1
|
Kim HW, Kim J, Kim JY, Kim K, Lee JY, Kim T, Cho S, An JB, Kim HJ, Sun L, Lee S, Fukuda K, Someya T, Sang M, Cho YU, Lee JE, Yu KJ. Transparent, metal-free PEDOT:PSS neural interfaces for simultaneous recording of low-noise electrophysiology and artifact-free two-photon imaging. Nat Commun 2025; 16:4032. [PMID: 40301389 PMCID: PMC12041238 DOI: 10.1038/s41467-025-59303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
Simultaneous two-photon imaging and electrophysiological recordings offer considerable potential for advancing neurological research and therapies. However, traditional metal-based neural interfaces suffer from photoelectric artifacts, while existing transparent implants rely on opaque interconnect lines to address conductivity limitations. Herein, we developed an optically transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) neural electrode array with transparent electrodes and interconnect lines. Through a formamide, phosphoric acid, and ethylene glycol treatment, the metal-free PEDOT:PSS array achieved an impedance of 45.8 kΩ (at 1 kHz) even with a 20 × 20 µm² size. This advanced performance surpasses previous metal-free transparent neural interfaces and facilitates precise electrophysiological recordings, including extracellular action potentials and low-noise local field potentials. In vivo experiments demonstrated artifact-free two-photon imaging and reliable neural signal acquisition, while biocompatibility tests confirmed negligible cytotoxicity or immune responses. The developed metal-free PEDOT:PSS array provides a robust platform for neural recording and bioimaging, representing an advancement in transparent neural interface technology and integrated optical modalities.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Catholic Kwandong University College of Medicine, 24, Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Kyubeen Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Young Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taemin Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Shinil Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Bin An
- Electronic Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Jae Kim
- Electronic Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Sunghoon Lee
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mingyu Sang
- Department of Electronic Engineering Gachon University, 1342, Seongnam-daero Sujeong-gu, Seongnam-si Gyeonggi-do, 13120, Republic of Korea
| | - Young Uk Cho
- Department of Biomedical & Robotics Engineering, Incheon National University, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- The Biotech Center, Pohang University of Science and Technolopgy (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
2
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
3
|
Wang S, Baumert R, Séjourné G, Bindu DS, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. Astrocytic LRRK2 Controls Synaptic Connectivity via Regulation of ERM Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes regulate synaptic connectivity. However, whether astrocyte dysfunction causes synaptic pathologies in disorders such as Parkinson's Disease (PD) is unknown. Here, we investigated how the most common Parkinsonism gene mutation, LRRK2 G2019S, impacts structure and synaptogenic function of cortical astrocytes. In human and mouse cortex, the LRRK2 G2019S mutation caused astrocyte morphology deficits and enhanced the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes. Reducing ERM phosphorylation in LRRK2 G2019S mouse astrocytes restored astrocyte morphology and corrected excitatory synaptic deficits. Using an in vivo BioID proteomic approach, we found astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation and thus diminished in LRRK2 G2019S astrocytes. Importantly, Atg7 function is required to maintain proper astrocyte morphology. These studies reveal an astrocytic molecular mechanism that could serve as a therapeutic target for synaptic pathologies seen in PD.
Collapse
Affiliation(s)
- Shiyi Wang
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Ryan Baumert
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Gabrielle Séjourné
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Dhanesh Sivadasan Bindu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO, USA
| | - Kylie Dimond
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kristina Sakers
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Leslie Vazquez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Jessica L. Moore
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Kyushu University Institute for Advanced Study, Medical Institute of Bioregulation, Japan
- Japan Science and Technology Agency, PRESTO, Japan
| | - Maria Pia Rodriguez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Nick Brose
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Luke Bradley
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Reed Lessing
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Scott H. Soderling
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Albert R. La Spada
- The Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, CA, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, CA, USA
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Barlow ST, Levy AD, Contreras M, Anderson MC, Blanpied TA. Dissecting the functional heterogeneity of glutamatergic synapses with high-throughput optical physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.629904. [PMID: 39763981 PMCID: PMC11703220 DOI: 10.1101/2024.12.23.629904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Fluorescent reporters for glutamate release and postsynaptic Ca2+ signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutamate release activity at presynaptic boutons in cultured rat hippocampal neurons. Boutons exhibited remarkable functional heterogeneity and could be separated into multiple functional classes based on their iGluSnFR3 responses to single action potentials, paired stimuli, and synaptic parameters derived from mean-variance analysis. Finally, we developed a novel all-optical assay of pre- and postsynaptic glutamatergic synapse function. We deployed iGluSnFR3 with a red-shifted, postsynaptically-targeted Ca2+ sensor, enabling direct imaging and analysis of NMDA receptor-mediated synaptic transmission at large numbers of dendritic spines. This work enables direct observation of the flow of information at single synapses and should speed detailed investigations of synaptic functional heterogeneity.
