maturing. Recent progress in gene therapy treatments for genetic and acquired hearing loss has demonstrated the feasibility in animal models. However, a number of hurdles, such as lack of safe viral vector with high efficiency and specificity, robust deafness large animal models, translating animal studies to clinic etc., still remain to be solved. It is necessary to overcome these challenges in order to effectively recover auditory function in human patients. Here, we review the progress made in our group, especially our efforts to make more effective and cell type-specific viral vectors for targeting cochlea cells.
Collapse
Affiliation(s)
- Yiyang Lan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yunfeng Wang
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiuxiang Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyi Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing Su
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiling Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
28
|
Dong Y, He X, Wu W, Yang S, Peng A, Xiao Z, Liu Y, Gao S, Tan D, Liu XZ, Xie D. Congenital Middle Ear Malformation with Common Deafness Gene Mutation Analysis: A Review of 813 Profound Sensorineural Hearing Loss Child Patients. Anat Rec (Hoboken) 2019; 303:594-599. [PMID: 31876389 DOI: 10.1002/ar.24330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yunpeng Dong
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Otolaryngology—Head & Neck surgeryThe Affiliated Hospital of Xiangnan University Chenzhou Hunan China
| | - Xiangbo He
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Weijing Wu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Yang
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Anquan Peng
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Zian Xiao
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Yuyuan Liu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Shuichao Gao
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Donghui Tan
- Department of Otolaryngology—Head & Neck SurgeryLeonard M. Miller School of Medicine, University of Miami Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
- Department of Otolaryngology—Head & Neck surgeryThe Affiliated Hospital of Xiangnan University Chenzhou Hunan China
| | - Dinghua Xie
- Department of Otolaryngology—Head & Neck SurgeryInstitute of Otology, The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
29
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Mei H, Mei D, Yu H, Sun S, Chen Y, Zhang Y, Chai R, Li H. Increased mitochondrial DNA copy number protects hair cells and HEI‑OC1 cells against drug‑induced apoptosis. Mol Med Rep 2019; 21:338-346. [PMID: 31939628 PMCID: PMC6896317 DOI: 10.3892/mmr.2019.10838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 02/03/2023] Open
Abstract
Several factors trigger apoptosis in cochlear hair cells. Previous studies have shown that mitochondria play key roles in apoptosis, but the role of mitochondrial deoxyribonucleic acid (mtDNA) copy number in the pathogenesis of hair cell apoptosis remains largely unknown. We used mouse cochlear hair cells and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells to explore the relationship between mtDNA copy number and cell apoptosis. We found that the mtDNA copy number of hair cells was reduced relative to mitochondrial mass and hypothesized that increasing it might have a protective effect. We then increased the mtDNA copy number of the hair and HEI-OC1 cells by transfecting them with an adeno-associated virus (AAV) vector containing mitochondrial transcription factor A (TFAM). We found that the apoptosis rates decreased upon inducing apoptosis with neomycin or cisplatin (DDP). To elucidate the mechanisms, we analyzed the mitochondrial-membrane permeability and mitochondrial function of HEI-OC1 cells. Our results suggested that the increase in mtDNA copy number could protect hair cells and HEI-OC1 cells against drug-induced apoptosis by stabilizing the permeability of the mitochondrial membrane and mitochondrial function.
