1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Elgohary SA, Elmaraghy MN, Nada OH, Farid RM, Elshaarawi S, Ashoush BM, Helal TE. The diagnostic significance of immunohistochemical expression of SOX10 and TRPS1 in triple negative breast cancer. Ann Diagn Pathol 2025; 78:152480. [PMID: 40245691 DOI: 10.1016/j.anndiagpath.2025.152480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Triple negative breast cancer (TNBC) usually exhibits heterogeneous morphological features. The absence of a specific targeted marker for the breast origin of TNBC makes the diagnosis of metastatic TNBC challenging. TRPS1 is regarded as a diagnostic marker for breast cancer of various subtypes, including the basal type of TNBC. SOX10 has been recorded in to be highly expressed in TNBCs. Our cohort study aimed to: first, assess the diagnostic value of TRPS1 and SOX10 immunohistochemical (IHC) expression in TNBC; second, investigate if any of these two markers are related to the established pathological factors of prognostic significance. The study cohort comprised 84 TNBC cases subjected to TRPS1 and SOX10 IHC staining. TRPS1 expression was demonstrated in 86.9 % of the cases. It was expressed in 85.9 %, 83.3 %, and 100 % of invasive breast carcinoma-no special type (IBC-NST), metaplastic carcinomas, and IBC with medullary pattern, respectively. SOX10 expression was identified in 61.9 % of the cases. Most (85.7 %) of IBC with medullary pattern and 83.3 % of metaplastic carcinomas showed positive SOX10 expression. Evaluation of the combined expression of both markers revealed that 52.4 %, 34.5 %, 9.5 %, and 3.6 % of TNBC cases were SOX10+/TRPS1+, SOX10-/TRPS1+, SOX10+/TRPS1-, and SOX10-/TRPS1-, respectively. TRPS1 and SOX10 are fairly sensitive markers for the diagnosis of TNBC. Accordingly, they may be of help in the detection of metastatic TNBC. However, additional studies are required to evaluate these markers on non-breast tumor tissue to further investigate their specificity.
Collapse
Affiliation(s)
| | | | - Ola Hassan Nada
- Department of Pathology, Ain Shams University's Faculty of Medicine, Egypt
| | - Rola Mohamed Farid
- Department of Pathology, Ain Shams University's Faculty of Medicine, Egypt
| | - Sara Elshaarawi
- Department of Pathology, Ain Shams University's Faculty of Medicine, Egypt
| | | | | |
Collapse
|
3
|
Xiao X, Huang L, Li M, Zhang Q. Intersection between lung cancer and neuroscience: Opportunities and challenges. Cancer Lett 2025; 621:217701. [PMID: 40194655 DOI: 10.1016/j.canlet.2025.217701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Lung cancer, which has the highest morbidity and mortality rates worldwide, involves intricate interactions with the nervous system. Research indicates that the nervous system not only plays a role in the origin of lung cancer, but also engages in complex interactions with cancer cells through neurons, neurotransmitters, and various neuroactive molecules during tumor proliferation, invasion, and metastasis, especially in brain metastases. Cancer and its therapies can remodel the nervous system. Despite advancements in immunotherapy and targeted therapies in recent years, drug resistance of lung cancer cells after treatment limits improvements in patient survival and prognosis. The emergence of neuroscience has created new opportunities for the treatment of lung cancer. However, it also presents challenges. This review emphasizes that a deeper understanding of the interactions between the nervous system and lung cancer, along with the identification of new therapeutic targets, may lead to significant advancements or even a revolution in treatment strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingli Huang
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China; Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, PR China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
4
|
Liu K, Wang H, Wang L, Ma W, Yang J, Li C, Liu J, Bao W, Li L, Du Y, Gao H. Benzeneboronic acid-modified hyaluronic acid hydrogel enhances the differentiation of dorsal root ganglion stem cells in a three-dimensional environment. Int J Biol Macromol 2025; 309:142786. [PMID: 40185459 DOI: 10.1016/j.ijbiomac.2025.142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Peripheral nerve injuries (PNI) remain challenging to treat due to limited regeneration capacity and the lack of effective therapeutic scaffolds to support nerve repair. This study aims to develop and evaluate a 3-aminophenylboronic acid-modified hyaluronic acid (HAB) hydrogel as a 3D scaffold to enhance Dorsal root ganglion-derived stem cells (DRGSCs) attachment, migration, and neuronal differentiation for peripheral nerve regeneration. The HAB hydrogel was synthesized through an amidation reaction and characterized using Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). DRGSCs were cultured in HAB hydrogel, and neuronal differentiation was assessed through immunofluorescence staining, PCR, and multi-electrode array (MEA) recordings. Cytotoxicity, proliferation, and in vivo biocompatibility were evaluated through live/dead staining, CCK-8 assays, and subcutaneous implantation in rats. Transcriptomic analysis was performed to explore gene expression profiles. Our results shown that DRGSCs cultured in HAB hydrogel exhibited significantly improved attachment (78.5 % ± 3.2 % vs. 45.3 % ± 2.8 %, p < 0.05) and migration speeds (21.4 μm/h vs. 12.9 μm/h, p < 0.05) compared to 2D cultures. Neuronal differentiation efficiency, as indicated by Tuj1-positive cells, was also higher (72.6 % ± 4.1 % vs. 42.8 % ± 3.9 %, p < 0.01). RNA sequencing identified 990 differentially expressed genes (627 upregulated, 363 downregulated), with pathways involved in synaptic vesicle cycling, glutamatergic and GABAergic synapses significantly enriched (p < 0.05). Validation revealed that the expression trends of Gnao1 and Grm7 in the plastic petri dish and HAB hydrogel groups were consistent with the RNA sequencing results. In vivo, the hydrogel showed excellent biocompatibility, with reduced TNF-α and IL-1β expression over a 28-day degradation cycle (p < 0.01). The HAB hydrogel provides a supportive 3D microenvironment that enhances DRGSCs differentiation and electrophysiological activity, highlighting its potential as a promising scaffold for peripheral nerve regeneration and neuroregenerative medicine.
Collapse
Affiliation(s)
- Kuangpin Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Hailei Wang
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China
| | - Le Wang
- Department of Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Chunyan Li
- Neurology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jinhua Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Wenli Bao
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China.
| | - Yan Du
- College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650032, China.
