1
|
Ahmed Taher H, Zalzala MH. Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0425. [PMID: 39924693 DOI: 10.1515/jcim-2024-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT). METHOD Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury. RESULTS ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis. CONCLUSIONS Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and ntcp and bsep expression with mitigating liver damage and inflammation.
Collapse
Affiliation(s)
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Wang T, Tian T, Zhu Z, Fang S, Zhang L, Peng X, Shi R, Li Y, Wu J, Ma Y. Gardenia jasminoides Ellis. Polysaccharides Alleviated Cholestatic Liver Injury by Increasing the Production of Butyric Acid and FXR Activation. Phytother Res 2024; 38:5363-5375. [PMID: 39237123 DOI: 10.1002/ptr.8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/21/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Gardenia jasminoides Ellis. polysaccharide (GPS) can protect against cholestatic liver injury (CLI) by regulating nuclear farnesoid X receptor (FXR).However, the mechanism via which GPS mediates the FXR pathway remains unclear. The aim of this study was to investigate the mechanism. Firstly, an alpha-naphthylisothiocyanate-induced cholestatic mouse model was administered with GPS to evaluate its hepatoprotective effects. The metabolic pathways influenced by GPS in cholestatic mice were detected by serum metabolomics. The effect of GPS on bile acid (BA) homeostasis, FXR expression, and liver inflammation were investigated. Second, the intestinal bacteria metabolites affected by GPS in vivo and in vitro were determined. The activation of FXR by sodium butyrate (NaB) was measured. Finally, the effects of NaB on cholestatic mice were demonstrated. The main pathways influenced by GPS involved BA biosynthesis. GPS upregulated hepatic FXR expression, improved BA homeostasis, reduced F4/80+ and Ly6G+ positive areas in the liver, and inhibited liver inflammation in cholestatic mice. Butyric acid was the most notable intestinal bacterial metabolite following GPS intervention. NaB activated the transcriptional activity of FXR in vitro, upregulated hepatic FXR and its downstream efflux transporter expression, and ameliorated disordered BA homeostasis in CLI mice. NaB inhibited the toll-like receptor 4/nuclear factor (TLR4/NF-κB) pathway and reduced inflammation and CLI in mice. An FXR antagonist suppressed the effects. In conclusion, GPS increased butyric acid production, which can activate hepatic FXR, reverse BA homeostasis disorder, and inhibit the TLR4/NF-κB inflammatory pathway, exerting protective effects against CLI.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyun Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Su Fang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lincong Zhang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Kumar S, Ratha KK, Jaiswal S, Rao MM, Acharya R. Exploring the potential of andrographis paniculata and its bioactive compounds in the management of liver diseases: A comprehensive food chemistry perspective. FOOD CHEMISTRY ADVANCES 2024; 4:100674. [DOI: 10.1016/j.focha.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Gao Q, Li G, Zu Y, Xu Y, Wang C, Xiang D, He W, Shang T, Cheng X, Liu D, Zhang C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117089. [PMID: 37634749 DOI: 10.1016/j.jep.2023.117089] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, treating colitis, type 2 diabetes, diarrhea, and recovering hepatobiliary function. Ginsenosides, the main active components isolated from ginseng, possess liver and gallbladder diseases therapeutic potential. AIMS OF THE STUDY Cholestatic liver injury (CLI) is a liver disease induced by intrahepatic accumulation of toxic bile acids and currently lacks clinically effective drugs. Our previous study found that ginsenosides alleviated CLI by activating sirtuin 1 (SIRT1), but the effective ingredients and the underlying mechanism have not been clarified. This study aimed to identify an effective ingredient with the most significant activation effect on SIRT1 from the five major monomer saponins of ginsenosides: Rb1, Rd, Rg1, 20s-Rg3, and Rc further explore its protective effects on CLI, and elaborate its underlying mechanism. MATERIALS AND METHODS Discovery Studio 3.0 was used to conduct molecular docking between monomer saponins and SIRT1, and further detect the influence of monomer saponins on SIRT1 activity in vitro. Finally, it was determined that Rg1 had the most significant stimulative effect on SIRT1, and the hepatoprotective activity of Rg1 in CLI was explored in vivo. Wild-type mice were intragastrically α-naphthylisothiocyanate (ANIT) to establish an experimental model of intrahepatic cholestasis and Rg1 intervention, and then liver injury and cholestasis related indexes were detected. In addition, Liver-specific SIRT1 gene knockout (SIRT1-/-) mice were administered with ANIT and/or Rg1 to further investigate the mechanism of action of Rg1. RESULTS The results of molecular docking and in vitro experiments showed that all the five ginsenoside monomers could bind to the active site of SIRT1 and promote SIRT1 activity in HepG2 cells. Among them, Rg1 exhibited the most significant stimulation of SIRT1 activity in cholestasis. Besides, it could ameliorate ANIT-induced inflammation and oxidative stress in HepG2 cells. Therefore, we investigated the hepatoprotective effect and mechanism of Rg1 on CLI. Results showed that Rg1 reversed the ANIT-induced increase in biochemical parameters, improved liver pathological injury, and decreased liver lipid accumulation, reactive oxygen species and pro-inflammatory factor levels. Mechanistically, Rg1 induced SIRT1 expression, followed by promoted the activity of Nrf2 and suppressed the activation of NF-κB. Interestingly, the hepatoprotective effect of Rg1 was blocked in SIRT1-/- mice. CONCLUSION Rg1 mitigated ANIT-induced CLI via upregulating SIRT1 expression, and our results suggested that Rg1 is a candidate compound for treating CLI.