Collapse
Affiliation(s)
- Samuel T Barlow
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Minerva Contreras
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael C Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Libé-Philippot B, Iwata R, Recupero AJ, Wierda K, Bernal Garcia S, Hammond L, van Benthem A, Limame R, Ditkowska M, Beckers S, Gaspariunaite V, Peze-Heidsieck E, Remans D, Charrier C, Theys T, Polleux F, Vanderhaeghen P. Synaptic neoteny of human cortical neurons requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition. Neuron 2024; 112:3602-3617.e9. [PMID: 39406239 PMCID: PMC11546603 DOI: 10.1016/j.neuron.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis. SRGAP2B/C genes promoted neoteny by reducing the synaptic levels of SRGAP2A,thereby increasing the postsynaptic accumulation of the SYNGAP1 protein, encoded by a major intellectual disability/autism spectrum disorder (ID/ASD) gene. Combinatorial loss-of-function experiments in vivo revealed that the tempo of synaptogenesis is set by the reciprocal antagonism between SRGAP2A and SYNGAP1, which in human CPNs is tipped toward neoteny by SRGAP2B/C. Thus, HS genes can modify the phenotypic expression of genetic mutations leading to ID/ASD through the regulation of human synaptic neoteny.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ryohei Iwata
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Aleksandra J Recupero
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Keimpe Wierda
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sergio Bernal Garcia
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Luke Hammond
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neurology, The Ohio State University, Wexner Medical School, Columbus, OH, USA
| | - Anja van Benthem
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Ridha Limame
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Martyna Ditkowska
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eugénie Peze-Heidsieck
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daan Remans
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, Paris 75005, France
| | - Tom Theys
- Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Pierre Vanderhaeghen
- VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
7
|
Elum JE, Szelenyi ER, Juarez B, Murry AD, Loginov G, Zamorano CA, Gao P, Wu G, Ng-Evans S, Yee JX, Xu X, Golden SA, Zweifel LS. Distinct dynamics and intrinsic properties in ventral tegmental area populations mediate reward association and motivation. Cell Rep 2024; 43:114668. [PMID: 39207900 PMCID: PMC11514737 DOI: 10.1016/j.celrep.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Ventral tegmental area (VTA) dopamine neurons regulate reward-related associative learning and reward-driven motivated behaviors, but how these processes are coordinated by distinct VTA neuronal subpopulations remains unresolved. Here, we compare the contribution of two primarily dopaminergic and largely non-overlapping VTA subpopulations, all VTA dopamine neurons and VTA GABAergic neurons of the mouse midbrain, to these processes. We find that the dopamine subpopulation that projects to the nucleus accumbens (NAc) core preferentially encodes reward-predictive cues and prediction errors. In contrast, the subpopulation that projects to the NAc shell preferentially encodes goal-directed actions and relative reward anticipation. VTA GABA neuron activity strongly contrasts VTA dopamine population activity and preferentially encodes reward outcome and retrieval. Electrophysiology, targeted optogenetics, and whole-brain input mapping reveal multiple convergent sources that contribute to the heterogeneity among VTA dopamine subpopulations that likely underlies their distinct encoding of reward-related associations and motivation that defines their functions in these contexts.
Collapse
Affiliation(s)
- Jordan E Elum
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Eric R Szelenyi
- Department of Biological Structure, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Barbara Juarez
- Department of Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Alexandria D Murry
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Grigory Loginov
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Catalina A Zamorano
- Department of Pharmacology, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ginny Wu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Scott Ng-Evans
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Joshua X Yee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sam A Golden
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Department of Biological Structure, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
| | - Larry S Zweifel
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA.
| |
Collapse
|
8
|
Winchester G, Steele OG, Liu S, Maia Chagas A, Aziz W, Penn AC. Reproducible supervised learning-assisted classification of spontaneous synaptic waveforms with Eventer. Front Neuroinform 2024; 18:1427642. [PMID: 39345285 PMCID: PMC11427245 DOI: 10.3389/fninf.2024.1427642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Detection and analysis of spontaneous synaptic events is an extremely common task in many neuroscience research labs. Various algorithms and tools have been developed over the years to improve the sensitivity of detecting synaptic events. However, the final stages of most procedures for detecting synaptic events still involve the manual selection of candidate events. This step in the analysis is laborious and requires care and attention to maintain consistency of event selection across the whole dataset. Manual selection can introduce bias and subjective selection criteria that cannot be shared with other labs in reporting methods. To address this, we have created Eventer, a standalone application for the detection of spontaneous synaptic events acquired by electrophysiology or imaging. This open-source application uses the freely available MATLAB Runtime and is deployed on Mac, Windows, and Linux systems. The principle of the Eventer application is to learn the user's "expert" strategy for classifying a set of detected event candidates from a small subset of the data and then automatically apply the same criterion to the remaining dataset. Eventer first uses a suitable model template to pull out event candidates using fast Fourier transform (FFT)-based deconvolution with a low threshold. Random forests are then created and trained to associate various features of the events with manual labeling. The stored model file can be reloaded and used to analyse large datasets with greater consistency. The availability of the source code and its user interface provide a framework with the scope to further tune the existing Random Forest implementation, or add additional, artificial intelligence classification methods. The Eventer website (https://eventerneuro.netlify.app/) includes a repository where researchers can upload and share their machine learning model files and thereby provide greater opportunities for enhancing reproducibility when analyzing datasets of spontaneous synaptic activity. In summary, Eventer, and the associated repository, could allow researchers studying synaptic transmission to increase throughput of their data analysis and address the increasing concerns of reproducibility in neuroscience research.