| | - Hongqiang Gao
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
5
|
Gwam C, Mohamed N, Ogunsola AS, Brown MG, Henry KA, Ma X. Amniotic fluid stem cell conditioned medium's role in Schwann cell proliferation, survival, and cellular antioxidant activity under normative and oxidative stress conditions. ANNALS OF TRANSLATIONAL MEDICINE 2025; 13:1. [PMID: 40115065 PMCID: PMC11921312 DOI: 10.21037/atm-24-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025]
Abstract
Background Peripheral nerve injuries present a major clinical challenge due to their high morbidity and often incomplete recovery of function. While autografts remain the gold standard for nerve repair, their use is constrained by limited donor availability and donor site complications. Alternative strategies, such as allografts and tissue-engineered grafts, have been developed but are still associated with suboptimal outcomes, including chronic pain and sensory disturbances. Thus, there is a need for novel therapies that can enhance nerve regeneration. Amniotic fluid stem cell conditioned medium (AFS-CM) houses regenerative properties that may be useful in peripheral nerve injury. This study aims to assess the role of AFS-CM on Schwann cell survival and proliferation under normative and oxidative stress conditions, preventing oxidative stress-induced premature senescence of Schwann cells in vitro and maintaining cellular redox homeostasis. Methods Primary Schwann cells were treated with various concentrations of AFS-CM. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay, and viability under oxidative stress was measured after exposing cells to hydrogen peroxide (H2O2). Reactive oxygen species (ROS) levels and both catalase and superoxide dismutase (SOD) levels were evaluated. Cellular senescence markers were also assessed to determine AFS-CM's protective effects. Results AFS-CM treatment resulted in a dose-dependent increase in Schwann cell proliferation (P<0.05). Under oxidative stress conditions, AFS-CM significantly improved cell viability compared to controls (P<0.05). ROS levels were markedly reduced in AFS-CM-treated cells (P<0.05), and this was accompanied by upregulation of catalase and SOD expression (P<0.05). Moreover, AFS-CM reduced stress-induced cellular senescence, as indicated by decreased senescence-associated β-galactosidase activity and lower expression of senescence markers (P<0.05). Conclusions AFS-CM enhances Schwann cell proliferation, viability, and resistance to oxidative stress, while reducing cellular senescence. These findings suggest that AFS-CM could be a promising adjunctive therapy for peripheral nerve injuries by promoting Schwann cell resilience and regenerative capacity. Future studies are needed to validate these in vitro results in vivo and explore their potential clinical application for improving functional recovery in patients with peripheral nerve damage.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Nequesha Mohamed
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ayobami S Ogunsola
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Marcel G Brown
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Kaitlin A Henry
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Xue Ma
- Department of Orthopaedic Surgery and Rehabilitation, Atrium Wake Forest Baptist Health, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Gambarotto L, Russo L, Bresolin S, Persano L, D'Amore R, Ronchi G, Zen F, Muratori L, Cani A, Negro S, Megighian A, Calabrò S, Braghetta P, Bizzotto D, Cescon M. Schwann Cell-Specific Ablation of Beclin 1 Impairs Myelination and Leads to Motor and Sensory Neuropathy in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308965. [PMID: 39680476 PMCID: PMC11792035 DOI: 10.1002/advs.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Indexed: 12/18/2024]
Abstract
The core component of the class III phosphatidylinositol 3-kinase complex, Beclin 1, takes part in different protein networks, thus switching its role from inducing autophagy to regulating autophagosomal maturation and endosomal trafficking. While assessed in neurons, astrocytes, and microglia, its role is far less investigated in myelinating glia, including Schwann cells (SCs), responsible for peripheral nerve myelination. Remarkably, the dysregulation in endosomal trafficking is emerging as a pathophysiological mechanism underlying peripheral neuropathies, such as demyelinating Charcot-Marie-Tooth (CMT) diseases. By knocking out Beclin 1 in SCs here a novel mouse model (Becn1 cKO) is generated, developing a severe and progressive neuropathy, accompanied by involuntary tremors, body weight loss, and premature death. Ultrastructural analysis revealed abated myelination and SCs displaying enlarged cytoplasm with progressive accumulation of intracellular vesicles. Transcriptomic and histological analysis from sciatic nerves of 10-day and 2-month-old mice revealed pro-mitotic gene deregulation and increased SCs proliferation at both stages with axonal loss and increased immune infiltration in adults, well reflecting the progressive motor and sensory functional impairment that characterizes Becn1 cKO mice, compared to controls. The study establishes a further step in understanding key mechanisms in SC development and points to Beclin 1 and its regulated pathways as targets for demyelinating CMT forms.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Loris Russo
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Silvia Bresolin
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Luca Persano
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Rachele D'Amore
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Alice Cani
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
| | - Samuele Negro
- U.O.C. Clinica NeurologicaAzienda Ospedale‐Università PadovaVia Giustiniani 5Padova35128Italy
| | - Aram Megighian
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Padova Neuroscience CenterUniversity of PadovaVia G. Orus, 2Padova35131Italy
| | - Sonia Calabrò
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Paola Braghetta
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Dario Bizzotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Matilde Cescon
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| |
Collapse
|
7
|
Wei Z, Li X, Chen Y, Han Z, Li Y, Gan L, Yang Y, Chen Y, Zhang F, Ye X, Cui W. Programmable DNA‐Peptide Conjugated Hydrogel via Click Chemistry for Sequential Modulation of Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202419915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 02/02/2025]
Abstract
AbstractDuring peripheral nerve regeneration, current deoxyribonucleic acid (DNA)‐based therapeutic platforms face the challenge of precisely regulating Schwann cells (SCs) fate to sustain their repair phenotype due to their inability to stably and precisely integrate multiple bioactive components. Herein, the strain‐promoted azide–alkyne cycloaddition reaction is utilized to integrate the neurotrophic factor mimetic peptide RGI and the laminin‐derived peptide IKVAV into DNA monomers. Through DNA sequence self‐assembly, a programmable DNA‐peptide conjugated hydrogel is constructed for loading bone marrow mesenchymal stem cell‐derived exosomes. This programmable hydrogel can rapidly, stably, and precisely integrate various bioactive components into the hydrogel network, thereby enabling sequential modulation of peripheral nerve repair. In vitro, studies show that this hydrogel, through sequential modulation mechanisms, can activate the neuregulin‐1 (Nrg1)/ErbB pathway to induce the reprogramming of SCs and promote the recruitment and proliferation of repair SCs. The induced repair SCs promote neuronal axon outgrowth and enhance tube formation in endothelial cells. In vivo, this programmable hydrogel can gelate in situ through intraneural injection in a rat sciatic nerve crush injury model, promoting nerve regeneration and functional recovery. In summary, this work provides an effective and practical strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yicheng Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Zhaopu Han
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yan Li
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Lin Gan
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yujie Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Feng Zhang
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital Fudan University Shanghai 200031 P. R. China
- NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai 200031 P. R. China
| | - Xiaojian Ye
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
8
|
Katahira Y, Horio E, Yamaguchi N, Sonoda J, Yamagishi M, Miyakawa S, Murakami F, Hasegawa H, Mizoguchi I, Yoshimoto T. Protective Effect of Conditioned Medium of Immortalized Human Stem Cells from Exfoliated Deciduous Teeth Against Hair Graying Caused by X-Ray Irradiation via Its Antioxidative Activity. Antioxidants (Basel) 2025; 14:109. [PMID: 39857443 PMCID: PMC11760446 DOI: 10.3390/antiox14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Hair graying is one of the common visible signs of human aging, resulting from decreased or abolished melanogenesis due to the depletion of melanocyte stem cells through excess accumulation of oxidative stress. Cell-free therapy using a conditioned medium (CM) of mesenchymal stem cells has been highlighted in the field of regenerative medicine owing to its potent therapeutic effects with lower regulatory hurdles and safety risk. Recently, we demonstrated that a CM of an immortalized stem cell line from human exfoliated deciduous teeth (SHED) has protective effects against a mouse model of ulcer formation via antioxidative and angiogenic activities mediated by HGF and VEGF. However, to date, no effective treatments for hair graying have been developed, and the effect of SHED-CM on hair graying remains unknown. In this study, we have investigated the effect of SHED-CM on a hair graying mouse model caused by X-ray irradiation. Repetitive subcutaneous administrations of SHED-CM greatly suppressed the development of hair graying, when compared to control medium, resulting in reduced cutaneous expression of 8-hydroxy-2'-deoxyguanosine, the major product of DNA damage induced by reactive oxygen species. Consistent with these in vivo results, SHED-CM significantly inhibited the cell death caused by X-ray irradiation in melanoma cell line B16F10 cells. Immunodepletion of HGF or VEGF in the SHED-CM revealed that this inhibition was due to suppression of the generation of reactive oxygen species, which was mainly mediated by HGF and probably VEGF. These results suggest that SHED-CM has protective effects against hair graying via its antioxidative activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (Y.K.)
| |
Collapse
|
9
|
Wei F, Yang W, Wang H, Song S, Ji Y, Chen Z, Zhuang Y, Dai J, Shen H. Reactive oxygen species-scavenging biomaterials for neural regenerative medicine. Biomater Sci 2025; 13:343-363. [PMID: 39620279 DOI: 10.1039/d4bm01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases. In the field of neurological diseases, ROS cause neuronal apoptosis and neurodegeneration, which severely impede neuroregeneration. Currently, ROS-scavenging biomaterials are considered as a promising therapeutic strategy for neurological injuries due to their ability to scavenge excessive ROS at defects and modulate the oxidative stress microenvironment. This review provides an overview of the generation and sources of ROS, briefly describes the dangers of generating excessive ROS in nervous system diseases, and highlights the importance of scavenging excessive ROS for neuroregeneration. We have classified ROS-scavenging biomaterials into three categories based on the different mechanisms of ROS clearance. The applications of ROS-responsive biomaterials for neurological diseases, such as spinal cord injury, brain injury, and peripheral nerve injury, are also discussed. Our review contributes to the development of ROS-scavenging biomaterials in the field of neural regeneration.
