1
|
Hunjan G, Shah SS, Kosey S, Aran KR. Gut microbiota and the tryptophan-kynurenine pathway in anxiety: new insights and treatment strategies. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02938-8. [PMID: 40369368 DOI: 10.1007/s00702-025-02938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Anxiety disorders are mental health disorders characterized by long-lasting fear, worry, nervousness, and alterations in gut microbiota (GM). The GM is a vital modulator of brain function through the gut-brain axis, which acts as the neural pathway between the central and peripheral nervous systems. Dysbiosis of GM plays an essential role in anxiety development because of alterations in the vagus nerve, increased intestinal permeability, and altered breakdown of tryptophan (TRP). The Kynurenine (KYN) pathway plays a crucial role in the pathogenesis of anxiety disorders, primarily through its neuroprotective (KYNA) and neurotoxic (QUIN) metabolites. Higher ratios of KYNA/QUIN result in neuroprotection, whereas higher KYN/TRP ratios indicate increased QUIN production causing neuroinflammation. Studies on germ-free models exhibit higher plasma TRP levels, which interrupt the metabolic balance of TRP-derived compounds, thus causing brain impairment. A key issue in anxiety disorders is the dysregulation of GM, which disrupts TRP metabolism and neuroinflammatory pathways, however, remains poorly understood. Hence, the proper understanding of these mechanisms is crucial for future therapeutic advancements. Here, we highlight the significance of the TRP-KYN pathway and the potential of modulating KYN pathway enzymes, such as kynurenine aminotransferases (KATs), to adjust KYNA levels and restore neurotransmitter balance. It further discusses new therapeutic methods with a particular focus on probiotics that may restore GM and modulate TRP metabolism. Advancing our understanding of the intricate relationship between GM and anxiety disorders may facilitate novel, microbiota-targeted interventions. This ultimately contributes to precision medicine approaches in mental health care, thereby enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Garry Hunjan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shiv Shankar Shah
- Krupanidhi College of Pharmacy, Carmelaram Gunjur Road, Hobli, off Sarjapur Road, Varthur, Bengaluru, 560035, Karnataka, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Barichello T, Guimarães FS, Ferreira FR. Microbiota-based therapies as novel targets for autism spectrum disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111385. [PMID: 40348275 DOI: 10.1016/j.pnpbp.2025.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social interaction and communication. Emerging evidence suggests that alterations in the gut-brain axis play a key role in the pathophysiology of ASD, and that microbiota-targeted interventions may offer therapeutic benefits. However, no clear consensus has been reached regarding the effectiveness of these strategies in ameliorating behavioral characteristics. This systematic review and meta-analysis (PROSPERO registration ID: CRD42023494067) aimed to evaluate the impact of microbiota-based interventions-including synbiotics, prebiotics, single-strain probiotics, probiotic blends, and fecal microbiota transplantation (FMT)-on behavioral outcomes in individuals with ASD, with particular emphasis on social functioning. RESULTS Of the 373 records initially identified, 20 studies met the inclusion criteria, comprising 16 randomized controlled trials and 4 open-label studies. The overall effect size indicated a statistically significant improvement in ASD-related behavioral symptoms following microbiota manipulation (Hedges' g = 0.47; 95 % CI: 0.30-0.64; p < 0.001; I2 = 33.01 %), representing a small but clinically relevant effect. Heterogeneity was classified as moderate. Among the interventions, FMT and probiotic blends yielded the most substantial effects. All major limitations of the current studies were thoroughly addressed and discussed to guide future experimental designs. Additionally, we examined preclinical evidence supporting the involvement of neural, immune, and metabolic pathways in mediating the observed behavioral improvements. CONCLUSIONS Our findings support the potential of microbiota-based therapies as a promising and well-tolerated strategy for improving behavioral symptoms in individuals with ASD. FMT and multi-strain probiotic formulations appear particularly effective. Nevertheless, further high-quality randomized controlled trials-especially involving FMT-are urgently needed to validate these results and guide clinical implementation. Thus, these findings provide a critical foundation for future investigations seeking to refine microbiota-based interventions and uncover the underlying mechanisms through which they influence ASD-related behaviors.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sayuri Higa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | | |
Collapse
|
3
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
4
|
Panicucci C, Casalini S, Fiorito G, Rinaldi AB, Biagioli V, Cangelosi D, Brolatti N, Principi E, Baratto S, Pedemonte M, Morando S, Riva A, Venturino C, Striano P, Uva P, Bruno C. Exploratory Analysis of Gut Microbiota Profile in Duchenne Muscular Dystrophy (DMD) Patients with Intellectual Disability. Mol Neurobiol 2025:10.1007/s12035-025-04974-7. [PMID: 40325330 DOI: 10.1007/s12035-025-04974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the differences in gut microbiota composition between DMD patients with (DMD +) and without (DMD -) intellectual disability (ID) and its potential role in cognitive outcomes. In this study, we assessed the gut microbiota in 50 genetically confirmed DMD patients (median age 13.1 years) using 16S rRNA gene sequencing. Cognitive assessment was performed using the Wechsler Intelligence Scales, with ID defined as an IQ < 70. Stool samples were analyzed, and statistical methods were used to assess alpha- and beta-diversity. Thirty-four percent of patients had ID. No significant differences were found in alpha-diversity or in the Firmicutes/Bacteroidetes ratio. However, beta-diversity analysis revealed significant differences between DMD + and DMD - groups, including, in DMD + , an increased abundance of Propionibacterium and Bifidobacterium, and a reduction in Bulleidia. These bacteria are involved in metabolic pathways that can influence neurological health through the gut-brain axis, particularly via the production of short-chain fatty acids. While these preliminary findings suggest a possible association between gut microbiota profile and cognitive impairment in DMD, further research is needed to explore a causal relationship and consider microbiota-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Casalini
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valentina Biagioli
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Brolatti
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Principi
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simone Morando
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy.
| |
Collapse
|
5
|
Khatami A, Pourjafar H, Gharamaleki MN. Short-term effects of a synbiotic diet on thyroid and sex hormones in Sarabi Dogs. BMC Vet Res 2025; 21:314. [PMID: 40317022 PMCID: PMC12046685 DOI: 10.1186/s12917-025-04763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Synbiotic products are those Functional foods/feeds that contain both probiotic and prebiotic strains and have health-promoting effects beyond probiotics or prebiotics alone. This study aimed to investigate the effect of synbiotic feed containing the probiotic strain Lactobacillus acidophilus La5 (1012 cfu/g) and inulin (5%) on changes in Thyroid hormones (T3, T4), TSH, LH, FSH, and Testosterone in male dogs throughout 24 days. MATERIALS AND METHODS In addition to the basic feed, the dogs in the treatment group also received the synbiotic supplement at 5% in each of their three meals during 24 days. Then, the serum levels of LH, FSH, TSH, and Testosterone were measured with an ELISA kit and finally, the obtained data were statistically analyzed. RESULTS The results showed that the consumption of this formulated synbiotic feed had no negative effect on the profile of Thyroid hormones (T3: from 1.09 ± 0.51 to 0.95 ± 0.40 ng/ml [p > 0.05]; and T4: from 6.60 ± 4.33 to 4.70 ± 4.29 µg/dl [p > 0.05]) as well as TSH (from 0.07 ± 0.09 to 0.03 ± 0.00 mIU/L [p > 0.05]), Testosterone (from 1.56 ± 0.66 to 1.26 ± 0.93 ng/ml [p > 0.05]), FSH (from 4.72 ± 1.12 to 11.55 ± 3.42 mIU/ml [p = 0.008]), LH (from 0.56 ± 0.48 to 0.31 ± 0.15 mIU/ml [p > 0.05]), and the changes in the amounts of these hormones was in the normal range during 24 days. CONCLUSION It concluded that the consumption of synbiotic feed (L. acidophilus + inulin, at the rate of 5%) in male dogs has no significant adverse effects were observed within the study period on Thyroid, TSH, and sex hormones and it seems that it may be used for a long time to take health-promoting effects without harming hormonal activities.