Collapse
Affiliation(s)
- Giles Winchester
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver G Steele
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Samuel Liu
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andre Maia Chagas
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Wajeeha Aziz
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andrew C Penn
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
9
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, Heo WD, Kwon HB. H-Ras induces exuberant de novo dendritic protrusion growth in mature neurons regardless of cell type. iScience 2024; 27:110535. [PMID: 39220408 PMCID: PMC11365382 DOI: 10.1016/j.isci.2024.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic protrusions, mainly spines and filopodia, correlate with excitatory synapses in pyramidal neurons (PyNs), but this relationship may not apply universally. We found that ectopic H-Ras expression increased protrusions across various cortical cell types, including layer 2/3 PyNs, parvalbumin (PV)-, and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex. The probability of detecting protrusions correlated with local H-Ras activity, indicating its role in protrusion formation. H-Ras overexpression led to high turnover rates by adding protrusions. Two-photon photolysis of glutamate induced de novo spine formation in mature H-Ras expressing neurons, suggesting H-Ras's effect is not limited to early development. In PyNs and PV-INs, but not VIP-INs, spine neck lengths shifted to filopodia-like phenotypes. H-Ras primarily induced filopodia in PyNs and spines in PV- and VIP-INs. Increased protrusions in H-Ras-transfected PyNs lacked key excitatory synaptic proteins and did not affect miniature excitatory postsynaptic currents (mEPSCs), suggesting multifaceted roles beyond excitatory synapses.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Fallah M, Udobi KC, Swiatek AE, Scott CB, Evans RC. Inhibitory basal ganglia nuclei differentially innervate pedunculopontine nucleus subpopulations and evoke opposite motor and valence behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606694. [PMID: 39149277 PMCID: PMC11326182 DOI: 10.1101/2024.08.05.606694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The canonical basal ganglia model predicts that the substantia nigra pars reticulata (SNr) and the globus pallidus externa (GPe) will have specific effects on locomotion: the SNr inhibiting locomotion and the GPe enhancing it. In this manuscript, we use in vivo optogenetics to show that a projection-defined neural subpopulation within each structure exerts non-canonical effects on locomotion. These non-canonical subpopulations are defined by their projection to the pedunculopontine nucleus (PPN) and mediate opposing effects on reward. To understand how these structures differentially modulate the PPN, we use ex vivo whole-cell recording with optogenetics to comprehensively dissect the SNr and GPe connections to regionally- and molecularly-defined populations of PPN neurons. The SNr inhibits all PPN subtypes, but most strongly inhibits caudal glutamatergic neurons. The GPe selectively inhibits caudal glutamatergic and GABAergic neurons, avoiding both cholinergic and rostral cells. This circuit characterization reveals non-canonical basal ganglia pathways for locomotion and valence.
Collapse
Affiliation(s)
- Michel Fallah
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA 20007
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
- Senior author
| | - Kenea C Udobi
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Aleksandra E Swiatek
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Chelsea B Scott
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Rebekah C Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
- Lead contact
| |
Collapse
|
11
|
Bruentgens F, Moreno Velasquez L, Stumpf A, Parthier D, Breustedt J, Benfenati F, Milovanovic D, Schmitz D, Orlando M. The Lack of Synapsin Alters Presynaptic Plasticity at Hippocampal Mossy Fibers in Male Mice. eNeuro 2024; 11:ENEURO.0330-23.2024. [PMID: 38866497 PMCID: PMC11223178 DOI: 10.1523/eneuro.0330-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
Collapse
Affiliation(s)
- Felicitas Bruentgens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Laura Moreno Velasquez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Daniel Parthier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jörg Breustedt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Dragomir Milovanovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
12
|
Noel SC, Madranges JF, Gothié JDM, Ewald J, Milnerwood AJ, Kennedy TE, Scott ME. Maternal gastrointestinal nematode infection alters hippocampal neuroimmunity, promotes synaptic plasticity, and improves resistance to direct infection in offspring. Sci Rep 2024; 14:10773. [PMID: 38730262 PMCID: PMC11087533 DOI: 10.1038/s41598-024-60865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.
Collapse
Affiliation(s)
- Sophia C Noel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada.
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Jeanne F Madranges
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jessica Ewald
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Austen J Milnerwood
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Sainte-Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
13
|
Bergmann K, Lin AC. Relocating coincidence detection for associative learning. J Physiol 2024; 602:1877-1878. [PMID: 38652560 DOI: 10.1113/jp286472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Katharina Bergmann
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong DD, Seyfried NT, Wood LB, Rowan MJM, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer's pathology. Nat Commun 2024; 15:2823. [PMID: 38561349 PMCID: PMC10985119 DOI: 10.1038/s41467-024-47028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Annie M Goettemoeller
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Claudia Espinosa-Garcia
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Brendan R Tobin
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ali Tfaily
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ruth S Nelson
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Aditya Natu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Juliet V Santiago
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Sneha Malepati
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Duc D Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Levi B Wood
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Chemical and Biological Engineering, GeoInsrgia titute of Technology, Atlanta, GA, 30322, USA
| | - Matthew J M Rowan
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Pontearso M, Slepicka J, Bhattacharyya A, Spicarova D, Palecek J. Dual effect of anandamide on spinal nociceptive transmission in control and inflammatory conditions. Biomed Pharmacother 2024; 173:116369. [PMID: 38452657 DOI: 10.1016/j.biopha.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.