Collapse
Affiliation(s)
- Feng Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Huiru Wang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Ji
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing 100101, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
10
|
Sueters J, van Heiningen R, de Vries R, Guler Z, Huirne J, Smit T. Advances in tissue engineering of peripheral nerve and tissue innervation - a systematic review. J Tissue Eng 2025; 16:20417314251316918. [PMID: 39911939 PMCID: PMC11795627 DOI: 10.1177/20417314251316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Although various options are available to treat injured organs and peripheral nerves, none is without limitations. Auto- and allografts are the first choice of treatment, but tissue survival or functionality is not guaranteed due to often limited vascular and neural networks. In response, tissue-engineered solutions have been developed, yet clinical translations is rare. In this study, a systematic review was performed on tissue-engineered advancements for peripheral nerves and tissues, to aid future developments in bridging the gap toward the clinic by identifying high-potential solutions and unexplored areas. A systematic search was performed in PubMed, Embase, Web of Science, and Scopus until November 9, 2023. Search terms involved "tissue engineering," "guided," "tissue scaffold," and "tissue graft," together with "innervation" and "reinnervation." Original in vivo or in vitro studies meeting the inclusion criteria (tissue-engineered peripheral nerve/innervation of tissue) and no exclusion criteria (no full text available; written in foreign language; nonoriginal article; tissue-engineering of central nervous system; publication before 2012; insufficient study quality or reproducibility) were assessed. A total of 68 out of 3626 original studies were included. Data extraction was based on disease model, cell origin and host species, biomaterial nature and composition, and external stimuli of biological, chemical or physical origin. Although tissue engineering is still in its infancy, explored innervation strategies of today were highlighted with respect to biomaterials, cell types, and external stimuli. The findings emphasize that natural biomaterials, pre-seeding with autologous cell sources, and solutions for reproductive organs are beneficial for future research. Natural biomaterials possess important cues required for cell-material interaction and closely resemble native tissue in terms of biomechanical, geometrical and chemical composition. Autologous cells induce biomaterial functionalization. As these solutions pose no risk of immunorejection and have demonstrated good outcomes, they are most likely to fulfill the clinical demands.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rowan van Heiningen
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Zeliha Guler
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| | - Judith Huirne
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Theo Smit
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Khullar S, Huang X, Ramesh R, Svaren J, Wang D. NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation. BIOINFORMATICS ADVANCES 2024; 5:vbae206. [PMID: 40260118 PMCID: PMC12011367 DOI: 10.1093/bioadv/vbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 04/23/2025]
Abstract
Motivation Transcription factor (TF) coordination plays a key role in gene regulation via direct and/or indirect protein-protein interactions (PPIs) and co-binding to regulatory elements on DNA. Single-cell technologies facilitate gene expression measurement for individual cells and cell-type identification, yet the connection between TF-TF coordination and target gene (TG) regulation of various cell types remains unclear. Results To address this, we introduce our innovative computational approach, Network Regression Embeddings (NetREm), to reveal cell-type TF-TF coordination activities for TG regulation. NetREm leverages network-constrained regularization, using prior knowledge of PPIs among TFs, to analyze single-cell gene expression data, uncovering cell-type coordinating TFs and identifying revolutionary TF-TG candidate regulatory network links. NetREm's performance is validated using simulation studies and benchmarked across several datasets in humans, mice, yeast. Further, we showcase NetREm's ability to prioritize valid novel human TF-TF coordination links in 9 peripheral blood mononuclear and 42 immune cell sub-types. We apply NetREm to examine cell-type networks in central and peripheral nerve systems (e.g. neuronal, glial, Schwann cells) and in Alzheimer's disease versus Controls. Top predictions are validated with experimental data from rat, mouse, and human models. Additional functional genomics data helps link genetic variants to our TF-TG regulatory and TF-TF coordination networks. Availability and implementation https://github.com/SaniyaKhullar/NetREm.
Collapse
Affiliation(s)
- Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53076, United States
| | - Xiang Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Comparative Biomedical Sciences Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53076, United States
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
12
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
13
|
Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS Therapy on the Expression of Genes Related to Peripheral Nerve Regeneration in Schwann Cells. Int J Mol Sci 2024; 25:12791. [PMID: 39684499 DOI: 10.3390/ijms252312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration. This study analyzes the effects of PEMF and LIPUS on gene expression in human primary Schwann cells, which are crucial for nerve myelination and repair. Key genes involved in neurotrophin signaling (NGF, BDNF), inflammation (IL-1β, IL-6, IL-10, TNF-α, TGF-β), and regeneration (CRYAB, CSPG, Ki67) were assessed. The results of this study reveal that combined PEMF and LIPUS therapies promote Schwann cell proliferation, reduce inflammation, and improve the regenerative environment, offering potential for optimizing these therapies for clinical use in regenerative medicine.
Collapse
Affiliation(s)
- Mateusz Siwak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
14
|
Zerad L, Gacem N, Gayda F, Day L, Sinigaglia K, Richard L, Parisot M, Cagnard N, Mathis S, Bole-Feysot C, O’Connell MA, Pingault V, Dambroise E, Keegan LP, Vallat JM, Bondurand N. Overexpression of Egr1 Transcription Regulator Contributes to Schwann Cell Differentiation Defects in Neural Crest-Specific Adar1 Knockout Mice. Cells 2024; 13:1952. [PMID: 39682701 PMCID: PMC11639873 DOI: 10.3390/cells13231952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of Adar1 reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of Adar1 mutant phenotypes. By analyzing RNA-Seq data from the sciatic nerves of mouse pups after conditional neural crest deletion of Adar1 (Adar1cKO), we here identified the transcription factors deregulated in Adar1cKO mutants compared to the controls. Through Adar1;Mavs and Adar1cKO;Egr1 double-mutant mouse rescue analyses, we then highlighted that the aberrant activation of the Mavs adapter protein and overexpression of the early growth response 1 (EGR1) transcription factor contribute to the Adar1 deletion associated defects in Schwann cell development in vivo. In silico and in vitro gene regulation studies additionally suggested that EGR1 might mediate this inhibitory effect through the aberrant regulation of EGR2-regulated myelin genes. We thus demonstrate the role of the Mda5/Mavs pathway, but also that of the Schwann cell transcription factors in Adar1-associated peripheral myelination defects.
Collapse
Affiliation(s)
- Lisa Zerad
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Nadjet Gacem
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Fanny Gayda
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Lucie Day
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Ketty Sinigaglia
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Laurence Richard
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Nicolas Cagnard
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, 75015 Paris, France;
| | - Stephane Mathis
- Department of Neurology (Nerve-Muscle Unit) and ‘Grand Sud-Ouest’ National Reference Center for Neuromuscular Disorders, CHU Bordeaux, Pellegrin Hospital, 33000 Bordeaux, France;
| | - Christine Bole-Feysot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, 75015 Paris, France; (M.P.); (C.B.-F.)
| | - Mary A. O’Connell
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France;
| | - Liam P. Keegan
- Central European Institute for Technology, Masaryk University (CEITEC MU), Kamenice 735/5, 625 00 Brno, Czech Republic; (K.S.); (M.A.O.); (L.P.K.)
| | - Jean Michel Vallat
- Department of Neurology, Centre de Reference “Neuropathies Périphériques Rares”, CHU Limoges, 87000 Limoges, France; (L.R.); (J.M.V.)
| | - Nadege Bondurand
- Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France; (L.Z.); (N.G.); (F.G.); (L.D.); (V.P.)
| |
Collapse
|
15
|
Wei S, Xiong F, Gu H, Zhang Z, Xuan H, Jin Y, Xue Y, Li B, Feng W, Yuan H. Highly aligned electroactive ultrafine fibers promote the differentiation of mesenchymal stem cells into Schwann-like cells for nerve regeneration. Int J Biol Macromol 2024; 279:135388. [PMID: 39255892 DOI: 10.1016/j.ijbiomac.2024.135388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
This study investigates the efficacy of a novel tissue-engineered scaffold for nerve repair and functional reconstruction following injury. Utilizing stable jet electrospinning, we fabricated aligned ultrafine fibers from dopamine and poly(L-lactic acid) (PLLA), further developing a biomimetic, oriented, and electroactive scaffold comprising poly(pyrrole) (PPy), polydopamine (PDA), and PLLA through dual in situ polymerizations. The scaffold demonstrated enhanced cell adhesion and reactive oxygen species (ROS) scavenging capabilities and promoted the differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells, essential for nerve regeneration. In vivo assessments revealed significant peripheral nerve regeneration in 10 mm sciatic nerve defects in rats, with observations made 12 weeks post-transplantation. This included facilitated myelination and increased muscle density on the injured side, leading to improved motor function recovery. Our results suggest that the aligned PPy/PDA/PLLA fibrous scaffold offers a promising approach for promoting the differentiation of MSCs into Schwann-like cells conducive to nerve regeneration and represents a significant advancement in nerve repair technologies. This study provides a foundational basis for future research into tissue-engineered solutions for nerve damage, potentially impacting clinical strategies for nerve reconstruction.