Collapse
Affiliation(s)
- Ali Khatami
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mehrdad Neshat Gharamaleki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
6
|
Hajjeh O, Rajab I, Bdair M, Saife S, Zahran A, Nazzal I, AbuZahra MI, Jallad H, Abukhalil MM, Hallak M, Al-Said OS, Al-Braik R, Sawaftah Z, Milhem F, Almur O, Saife S, Aburemaileh M, Abuhilal A. Enteric nervous system dysfunction as a driver of central nervous system disorders: The Forgotten brain in neurological disease. Neuroscience 2025; 572:232-247. [PMID: 40088964 DOI: 10.1016/j.neuroscience.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The Enteric Nervous System (ENS), often called the "second brain," is a complex network of neurons and glial cells within the gastrointestinal (GI) tract. It functions autonomously while maintaining close communication with the central nervous system (CNS) via the gut-brain axis (GBA). ENS dysfunction plays a crucial role in neurodegenerative and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder. Disruptions such as altered neurotransmission, gut microbiota imbalance, and neuroinflammation contribute to disease pathogenesis. The GBA enables bidirectional communication through the vagus nerve, gut hormones, immune signaling, and microbial metabolites, linking gut health to neurological function. ENS dysregulation is implicated in conditions like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), influencing systemic and CNS pathology through neuroinflammation and impaired barrier integrity. This review highlights emerging therapeutic strategies targeting ENS dysfunction, including prebiotics, probiotics, fecal microbiota transplantation (FMT), and vagus nerve stimulation, which offer novel ways to modulate gut-brain interactions. Unlike previous perspectives that view the ENS as a passive disease marker, this review repositions it as an active driver of neurological disorders. By integrating advances in ENS biomarkers, therapeutic targets, and GBA modulation, this article presents a paradigm shift-emphasizing ENS dysfunction as a fundamental mechanism in neurodegeneration and neurodevelopmental disorders. This perspective paves the way for innovative diagnostics, personalized gut-targeted therapies, and a deeper understanding of the ENS's role in brain health and disease.
Collapse
Affiliation(s)
- Orabi Hajjeh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Islam Rajab
- Internal Medicine Department, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503, USA
| | - Mohammad Bdair
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sarah Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anwar Zahran
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Iyad Nazzal
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Ibrahem AbuZahra
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hammam Jallad
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Maram M Abukhalil
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Osama S Al-Said
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rama Al-Braik
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Sawaftah
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fathi Milhem
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Omar Almur
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sakeena Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Aburemaileh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anfal Abuhilal
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| |
Collapse
|
7
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Kurhaluk N, Kamiński P, Bilski R, Kołodziejska R, Woźniak A, Tkaczenko H. Role of Antioxidants in Modulating the Microbiota-Gut-Brain Axis and Their Impact on Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3658. [PMID: 40332186 PMCID: PMC12027284 DOI: 10.3390/ijms26083658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
This narrative review presents the role of antioxidants in regulating the gut microbiota and the impact on the gut-brain axis, with a particular focus on neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). These diseases are characterised by cognitive decline, motor dysfunction, and neuroinflammation, all of which are significantly exacerbated by oxidative stress. This review elucidates the contribution of oxidative damage to disease progression and explores the potential of antioxidants to mitigate these pathological processes through modulation of the gut microbiota and associated pathways. Based on recent studies retrieved from reputable databases, including PubMed, Web of Science, and Scopus, this article outlines the mechanisms by which antioxidants influence gut health and exert neuroprotective effects. Specifically, it discusses how antioxidants, including polyphenols, vitamins, and flavonoids, contribute to the reduction in reactive oxygen species (ROS) production and neuroinflammation, thereby promoting neuronal survival and minimising oxidative damage in the brain. In addition, the article explores the role of antioxidants in modulating key molecular pathways involved in oxidative stress and neuroinflammation, such as the NF-κB, Nrf2, MAPK, and PI3K/AKT pathways, which regulate ROS generation, inflammatory cytokine expression, and antioxidant responses essential for maintaining cellular homeostasis in both the gut and the central nervous system. In addition, this review explores the complex relationship between gut-derived metabolites, oxidative stress, and neurodegenerative diseases, highlighting how dysbiosis-an imbalance in the gut microbiota-can exacerbate oxidative stress and contribute to neuroinflammation, thereby accelerating the progression of such diseases as AD and PD. The review also examines the role of short-chain fatty acids (SCFAs) produced by beneficial gut bacteria in modulating these pathways to attenuate neuroinflammation and oxidative damage. Furthermore, the article explores the therapeutic potential of microbiota-targeted interventions, including antioxidant delivery by probiotics and prebiotics, as innovative strategies to restore microbial homeostasis and support brain health. By synthesising current knowledge on the interplay between antioxidants, the gut-brain axis, and the molecular mechanisms underlying neurodegeneration, this review highlights the therapeutic promise of antioxidant-based interventions in mitigating oxidative stress and neurodegenerative disease progression. It also highlights the need for further research into antioxidant-rich dietary strategies and microbiota-focused therapies as promising avenues for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland;
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland;
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland; (R.B.); (R.K.); (A.W.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland;
| |
Collapse
|
9
|
Dehghani E, Karimi K, Arekhi S, Ardeshir M, Rezapour R, Shayestehfar M, Memari AH. Effect of nutritional supplements on gut microbiome in individuals with neurodevelopmental disorders: a systematic review and narrative synthesis. BMC Nutr 2025; 11:64. [PMID: 40158118 PMCID: PMC11954342 DOI: 10.1186/s40795-025-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) encompass a range of disruptive conditions with varying prevalence rates and multiple contributing factors. Recent studies have suggested a potential connection between NDDs and the gut-brain axis. Furthermore, there is evidence indicating that nutritional supplements might have an impact on gastrointestinal (GI) and behavioral symptoms. This study aimed to explore the effects of nutritional supplements on the gut microbiota and behavioral symptoms in individuals with NDDs. METHODS A systematic search of databases such as PubMed, Scopus, Web of Science, Embase, and APA PsycINFO was conducted, utilizing relevant keywords until February 2025. In addition, the search for gray literature was carried out on Google Scholar and ProQuest. The risk of bias was assessed using the ROBINS-I tool for non-randomized studies and the RoB-1 tool for randomized controlled trials. Due to the heterogeneity of the studies, a Synthesis without Meta-analysis (SWiM) approach was employed. RESULTS The overall findings from the studies indicated positive effects of supplementation in reducing the Gastrointestinal Severity Index (GIS) score and alleviating GI symptoms. Supplementation with probiotics and vitamins increased good microbiomes (GM) and decrease in bad microbiomes (BM) among individuals with autism spectrum disorder (ASD). Moreover, the Firmicutes to Bacteroidetes ratio (F/R ratio) exhibited significant changes after supplementation. Additionally, improvements were observed in various assessment scores, including ATEC, ABC, CARS, and PGI-2. CONCLUSIONS Nutritional supplementation in individuals with NDDs can have a positive influence by modulating the microbiome, reducing dysbiosis, and enhancing gut barrier integrity. Shifting in the F/R ratio can be considered as the reason for improving gastrointestinal and behavioral symptoms by influencing neurotransmitter activity and neuroinflammation. Targeting the gut-brain axis with interventions that focus on gut microbiota offers a promising adjunct therapy for the management of NDD. Registration of the review protocol. PROSPERO registration no. CRD42023460449.