Collapse
Affiliation(s)
- Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Slepicka
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Boudkkazi S, Debanne D. Enhanced Release Probability without Changes in Synaptic Delay during Analogue-Digital Facilitation. Cells 2024; 13:573. [PMID: 38607012 PMCID: PMC11011503 DOI: 10.3390/cells13070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Neuronal timing with millisecond precision is critical for many brain functions such as sensory perception, learning and memory formation. At the level of the chemical synapse, the synaptic delay is determined by the presynaptic release probability (Pr) and the waveform of the presynaptic action potential (AP). For instance, paired-pulse facilitation or presynaptic long-term potentiation are associated with reductions in the synaptic delay, whereas paired-pulse depression or presynaptic long-term depression are associated with an increased synaptic delay. Parallelly, the AP broadening that results from the inactivation of voltage gated potassium (Kv) channels responsible for the repolarization phase of the AP delays the synaptic response, and the inactivation of sodium (Nav) channels by voltage reduces the synaptic latency. However, whether synaptic delay is modulated during depolarization-induced analogue-digital facilitation (d-ADF), a form of context-dependent synaptic facilitation induced by prolonged depolarization of the presynaptic neuron and mediated by the voltage-inactivation of presynaptic Kv1 channels, remains unclear. We show here that despite Pr being elevated during d-ADF at pyramidal L5-L5 cell synapses, the synaptic delay is surprisingly unchanged. This finding suggests that both Pr- and AP-dependent changes in synaptic delay compensate for each other during d-ADF. We conclude that, in contrast to other short- or long-term modulations of presynaptic release, synaptic timing is not affected during d-ADF because of the opposite interaction of Pr- and AP-dependent modulations of synaptic delay.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Physiology Institute, University of Freiburg, 79104 Freiburg, Germany
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse (UNIS), Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille University, 13015 Marseille, France
| | - Dominique Debanne
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse (UNIS), Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille University, 13015 Marseille, France
| |
Collapse
|
17
|
Khodaie B, Edelmann E, Leßmann V. Distinct GABAergic modulation of timing-dependent LTP in CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. iScience 2024; 27:109320. [PMID: 38487018 PMCID: PMC10937841 DOI: 10.1016/j.isci.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Synaptic plasticity in the hippocampus underlies episodic memory formation, with dorsal hippocampus being instrumental for spatial memory whereas ventral hippocampus is crucial for emotional learning. Here, we studied how GABAergic inhibition regulates physiologically relevant low repeat spike timing-dependent LTP (t-LTP) at Schaffer collateral-CA1 synapses along the dorsoventral hippocampal axis. We used two t-LTP protocols relying on only 6 repeats of paired spike-firing in pre- and postsynaptic cells within 10 s that differ in postsynaptic firing patterns. GABAA receptor mechanisms played a greater role in blocking 6× 1:1 t-LTP that recruits single postsynaptic action potentials. 6× 1:4 t-LTP that depends on postsynaptic burst-firing unexpectedly required intact GABAB receptor signaling. The magnitude of both t-LTP-forms decreased along the dorsoventral axis, despite increasing excitability and basal synaptic strength in this direction. This suggests that GABAergic inhibition contributes to the distinct roles of dorsal and ventral hippocampus in memory formation.
Collapse
Affiliation(s)
- Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Volkmar Leßmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
- DZPG (German Center of Mental Health), partner site Halle/Jena/Magdeburg (CIRC), Magdeburg, Germany
| |
Collapse
|
18
|
Cui Q, Liang S, Li H, Guo Y, Lv J, Wang X, Qin P, Xu H, Huang TY, Lu Y, Tian Q, Zhang T. SNX17 Mediates Dendritic Spine Maturation via p140Cap. Mol Neurobiol 2024; 61:1346-1362. [PMID: 37704928 DOI: 10.1007/s12035-023-03620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Sorting nexin17 (SNX17) is a member of the sorting nexin family, which plays a crucial role in endosomal trafficking. Previous research has shown that SNX17 is involved in the recycling or degradation of various proteins associated with neurodevelopmental and neurological diseases in cell models. However, the significance of SNX17 in neurological function in the mouse brain has not been thoroughly investigated. In this study, we generated Snx17 knockout mice and observed that the homozygous deletion of Snx17 (Snx17-/-) resulted in lethality. On the other hand, heterozygous mutant mice (Snx17+/-) exhibited anxiety-like behavior with a reduced preference for social novelty. Furthermore, Snx17 haploinsufficiency led to impaired synaptic transmission and reduced maturation of dendritic spines. Through GST pulldown and interactome analysis, we identified the SRC kinase inhibitor, p140Cap, as a potential downstream target of SNX17. We also demonstrated that the interaction between p140Cap and SNX17 is crucial for dendritic spine maturation. Together, this study provides the first in vivo evidence highlighting the important role of SNX17 in maintaining neuronal function, as well as regulating social novelty and anxiety-like behaviors.
Collapse
Affiliation(s)
- Qiuyan Cui
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi Liang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqing Guo
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junkai Lv
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyuan Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chongqing, 400016, China
| | - Pengwei Qin
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaxi Xu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Youming Lu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tian
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tongmei Zhang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
20
|
Bogaj K, Kaplon R, Urban-Ciecko J. GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex. Front Cell Neurosci 2023; 17:1270219. [PMID: 37900589 PMCID: PMC10602639 DOI: 10.3389/fncel.2023.1270219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Extrasynaptic GABAA receptors (GABAARs) mediating tonic inhibition are thought to play an important role in the regulation of neuronal excitability. However, little is known about a cell type-specific tonic inhibition in molecularly distinctive types of GABAergic interneurons in the mammalian neocortex. Here, we used whole-cell patch-clamp techniques in brain slices prepared from transgenic mice expressing red fluorescent protein (TdTomato) in vasoactive intestinal polypeptide- or somatostatin- positive interneurons (VIP-INs and SST-INs, respectively) to investigate tonic and phasic GABAAR-mediated inhibition as well as effects of GABAA inhibition on intrinsic excitability of these interneurons in layers 2/3 (L2/3) of the somatosensory (barrel) cortex. We found that tonic inhibition was stronger in VIP-INs compared to SST-INs. Contrary to the literature data, tonic inhibition in SST-INs was comparable to pyramidal (Pyr) neurons. Next, tonic inhibition in both interneuron types was dependent on the activity of delta subunit-containing GABAARs. Finally, the GABAAR activity decreased intrinsic excitability of VIP-INs but not SST-INs. Altogether, our data indicate that GABAAR-mediated inhibition modulates neocortical interneurons in a type-specific manner. In contrast to L2/3 VIP-INs, intrinsic excitability of L2/3 SST-INs is immune to the GABAAR-mediated inhibition.