Collapse
Affiliation(s)
- Shuo Wei
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Feng Xiong
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Haonan Gu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
16
|
Naseri S, Samaram H, Naghavi N, Rassouli MB, Mousavinezhad M. Types of Short-Duration Electrical Stimulation-Induced Efficiency in the Axonal Regeneration and Recovery: Comparative in Vivo Study in Rat Model of Repaired Sciatic Nerve and its Tibial Branch after Transection Injury. Neurochem Res 2024; 49:2469-2479. [PMID: 38856888 DOI: 10.1007/s11064-024-04154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The restoration of adequate function and sensation in nerves following an injury is often insufficient. Electrical stimulation (ES) applied during nerve repair can promote axon regeneration, which may enhance the likelihood of successful functional recovery. However, increasing operation time and complexity are associated with limited clinical use of ES. This study aims to better assess whether short-duration ES types (voltage mode vs. current mode) are able to produce enhanced regenerative activity following peripheral nerve repair in rat models. Wistar rats were randomly divided into 3 groups: no ES (control), 30-minute ES with a current pulse, and 30-minute ES with a voltage pulse. All groups underwent sciatic nerve transection and repair using a silicone tube to bridge the 6-mm gap between the stumps. In the 2 groups other than the control, ES was applied after the surgical repair. Outcomes were evaluated using electrophysiology, histology, and serial walking track analysis. Biweekly walking tracks test over 12 weeks revealed that subjects that underwent ES experienced more rapid functional improvement than subjects that underwent repair alone. Electrophysiological analysis of the newly intratubular sciatic nerve at week 12 revealed strong motor function recovery in rats that underwent 30-minute ES. Histologic analysis of the sciatic nerve and its tibial branch at 12 weeks demonstrated robust axon regrowth in all groups. Both types of short-duration ES applied during nerve repair can promote axon regrowth and enhance the chances of successful functional recovery.
Collapse
Affiliation(s)
- Sareh Naseri
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran
| | - Hosein Samaram
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran
| | - Nadia Naghavi
- Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Razavi Khorasan Province, 9177948374, Iran.
| | | | - Maryam Mousavinezhad
- Biology Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Krutko M, Poling HM, Bryan AE, Sharma M, Singh A, Reza HA, Wikenheiser-Brokamp KA, Takebe T, Helmrath MA, Harris GM, Esfandiari L. Enhanced Piezoelectric Performance of PVDF-TrFE Nanofibers through Annealing for Tissue Engineering Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608345. [PMID: 39229142 PMCID: PMC11370437 DOI: 10.1101/2024.08.16.608345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C. Scanning Electron Microscopy (SEM) showed that 140°C annealed scaffolds had enhanced lamellar structures, increased porosity, and maximum piezoelectric response. Mechanical tests indicated that 140°C annealing improved elastic modulus, tensile strength, and substrate stiffness, aligning these properties with physiological soft tissues. In vitro assessments in Schwann cells demonstrated favorable responses, with increased cell proliferation, contraction, and extracellular matrix attachment. Additionally, genes linked to extracellular matrix production, vascularization, and calcium signaling were upregulated. The foreign body response in C57BL/6 mice, evaluated through Hematoxylin and Eosin (H&E) and Picrosirius Red staining, showed no differences between scaffold groups, supporting the potential for future functional evaluation of the annealed group in tissue repair.
Collapse
|
18
|
Qiu Q, Hu B. Editorial: 15 years of frontiers in cellular neuroscience: myelination and remyelination processes. Front Cell Neurosci 2024; 18:1463579. [PMID: 39185340 PMCID: PMC11341452 DOI: 10.3389/fncel.2024.1463579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Qingchao Qiu
- Department of Veterans Affairs, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Bo Hu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
19
|
Liu J, Guan X, Zheng S, Shi J, Wang X, Shen Z, Chen Z, Liao C, Zhang Z. Neuritin accelerates Schwann cell dedifferentiation via PI3K/Akt/mTOR signalling pathway during Wallerian degeneration. J Cell Mol Med 2024; 28:e70012. [PMID: 39187917 PMCID: PMC11347127 DOI: 10.1111/jcmm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Neuritin, also known as candidate plasticity gene 15 (CPG15), was first identified as one of the activity-dependent gene products in the brain. Previous studies have been reported that Neuritin induces neuritogenesis, neurite arborization, neurite outgrowth and synapse formation, which are involved in the development and functions of the central nervous system. However, the role of Neuritin in peripheral nerve injury is still unknown. Given the importance and necessity of Schwann cell dedifferentiation response to peripheral nerve injury, we aim to investigate the molecular mechanism of Neuritin steering Schwann cell dedifferentiation during Wallerian degeneration (WD) in injured peripheral nerve. Herein, using the explants of sciatic nerve, an ex vivo model of nerve degeneration, we provided evidences indicating that Neuritin vividly accelerates Schwann cell dedifferentiation. Moreover, we found that Neuritin promotes Schwann cell demyelination as well as axonal degeneration, phagocytosis, secretion capacity. In summary, we first described Neuritin acts as a positive regulator for Schwann cell dedifferentiation and WD after peripheral nerve injury.
Collapse
Affiliation(s)
- Jingmin Liu
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin Guan
- Department of EndoscopySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shuai Zheng
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiawei Shi
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaobo Wang
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zetao Shen
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefu Chen
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Congrui Liao
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongmin Zhang
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
20
|
Tuffaha S, Lee EB. Growth Factors to Enhance Nerve Regeneration: Approaching Clinical Translation. Hand Clin 2024; 40:399-408. [PMID: 38972684 DOI: 10.1016/j.hcl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.
Collapse
Affiliation(s)
- Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Erica B Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
21
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
22
|
Tusnim J, Budharaju K, Grasman JM. Fabrication of ECM protein coated hollow collagen channels to study peripheral nerve regeneration. Sci Rep 2024; 14:16096. [PMID: 38997331 PMCID: PMC11245515 DOI: 10.1038/s41598-024-67046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Karthik Budharaju
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
23
|
El Chemali L, Boutary S, Liu S, Liu GJ, Middleton RJ, Banati RB, Bahrenberg G, Rupprecht R, Schumacher M, Massaad-Massade L. GRT-X Stimulates Dorsal Root Ganglia Axonal Growth in Culture via TSPO and Kv7.2/3 Potassium Channel Activation. Int J Mol Sci 2024; 25:7327. [PMID: 39000434 PMCID: PMC11242890 DOI: 10.3390/ijms25137327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.
Collapse
Affiliation(s)
- Léa El Chemali
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Suzan Boutary
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Song Liu
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B Banati
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregor Bahrenberg
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael Schumacher
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Liliane Massaad-Massade
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
24
|
Su Y, Huang M, Thomas AG, Maragakis J, Huizar KDJ, Zheng Y, Wu Y, Farah MH, Slusher BS. GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice. Int J Mol Sci 2024; 25:6893. [PMID: 39000003 PMCID: PMC11241013 DOI: 10.3390/ijms25136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.
Collapse
Affiliation(s)
- Yu Su
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - John Maragakis
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Yuxin Zheng
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Mohamed H. Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Kedeshian K, Hong M, Hoffman L, Kita A. N-acetylcysteine microparticles reduce cisplatin-induced RSC96 Schwann cell toxicity. Laryngoscope Investig Otolaryngol 2024; 9:e1256. [PMID: 38765675 PMCID: PMC11099882 DOI: 10.1002/lio2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/03/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Objectives Cisplatin is known to cause inner ear dysfunction. There is growing evidence that cisplatin-induced demyelination of spiral or Scarpa's ganglion neurons may play an additional role in drug-induced ototoxicity alongside afferent neuron injury. As Schwann cells produce myelin, there may be an opportunity to reduce ototoxic inner ear damage by promoting Schwann cell viability. This work describes a cellular model of cisplatin-induced Schwann cell injury and investigates the ability of the antioxidant N-acetylcysteine to promote Schwann cell viability. A local delivery system of drug-eluting microparticles was then fabricated, characterized, and investigated for bioactivity. Methods RSC96 rat Schwann cells were dosed with varying concentrations of cisplatin to obtain a dose curve and identify the lethal concentration of 50% of the cells (LC50). In subsequent experiments, RSC96 cells were co-treated with cisplatin and both resuspended or eluted N-acetylcysteine. Cell viability was assessed with the CCK8 assay. Results The LC50 dose of cisplatin was determined to be 3.76 μM (p = 2.2 x 10-16). When co-dosed with cisplatin and a therapeutic concentration of resuspended or eluted N-acetylcysteine, Schwann cells had an increased viability compared to cells dosed with cisplatin alone. Conclusion RSC96 Schwann cell injury following cisplatin insult is characterized in this in vitro model. Cisplatin caused injury at physiologic concentrations and N-acetylcysteine improved cell viability and mitigated this injury. N-acetylcysteine was packaged into microparticles and eluted N-acetylcysteine retained its ability to increase cell viability, thus demonstrating promise as a therapeutic to offset cisplatin-induced ototoxicity. Level of Evidence N/A Laryngoscope, 2023.