Collapse
Affiliation(s)
- Honglin Mei
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Dongmei Mei
- Department of Stomatology, Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Huiqian Yu
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Shan Sun
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| | - Renjie Chai
- Co‑Innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
31
|
Bommakanti K, Iyer JS, Stankovic KM. Cochlear histopathology in human genetic hearing loss: State of the science and future prospects. Hear Res 2019; 382:107785. [PMID: 31493568 PMCID: PMC6778517 DOI: 10.1016/j.heares.2019.107785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
Sensorineural hearing loss (SNHL) is an extraordinarily common disability, affecting 466 million people across the globe. Half of these incidents are attributed to genetic mutations that disrupt the structure and function of the cochlea. The human cochlea's interior cannot be imaged or biopsied without damaging hearing; thus, everything known about the morphologic correlates of hereditary human deafness comes from histopathologic studies conducted in either cadaveric human temporal bone specimens or animal models of genetic deafness. The purpose of the present review is to a) summarize the findings from all published histopathologic studies conducted in human temporal bones with known SNHL-causing genetic mutations, and b) compare the reported phenotypes of human vs. mouse SNHL caused by the same genetic mutation. The fact that human temporal bone histopathologic analysis has been reported for only 22 of the nearly 200 identified deafness-causing genes suggests a great need for alternative and improved techniques for studying human hereditary deafness; in light of this, the present review concludes with a summary of promising future directions, specifically in the fields of high resolution cochlear imaging, intracochlear fluid biopsy, and gene therapy.
Collapse
Affiliation(s)
- Krishna Bommakanti
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; University of California San Diego School of Medicine, San Diego, CA, USA
| | - Janani S Iyer
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, USA; Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 2019; 10:3733. [PMID: 31427575 PMCID: PMC6700137 DOI: 10.1038/s41467-019-11687-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Hearing loss is the most common sensory disorder. While gene therapy has emerged as a promising treatment of inherited diseases like hearing loss, it is dependent on the identification of gene delivery vectors. Adeno-associated virus (AAV) vector-mediated gene therapy has been approved in the US for treating a rare inherited eye disease but no safe and efficient vectors have been identified that can target the diverse types of inner ear cells. Here, we identify an AAV variant, AAV-inner ear (AAV-ie), for gene delivery in mouse inner ear. Our results show that AAV-ie transduces the cochlear supporting cells (SCs) with high efficiency, representing a vast improvement over conventional AAV serotypes. Furthermore, after AAV-ie-mediated transfer of the Atoh1 gene, we find that many SCs trans-differentiated into new HCs. Our results suggest that AAV-ie is a useful tool for the cochlear gene therapy and for investigating the mechanism of HC regeneration. There are currently few AAV vectors that can effectively target the diverse cell types of the inner ear. Here the authors design AAV-ie for gene delivery to the mouse cochlea, targeting cochlear supporting cells.
Collapse
|
33
|
Lenarduzzi S, Morgan A, Faletra F, Cappellani S, Morgutti M, Mezzavilla M, Peruzzi A, Ghiselli S, Ambrosetti U, Graziano C, Seri M, Gasparini P, Girotto G. Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 2019; 381:107769. [PMID: 31387071 DOI: 10.1016/j.heares.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
Hearing loss (HL), one of the most common congenital disorder, affects about one child in 1000. Among the genetic forms of HL, ∼30% of the cases are associated with other signs or symptoms, leading to Syndromic Hearing Loss (SHL) with about 700 different forms described so far. In this report, we refer the clinical and molecular data of 38 Italian SHL unrelated patients, and their relatives, affected by the most common syndromes associated with HL (i.e., Usher, Pendred, Charge, Waardenburg, Alport, Stickler, Branchiootorenal and Microdeletions syndromes). Patients have been analysed using next-generation sequencing (NGS) and High Density (HD)-SNP array technologies. Data analysis led to the identification of nine novel and 27 known causative mutations in 12 genes and two microdeletions in chromosomes 1 and 10, respectively. In particular, as regards to Usher syndrome, that affects 32% of our patients, we were able to reach a molecular diagnosis in 83% of the cases and to identify in Northern Eastern Italy a very common USH2A gene mutation (39%) (c.11864G > A, p.(Trp3955*) which can be defined "Central-Eastern European allele." As regards to Alport syndrome, we were able to potentially reclassify a pathogenic allele in the COL4A3 gene, previously associated only with benign familial hematuria. In all the other cases, the genomic analysis allowed us to confirm the role of known causative genes and to identify several novel and known alleles. Overall, our results highlight the effectiveness of combining an accurate clinical characterization with the use of genomic technologies (NGS and SNP arrays) for the molecular diagnosis of SHL, with a clear positive impact in the management and treatment of all the patients.