Collapse
Affiliation(s)
| | | | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
21
|
Sehgal M, Ehlers VE, Moyer JR. Synaptic and intrinsic plasticity within overlapping lateral amygdala ensembles following fear conditioning. Front Cell Neurosci 2023; 17:1221176. [PMID: 37876914 PMCID: PMC10590925 DOI: 10.3389/fncel.2023.1221176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction New learning results in modulation of intrinsic plasticity in the underlying brain regions. Such changes in intrinsic plasticity can influence allocation and encoding of future memories such that new memories encoded during the period of enhanced excitability are linked to the original memory. The temporal window during which the two memories interact depends upon the time course of intrinsic plasticity following new learning. Methods Using the well-characterized lateral amygdala-dependent auditory fear conditioning as a behavioral paradigm, we investigated the time course of changes in intrinsic excitability within lateral amygdala neurons. Results We found transient changes in the intrinsic excitability of amygdala neurons. Neuronal excitability was increased immediately following fear conditioning and persisted for up to 4 days post-learning but was back to naïve levels 10 days following fear conditioning. We also determined the relationship between learning-induced intrinsic and synaptic plasticity. Synaptic plasticity following fear conditioning was evident for up to 24 h but not 4 days later. Importantly, we demonstrated that the enhanced neuronal intrinsic excitability was evident in many of the same neurons that had undergone synaptic plasticity immediately following fear conditioning. Interestingly, such a correlation between synaptic and intrinsic plasticity following fear conditioning was no longer present 24 h post-learning. Discussion These data demonstrate that intrinsic and synaptic changes following fear conditioning are transient and co-localized to the same neurons. Since intrinsic plasticity following fear conditioning is an important determinant for the allocation and consolidation of future amygdala-dependent memories, these findings establish a time course during which fear memories may influence each other.
Collapse
Affiliation(s)
- Megha Sehgal
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Vanessa E. Ehlers
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James R. Moyer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
22
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
23
|
Vinodh Kumar G, Lacey S, Sathian K. Physical activity is associated with behavioral and neural changes across the lifespan. Neurosci Lett 2023:137355. [PMID: 37391064 DOI: 10.1016/j.neulet.2023.137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Physical activity is known to positively impact brain structure and function, but its effects on resting-state functional connectivity (rsFC) and its relationship with complex tasks as a function of age remain unclear. Here, we address these issues in a large population-based sample (N=540) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) repository. We relate levels of physical activity to rsFC patterns in magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) data, and to measures of executive function and visuomotor adaptation, across the lifespan. We show that higher self-reported daily physical activity is associated with lower alpha-band (8-12Hz) global coherence, indicating weaker synchrony of neural oscillations in this band. Physical activity affected between-network connectivity of resting-state functional networks, although its effects on individual networks did not survive correction for multiple comparisons. Furthermore, our results indicate that greater engagement in day-to-day physical activity is associated with better visuomotor adaptation, across the lifespan. Overall, our findings indicate that rsFC metrics indexed by MEG and fMRI are sensitive indicators of the brain's response to physical activity, and that a physically active lifestyle affects multiple aspects of neural function across the lifespan.
Collapse
Affiliation(s)
- G Vinodh Kumar
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA
| | - Simon Lacey
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA; Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0859, USA
| | - K Sathian
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0859, USA; Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0859, USA; Department of Psychology, Penn State College of Liberal Arts, University Park, PA, USA.
| |
Collapse
|
24
|
Catalfio AM, Fetterly TL, Nieto AM, Robinson TE, Ferrario CR. Cocaine-induced sensitization and glutamate plasticity in the nucleus accumbens core: effects of sex. Biol Sex Differ 2023; 14:41. [PMID: 37355656 PMCID: PMC10290362 DOI: 10.1186/s13293-023-00525-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The development and persistence of addiction is mediated in part by drug-induced alterations in nucleus accumbens (NAc) function. AMPA-type glutamate receptors (AMPARs) provide the main source of excitatory drive to the NAc and enhancements in transmission of calcium-permeable AMPARs (CP-AMPARs) mediate increased cue-triggered drug-seeking following prolonged withdrawal. Cocaine treatment regimens that result in psychomotor sensitization enhance subsequent drug-seeking and drug-taking behaviors. Furthermore, cocaine-induced locomotor sensitization followed by 14 days of withdrawal results in an increase in glutamatergic synaptic transmission. However, very few studies have examined cocaine-induced alterations in synaptic transmission of females or potential effects of experimenter-administered cocaine on NAc CP-AMPAR-mediated transmission in either sex. METHODS Male and female rats were given repeated systemic cocaine injections to induce psychomotor sensitization (15 mg/kg, i.p. 1 injection/day, 8 days). Controls received repeated saline (1 mL/kg, i.p). After 14-16 days of withdrawal brain slices were prepared and whole-cell patch-clamp approaches in the NAc core were used to measure spontaneous excitatory post-synaptic currents (sEPSC), paired pulse ratio, and CP-AMPAR transmission. Additional female rats from this same cohort were also given a challenge injection of cocaine at withdrawal day 14 to assess the expression of sensitization. RESULTS Repeated cocaine produced psychomotor sensitization in both sexes. In males this was accompanied by an increase in sEPSC frequency, but not amplitude, and there was no effect on the paired pulse ratio. Males treated with cocaine and saline had similar sensitivity to Naspm. In contrast, in females there were no significant differences between cocaine and saline groups on any measure, despite females showing robust psychomotor sensitization both during the induction and expression phase. CONCLUSIONS Overall, these data reveal striking sex differences in cocaine-induced NAc glutamate plasticity that accompany the induction of psychomotor sensitization. This suggests that the neural adaptations that contribute to sensitization vary by sex.