Collapse
Affiliation(s)
- Katherine Kedeshian
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Michelle Hong
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Larry Hoffman
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
- Vestibular Neuroscience Laboratory, Brain Research InstituteDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashley Kita
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Wang Y, Wang Y, Lv L, Li T, Wang Y, Pei F. Visualization analysis of research frontiers and trends in the treatment of sciatic nerve injury. Front Neurol 2024; 15:1378689. [PMID: 38841698 PMCID: PMC11150822 DOI: 10.3389/fneur.2024.1378689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Objective To visualize and analyze the literature related to sciatic nerve injury treatment from January 2019 to December 2023, and summarize the current status, hotspots, and development trends of research in this field. Methods Using CiteSpace and VOSviewer software, we searched the Web of Science database for literature related to the treatment of sciatic nerve injury. Then we analyzed and plotted visualization maps to show the number of publications, countries, institutions, authors, keywords, references, and journals. Results A total of 2,653 articles were included in the English database. The annual number of publications exceeded 230, and the citation frequency increased yearly. The United States and China were identified as high-influence nations in this field. Nantong University was the leading institution in terms of close cooperation among institutions. The authors Wang Yu had the highest number of publications and were highly influential in this field. Keyword analysis and reference Burst revealed a research focus on nerve regeneration and neuropathic pain, which involve regenerative medicine and neural tissue engineering. Chronic pain resulting from sciatic nerve injury often manifests alongside anxiety, depression, cognitive-behavioral disorders, and other issues. Interventions such as stem cells, electrical stimulation, electroacupuncture, total joint replacement, pharmacological interventions, gene therapy, nerve conduits, chitosan scaffolds, and exercise promote nerve repair and alleviate pain. Schwann cells have been the focus of much attention in nerve repair and regeneration. Improving the outcome of sciatic nerve injury is a current research challenge and focus in this field. Based on keyword Burst, nerve conduits and grafts may become a potential research hotspot in the treatment of sciatic nerve injury. Conclusion This visual analysis summarizes research trends and developments of sciatic nerve injury treatment and predicts potential research frontiers and hot directions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yahui Wang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lijie Lv
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianyi Li
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fei Pei
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
27
|
Khullar S, Huang X, Ramesh R, Svaren J, Wang D. NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563769. [PMID: 37961577 PMCID: PMC10634989 DOI: 10.1101/2023.10.25.563769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcription factor (TF) coordination plays a key role in target gene (TG) regulation via protein-protein interactions (PPIs) and DNA co-binding to regulatory elements. Single-cell technologies facilitate gene expression measurement for individual cells and cell-type identification, yet the connection between TF coordination and TG regulation of various cell types remains unclear. To address this, we have developed a novel computational approach, Network Regression Embeddings (NetREm), to reveal cell-type TF-TF coordination activities for TG regulation. NetREm leverages network-constrained regularization using prior knowledge of direct and/or indirect PPIs among TFs to analyze single-cell gene expression data. We test NetREm by simulation data and benchmark its performance in 4 real-world applications that have gold standard TF-TG networks available: mouse (mESCs) and simulated human (hESCs) embryonic stem (ESCs), human hematopoietic stem (HSCs), and mouse dendritic (mDCs) cells. Further, we use NetREm to prioritize valid novel TF-TF coordination links in human Peripheral Blood Mononuclear cell (PBMC) sub-types. We apply NetREm to analyze various cell types in both central (CNS) and peripheral (PNS) nerve system (NS) (e.g. neuronal, glial, Schwann cells (SCs)) as well as in Alzheimers disease (AD). Our findings uncover cell-type coordinating TFs and identify new TF-TG candidate links. We validate our top predictions using Cut&Run and knockout loss-of-function expression data in rat/mouse models and compare results with additional functional genomic data, including expression quantitative trait loci (eQTL) and Genome-Wide Association Studies (GWAS) to link genetic variants (single nucleotide polymorphisms (SNPs)) to TF coordination.
Collapse
|
28
|
Cai Z. Interruptible demyelination in avian riboflavin deficient neuropathy. Cell Biosci 2024; 14:52. [PMID: 38649908 PMCID: PMC11036723 DOI: 10.1186/s13578-024-01233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND AIMS The evolution of demyelination in individual internodes remains unclear although it has been noticed the paranodal demyelination precedes internodal demyelination in neuropathies with diverse aetiologies. For therapeutic purpose, it is fundamental to know whether the demyelinating procedure in affected internodes can be interrupted. This study aimed to delineate the development of demyelination in individual internodes in avian riboflavin deficient neuropathy. METHODS Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin, a riboflavin deficient diet containing 1.8 mg/kg riboflavin, or initially a riboflavin deficient diet for 11 days and then routine diet plus riboflavin repletion from day 12. Evolution of demyelination in individual internodes was analyzed by teased nerve fibre studies from day 11 to 21. RESULTS In riboflavin deficient chickens, demyelination was the predominant feature: it was mainly confined to the paranodal region at day 11; extended into internodal region, but less than half of the internodal length in most affected internodes at day 16; involved more than half or whole internode at day 21. In the internode undergoing demyelination, myelin degeneration of varying degrees was noticed in the cytoplasm of the Schwann cell wrapping the internode. Two days after riboflavin repletion, co-existence of remyelination and active demyelination within individual internodes was noticed. Remyelination together with preserved short original internodes was the characteristic feature 4 and 9 days after riboflavin repletion. CONCLUSION Riboflavin repletion interrupts the progression from paranodal to internodal demyelination in riboflavin deficient chickens and promotes remyelination before complete internodal demyelination.
Collapse
Affiliation(s)
- Zhao Cai
- Division of Anatomical Pathology, SA Pathology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
- School of Medicine, Faculty of Health & Medical Science, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
29
|
Shurin MR, Wheeler SE, Shurin GV, Zhong H, Zhou Y. Schwann cells in the normal and pathological lung microenvironment. Front Mol Biosci 2024; 11:1365760. [PMID: 38638689 PMCID: PMC11024312 DOI: 10.3389/fmolb.2024.1365760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The lungs are a key organ in the respiratory system. They are regulated by a complex network of nerves that control their development, structure, function, and response to various pathological stimuli. Accumulating evidence suggests the involvement of a neural mechanism in different pathophysiological conditions in the lungs and the development and progression of common respiratory diseases. Lung diseases are the chief source of death globally. For instance, lung cancer is the second most commonly diagnosed malignancy, after prostate cancer in men and breast cancer in women, and is the most lethal cancer worldwide. However, although airway nerves are accepted as a mechanistically and therapeutically important feature that demands appropriate emphasizing in the context of many respiratory diseases, significantly less is known about the role of the neuroglial cells in lung physiology and pathophysiology, including lung cancer. New data have uncovered some cellular and molecular mechanisms of how Schwann cells, as fundamental components of the peripheral nervous system, may regulate lung cancer cells' survival, spreading, and invasiveness in vitro and in vivo. Schwann cells control the formation and maintenance of the lung cancer microenvironment and support metastasis formation. It was also reported that the number of lung cancer-associated Schwann cells correlates with patients' survival. Different factors secreted by Schwann cells, including microRNA, are known to sharpen the lung cancer environment by regulating the tumor-neuro-immune axis. Further clinical and experimental studies are required to elucidate the detailed role of Schwann cells in creating and maintaining pulmonary tumor-neuro-immune axis, which will advance our understanding of the pathogenesis of lung cancer and may inform therapeutic hypotheses aiming neoplasms and metastases in the lung.