Collapse
Affiliation(s)
- Elaheh Dehghani
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Keyvan Karimi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheil Arekhi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Ardeshir
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran (TUMS), Tehran, Iran
| | - Reshad Rezapour
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Monir Shayestehfar
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
10
|
Liao JF, Lee CC, Lee MC, Hsu HY, Wang MF, Huang CC, Young SL, Watanabe K, Lin JS. A comprehensive approach, based on the use of Caenorhabditis elegans, mouse, and human models, elucidates the impact of Lactiplantibacillus plantarum TWK10 on exercise performance and longevity. Curr Res Food Sci 2025; 10:101015. [PMID: 40144895 PMCID: PMC11937699 DOI: 10.1016/j.crfs.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
The functionality of probiotics is highly influenced by culture and processing conditions, making batch stability validation through human or mouse trials impractical. Here, we employed a comprehensive approach using Caenorhabditis elegans, mouse and human models to elucidate the beneficial effects of Lactiplantibacillus plantarum TWK10 (TWK10). In C. elegans, TWK10 administration significantly prolonged lifespan by 26.1 ± 11.9 % (p < 0.05), enhanced locomotion (p < 0.01) and muscle mass (p < 0.001), elevated glycogen storage (p < 0.05), and reduced lipid accumulation (p < 0.001), outperforming Lacticaseibacillus rhamnosus GG and L. plantarum type strain ATCC 14917T. We also confirmed the equivalence of laboratory-prepared and mass-produced TWK10 in ergogenic efficacy using C. elegans assay. In mice, oral administration of mass-produced TWK10 significantly enhanced exercise performance and glycogen storage in muscle and liver in a dose-dependent manner. In a clinical study involving healthy male adults, significant improvements in grip strength (1.1-fold, p < 0.01) and exhaustion time (1.27-fold, p < 0.01), and significant reductions in circulating lactate and ammonia levels were observed in the TWK10 group (1 × 1010 colony-forming unit/day) compared to the control group. Both humans and mice receiving mass-produced TWK10 showed improved body composition with increased muscle mass and reduced fat mass. In conclusion, TWK10 demonstrates superior longevous and ergogenic effects in C. elegans compared to reference strains. The consistent ergogenic efficacy of mass-produced TWK10 across C. elegans, mice, and humans, highlights the utility of C. elegans as a reliable model for probiotic research and industrial application.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Chia-Chia Lee
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Road., Guishan District, Taoyuan City, 333325, Taiwan
- Center for General Education, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City, 110, Taiwan
| | - Han-Yin Hsu
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung City, 43301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Road., Guishan District, Taoyuan City, 333325, Taiwan
| | - San-Land Young
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| | - Koichi Watanabe
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei City, 10672, Taiwan
| | - Jin-Seng Lin
- Culture Collection and Research Institute, SYNBIO TECH INC., No. 66, Beiling 6th Road., Luzhu District, Kaohsiung City, 821, Taiwan
| |
Collapse
|
11
|
Zandifar A, Badrfam R, Mohammaditabar M, Kargar B, Goodarzi S, Hajialigol A, Ketabforoush S, Heidari A, Fathi H, Shafiee A, Pourjafar H. The Effect of Prebiotics and Probiotics on Levels of Depression, Anxiety, and Cognitive Function: A Meta-Analysis of Randomized Clinical Trials. Brain Behav 2025; 15:e70401. [PMID: 40038860 PMCID: PMC11879892 DOI: 10.1002/brb3.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025] Open
Abstract
INTRODUCTION Recent studies have emphasized the relationship between mental health and the human intestine microbiota. In this study, we evaluate the effect of consuming Biotics, on levels of depression, anxiety, and cognitive function. METHODS This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards. We searched MEDLINE (PubMed), Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov. All full-text articles and major reviews were manually searched for additional studies. RESULTS The initial analysis was based on the concept that consuming Biotics causes changes in anxiety, measured using various instruments. This analysis showed that consuming Biotics significantly reduced anxiety in our study participants (SMD = 0.2894, Z = 2.46, P = 0.0139, I^2 = 92.4%). The meta-analysis included 4295 samples (2194 in the experimental group and 2101 in the control group). In terms of depression, the analysis showed that consuming Biotics significantly reduced depression in our study participants (SMD = 0.2942, Z = 2.13, P = 0.0335, I^2 = 91.7%). The meta-analysis included 3179 samples (1603 in the experimental group and 1576 in the control group). Regarding cognitive function, the analysis showed that consuming Biotics significantly improved cognitive function in our study participants (SMD = 0.4819, Z = 3.00, P = 0.0027, I^2 = 77.9%). The meta-analysis included 915 samples (470 in the experimental group and 445 in the control group). CONCLUSIONS Our results indicate that most recent studies support the effectiveness of probiotics in reducing symptoms of anxiety, depression, and cognitive issues despite some discrepancies in the findings. People with mild symptoms may experience greater benefits from taking probiotics. TRIAL REGISTRATION PROSPERO registration ID: CRD42024589507.
Collapse
Affiliation(s)
- Atefeh Zandifar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
- Clinical Research Development Unit of Imam Hossein Medical Education CenterAlborz University of Medical SciencesKarajIran
- Social Determinants of Health Research CenterAlborz University of Medical SciencesKarajIran
| | - Rahim Badrfam
- Department of Psychosomatic MedicineShariati Hospital, Alborz University of Medical SciencesKarajAlborzIran
- Non‐communicable Diseases Research CenterAlborz University of Medical SciencesKarajAlborzIran
- Community Mental Health CenterAlborz University of Medical SciencesKarajAlborzIran
| | - Mahdi Mohammaditabar
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Bita Kargar
- Tehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Saba Goodarzi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN)Alborz University of Medical SciencesKarajIran
| | - Shera Ketabforoush
- Student Research CommitteeTehran Medical Sciences Islamic Azad UniversityTehranIran
| | - Afshin Heidari
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hanie Fathi
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Arman Shafiee
- Student Research Committee, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| |
Collapse
|
12
|
Ganesan R, Thirumurugan D, Vinayagam S, Kim DJ, Suk KT, Iyer M, Yadav MK, HariKrishnaReddy D, Parkash J, Wander A, Vellingiri B. A critical review of microbiome-derived metabolic functions and translational research in liver diseases. Front Cell Infect Microbiol 2025; 15:1488874. [PMID: 40066068 PMCID: PMC11891185 DOI: 10.3389/fcimb.2025.1488874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Significant changes in gut microbial composition are associated with chronic liver disease. Using preclinical models, it has been demonstrated that ethanol/alcohol-induced liver disease is transmissible through fecal microbiota transplantation (FMT). So, the survival rate of people with severe alcoholic hepatitis got better, which suggests that changes in the makeup and function of gut microbiota play a role in metabolic liver disease. The leaky intestinal barrier plays a major role in influencing metabolic-related liver disease development through the gut microbiota. As a result, viable bacteria and microbial products can be transported to the liver, causing inflammation, contributing to hepatocyte death, and causing the fibrotic response. As metabolic-related liver disease starts and gets worse, gut dysbiosis is linked to changes in the immune system, the bile acid composition, and the metabolic function of the microbiota in the gut. Metabolic-related liver disease, as well as its self-perpetuation, will be demonstrated using data from preclinical and human studies. Further, we summarize how untargeted treatment approaches affect the gut microbiota in metabolic-related liver disease, including dietary changes, probiotics, antibiotics, and FMT. It discusses how targeted therapies can improve liver disease in various areas. These approaches may improve metabolic-related liver disease treatment options.
Collapse
Affiliation(s)
- Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Bioscience, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dong Joon Kim
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mahalaxmi Iyer
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Parkash
- Neurochemistry and Neuroendocrinology Lab, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Arvinder Wander
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Jung SJ, Cho K, Jung ES, Son D, Byun JS, Kim SI, Chae SW, Yang JC, Lee SO, Lim S. Augmenting Cognitive Function in the Elderly with Mild Cognitive Impairment Using Probiotic Lacticaseibacillus rhamnosus CBT-LR5: A 12-Week Randomized, Double-Blind, Parallel-Group Non-Comparative Study. Nutrients 2025; 17:691. [PMID: 40005019 PMCID: PMC11858765 DOI: 10.3390/nu17040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Probiotics have been shown to enhance cognitive function in individuals with mild cognitive impairment (MCI), but their efficacy varies, depending on the strain and dosage. OBJECTIVES Clinical investigations are crucial to confirm their safety, efficacy, and mechanism of action. This study was designed to assess the effective dosage, safety, and efficacy of MH-Pro, a test product containing Lacticaseibacillus rhamnosus CBT-LR5 (LR5) and skim milk (non-fat dry milk), in improving cognitive function and related physiological changes in older adults suspected of MCI over 12 weeks. METHODS In total, 20 participants (mean age: 68.9 years) were randomly assigned in a 1:1 ratio to either a low-dose group (1 × 1010 CFU LR5 with 1622 mg) or a high-dose group (1 × 1010 CFU LR5 with 4055 mg skim milk) in a double-blind, parallel-group clinical trial. RESULTS After 12 weeks, the low-dose group showed significant improvements in the MOCA-K subdomains, specifically in naming (p = 0.01) and delayed recall (p = 0.003). Additionally, levels of amyloid-β1 40/42 in the blood significantly decreased (p = 0.03) following supplementation in the low-dose group. The high-dose group exhibited significant improvement in orientation (p = 0.05). Moreover, overall cognitive enhancement was observed in the low-dose group (p = 0.003), while the high-dose group showed a trend toward improvement (p = 0.06). Fecal analysis revealed significant changes in bacterial composition, with an increase in Lacticaseibacillus after 12 weeks of MH-Pro consumption. Together, these findings provide foundational evidence suggesting that MH-Pro supplementation may serve as a potential intervention for enhancing cognitive function through gut-brain axis pathways in the elderly population. However, given the small sample size and the predominance of female participants, the impact of the outcome may be limited. Further large-scale studies are necessary to validate these preliminary results. CONCLUSIONS This study provides foundational evidence to recognize the use of LR5 and skim milk to prepare a probiotic supplement that enhances cognitive function in the aging population.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyohee Cho