Collapse
Affiliation(s)
| | | | - Allison M. Nieto
- Pharmacology Department, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of California, Berkeley, CA USA
| | - Terry E. Robinson
- Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI USA
| | - Carrie R. Ferrario
- Pharmacology Department, University of Michigan, Ann Arbor, MI USA
- Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
25
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong D, Seyfried NT, Wood LB, Rowan MJ, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies novel molecular signatures and metabolic vulnerabilities to early Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541038. [PMID: 37292756 PMCID: PMC10245729 DOI: 10.1101/2023.05.17.541038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aβ pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aβ pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.
Collapse
|
26
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
27
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
28
|
Chen Y, Fan J, Xiao D, Li X. The role of SCAMP5 in central nervous system diseases. Neurol Res 2022; 44:1024-1037. [PMID: 36217917 DOI: 10.1080/01616412.2022.2107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/26/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Secretory carrier membrane proteins (SCAMPs) constitute a group of membrane transport proteins in plants, insects and mammals. The mammalian genome contains five types of SCAMP genes, namely, SCAMP1-SCAMP5. SCAMPs participate in the vesicle cycling fusion of vesicles and cell membranes and play roles in regulating exocytosis and endocytosis, activating synaptic function and transmitting nerve signals. Among these proteins, SCAMP5 is highly expressed in the brain and has direct or indirect effects on the function of the central nervous system. This paper may allow us to better understand the role of SCAMP5 in the central nervous system diseases. SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases. METHODS Through PubMed, this paper examined and analyzed the role of SCAMP5 in the central nervous system, as well as the relationship between SCAMP5 and various neurological diseases using the key terms "secretory carrier membrane proteins"," SCAMP5"," exocytosis"," endocytosis", "synaptic function", "central nervous system diseases" up to 01 March 2022. RESULTS SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. CONCLUSION This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
29
|
Xue X, Buccino AP, Kumar SS, Hierlemann A, Bartram J. Inferring monosynaptic connections from paired dendritic spine Ca 2+imaging and large-scale recording of extracellular spiking. J Neural Eng 2022; 19:046044. [PMID: 35931040 PMCID: PMC7613561 DOI: 10.1088/1741-2552/ac8765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Objective: Techniques to identify monosynaptic connections between neurons have been vital for neuroscience research, facilitating important advancements concerning network topology, synaptic plasticity, and synaptic integration, among others.Approach: Here, we introduce a novel approach to identify and monitor monosynaptic connections using high-resolution dendritic spine Ca2+imaging combined with simultaneous large-scale recording of extracellular electrical activity by means of high-density microelectrode arrays.Main results: We introduce an easily adoptable analysis pipeline that associates the imaged spine with its presynaptic unit and test it onin vitrorecordings. The method is further validated and optimized by simulating synaptically-evoked spine Ca2+transients based on measured spike trains in order to obtain simulated ground-truth connections.Significance: The proposed approach offers unique advantages as (a) it can be used to identify monosynaptic connections with an accurate localization of the synapse within the dendritic tree, (b) it provides precise information of presynaptic spiking, and (c) postsynaptic spine Ca2+signals and, finally, (d) the non-invasive nature of the proposed method allows for long-term measurements. The analysis toolkit together with the rich data sets that were acquired are made publicly available for further exploration by the research community.
Collapse
|
30
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
31
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
32
|
Rakovic A, Voß D, Vulinovic F, Meier B, Hellberg AK, Nau C, Klein C, Leipold E. Electrophysiological Properties of Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons Correlate With Expression of Tyrosine Hydroxylase. Front Cell Neurosci 2022; 16:817198. [PMID: 35401116 PMCID: PMC8983830 DOI: 10.3389/fncel.2022.817198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based generation of tyrosine hydroxylase-positive (TH+) dopaminergic neurons (DNs) is a powerful method for creating patient-specific in vitro models to elucidate mechanisms underlying Parkinson’s disease (PD) at the cellular and molecular level and to perform drug screening. However, currently available differentiation paradigms result in highly heterogeneous cell populations, often yielding a disappointing fraction (<50%) of the PD-relevant TH+ DNs. To facilitate the targeted analysis of this cell population and to characterize their electrophysiological properties, we employed CRISPR/Cas9 technology and generated an mCherry-based human TH reporter iPSC line. Subsequently, reporter iPSCs were subjected to dopaminergic differentiation using either a “floor plate protocol” generating DNs directly from iPSCs or an alternative method involving iPSC-derived neuronal precursors (NPC-derived DNs). To identify the strategy with the highest conversion efficiency to mature neurons, both cultures were examined for a period of 8 weeks after triggering neuronal differentiation by means of immunochemistry and single-cell electrophysiology. We confirmed that mCherry expression correlated with the expression of endogenous TH and that genetic editing did neither affect the differentiation process nor the endogenous TH expression in iPSC- and NPC-derived DNs. Although both cultures yielded identical proportions of TH+ cells (≈30%), whole-cell patch-clamp experiments revealed that iPSC-derived DNs gave rise to larger currents mediated by voltage-gated sodium and potassium channels, showed a higher degree of synaptic activity, and fired trains of mature spontaneous action potentials more frequently compared to NPC-derived DNs already after 2 weeks in differentiation. Moreover, spontaneous action potential firing was more frequently detected in TH+ neurons compared to the TH– cells, providing direct evidence that these two neuronal subpopulations exhibit different intrinsic electrophysiological properties. In summary, the data reveal substantial differences in the electrophysiological properties of iPSC-derived TH+ and TH– neuronal cell populations and that the “floor plate protocol” is particularly efficient in generating electrophysiologically mature TH+ DNs, which are the most vulnerable neuronal subtype in PD.