Collapse
Affiliation(s)
- Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sarah E. Wheeler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Elhelali A, Tuffaha S. A Systematic Review of Registered Clinical Trials for Peripheral Nerve Injuries. Ann Plast Surg 2024; 92:e32-e54. [PMID: 38527351 DOI: 10.1097/sap.0000000000003899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Upper extremity peripheral nerve injuries (PNIs) significantly impact daily functionality and necessitate effective treatment strategies. Clinical trials play a crucial role in developing these strategies. However, challenges like retrospective data collection, reporting biases, inconsistent outcome measures, and inadequate data sharing practices hinder effective research and treatment advancements. This review aims to analyze the landscape of reporting, methodological design, outcome measures, and data sharing practices in registered clinical trials concerning upper extremity PNIs. It seeks to guide future research in this vital area by identifying current trends and gaps.A systematic search was conducted on ClinicalTrials.gov and WHO International Clinical Trials Registry Platform up to November 10, 2023, using a combination of MeSH terms and keywords related to upper extremity nerve injury. The PRISMA 2020 guidelines were followed, and the studies were selected based on predefined inclusion and exclusion criteria. A narrative synthesis of findings was performed, with statistical analysis for associations and completion rates.Of 3051 identified studies, 96 met the inclusion criteria. These included 47 randomized controlled trials, 27 nonrandomized trials, and others. Sensory objective measures were the most common primary outcomes. Only 13 studies had a data sharing plan. The analysis revealed varied intervention methods and inconsistencies in outcome measures. There was a significant association between study funding, design, and completion status, but no association between enrollment numbers and completion.This review highlights the need for standardized outcome measures, patient-centered assessments, and improved data sharing in upper extremity PNI trials. The varied nature of interventions and inconsistency in outcome measures indicate the necessity for more rigorous and transparent research practices to strengthen the evidence base for managing these injuries.
Collapse
Affiliation(s)
- Ala Elhelali
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
31
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Stadlmayr S, Peter K, Millesi F, Rad A, Wolf S, Mero S, Zehl M, Mentler A, Gusenbauer C, Konnerth J, Schniepp HC, Lichtenegger H, Naghilou A, Radtke C. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response. Adv Healthc Mater 2024; 13:e2302968. [PMID: 38079208 PMCID: PMC11468126 DOI: 10.1002/adhm.202302968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.
Collapse
Affiliation(s)
- Sarah Stadlmayr
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Karolina Peter
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Flavia Millesi
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Rad
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sonja Wolf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sascha Mero
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Martin Zehl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Axel Mentler
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Claudia Gusenbauer
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | | | - Helga Lichtenegger
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Aida Naghilou
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Medical Systems Biophysics and BioengineeringLeiden Academic Centre for Drug ResearchLeiden UniversityLeiden2333The Netherlands
| | - Christine Radtke
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
33
|
Sha B, Du Z. Neural repair and regeneration interfaces: a comprehensive review. Biomed Mater 2024; 19:022002. [PMID: 38232383 DOI: 10.1088/1748-605x/ad1f78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Neural interfaces play a pivotal role in neuromodulation, as they enable precise intervention into aberrant neural activity and facilitate recovery from neural injuries and resultant functional impairments by modulating local immune responses and neural circuits. This review outlines the development and applications of these interfaces and highlights the advantages of employing neural interfaces for neural stimulation and repair, including accurate targeting of specific neural populations, real-time monitoring and control of neural activity, reduced invasiveness, and personalized treatment strategies. Ongoing research aims to enhance the biocompatibility, stability, and functionality of these interfaces, ultimately augmenting their therapeutic potential for various neurological disorders. The review focuses on electrophysiological and optophysiology neural interfaces, discussing functionalization and power supply approaches. By summarizing the techniques, materials, and methods employed in this field, this review aims to provide a comprehensive understanding of the potential applications and future directions for neural repair and regeneration devices.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
34
|
Sathienluckana T, Palapinyo S, Yotsombut K, Wanothayaroj E, Sithinamsuwan P, Suksomboon N. Expert consensus guidelines for community pharmacists in the management of diabetic peripheral neuropathy with a combination of neurotropic B vitamins. J Pharm Policy Pract 2024; 17:2306866. [PMID: 38333576 PMCID: PMC10851824 DOI: 10.1080/20523211.2024.2306866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
This consensus guidance is for community pharmacists in diabetic peripheral neuropathy (DPN) management with a combination of neurotropic B vitamins. A multidisciplinary team including endocrinology, neurology, and pharmacy from Thailand discussed and aligned the practical scheme of DPN management in the community pharmacy setting, using the literature review and having face-to-face meeting. Five major statements have been endorsed as consensus recommendations for DPN care with strong acknowledgment. The aims of DPN management included reducing symptoms and the risk of complications, minimising adverse reactions from treatment regimens, and improving patients' knowledge and adherence to the treatment strategies. An initial screening process using a 7 items interview of Douleur Neuropathique 4 (DN4) questionnaire should be implemented to identify patients at risk of developing DPN. Subsequently, pharmacologic, and non-pharmacologic treatment should be employed based on patient-centered care. An interesting approach is combination of neurotropic B vitamins, which may be used as monotherapy or combination therapy to control DPN symptoms. The combined therapy potentially exhibits a synergistic effect and improves patient adherence. The consensus would be further considered in context of harmonisation of routine practice and country requirements.
Collapse
Affiliation(s)
| | - Sirinoot Palapinyo
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kitiyot Yotsombut
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
35
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
36
|
Convertino D, Trincavelli ML, Giacomelli C, Marchetti L, Coletti C. Graphene-based nanomaterials for peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1306184. [PMID: 38164403 PMCID: PMC10757979 DOI: 10.3389/fbioe.2023.1306184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging nanotechnologies offer numerous opportunities in the field of regenerative medicine and have been widely explored to design novel scaffolds for the regeneration and stimulation of nerve tissue. In this review, we focus on peripheral nerve regeneration. First, we introduce the biomedical problem and the present status of nerve conduits that can be used to guide, fasten and enhance regeneration. Then, we thoroughly discuss graphene as an emerging candidate in nerve tissue engineering, in light of its chemical, tribological and electrical properties. We introduce the graphene forms commonly used as neural interfaces, briefly review their applications, and discuss their potential toxicity. We then focus on the adoption of graphene in peripheral nervous system applications, a research field that has gained in the last years ever-increasing attention. We discuss the potential integration of graphene in guidance conduits, and critically review graphene interaction not only with peripheral neurons, but also with non-neural cells involved in nerve regeneration; indeed, the latter have recently emerged as central players in modulating the immune and inflammatory response and accelerating the growth of new tissue.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
37
|
Nam YH, Park S, Yum Y, Jeong S, Park HE, Kim HJ, Lim J, Choi BO, Jung SC. Preclinical Efficacy of Peripheral Nerve Regeneration by Schwann Cell-like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells in C22 Mice. Biomedicines 2023; 11:3334. [PMID: 38137555 PMCID: PMC10741921 DOI: 10.3390/biomedicines11123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary disease with heterogeneous phenotypes and genetic causes. CMT type 1A (CMT1A) is a type of disease affecting the peripheral nerves and is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene. Human tonsil-derived mesenchymal stem cells (TMSCs) are useful for stem cell therapy in various diseases and can be differentiated into Schwann cell-like cells (TMSC-SCs). We investigated the potential of TMSC-SCs called neuronal regeneration-promoting cells (NRPCs) for peripheral nerve and muscle regeneration in C22 mice, a model for CMT1A. We transplanted NRPCs manufactured in a good manufacturing practice facility into the bilateral thigh muscles of C22 mice and performed behavior and nerve conduction tests and histological and ultrastructural analyses. Significantly, the motor function was much improved, the ratio of myelinated axons was increased, and the G-ratio was reduced by the transplantation of NRPCs. The sciatic nerve and gastrocnemius muscle regeneration of C22 mice following the transplantation of NRPCs downregulated PMP22 overexpression, which was observed in a dose-dependent manner. These results suggest that NRPCs are feasible for clinical research for the treatment of CMT1A patients. Research applying NRPCs to other peripheral nerve diseases is also needed.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Soyeon Jeong
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Hyo Eun Park
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Ho Jin Kim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
38
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
39
|