Collapse
Affiliation(s)
- Qianyan Gao
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congyi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Cheng
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100177. [PMID: 38322817 PMCID: PMC10844674 DOI: 10.1016/j.crphar.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Cholestasis is a hepatobiliary condition that manifests as acute or chronic and results from disruptions in the bile flow, formation, or secretion processes. The Farnesoid X receptor (FXR) is a vital target for the therapy of cholestasis since it regulates BA homeostasis. Despite the discovery of multiple active FXR agonists, there are still no effective treatments for cholestasis. Papaverine is identified as an FXR agonist.This study investigates papaverine's efficacy and probable mechanism in protecting against alpha naphthylisothiocyanate (ANIT) induced cholestasis. Thirty male albino rats were divided into three groups, each with ten rats. Group I (control) rats were administered 1 mL/kg corn oil 48 h before sacrifice; group II rats were orally administered 100 mg/kg ANIT. Group III received a 200 mg/kg dosage of papaverine over seven consecutive days. A single dose of ANIT at a concentration of 100 mg/kg was orally administered on the fifth day; group II and III animals were euthanized 48 h after inducing cholestasis, and serum concentrations of liver function tests and total bile acid (TBA) were measured. Besides measuring the inflammatory mediator's tumor necrosis factor-alpha (TNF-α) and interleukin 1 (IL-1β), antioxidant markers such as superoxide dismutase (SOD) and glutathione (GSH) were also assessed. The findings indicated the enhancement in the liver function test and total bile acids, as well as in liver histology; papaverine significantly lowered TNF-α and IL-1β while SOD and GSH significantly increased. Additionally, papaverine upregulates Fxr gene expression, bile salt export pump (Besp), small heterodimer partner (shp), hepatocyte nuclear factor 1α (Hnfα), nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase (Ho-1), NAD(P)H quinone oxidoreductase 1 (Nqo1). Furthermore, papaverine increased protein expressions of Sirtuin1. (SIRT 1), FXR, HO-1, and BSEP levels in the rats' livers. The protective effects of papaverine may be attributed to the activation of FXR signaling pathways. These findings revealed that papaverine protects against ANIT-induced Cholestasis.
Collapse
Affiliation(s)
- Doaa Adnan Atshan
- Ministry Of Health And Environment, Alnuman Teaching Hospital, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- University of Baghdad, College of Pharmacy, Department of Pharmacology and Toxicology, Baghdad, Iraq
| |
Collapse
|
7
|
Mut-Salud N, Guardia JJ, Fernández A, Blancas I, Zentar H, Garrido JM, Álvarez-Manzaneda E, Chahboun R, Rodríguez-Serrano F. Discovery of a synthetic taiwaniaquinoid with potent in vitro and in vivo antitumor activity against breast cancer cells. Biomed Pharmacother 2023; 168:115791. [PMID: 37924793 DOI: 10.1016/j.biopha.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Taiwaniaquinoids are a unique family of diterpenoids predominantly isolated from Taiwania cryptomerioides Hayata. Previously, we evaluated the antiproliferative effect of several synthetic taiwaniaquinoids against human lung (A-549), colon (T-84), and breast (MCF-7) tumor cell lines. Herein, we report the in vitro and in vivo antitumor activity of the most potent compounds. Their cytotoxic activity against healthy peripheral blood mononuclear cells (PBMCs) has also been examined. We underscore the limited toxicity of compound C36 in PBMCs and demonstrate that it exerts its antitumor effect in MCF-7 cells (IC50 = 1.8 µM) by triggering an increase in reactive oxygen species, increasing the cell population in the sub-G1 phase of the cell cycle (90 %), and ultimately activating apoptotic (49.6 %) rather than autophagic processes. Western blot results suggested that the underlying mechanism of the C36 apoptotic effects was linked to caspase 9 activation and a rise in the Bax/Bcl-2 ratio. In vivo analyses showed normal behavior and hematological parameters in C57BL/6 mice post C36 treatment. Moreover, no significant impact was observed on the biochemical parameters of these animals, indicating that C36 did not induce liver toxicity. Furthermore, C36 demonstrated a significant reduction in tumor growth in immune-competent C57BL/6 mice implanted with E0771 mouse mammary tumor cells, effectively improving survival rates. These findings position taiwaniaquinoids, particularly compound C36, as promising therapeutic candidates for human breast cancer.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain
| | - Juan J Guardia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Antonio Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Isabel Blancas