Collapse
Affiliation(s)
| | - Dorothea Voß
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- *Correspondence: Enrico Leipold,
| |
Collapse
|
33
|
Echchgadda I, Cantu JC, Tolstykh GP, Butterworth JW, Payne JA, Ibey BL. Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Sci Rep 2022; 12:3506. [PMID: 35241689 PMCID: PMC8894459 DOI: 10.1038/s41598-022-06914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Exposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system. The present study investigated changes in neuronal activity and synaptic transmission following a 60-min exposure to 3.0 GHz RF-EMF at a low dose (specific absorption rate (SAR) < 1 W/kg). We showed that RF-EMF exposure decreased the amplitude of action potential (AP), depolarized neuronal resting membrane potential (MP), and increased neuronal excitability and synaptic transmission in cultured primary hippocampal neurons (PHNs). The results show that RF-EMF exposure can alter neuronal activity and highlight that more investigations should be performed to fully explore the RF-EMF effects and mechanisms.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA.
| | - Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Joseph W Butterworth
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Jason A Payne
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| |
Collapse
|
34
|
Badal K, Zhao Y, Miller KE, Puthanveettil SV. Live Imaging and Quantitative Analysis of Organelle Transport in Sensory Neurons of Aplysia Californica. Methods Mol Biol 2022; 2431:23-48. [PMID: 35412270 DOI: 10.1007/978-1-0716-1990-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport moves proteins, RNAs, and organelles between the soma and synapses to support synaptic function and activity-dependent changes in synaptic strength. This transport is impaired in several neurodegenerative disorders such as Alzheimer's disease. Thus, it is critical to understand the regulation and underlying mechanisms of the transport process. Aplysia californica provides a powerful experimental system for studying the interplay between synaptic activity and transport because its defined synaptic circuits can be built in-vitro. Advantages include precise pre- and postsynaptic manipulation, and high-resolution imaging of axonal transport. Here, we describe methodologies for the quantitative analysis of axonal transport in Aplysia sensory neurons.
Collapse
Affiliation(s)
- Kerriann Badal
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
- Integrated Biology Program, Florida Atlantic University, Jupiter, FL, USA
| | - Yibo Zhao
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
35
|
Sanchez-Mirasierra I, Hernandez-Diaz S, Ghimire S, Montecinos-Oliva C, Soukup SF. Macros to Quantify Exosome Release and Autophagy at the Neuromuscular Junction of Drosophila Melanogaster. Front Cell Dev Biol 2021; 9:773861. [PMID: 34869373 PMCID: PMC8634598 DOI: 10.3389/fcell.2021.773861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Automatic quantification of image parameters is a powerful and necessary tool to explore and analyze crucial cell biological processes. This article describes two ImageJ/Fiji automated macros to approach the analysis of synaptic autophagy and exosome release from 2D confocal images. Emerging studies point out that exosome biogenesis and autophagy share molecular and organelle components. Indeed, the crosstalk between these two processes may be relevant for brain physiology, neuronal development, and the onset/progression of neurodegenerative disorders. In this context, we describe here the macros "Autophagoquant" and "Exoquant" to assess the quantification of autophagosomes and exosomes at the neuronal presynapse of the Neuromuscular Junction (NMJ) in Drosophila melanogaster using confocal microscopy images. The Drosophila NMJ is a valuable model for the study of synapse biology, autophagy, and exosome release. By use of Autophagoquant and Exoquant, researchers can have an unbiased, standardized, and rapid tool to analyze autophagy and exosomal release in Drosophila NMJ. Code available at: https://github.com/IreneSaMi/Exoquant-Autophagoquant.
Collapse
Affiliation(s)
| | | | | | | | - Sandra-Fausia Soukup
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
36
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL, Gold WA. Pre-clinical Investigation of Rett Syndrome Using Human Stem Cell-Based Disease Models. Front Neurosci 2021; 15:698812. [PMID: 34512241 PMCID: PMC8423999 DOI: 10.3389/fnins.2021.698812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, mostly caused by mutations in MECP2. The disorder mainly affects girls and it is associated with severe cognitive and physical disabilities. Modeling RTT in neural and glial cell cultures and brain organoids derived from patient- or mutation-specific human induced pluripotent stem cells (iPSCs) has advanced our understanding of the pathogenesis of RTT, such as disease-causing mechanisms, disease progression, and cellular and molecular pathology enabling the identification of actionable therapeutic targets. Brain organoid models that recapitulate much of the tissue architecture and the complexity of cell types in the developing brain, offer further unprecedented opportunity for elucidating human neural development, without resorting to conventional animal models and the limited resource of human neural tissues. This review focuses on the new knowledge of RTT that has been gleaned from the iPSC-based models as well as limitations of the models and strategies to refine organoid technology in the quest for clinically relevant disease models for RTT and the broader spectrum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Florencia D. Haase
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Bronte Coorey
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Lisa Riley
- Rare Diseases Functional Genomics Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| | - Laurence C. Cantrill
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Patrick P. L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Wendy A. Gold
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
- Rare Diseases Functional Genomics Laboratory, Kids Research, Children’s Hospital at Westmead, and Children’s Medical Research Institute, Westmead, NSW, Australia
| |
Collapse
|
38
|
K v1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep 2021; 11:15180. [PMID: 34312446 PMCID: PMC8313690 DOI: 10.1038/s41598-021-94633-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Kv1.1 containing potassium channels play crucial roles towards dampening neuronal excitability. Mice lacking Kv1.1 subunits (Kcna1−/−) display recurrent spontaneous seizures and often exhibit sudden unexpected death. Seizures in Kcna1−/− mice resemble those in well-characterized models of temporal lobe epilepsy known to involve limbic brain regions and spontaneous seizures result in enhanced cFos expression and neuronal death in the amygdala. Yet, the functional alterations leading to amygdala hyperexcitability have not been identified. In this study, we used Kcna1−/− mice to examine the contributions of Kv1.1 subunits to excitability in neuronal subtypes from basolateral (BLA) and central lateral (CeL) amygdala known to exhibit distinct firing patterns. We also analyzed synaptic transmission properties in an amygdala local circuit predicted to be involved in epilepsy-related comorbidities. Our data implicate Kv1.1 subunits in controlling spontaneous excitatory synaptic activity in BLA pyramidal neurons. In the CeL, Kv1.1 loss enhances intrinsic excitability and impairs inhibitory synaptic transmission, notably resulting in dysfunction of feed-forward inhibition, a critical mechanism for controlling spike timing. Overall, we find inhibitory control of CeL interneurons is reduced in Kcna1−/− mice suggesting that basal inhibitory network functioning is less able to prevent recurrent hyperexcitation related to seizures.