Sha B, Zhao S, Gu M, Khodagholy D, Wang L, Bi GQ, Du Z. Doping-induced assembly interface for noninvasive in vivo local and systemic immunomodulation. Proc Natl Acad Sci U S A 2023; 120:e2306777120. [PMID: 38032937 PMCID: PMC10710085 DOI: 10.1073/pnas.2306777120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Peripheral neural interfaces, potent in modulating local and systemic immune responses for disease treatment, face significant challenges due to the peripheral nerves' broad distribution in tissues like the fascia, periosteum, and skin. The incongruity between static electronic components and the dynamic, complex organization of the peripheral nervous system often leads to interface failure, stalling circuit research and clinical applications. To overcome these, we developed a self-assembling, tissue-adaptive electrode composed of a single-component cocktail nanosheet colloid, including dopants, conducting polymers, stabilizers, and an MXene catalyst. Delivered via a jet injector to designated nerve terminals, this assembly utilizes reactive oxygen species to catalytically dope poly (3,4-ethylenedioxythiophene), enhancing π-π interactions between nanosheets, and yielding a conductive, biodegradable interface. This interface effectively regulates local immune activity and promotes sensory and motor nerve functional restoration in nerve-injured mice, while engaging the vagal-adrenal axis in freely moving mice, eliciting catecholamine neurotransmitter release, and suppressing systemic cytokine storms. This innovative strategy specifically targets nerve substructures, bolstering local and systemic immune modulation, and paving the way for the development of self-adaptive dynamic neural interfaces.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Shengzhuo Zhao
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou215123, China
| | - Minling Gu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guo-Qiang Bi
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei230026, China
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
40
|
Kedeshian K, Hong M, Hoffman L, Kita A. N-acetylcysteine Microparticles Reduce Cisplatin-induced RSC96 Schwann Cell Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564430. [PMID: 37961184 PMCID: PMC10635004 DOI: 10.1101/2023.10.31.564430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objectives Cisplatin is known to cause inner ear dysfunction. There is growing evidence that cisplatin-induced demyelination of spiral or Scarpa's ganglion neurons may play an additional role in drug-induced ototoxicity alongside afferent neuron injury. As Schwann cells produce myelin, there may be an opportunity to reduce ototoxic inner ear damage by promoting Schwann cell viability. This work describes a cellular model of cisplatin-induced Schwann cell injury and investigates the ability of the antioxidant N-acetylcysteine to promote Schwann cell viability. A local delivery system of drug-eluting microparticles was then fabricated, characterized, and investigated for bioactivity. Methods RSC96 rat Schwann cells were dosed with varying concentrations of cisplatin to obtain a dose curve and identify the lethal concentration of 50% of the cells (LC 50 ). In subsequent experiments, RSC96 cells were co-treated with cisplatin and both resuspended or eluted N-acetylcysteine. Cell viability was assessed with the CCK8 assay. Results The LC 50 dose of cisplatin was determined to be 3.76 μM (p=2.2 × 10 -16 ). When co-dosed with cisplatin and therapeutic concentration of resuspended or eluted N-acetylcysteine, Schwann cells had an increased viability compared to cells dosed with cisplatin alone. Conclusion RSC96 Schwann cell injury following cisplatin insult is characterized in this in vitro model. Cisplatin caused injury at physiologic concentrations and N-acetylcysteine improved cell viability and mitigated this injury. N-acetylcysteine was packaged into microparticles and eluted N-acetylcysteine retained its ability to increase cell viability, thus demonstrating promise as a therapeutic to offset cisplatin-induced ototoxicity. Lay Summary Cisplatin is a chemotherapeutic agent known to cause balance and hearing problems through damage to the inner ear. This project explored cisplatin injury in a Schwann cell culture model and packaged an antioxidant into microparticles suitable for future drug delivery applications.
Collapse
|
41
|
Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci 2023; 17:1248922. [PMID: 37900588 PMCID: PMC10600466 DOI: 10.3389/fncel.2023.1248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Schwann cells (SCs) have a critical role in the peripheral nervous system. These cells are able to support axons during homeostasis and after injury. However, mutations in genes associated with the SCs repair program or myelination result in dysfunctional SCs. Several neuropathies such as Charcot-Marie-Tooth (CMT) disease, diabetic neuropathy and Guillain-Barré syndrome show abnormal SC functions and an impaired regeneration process. Thus, understanding SCs-axon interaction and the nerve environment in the context of homeostasis as well as post-injury and disease onset is necessary. Several neurotrophic factors, cytokines, and regulators of signaling pathways associated with proliferation, survival and regeneration are involved in this process. Preclinical studies have focused on the discovery of therapeutic targets for peripheral neuropathies and injuries. To study the effect of new therapeutic targets, modeling neuropathies and peripheral nerve injuries (PNIs) in vitro and in vivo are useful tools. Furthermore, several in vitro protocols have been designed using SCs and neuron cell lines to evaluate these targets in the regeneration process. SCs lines have been used to generate effective myelinating SCs without success. Alternative options have been investigated using direct conversion from somatic cells to SCs or SCs derived from pluripotent stem cells to generate functional SCs. This review will go over the advantages of these systems and the problems associated with them. In addition, there have been challenges in establishing adequate and reproducible protocols in vitro to recapitulate repair SC-neuron interactions observed in vivo. So, we also discuss the mechanisms of repair SCs-axon interactions in the context of peripheral neuropathies and nerve injury (PNI) in vitro and in vivo. Finally, we summarize current preclinical studies evaluating transgenes, drug, and novel compounds with translational potential into clinical studies.
Collapse
Affiliation(s)
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
42
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
43
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
44
|
Shamsi F, Zheng R, Ho LL, Chen K, Tseng YH. Comprehensive analysis of intercellular communication in the thermogenic adipose niche. Commun Biol 2023; 6:761. [PMID: 37479789 PMCID: PMC10361964 DOI: 10.1038/s42003-023-05140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Brown adipose tissue (BAT) is responsible for regulating body temperature through adaptive thermogenesis. The ability of thermogenic adipocytes to dissipate chemical energy as heat counteracts weight gain and has gained considerable attention as a strategy against obesity. BAT undergoes major remodeling in a cold environment. This remodeling results from changes in the number and function of brown adipocytes, expanding the network of blood vessels and sympathetic nerves, and changes in the composition and function of immune cells. Such synergistic adaptation requires extensive crosstalk between individual cells in the tissue to coordinate their responses. To understand the mechanisms of intercellular communication in BAT, we apply the CellChat algorithm to single-cell transcriptomic data of mouse BAT. We construct an integrative network of the ligand-receptor interactome in BAT and identify the major signaling inputs and outputs of each cell type. By comparing the ligand-receptor interactions in BAT of mice housed at different environmental temperatures, we show that cold exposure enhances the intercellular interactions among the major cell types in BAT, including adipocytes, adipocyte progenitors, lymphatic and vascular endothelial cells, myelinated and non-myelinated Schwann cells, and immune cells. These interactions are predicted to regulate the remodeling of the extracellular matrix, the inflammatory response, angiogenesis, and neurite growth. Together, our integrative analysis of intercellular communications in BAT and their dynamic regulation in response to housing temperatures provides a new understanding of the mechanisms underlying BAT thermogenesis. The resources presented in this study offer a valuable platform for future investigations of BAT development and thermogenesis.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Cell Biology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Monfette V, Choinière W, Godbout-Lavoie C, Pelletier S, Langelier È, Lauzon MA. Thermoelectric Freeze-Casting of Biopolymer Blends: Fabrication and Characterization of Large-Size Scaffolds for Nerve Tissue Engineering Applications. J Funct Biomater 2023; 14:330. [PMID: 37367294 DOI: 10.3390/jfb14060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Peripheral nerve injuries (PNIs) are detrimental to the quality of life of affected individuals. Patients are often left with life-long ailments that affect them physically and psychologically. Autologous nerve transplant is still the gold standard treatment for PNIs despite limited donor site and partial recovery of nerve functions. Nerve guidance conduits are used as a nerve graft substitute and are efficient for the repair of small nerve gaps but require further improvement for repairs exceeding 30 mm. Freeze-casting is an interesting fabrication method for the conception of scaffolds meant for nerve tissue engineering since the microstructure obtained comprises highly aligned micro-channels. The present work focuses on the fabrication and characterization of large scaffolds (35 mm length, 5 mm diameter) made of collagen/chitosan blends by freeze-casting via thermoelectric effect instead of traditional freezing solvents. As a freeze-casting microstructure reference, scaffolds made from pure collagen were used for comparison. Scaffolds were covalently crosslinked for better performance under load and laminins were further added to enhance cell interactions. Microstructural features of lamellar pores display an average aspect ratio of 0.67 ± 0.2 for all compositions. Longitudinally aligned micro-channels are reported as well as enhanced mechanical properties in traction under physiological-like conditions (37 °C, pH = 7.4) resulting from crosslinking treatment. Cell viability assays using a rat Schwann cell line derived from sciatic nerve (S16) indicate that scaffold cytocompatibility is similar between scaffolds made from collagen only and scaffolds made from collagen/chitosan blend with high collagen content. These results confirm that freeze-casting via thermoelectric effect is a reliable manufacturing strategy for the fabrication of biopolymer scaffolds for future peripheral nerve repair applications.