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
| | - Dooheon Son
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Jong-Seon Byun
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Song-In Kim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jong-Chul Yang
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Gastroenterology and Hepatology, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| |
Collapse
|
14
|
Lim HX, Khalid K, Abdullah ADI, Lee LH, Raja Ali RA. Subphenotypes of Long COVID and the clinical applications of probiotics. Biomed Pharmacother 2025; 183:117855. [PMID: 39862702 DOI: 10.1016/j.biopha.2025.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies. Another important finding is that Long COVID is associated with prolonged and increased inflammation, potentially attributable to immune system dysfunction. A promising solution lies in the potential of probiotics to mitigate Long COVID symptoms by restoring gut microbiota balance and modulating the immune response. By evaluating the current clinical development landscape of the use of probiotics to treat Long COVID symptoms, this paper provides recommendations for future research by stressing the need to understand the modulation of bacterium strains followed by probiotic therapy to understand the association of microbiota dysbiosis with Long COVID symptoms. This will facilitate the development of effective probiotic formulations that could serve as reliable therapies against Long COVID.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | - Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | | | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham, Ningbo 315000, China
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
15
|
Marques CG, Dos Santos Quaresma MVL, França Ferracini CB, Alves Carrilho FB, Nakamoto FP, Lucin GA, Oumatu Magalhães AC, Mendes GL, Alvares LA, Thomatieli-Santos RV. Effect of caloric restriction with probiotic supplementation on body composition, quality of life, and psychobiological factors of obese men: A randomized, double-blinded placebo-controlled clinical trial. Clin Nutr 2025; 45:234-249. [PMID: 39842252 DOI: 10.1016/j.clnu.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND & AIMS Obesity is a chronic disease characterized by an excess of fat mass. It is accompanied by a low-grade chronic systemic inflammation state that leads to numerous health disorders. To counteract this scenario, dietary-derived caloric restriction (CR) is the principal intervention for weight loss. Furthermore, probiotic supplementation has gained attention as a co-intervention to optimize weight loss and other health-related factors. As such, we aimed to verify the effect of CR with probiotic supplementation on the body composition, quality of life, sleep quality, anxiety, stress, and depression symptoms of adult men living with obesity. METHODS The study is called the Clinical Study of Obesity and Intestinal Microbiota (ECOMI). It is a randomized, double-blind, placebo-controlled clinical trial involving two parallel groups of stable-weight adult men living with obesity. The inclusion criteria were male individuals aged 25-44 years, with body mass index (BMI) ranging from 30.0 to 39.99 kg/m2, and stable body mass over the preceding three months. Participants were randomly assigned to two groups: Caloric Restriction with Probiotic (CRPRO) and Caloric Restriction with Placebo (CRPLA). The achieved CR was 30 % of the total daily energy expenditure. Macronutrients were distributed as 50 % carbohydrates, 30 % lipids, and 20 % proteins. Probiotic supplementation was carried out using two sachets/day of 1 g, containing 1 × 109 Colony Forming Units (CFU) of each strain: Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001, Lactobacillus paracasei Lpc-37 and Bifidobacterium lactis HN019, totaling 8 billion CFU/day. CR and probiotic (or placebo) supplementation intervention lasted 12 weeks. Body composition and psychobiological-related parameters (e.g., sleep, anxiety, stress, and depression) were assessed at baseline and following 12 weeks of intervention. Data are presented as mean and 95 % confidence interval (CI) and mean difference (MD). RESULTS The present study applied the per protocol analysis. Thirty-three subjects were evaluated and randomized, but only data from 25 (CRPLA n = 12 vs CRPRO n = 13) participants were included in the final analysis. We verified that CR resulted in weight loss (p < 0.001; η2ρ = 0.754) in both CRPLA (MD: -6.30 kg; p < 0.001) and CRPRO (MD: -5.97 kg; p < 0.001), without differences between groups (p = 0.823; η2ρ = 0.002). Moreover, both CRPLA (MD: -4.83 kg; p < 0.001) and CRPRO (MD: -5.20 kg; p < 0.001) decreased body fat without difference between groups (p = 0.712; η2ρ = 0.006). Regarding obesity-related problems, only the corporeality dimension (p < 0.001; η2ρ = 0.474) in both CRPLA (p = 0.028) and CRPRO (p = 0.039) improved. World Health Organization Quality of Life (WHOQoL)-related dimensions were improved for perception (p < 0.001; η2ρ = 0.630), satisfaction (p < 0.001; η2ρ = 0.778), and psychological domain (p < 0.001; η2ρ = 0.567), without differences between groups. Moreover, sleep quality (p < 0.001; η2ρ = 0.522) improved in both groups, without differences between groups. Finally, anxiety (p = 0.013; η2ρ = 0.250) and depression (p = 0.003; η2ρ = 0.345) scores assessed via the Depression, Anxiety and Stress Scale-21 (DASS-21) and the Beck Depression Inventory (BDI-II) (p < 0.001; η2ρ = 0.448) improved only in the CRPRO group. CONCLUSIONS Probiotic supplementation did not enhance the effects of caloric restriction on body composition, QoL-, or sleep-related parameters. However, anxiety and depressive symptoms improved only in the CRPRO group, despite no differences between groups after 12 weeks. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Patti Nakamoto
- Exercise and Quality of Life Laboratory, São Camilo University Center, São Paulo, SP, Brazil
| | - Glaice Aparecida Lucin
- Postgraduate Program in Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Gabriela Lima Mendes
- Postgraduate Program in Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil; Bioscience Department, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
16
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
17
|
Pan Y, Huang Q, Liang Y, Xie Y, Tan F, Long X. Bifidobacterium breve BB05 alleviates depressive symptoms in mice via the AKT/mTOR pathway. Front Nutr 2025; 12:1529566. [PMID: 39949541 PMCID: PMC11821494 DOI: 10.3389/fnut.2025.1529566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction This study investigates the potential of Bifidobacterium breve BB05 (BB05) in mitigating depressive symptoms in a mouse model of Chronic Unpredictable Mild Stress (CUMS), with fluoxetine as a positive control. Methods and Results High-dose BB05 (1.0 × 109 CFU/kg, BB05H) significantly reduced anxiety- and depression-like behaviors in CUMS mice, as measured by the open field test, tail suspension test, and forced swim test. BB05 treatment also reduced pathological ileal damage, alleviated inflammation, and lowered serum levels of pro-inflammatory cytokines IL-6 and TNF-α. Additionally, BB05 increased serum 5-HT levels and decreased ACTH concentrations. Mechanistic analysis revealed that BB05 exerts antidepressant effects by activating the AKT/mTOR signaling pathway in the prefrontal cortex, promoting neuroprotection, neurogenesis, and synaptic plasticity. Discussion These findings suggest that BB05, particularly at higher doses, effectively alleviates CUMS-induced depressive behaviors and improves physiological outcomes, supporting the use of probiotics as a potential treatment for depression by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanni Pan
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Qingling Huang
- Department of Sleep and Psychology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yuan Liang
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Yuwuqi Xie
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- College of Pre-School, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
18
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol 2025; 15:1487641. [PMID: 39834364 PMCID: PMC11743475 DOI: 10.3389/fmicb.2024.1487641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics. It not only improves the viability and stability of probiotic cells, but also inhibits the growth of pathogenic strains. Lactobacillus and Bifidobacterium spp. are most commonly used as probiotics. The other microbial spp. that can be used as probiotics are Bacillus, Streptococcus, Enterococcus, and Saccharomyces. Probiotics can be used for the treatment of diabetes, obesity, inflammatory, cardiovascular, respiratory, Central nervous system disease (CNS) and digestive disorders. It is also essential to encapsulate live microorganisms that promote intestinal health. Encapsulation of probiotics safeguards them against risks during production, storage, and gastrointestinal transit. Heat, pressure, and oxidation eradicate probiotics and their protective qualities. Encapsulation of probiotics prolongs their viability, facilitates regulated release, reduces processing losses, and enables application in functional food products. Probiotics as microspheres produced through spray drying or coacervation. This technique regulates the release of gut probiotics and provides stress resistance. Natural encapsulating materials including sodium alginate, calcium chloride, gel beads and polysaccharide promoting safeguards in probiotics during the digestive process. However, several methods including, spray drying where liquid is atomized within a heated air chamber to evaporate moisture and produce dry particles that improves the efficacy and stability of probiotics. Additionally, encapsulating probiotics with prebiotics or vitamins enhance their efficacy. Probiotics enhance immune system efficacy by augmenting the generation of antibodies and immunological cells. It combats illnesses and enhances immunity. Recent studies indicate that probiotics may assist in the regulation of weight and blood glucose levels and influence metabolism and insulin sensitivity. Emerging research indicates that the "gut-brain axis" connects mental and gastrointestinal health. Probiotics may alleviate anxiety and depression via influencing neurotransmitter synthesis and inflammation. Investigations are underway about the dermatological advantages of probiotics that forecasting the onsite delivery of probiotics, encapsulation is an effective technique and requires more consideration from researchers. This review focuses on the applications of probiotics, prebiotics and synbiotics in the prevention and treatment of human health.