Collapse
Affiliation(s)
- Stefania Lenarduzzi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Anna Morgan
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marcello Morgutti
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Adelaide Peruzzi
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Sara Ghiselli
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Umberto Ambrosetti
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy; U.O.S.D. of Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| |
Collapse
|
34
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|
35
|
Abstract
Antisense oligonucleotides (ASOs) have shown potential as therapeutic molecules for the treatment of inner ear dysfunction. The peripheral sensory organs responsible for both hearing and equilibrium are housed within the inner ear. Hearing loss and vestibular balance problems affect a large portion of the population and limited treatment options exist. Targeting ASOs to the inner ear as a therapeutic strategy has unique pharmacokinetic and drug delivery opportunities and challenges. Here, we review ASO technology, delivery, disease targets, and other key considerations for development of this therapeutic approach.
Collapse
Affiliation(s)
- Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL, 60064, USA.
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE, 68583, USA
| |
Collapse
|
36
|
Kim MA, Ryu N, Kim HM, Kim YR, Lee B, Kwon TJ, Bok J, Kim UK. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:197-204. [PMID: 30805407 PMCID: PMC6374519 DOI: 10.1016/j.omtm.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Targeting specific cell types in the mammalian inner ear is important for treating genetic hearing loss due to the different cell type-specific functions. Adeno-associated virus (AAV) is an efficient in vivo gene transfer vector, and it has demonstrated promise for treating genetic hearing loss. Although more than 100 AAV serotypes have been identified, few studies have investigated whether AAV can be distributed to specific inner ear cell types. Here we screened three EGFP-AAV reporter constructs (serotypes DJ, DJ8, and PHP.B) in the neonatal mammalian inner ear by injection via the round window membrane to determine the cellular specificity of the AAV vectors. Sensory hair cells, supporting cells, cells in Reissner’s membrane, interdental cells, and root cells were successfully transduced. Hair cells in the cochlear sensory epithelial region were the most frequently transduced cell type by all tested AAV serotypes. The recombinant DJ serotype most effectively transduced a range of cell types at a high rate. Our findings provide a basis for improving treatment of hereditary hearing loss using targeted AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae-Jun Kwon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author: Jinwoong Bok, PhD, Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Corresponding author: Un-Kyung Kim, PhD, Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
37
|
György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, Indzhykulian AA, Volak A, Karavitaki KD, Tamvakologos PI, Vezina M, Berezovskii VK, Born RT, O'Brien M, Lafond JF, Arsenijevic Y, Kenna MA, Maguire CA, Corey DP. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:1-13. [PMID: 30581889 PMCID: PMC6297893 DOI: 10.1016/j.omtm.2018.11.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/01/2022]
Abstract
Hereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea. Second, to have the best chance of clinical translation, these new vectors must also transduce hair cells in non-human primates. Here, we show that an AAV9 capsid variant, PHP.B, produces efficient transgene expression of a GFP reporter in both inner and outer hair cells of neonatal mice. We show also that AAV9-PHP.B mediates almost complete transduction of inner and outer HCs in a non-human primate. In a mouse model of Usher syndrome type 3A deafness (gene CLRN1), we use AAV9-PHP.B encoding Clrn1 to partially rescue hearing. Thus, we have identified a vector with promise for clinical treatment of hereditary hearing disorders, and we demonstrate, for the first time, viral transduction of the inner ear of a primate with an AAV vector.
Collapse
Affiliation(s)
- Bence György
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Elise J Meijer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Adrienn Volak
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | | | | | - Mark Vezina
- Charles River Laboratories, Senneville, QC, Canada
| | | | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Margaret A Kenna
- Department of Otolaryngology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|