Collapse
Affiliation(s)
- Vincent Monfette
- Department of Chemical Engineering and Biotechnological of Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - William Choinière
- Department of Chemical Engineering and Biotechnological of Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Catherine Godbout-Lavoie
- Department of Chemical Engineering and Biotechnological of Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Samuel Pelletier
- Department of Electrical Engineering and Informatics Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ève Langelier
- Department of Mechanical Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical Engineering and Biotechnological of Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Research Center on Aging, CIUSSS de l'ESTRIE-CHUS, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
46
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Du J, Wang Z, Liu X, Hu C, Yarema KJ, Jia X. Improving Schwann Cell Differentiation from Human Adipose Stem Cells with Metabolic Glycoengineering. Cells 2023; 12:1190. [PMID: 37190099 PMCID: PMC10136940 DOI: 10.3390/cells12081190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Schwann cells (SCs) are myelinating cells that promote peripheral nerve regeneration. When nerve lesions form, SCs are destroyed, ultimately hindering nerve repair. The difficulty in treating nerve repair is exacerbated due to SC's limited and slow expansion capacity. Therapeutic use of adipose-derived stem cells (ASCs) is emerging in combating peripheral nerve injury due to these cells' SC differentiation capability and can be harvested easily in large numbers. Despite ASC's therapeutic potential, their transdifferentiation period typically takes more than two weeks. In this study, we demonstrate that metabolic glycoengineering (MGE) technology enhances ASC differentiation into SCs. Specifically, the sugar analog Ac5ManNTProp (TProp), which modulates cell surface sialylation, significantly improved ASC differentiation with upregulated SC protein S100β and p75NGFR expression and elevated the neurotrophic factors nerve growth factor beta (NGFβ) and glial cell-line-derived neurotrophic factor (GDNF). TProp treatment remarkably reduced the SC transdifferentiation period from about two weeks to two days in vitro, which has the potential to improve neuronal regeneration and facilitate future use of ASCs in regenerative medicine.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MST 823, Baltimore, MD 21201, USA
| | - Zihui Wang
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MST 823, Baltimore, MD 21201, USA
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MST 823, Baltimore, MD 21201, USA
| | - Cecilia Hu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MST 823, Baltimore, MD 21201, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MST 823, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Nguyen DT, Zaferanieh MH, Black AC, Hamedi KR, Goodwin RL, Nathaniel TI. Obstetric Neuropathy in Diabetic Patients: The “Double Hit Hypothesis”. Int J Mol Sci 2023; 24:ijms24076812. [PMID: 37047786 PMCID: PMC10094911 DOI: 10.3390/ijms24076812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The two-hit model has been proposed to explain the effects of diabetes on mothers who are already in a putative subclinical damaged state and then undergo neuronal damage during the delivery process. However, the anatomical and pathophysiological mechanisms are not well understood. Our overarching hypothesis in this review paper is that pregnant women who are diabetic have a damaged peripheral nervous system, constituting the “first hit” hypothesis. The delivery process itself—the “second hit”—can produce neurological damage to the mother. Women with diabetes mellitus (DM) are at risk for neurological damage during both hits, but the cumulative effects of both “hits” pose a greater risk of neurological damage and pathophysiological changes during delivery. In our analysis, we introduce the different steps of our concept paper. Subsequently, we describe each of the topics. First, we outline the mechanisms by which diabetes acts as a detrimental variable in neuropathy by focusing on the most common form of diabetic neuropathy, diabetic distal symmetrical polyneuropathy, also known as distal sensorimotor neuropathy. The possible role of macrosomia in causing diabetic neuropathy and obstetric neurological injury is discussed. Second, we describe how vaginal delivery can cause various obstetrical neurological syndromes and pathophysiological changes. Third, we highlight the risk of obstetric neuropathy and discuss anatomical sites at which lesions may occur, including lesions during delivery. Fourth, we characterize the pathophysiological pathways involved in the causation of diabetic neuropathy. Finally, we highlight diabetic damage to sensory vs. motor nerves, including how hyperglycemia causes different types of damage depending on the location of nerve cell bodies.
Collapse
Affiliation(s)
- Dieu Thao Nguyen
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | | | - Asa C. Black
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Kamron Reza Hamedi
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Richard L. Goodwin
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Thomas I. Nathaniel
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| |
Collapse
|
49
|
Huang Z, Powell R, Kankowski S, Phillips JB, Haastert-Talini K. Culture Conditions for Human Induced Pluripotent Stem Cell-Derived Schwann Cells: A Two-Centre Study. Int J Mol Sci 2023; 24:ijms24065366. [PMID: 36982441 PMCID: PMC10049204 DOI: 10.3390/ijms24065366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Adult human Schwann cells represent a relevant tool for studying peripheral neuropathies and developing regenerative therapies to treat nerve damage. Primary adult human Schwann cells are, however, difficult to obtain and challenging to propagate in culture. One potential solution is to generate Schwann cells from human induced pluripotent stem cells (hiPSCs). Previously published protocols, however, in our hands did not deliver sufficient viable cell numbers of hiPSC-derived Schwann cells (hiPSC-SCs). We present here, two modified protocols from two collaborating laboratories that overcome these challenges. With this, we also identified the relevant parameters to be specifically considered in any proposed differentiation protocol. Furthermore, we are, to our knowledge, the first to directly compare hiPSC-SCs to primary adult human Schwann cells using immunocytochemistry and RT-qPCR. We conclude the type of coating to be important during the differentiation process from Schwann cell precursor cells or immature Schwann cells to definitive Schwann cells, as well as the amounts of glucose in the specific differentiation medium to be crucial for increasing its efficiency and the final yield of viable hiPSC-SCs. Our hiPSC-SCs further displayed high similarity to primary adult human Schwann cells.
Collapse
Affiliation(s)
- Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| | - Rebecca Powell
- Department of Pharmacology, University College London (UCL) School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Nerve Engineering, UCL, London WC1H 0AL, UK
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
| | - James B. Phillips
- Department of Pharmacology, University College London (UCL) School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Nerve Engineering, UCL, London WC1H 0AL, UK
- Correspondence: (J.B.P.); (K.H.-T.)
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
- Correspondence: (J.B.P.); (K.H.-T.)
| |
Collapse
|
50
|
Sargent S, Brennan A, Clark JK. Regenerative potential and limitations in a zebrafish model of hyperglycemia-induced nerve degeneration. Dev Dyn 2023. [PMID: 36879394 DOI: 10.1002/dvdy.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Previous work from our lab has described a model of motor nerve degeneration in hyperglycemic zebrafish larvae which resembles mammalian models of diabetic peripheral neuropathy (DPN). Here, we optimized the hyperglycemic-induction protocol, characterized deficits in nerve structure and behavioral function, and then examined the regenerative potential following recovery from the hyperglycemic state. RESULTS In agreement with our previous work, hyperglycemia induced motor nerve degeneration and behavioral deficits. However, the optimized protocol initiated disruption of tight junctions within the blood-nerve barrier, a phenotype apparent in mammalian models of DPN. Following a 10-day recovery period, regeneration of motor nerve components was apparent, but behavioral deficits persisted. We next examined the effect of hyperglycemia on the musculoskeletal system and found subtle deficits in muscle that resolved following recovery, and robust deficits in the skeletal system which persisted following recovery. CONCLUSION Here we optimized our previous model of hyperglycemia-induced motor nerve degeneration to more closely align with that observed in mammalian models and then characterized the regenerative potential following recovery from hyperglycemia. Notably, we observed striking impairments to skeletal development, which underscores the global impact hyperglycemia has across systems, and provides a framework for elucidating molecular mechanisms responsible for regenerative events moving forward.
Collapse
Affiliation(s)
- Sheridan Sargent
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Anna Brennan
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | | |
Collapse
|