Collapse
Affiliation(s)
- Bhutada Sarita
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Dahikar Samadhan
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Md Zakir Hassan
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Elena G. Kovaleva
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
20
|
Gajewska A, Wysokiński A, Strzelecki D, Gawlik-Kotelnicka O. Limited Changes in Red Blood Cell Parameters After Probiotic Supplementation in Depressive Individuals: Insights from a Secondary Analysis of the PRO-DEMET Randomized Controlled Trial. J Clin Med 2025; 14:265. [PMID: 39797347 PMCID: PMC11721667 DOI: 10.3390/jcm14010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background: Depression often coexists with anemia, potentially sharing common pathways, highlighting the need for treatments addressing both conditions simultaneously. This study evaluated the effect of probiotics on red blood cell (RBC) parameters in adults with depressive disorder. We hypothesized that probiotics would positively influence RBC parameters, potentially modulated by baseline inflammation or dietary intake, with improved RBC function correlating with better antidepressant outcomes. Methods: This secondary analysis of a two-arm, randomized, double-blind, controlled trial involved 116 adults with depressive disorder. Participants received a probiotic formulation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 or a placebo for 60 days. Data from 97 subjects were analyzed for RBC parameters, including hemoglobin (HGB), RBC count, hematocrit (HCT), mean corpuscular volume (MCV), mean hemoglobin concentration (MCH), mean corpuscular hemoglobin concentration (MCHC), and RBC distribution width (RDW). Results: Probiotic supplementation did not result in significant changes in RBC parameters compared to the placebo. However, probiotics may help stabilize HGB, HCT, MCH, and MCHC levels, potentially preventing fluctuations observed in the placebo group. Conclusions: While probiotics showed potential benefits for depressive symptoms, significant changes in RBC parameters were not observed. Larger studies are needed to clarify the mechanisms and clinical implications.
Collapse
Affiliation(s)
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
21
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
22
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
23
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Magistrelli L, Contaldi E, Visciglia A, Deusebio G, Pane M, Amoruso A. The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson's Disease: Preliminary In Vivo Data. Brain Sci 2024; 14:1147. [PMID: 39595910 PMCID: PMC11592242 DOI: 10.3390/brainsci14111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction. Previous studies have shown that probiotics have positive effects on both motor and non-motor symptoms in Parkinson's disease (PD). Additionally, in preclinical settings, probiotics have demonstrated the ability to counteract neuronal loss and alpha-synuclein aggregation, important pathological hallmarks of PD. Notably, preliminary in vitro studies have revealed the immunomodulatory properties of probiotics. This study aims to evaluate the impact of probiotics on symptoms and peripheral cytokines levels in PD patients compared to placebo. Methods. Patients were enrolled and blindly randomized to receive either active probiotics (comprising Bifidobacterium animalis subsp. lactis BS01 LMG P-21384, Bifidobacterium longum BL03 DSM 16603, Bifidobacterium adolescentis BA02 DSM 18351, Fructo-oligosaccharides and Maltodextrin-Group A) or placebo (Maltodextrin-Group B). Clinical evaluations and plasma levels cytokines (TNF-α, IFN-γ, IL-6, and TGF-β) were also assessed at enrollment and after 12 weeks. Anti-parkinsonian therapy remained stable throughout the study. Results. Forty PD patients were recruited. After 12 weeks, Group A showed significant improvement in motor symptoms (UPDRS III: 13.89 ± 4.08 vs. 12.74 ± 4.57, p = 0.028) and non-motor symptoms (NMSS: 34.32 ± 21.41 vs. 30.11 ± 19.89, p = 0.041), with notable improvement in the gastrointestinal sub-item (3.79 ± 4.14 vs. 1.89 ± 2.54, p = 0.021). A reduction of IFN-γ levels was observed in both groups, but group A also showed a significant decrease in IL-6 and a slight increase in the anti-inflammatory cytokine TGF-β. Conclusions. Our data suggest that probiotics may modulate peripheral cytokines levels and improve clinical symptoms in PD patients. Probiotics may, therefore, represent a valuable adjunctive therapy to conventional anti-parkinsonian drugs.
Collapse
Affiliation(s)
- Luca Magistrelli
- Parkinson Institute Milan, ASST G.Pini-CTO, Via Bignami 1, 20126 Milan, Italy;
| | - Elena Contaldi
- Parkinson Institute Milan, ASST G.Pini-CTO, Via Bignami 1, 20126 Milan, Italy;
| | - Annalisa Visciglia
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.V.); (G.D.); (M.P.); (A.A.)
| | - Giovanni Deusebio
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.V.); (G.D.); (M.P.); (A.A.)
| | - Marco Pane
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.V.); (G.D.); (M.P.); (A.A.)
| | - Angela Amoruso
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.V.); (G.D.); (M.P.); (A.A.)
| |
Collapse
|
25
|
Wilson SM, Swanson KS. The influence of 'biotics' on the gut microbiome of dogs and cats. Vet Rec 2024; 195:2-12. [PMID: 39545542 DOI: 10.1002/vetr.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A global rise in pet ownership and an increasing tendency towards the humanisation of pets have resulted in a greater focus on improving animal health and longevity. These developments coincide with the increased recognition of the role of the gut microbiome in animal health. The gut microbiome has been shown to play a prominent role in gastrointestinal health, and it is becoming increasingly clear that these health benefits extend beyond the gut and into different physiological systems, such as the immune system. Dietary supplementation with products known as 'biotics', which include probiotics, prebiotics, synbiotics and postbiotics, is a strategy used to modify the gut microbiome and promote host health. Although biotics have been successfully used in companion animals, questions remain regarding appropriate biotic selection, mechanisms of action, optimum inclusion levels and safety. This review aims to summarise the effects of biotics on the gut microbiome of dogs and cats and assess their potential role in supporting gastrointestinal health.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly S Swanson
- Department of Animal Sciences, Department of Veterinary Medicine and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Feng Y, Hao F. Advances in natural polysaccharides in Alzheimer's disease and Parkinson's disease: Insights from the brain-gut axis. Trends Food Sci Technol 2024; 153:104678. [DOI: 10.1016/j.tifs.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Fu Q, DeJager J, Gardner EM. Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients 2024; 16:3567. [PMID: 39458561 PMCID: PMC11509913 DOI: 10.3390/nu16203567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
This systematic literature review aims to answer the question of how micronutrients might influence the development and progression of dementia. In the present work, we focused on an overview of an updated review of relevant literature published in the last two decades. This review aims to delineate the relationship between micronutrient supplementation and cognitive decline in older subjects. In carrying out this review, we followed PRISMA, and our literature search was performed on PubMed. This systematic review includes only primary studies that have investigated the efficacy of nutritional interventions for the prevention of dementia and improvement of cognitive function in subjects aged 65 years or older with normal cognition, mild cognitive impairment (MCI), or Alzheimer's disease (AD). A gross heterogeneity of studies forbids the possibility of a direct comparison of the results. A review of the inclusion criteria and restrictions has been conducted to check the validity and reliability of the results. In this review, thirty-three primary studies were included. Results have shown that supplementation with vitamin D, probiotics, and PUFAs would most likely reduce cognitive decline, dementia, or AD compared with vitamins A, B, C, and E, which were seen to be relatively ineffective. Of note, when considering vitamin B supplementation, positive effects were only observed in non-aspirin users having high ω-3 fatty acid (ω-3 FA) plasma levels. In some cases, however, there were genotypic differences in subjects in response to vitamin B supplementation.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (Q.F.); (J.D.)
| |
Collapse
|
28
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
29
|
Mohammed AA, Mahmoud MA, Zaki RS, Cheng HW. Effect of a probiotic supplement (Bacillus subtilis) on struggling behavior, immune response, and meat quality of shackled broiler chickens exposed to preslaughter stress. Poult Sci 2024; 103:104051. [PMID: 39067115 PMCID: PMC11338100 DOI: 10.1016/j.psj.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
This study aimed to investigate the impact of a dietary probiotic supplement on struggling behavior, immune response, and meat quality of shackled broiler chickens exposed to preslaughter stress. Two hundred and ten 1-day-old male Ross 708 broiler chicks were divided among 21 floor pens (10 chicks per pen). The pens were randomly distributed to 1 of 3 dietary treatments containing a probiotic, Bacillus subtilis, at 0 (control), 0.25 (0.25×), and 0.5 (0.5×) g/kg (n = 7). At the end of the experiment (d 35), birds were transported for a journey of 80 km to the abattoir, each crate contained 5 pen mates, 2 birds of them (2 bird per crate, total 14 birds per treatment) were randomly selected for testing. Struggling behavior measurements began after the birds had arrived at the abattoir. Serum and muscle samples (right leg and breast) were collected for immune response and meat quality parameters. The results indicated that probiotic supplemented broilers had lower breast muscle protein carbonyls and serum levels of IgM but higher breast muscle total antioxidant capacity (TAC) compared to those of controls. In addition, probiotic supplemented broilers' leg and breast muscle had higher color lightness and greater water holding capacity (WHC%) with lower cooking loss (CL) and lower pH values (P < 0.05). Probiotic supplemented broilers' breast and leg meat was also tastier (P < 0.05) compared to controls. There were no treatment effects on other measured parameters including struggling behavior, serum IgA and IgG concentrations, and breast muscle malondialdehyde (MDA) (P > 0.05). These results suggest that the probiotic supplement could be an alternative management tool for promoting broiler health and welfare by modifying immune response and meat quality.