Collapse
|
39
|
Renormalizing synapses in sleep: The clock is ticking. Biochem Pharmacol 2021; 191:114533. [PMID: 33771494 DOI: 10.1016/j.bcp.2021.114533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Sleep has been hypothesized to renormalize synapses potentiated in wakefulness. This is proposed to lead to a net reduction in synaptic strength after sleep in brain areas like the cortex and hippocampus. Biological clocks, however, exert independent effects on these synapses that may explain some of the reported differences after wake and sleep. These include changes in synaptic morphology, molecules and efficacy. In this commentary, I discuss why no firm conclusions should be drawn concerning the role of sleep in synaptic renormalization until the role of circadian rhythms are isolated and determined.
Collapse
|
40
|
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, Wlodarczyk J. Cellular Senescence in Brain Aging. Front Aging Neurosci 2021; 13:646924. [PMID: 33732142 PMCID: PMC7959760 DOI: 10.3389/fnagi.2021.646924] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Collapse
Affiliation(s)
- Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
41
|
Vanaveski T, Molchanova S, Pham DD, Schäfer A, Pajanoja C, Narvik J, Srinivasan V, Urb M, Koivisto M, Vasar E, Timmusk T, Minkeviciene R, Eriksson O, Lalowski M, Taira T, Korhonen L, Voikar V, Lindholm D. PGC-1α Signaling Increases GABA(A) Receptor Subunit α2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice. Front Mol Neurosci 2021; 14:588230. [PMID: 33597848 PMCID: PMC7882546 DOI: 10.3389/fnmol.2021.588230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1α expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of γ-aminobutyric acid (GABA) type A receptor-α2 subunit (GABARα2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1α in neurons. Along with this, GABARα2 expression was enhanced in the hippocampus of the PGC-1α Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABARα2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1α Tg mice compared with controls. To study whether drugs acting on PPARγ can affect GABARα2, we employed pioglitazone that elevated GABARα2 expression in primary cultured neurons. Similar results were obtained using the specific PPARγ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1α regulates GABARα2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABARα2 expression via the PPARγ/PGC-1α system.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Svetlana Molchanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dan Duc Pham
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Schäfer
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ceren Pajanoja
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jane Narvik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Vignesh Srinivasan
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Maria Koivisto
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tönis Timmusk
- Protobios LCC, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vootele Voikar
- Neuroscience Center and Laboratory Animal Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
42
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
43
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Séguéla P, Ruthazer ES, Kennedy TE. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain 2020; 13:56. [PMID: 32264905 PMCID: PMC7137442 DOI: 10.1186/s13041-020-00597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada
| | - Edwin W Wong
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Greta Thompson-Steckel
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Nathalie Marcal
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada. .,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada. .,Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
46
|
Brock JA, Thomazeau A, Watanabe A, Li SSY, Sjöström PJ. A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:11. [PMID: 32292337 PMCID: PMC7118219 DOI: 10.3389/fnsyn.2020.00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
Long-term synaptic plasticity is widely believed to underlie learning and memory in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has been the subject of considerable debate for many decades. More recently, it is generally agreed that the locus of plasticity depends on a number of factors, such as developmental stage, induction protocol, and synapse type. Since presynaptic expression alters not just the gain but also the short-term dynamics of a synapse, whereas postsynaptic expression only modifies the gain, the locus has fundamental implications for circuits dynamics and computations in the brain. It therefore remains crucial for our understanding of neuronal circuits to know the locus of expression of long-term plasticity. One classical method for elucidating whether plasticity is pre- or postsynaptically expressed is based on analysis of the coefficient of variation (CV), which serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a practical guide to using CV analysis for the purposes of exploring the locus of expression of long-term plasticity, primarily aimed at beginners in the field. We provide relatively simple intuitive background to an otherwise theoretically complex approach as well as simple mathematical derivations for key parametric relationships. We list important pitfalls of the method, accompanied by accessible computer simulations to better illustrate the problems (downloadable from GitHub), and we provide straightforward solutions for these issues.
Collapse
Affiliation(s)
- Jennifer A Brock
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Aurore Thomazeau
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sally Si Ying Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
47
|
Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol 2020; 599:493-505. [PMID: 32017127 DOI: 10.1113/jp278704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| |
Collapse
|