Collapse
Affiliation(s)
- A A Mohammed
- Department of Behavior and Management of Animals, Poultry and Aquatics, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt; Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt.
| | - M A Mahmoud
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - R S Zaki
- Department of Meat Hygiene, Faculty of Veterinary Medicine, New Valley University, New Valley 72711, Egypt
| | - H W Cheng
- USDA Agricultural Research Service, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Ito H, Tomura Y, Kitagawa Y, Nakashima T, Kobanawa S, Uki K, Oshida J, Kodama T, Fukui S, Kobayashi D. Effects of probiotics on sleep parameters: A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:623-630. [PMID: 39094854 DOI: 10.1016/j.clnesp.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
AIM Although sleep is essential for maintaining good health and well-being, sleep disorders are becoming increasingly prevalent. Probiotics may play a role in sleep regulation; therefore, this study aimed to provide a comprehensive overview of the effects of probiotics on sleep parameters. METHODS We conducted a systematic literature review and meta-analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. Relevant placebo-controlled randomized controlled trials examining the effects of probiotics on sleep outcomes were identified through systematic searches in the PubMed, Cochrane Library, and Ichushi databases. Data were extracted from eligible studies and the risk of bias was assessed. Statistical analyses were performed to assess the effects of probiotics on various sleep-related variables. RESULTS Fifteen randomized controlled trials were included in this review. The decrease in Pittsburgh Sleep Quality Index (PSQI) scores in the probiotics group was significantly lower than that in the placebo group after 4-6 weeks and 8-16 weeks, indicating improved sleep quality. The Oguri-Shirakawa-Azumi (OSA) sleep inventory score was also decreased in the probiotics group for Factor 1 "sleepiness on rising" and Factor 4 "refreshing," indicating improved sleep quality. Some studies however, showed a risk of bias. CONCLUSION This systematic review and meta-analysis indicated that probiotics may improve sleep quality, as measured by the PSQI and OSA sleep inventory. However, further research is needed to better understand the effects of probiotics on specific sleep parameters and address the limitations of existing studies.
Collapse
Affiliation(s)
- Hiroshi Ito
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan.
| | - Yuna Tomura
- Tokyo Medical University Library, Shinjuku, Tokyo, Japan
| | - Yuki Kitagawa
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Toshiya Nakashima
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Satoshi Kobanawa
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Kento Uki
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Jura Oshida
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Taisuke Kodama
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Sayato Fukui
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| | - Daiki Kobayashi
- Division of General Internal Medicine, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki, Japan
| |
Collapse
|
31
|
Saha S, Dutta K, Nayak PP, Nair MR, Naik VJ, Rao KA. Sugar-coated Sleep: Raising Dental Red Flags in Smith-Magenis Syndrome. Int J Clin Pediatr Dent 2024; 17:1189-1192. [PMID: 39650302 PMCID: PMC11617440 DOI: 10.5005/jp-journals-10005-2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Aim and background Smith-Magenis syndrome (SMS) is a rare condition characterized by abnormalities affecting chromosome 17 or RAI1, leading to physical, developmental, and behavioral challenges. SMS occurs in approximately 1 in 25,000 individuals, presenting complex clinical and dental issues. Case description This case report focuses on the dental care of a 3-year-old child diagnosed with SMS, emphasizing a comprehensive treatment plan. The child exhibited typical SMS traits, including sleep disturbances, developmental delays, and behavioral problems. The multidisciplinary team integrated dental interventions with strategies to manage these challenges effectively. Conclusion This report contributes to the limited knowledge on managing SMS, highlighting the effectiveness of a multidisciplinary approach in meeting the diverse needs of affected individuals. Clinical significance The scarcity of literature on SMS underscores the importance of documenting such rare cases to enhance understanding and tailor interventions. By documenting successful management strategies, clinicians can better support patients with this rare disorder. How to cite this article Saha S, Dutta K, Nayak PP, et al. Sugar-coated Sleep: Raising Dental Red Flags in Smith-Magenis Syndrome. Int J Clin Pediatr Dent 2024;17(10):1189-1192.
Collapse
Affiliation(s)
- Swagata Saha
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Kripa Dutta
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Prajna Prabhakar Nayak
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Manju Raman Nair
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Viraj Jayant Naik
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - K Ananya Rao
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
32
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
34
|
Alemu BK, Wu L, Azeze GG, Lau SL, Wang Y, Wang CC. Microbiota-targeted interventions and clinical implications for maternal-offspring health: An umbrella review of systematic reviews and meta-analyses of randomised controlled trials. J Glob Health 2024; 14:04177. [PMID: 39269153 PMCID: PMC11395958 DOI: 10.7189/jogh.14.04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Microbes in the human body are the determinants of life-long health and disease. Microbiome acquisition starts in utero and matures during early childhood through breastfeeding. However, maternal gut dysbiosis affects the maternal-offspring microbiome interplay. Lines of evidence on dysbiosis-targeted interventions and their effect on maternal-offspring health and gut microbiome are inconsistent and inconclusive. Therefore, this study summarised studies to identify the most common microbiota-targeted intervention during pregnancy and lactation and to comprehensively evaluate its effects on maternal and offspring health. Methods This umbrella review was conducted by systematically searching databases such as PubMed and the Web of Science from inception to 2 September 2023. The quality was assessed using the Assessment of Multiple Systematic Reviews-2 checklist. The Grading of Recommendations Assessment, Development, and Evaluation was used for grading the strength and certainty of the studies. The overlap of primary studies was quantified by the corrected covered area score. Results A total of 17 systematic reviews and meta-analyses with 219 randomised controlled trials, 39 113 mothers, and 20 915 infants were included in this study. About 88% of studies had moderate and above certainty of evidence. Probiotics were the most common and effective interventions at reducing gestational diabetes risk (fasting blood glucose with the mean difference (MD) = -2.92, -0.05; I2 = 45, 98.97), fasting serum insulin (MD = -2.3, -2.06; I2 = 45, 77), glycated haemoglobin (Hb A1c) = -0.16; I2 = 0.00)), Homeostatic Model Assessment of insulin resistance (HOMA-IR) (MD = -20.55, -0.16; I2 = 0.00, 72.00), and lipid metabolism (MD = -5.47, 0.98; I2 = 0.00, 90.65). It was also effective in preventing and treating mastitis (risk ratio (RR) = 0.49; I2 = 2.00), relieving anxiety symptoms (MD = -0.99, 0.01; I2 = 0.00, 70.00), depression in lactation (MD = -0.46, -0.22; I2 = 0.00, 74.00) and reducing recto-vaginal bacterial colonisation (odds ratio (OR) = 0.62; I2 = 4.80), and with no adverse events. It also effectively remodelled the infant gut microbiome (MD = 0.89; I2 = 95.01) and prevented infant allergies. However, studies on pregnancy outcomes and preeclampsia incidences are limited. Conclusions Our findings from high-quality studies identify that probiotics are the most common microbiome interventions during pregnancy and lactation. Probiotics have a strong impact on maternal and offspring health through maintaining gut microbiome homeostasis. However, further studies are needed on the effect of microbiota-targeted interventions on maternal cardiometabolic health, pregnancy, and neonatal outcomes. Registration This umbrella review was registered with PROSPERO, CRD42023437098.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Ethiopia
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Ethiopia
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
35
|
Rahmannia M, Poudineh M, Mirzaei R, Aalipour MA, Shahidi Bonjar AH, Goudarzi M, Kheradmand A, Aslani HR, Sadeghian M, Nasiri MJ, Sechi LA. Strain-specific effects of probiotics on depression and anxiety: a meta-analysis. Gut Pathog 2024; 16:46. [PMID: 39245752 PMCID: PMC11382490 DOI: 10.1186/s13099-024-00634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Depression and anxiety are pervasive mental health disorders with substantial global burdens. Probiotics, live microorganisms known for their health benefits, have emerged as a potential therapeutic intervention for these conditions. This systematic review and meta-analysis aim to evaluate the strain-specific effects of probiotics on relieving depressive and anxiety symptoms while elucidating underlying mechanisms. METHODS EMBASE, Cochrane CENTRAL and PubMed/Medline were systematically queried to identify studies released until May 15, 2024. Randomized Controlled Trials (RCTs) that employed standardized assessment tools for depression and anxiety namely Beck Depression Inventory (BDI), Hamilton Depression Rating Scale (HAMD), Depression Anxiety Stress Scales (DASS), or Montgomery-Asberg Depression Rating Scale (MADRS) were included. RESULTS 12 RCTs involving 707 participants were included. Seven RCTs utilizing the BDI questionnaire demonstrated a significant decrease in depressive symptoms favoring probiotics containing strains such as Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus salivarius, Bifidobacterium bifidum, Bifidobacterium lactis, Bifidobacterium breve, and Bifidobacterium longum (MD: -2.69, CI95%: -4.22/-1.16, p value: 0.00). Conversely, RCTs using HAMD showed a non-significant reduction in depressive symptoms (MD: -1.40, CI95%: -3.29/0.48, p value: 0.14). RCTs employing DASS and MADRS scales also showed no significant differences. CONCLUSION This meta-analysis offers valuable insights into the strain-specific effects of probiotics containing Lactobacillus and Bifidobacterium species on depressive and anxiety symptoms. While our findings suggest a significant reduction in depressive symptoms based on the BDI scale favoring probiotics, the lack of significant effects observed on the HAMD, DASS, and MADRS scales underscores the complexity inherent in these conditions. It is imperative to acknowledge the mixed results across different measurement scales, indicating the need for cautious interpretation. Therefore, we advocate for a nuanced understanding of probiotics' impacts on various dimensions of mood, emphasizing the necessity for further research.
Collapse
Affiliation(s)
- Maryam Rahmannia
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Poudineh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Mirzaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Aalipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hashem Shahidi Bonjar
- Scientist of Dental Materials and Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Clinical Research Development Unit, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aslani
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghian
- Department of Psychiatry, Taleghani Hospital Clinical Research Development Unit, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
36
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
37
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
38
|
Chandel P, Thapa K, Kanojia N, Rani L, Singh TG, Rohilla P. Exploring Therapeutic Potential of Phytoconstituents as a Gut Microbiota Modulator in the Management of Neurological and Psychological Disorders. Neuroscience 2024; 551:69-78. [PMID: 38754721 DOI: 10.1016/j.neuroscience.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The functioning of the brain and its impact on behavior, emotions, and cognition can be affected by both neurological and psychiatric disorders that impose a significant burden on global health. Phytochemicals are helpful in the treatment of several neurological and psychological disorders, including anxiety, depression, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD), because they have symptomatic benefits with few adverse reactions. Changes in gut microbiota have been associated with many neurological and psychiatric conditions. This review focuses on the potential efficacy of phytochemicals such as flavonoids, terpenoids, and polyphenols in regulating gut flora and providing symptomatic relief for a range of neurological and psychological conditions. Evidence-based research has shown the medicinal potentials of these phytochemicals, but additional study is required to determine whether altering gut microbiota might slow the advancement of neurological and psychological problems.
Collapse
Affiliation(s)
- Prarit Chandel
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara University, School of Pharmacy, Himachal Pradesh, India.
| | - Neha Kanojia
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Lata Rani
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | | | | |
Collapse
|
39
|
Wang LJ, Tsai CS, Chou WJ, Kuo HC, Huang YH, Lee SY, Dai HY, Yang CY, Li CJ, Yeh YT. Add-On Bifidobacterium Bifidum Supplement in Children with Attention-Deficit/Hyperactivity Disorder: A 12-Week Randomized Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2024; 16:2260. [PMID: 39064703 PMCID: PMC11279422 DOI: 10.3390/nu16142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted a 12-week randomized double-blind placebo-controlled clinical trial to investigate the potential impact of Bifidobacterium bifidum (Bf-688) supplementation on attention-deficit/hyperactivity disorder (ADHD). Children with ADHD who were already receiving a stable dose of methylphenidate (MPH) treatment were enrolled and were randomly assigned to two groups: one receiving add-on Bf-688 (daily bacterial count of 5 × 109 CFUs) (n = 51) and the other receiving a placebo (n = 51). All participants underwent assessments using Conners' Continuous Performance Test (CPT) and Conners' Continuous Auditory Test of Attention (CATA). Additionally, fecal samples were collected at the beginning of the trial (week 0) and at the endpoint (week 12). Remarkably, the group receiving Bf-688 supplementation, but not the placebo group, exhibited significant improvements in omission errors in CPT as well as Hit reaction time in both CPT and CATA. Gut microbiome analysis revealed a significant increase in the Firmicutes to Bacteroidetes ratio (F/B ratio) only in the Bf-688 group. Furthermore, we identified significant negative correlations between N-Glycan biosynthesis and Hit reaction time in both CPT and CATA. Our results demonstrate that the probiotic Bf-688 supplement can enhance neuropsychological performance in children with ADHD, possibly by altering the composition of the gut microbiota, ultimately leading to reduced N-Glycan biosynthesis.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Hong-Ying Dai
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| |
Collapse
|
40
|
Ansari U, Ansari F, Nadora D, Omid A, Omid A, Alam M, Nadora D, Lui F. Implications of the Gut Microbiota for Brain Function and Behavior in Schizophrenia. Cureus 2024; 16:e64340. [PMID: 39131005 PMCID: PMC11316569 DOI: 10.7759/cureus.64340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder characterized by delusions, hallucinations, cognitive impairments, and emotional dysregulation. This psychiatric illness is often resistant to treatment. This literature review aims to analyze the relationship between this complex psychological disorder and the gut microbiota found within the human body. The brain and gut are interconnected, and emerging research suggests a link between gut dysbiosis and schizophrenia. Gut dysbiosis refers to an imbalance or disruption in the composition and function of the gut microbiome. The studies comparing the gut microbiota of patients with schizophrenia to those without highlight significant differences at the phylum and genus levels, providing evidence of gut microbiome alteration. The lack of diversity of microbiota in schizophrenia patients can be altered and improved to a healthier microbiome by way of dietary intervention. Interventions that target the gut-brain axis, such as dietary probiotics or prebiotics, may help alleviate certain symptoms of schizophrenia and help improve patients' well-being. Understanding the complex interplay between gut microbiome health and schizophrenia may allow for the development of targeted interventions that alter the gut microbiome of patients with schizophrenia and, in turn, mitigate their symptoms and improve their quality of life.
Collapse
Affiliation(s)
- Ubaid Ansari
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | | | - Dawnica Nadora
- Dermatology, California Northstate University College of Medicine, Elk Grove, USA
| | - Arman Omid
- Gastroenterology, California Northstate University College of Medicine, Elk Grove, USA
| | - Alexi Omid
- Gastroenterology, California Northstate University College of Medicine, Elk Grove, USA
| | - Meraj Alam
- Psychiatry, California Northstate University College of Medicine, Elk Grove, USA
| | - Denise Nadora
- Neurology, California Northstate University College of Medicine, Elk Grove, USA
| | - Forshing Lui
- Clinical Sciences, California Northstate University College of Medicine, Elk Grove, USA
| |
Collapse
|
41
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
42
|
Bourqqia-Ramzi M, Mansilla-Guardiola J, Muñoz-Rodriguez D, Quarta E, Lombardo-Hernandez J, Murciano-Cespedosa A, Conejero-Meca FJ, Mateos González Á, Geuna S, Garcia-Esteban MT, Herrera-Rincon C. From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis. Int J Mol Sci 2024; 25:6233. [PMID: 38892419 PMCID: PMC11172653 DOI: 10.3390/ijms25116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus Escherichia coli (E. coli), and a Firmicutes Gram-positive coccus Enterococcus faecalis (E. faecalis). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.
Collapse
Affiliation(s)
- Marwane Bourqqia-Ramzi
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Jesús Mansilla-Guardiola
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Muñoz-Rodriguez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Elisa Quarta
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Turin, Italy
| | - Juan Lombardo-Hernandez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Antonio Murciano-Cespedosa
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco José Conejero-Meca
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Álvaro Mateos González
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy
| | - María Teresa Garcia-Esteban
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Celia Herrera-Rincon
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| |
Collapse
|
43
|
Dal N, Bilici S. An Overview of the Potential Role of Nutrition in Mental Disorders in the Light of Advances in Nutripsychiatry. Curr Nutr Rep 2024; 13:69-81. [PMID: 38329691 PMCID: PMC11133159 DOI: 10.1007/s13668-024-00520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW As research on the potential impact of nutrition on mental disorders, a significant component of global disability continues to grow the concepts of "nutritional psychiatry, psycho-dietetics/nutripsychiatry" have taken their place in the literature. This review is a comprehensive examination of the literature on the the potential mechanisms between common mental disorders and nutrition and evaluates the effectiveness of dietary interventions. RECENT FINDINGS Inflammation, oxidative stress, intestinal microbiota, mitochondrial dysfunction, and neural plasticity are shown as potential mechanisms in the relationship between mental disorders and nutrition. As a matter of fact, neurotrophic factors, which make important contributions to repair mechanisms throughout life, and neuronal plasticity, which plays a role in mental disorders, are affected by nutritional factors. In metabolism, the antioxidant defense system works with nutritional cofactors and phytochemicals. A balanced, planned diet that provides these components is more likely to provide nutrients that increase resilience against the pathogenesis of mental disorders. Nutrition can be considered a risk factor for mental disorders. Therefore, developing public health strategies focused on improving diet may help reduce the global burden of mental disorders and other related diseases.
Collapse
Affiliation(s)
- Nursel Dal
- Department of Nutrition and Dietetics, Bandirma Onyedi Eylul University, Balikesir, Turkey.
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
44
|
Kolzhetsov N, Markelova N, Frolova M, Alikina O, Glazunova O, Safonova L, Kalashnikova I, Yudin V, Makarov V, Keskinov A, Yudin S, Troshina D, Rechkina V, Shcherbakova V, Shavkunov K, Ozoline O. Enterotype-Dependent Probiotic-Mediated Changes in the Male Rat Intestinal Microbiome In Vivo and In Vitro. Int J Mol Sci 2024; 25:4558. [PMID: 38674145 PMCID: PMC11049970 DOI: 10.3390/ijms25084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.
Collapse
Affiliation(s)
- Nikolay Kolzhetsov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Natalia Markelova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Maria Frolova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Alikina
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Glazunova
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Lubov Safonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Irina Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Vladimir Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Valentin Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Anton Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Sergey Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, 119121 Moscow, Russia; (L.S.); (I.K.); (V.Y.); (V.M.); (A.K.); (S.Y.)
| | - Daria Troshina
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoria Rechkina
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (V.R.); (V.S.)
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| | - Olga Ozoline
- Laboratory of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (N.K.); (N.M.); (M.F.); (O.A.); (O.G.); (K.S.)
| |
Collapse
|
45
|
Saha S, Priya K, Rai K, R M, Shetty K, M Hegde A, Rao K A, Abhijit Tanna D, S M, S S. Case Report: Holistic dental care for a child with Hunter syndrome: Addressing dental ramifications, overcoming challenges, and enhancing quality of life. F1000Res 2024; 13:268. [PMID: 38812528 PMCID: PMC11134137 DOI: 10.12688/f1000research.146468.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/31/2024] Open
Abstract
Hunter syndrome (MPS II), an X-linked recessive lysosomal storage disorder, is a result of deficiency of the iduronate 2-sulfatase enzyme (IDS), leading to cognitive impairment, systemic organ involvement, and increased dental problems. This case report describes the management of a child with Hunter syndrome who was referred to the Department of Paediatric and Preventive Dentistry for pain in the upper front teeth. Intraoral examination revealed severe early childhood caries, prompting planning for full-mouth rehabilitation under general anaesthesia due to the child's uncooperative behaviour. In response to recommendations from the Department of Otolaryngology and the Department of Paediatric Surgery, a comprehensive treatment plan consolidated full-mouth rehabilitation in addition to adenoidectomy and inguinal and umbilical herniotomy procedures during a single session of general anaesthesia. Successful interventions were reflected in the uneventful one-month follow-up of the patient, highlighting the efficacy of the interdisciplinary approach. The key takeaway underscores the importance of collaborative interventions, emphasising singular intubation for patients requiring recurrent hospitalisations, providing both monetary relief and reducing post operative healing time. Designed to address global developmental delay in the child, a personalised home care plan was also implemented. Evaluation of plaque and gingival indices before and after the home care regimen demonstrated a notable improvement, indicating an enhanced oral quality of life.
Collapse
Affiliation(s)
- Swagata Saha
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Krishna Priya
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Kavita Rai
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Manju R
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Krithika Shetty
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Amitha M Hegde
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Ananya Rao K
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Dhvani Abhijit Tanna
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Mohanaram S
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Shreya S
- Department of Paediatric and Preventive Dentistry, A B Shetty Memorial Institute of Dental Sciences, Deralakatte, Mangaluru, Karnataka, 575018, India
| |
Collapse
|
46
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
47
|
Paiva IHRD, Maciel LM, Silva RSD, Mendonça IP, Souza JRBD, Peixoto CA. Prebiotics modulate the microbiota-gut-brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice. Food Res Int 2024; 182:114153. [PMID: 38519181 DOI: 10.1016/j.foodres.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Previous research has demonstrated that Prebiotics can influence the composition of the gut microbiota, consequently impacting mood regulation. This study aimed to assess the effects of Prebiotics, specifically Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on neuroinflammation, depression, and anxiety-like behavior in a mouse model fed a high-fat diet (HFD). Initially, mice were divided into two groups: a control group on a standard diet (n = 15) and a group on an HFD for 18 weeks (n = 45). By the 13th week, the HFD group was further divided into experimental groups: Control (n = 15), HFD (n = 15), HFD receiving Prebiotics (n = 15), and HFD receiving Fluoxetine (n = 15). From the 13th week onward, the HFD + Prebiotics group received both the high-fat diet and a combination of FOS and GOS, while the HFD + Fluoxetine group received Fluoxetine in their drinking water. In the 18th week, all mice underwent tests to evaluate behavior, including the Tail Suspension Test (TST), Forced Swimming Test (FST), Sucrose Preference Test (SPT), and the Plus Maze Test (PMT), after which they were euthanized. Mice on the HFD exhibited increased body weight, abdominal size, blood glucose, triglyceride levels, cholesterol, insulin, HOMA index, and higher serum IL-1β. These obese mice also displayed an increased number of microglia and astrocytes, activation of the TLR4 pathway, and elevated levels of neuroinflammatory markers like TNF-α, IL-1β, and COX-2. Moreover, obese mice showed increased activation of the IDO pathway and decreased levels of NMDA receptors. Additionally, markers of neurogenesis and synaptic plasticity, such as PSD, SAP 102, CREB-p, and BDNF, were lower. Treatment with FOS and GOS reversed symptoms of depression and anxiety in mice subjected to HD. This improvement in behavior resulted from a reduction in dysbiosis with an increase in acetate-producing bacteria (B. acidifaciens and B. dorei) and intestinal permeability, leading to a decrease in chronic peripheral and central inflammation. Furthermore, the modulation of the gut-brain axis by FOS and GOS promoted elevated acetate and GPR43 levels in the brain and a reduction in the levels of pro-inflammatory cytokines, positively impacting signaling pathways of neuronal proliferation and survival in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Laís Macedo Maciel
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil.
| |
Collapse
|
48
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
49
|
Cardoso AM. Microbial influence on blood pressure: unraveling the complex relationship for health insights. MICROBIOME RESEARCH REPORTS 2024; 3:22. [PMID: 38841410 PMCID: PMC11149090 DOI: 10.20517/mrr.2023.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 06/07/2024]
Abstract
Hypertension, a critical global health concern, is characterized by persistent high blood pressure and is a major cause of cardiovascular events. This perspective explores the multifaceted implications of hypertension, its association with cardiovascular diseases, and the emerging role of the gut microbiota. The gut microbiota, a dynamic community in the gastrointestinal tract, plays a pivotal role in hypertension by influencing blood pressure through the generation of antioxidant, anti-inflammatory, and short-chain fatty acids metabolites, and the conversion of nitrates into nitric oxide. Antihypertensive medications interact with the gut microbiota, impacting drug pharmacokinetics and efficacy. Prebiotics and probiotics present promising avenues for hypertension management, with prebiotics modulating blood pressure through lipid and cholesterol modulation, and probiotics exhibiting a general beneficial effect. Personalized choices based on individual factors are crucial for optimizing prebiotic and probiotic interventions. In conclusion, the gut microbiota's intricate influence on blood pressure regulation offers innovative perspectives in hypertension therapeutics, with targeted strategies proving valuable for holistic blood pressure management and health promotion.
Collapse
|
50
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|