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Department of Medicine, School of Medicine, University of Granada, Granada 18016, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain
| | - Houda Zentar
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - José M Garrido
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Surgery and Surgical Specialties, University of Granada, Granada 18016, Spain
| | | | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
8
|
Kirla H, Henry DJ, Jansen S, Thompson PL, Hamzah J. Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease. Clin Ther 2023; 45:1060-1068. [PMID: 37783646 DOI: 10.1016/j.clinthera.2023.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. The current CVD therapeutic drugs require long-term treatment with high doses, which increases the risk of adverse effects while offering only marginal treatment efficacy. Silica nanoparticles (SNPs) have been proven to be an efficient drug delivery vehicle for numerous diseases, including CVD. This article reviews recent progress and advancement in targeted delivery for drugs and diagnostic and theranostic agents using silica nanoparticles to achieve therapeutic efficacy and improved detection of CVD in clinical and preclinical settings. METHODS A search of PubMed, Scopus, and Google Scholar databases from 1990 to 2023 was conducted. Current clinical trials on silica nanoparticles were identified through ClinicalTrials.gov. Search terms include silica nanoparticles, cardiovascular diseases, drug delivery, and therapy. FINDINGS Silica nanoparticles exhibit biocompatibility in biological systems, and their shape, size, surface area, and surface functionalization can be customized for the safe transport and protection of drugs in blood circulation. These properties also enable effective drug uptake in specific tissues and controlled drug release after systemic, localized, or oral delivery. A range of silica nanoparticles have been used as nanocarrier for drug delivery to treat conditions such as atherosclerosis, hypertension, ischemia, thrombosis, and myocardial infarction. IMPLICATIONS The use of silica nanoparticles for drug delivery and their ongoing development has emerged as a promising strategy to improve the effectiveness of drugs, imaging agents, and theranostics with the potential to revolutionize the treatment of CVD.
Collapse
Affiliation(s)
- Haritha Kirla
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia.
| | - David J Henry
- Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Shirley Jansen
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
9
|
Qin T, Hasnat M, Wang Z, Hassan HM, Zhou Y, Yuan Z, Zhang W. Geniposide alleviated bile acid-associated NLRP3 inflammasome activation by regulating SIRT1/FXR signaling in bile duct ligation-induced liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154971. [PMID: 37494875 DOI: 10.1016/j.phymed.2023.154971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Geniposide (GE), the active compound derived from Gardeniae Fructus, possesses valuable bioactivity for liver diseases, but GE effects on bile duct ligation (BDL)-induced cholestasis remain unclear. This study aimed to elucidate the influence of GE on BDL-induced liver fibrosis and to investigate the underlying mechanisms. METHODS GE (25 or 50 mg/kg) were intragastrical administered to C57BL/6 J mice for two weeks to characterize the hepatoprotective effect of GE on BDL-induced liver fibrosis. NLRP3 inflammasome activation was detected in vivo, and BMDMs were isolated to explore whether GE directly inhibited NLRP3 inflammasome activation. Serum bile acid (BA) profiles were assessed utilizing UPLC-MS/MS, and the involvement of SIRT1/FXR pathways was identified to elucidate the role of SIRT1/FXR in the hepaprotective effect of GE. The veritable impact of SIRT1/FXR signaling was further confirmed by administering the SIRT1 inhibitor EX527 (10 mg/kg) to BDL mice treated with GE. RESULTS GE treatment protected mice from BDL-induced liver fibrosis, with NLRP3 inflammasome inhibition. However, development in vitro experiments revealed that GE could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation. Further mechanistic data showed that GE activated SIRT1, which subsequently deacetylated FXR and restored CDCA, TUDCA, and TCDCA levels, thereby contributing to the observed hepaprotective effect of GE. Notably, EX527 treatment diminished the hepaprotective effect of GE on BDL-induced liver fibrosis. CONCLUSION This study first proved the hepaprotective effect of GE on liver fibrosis in BDL mice, which was closely associated with the restoration of BA homeostasis and NLRP3 inflammasome inhibition. The activation of SIRT1 and the subsequent FXR deacetylation restored the BA profiles, especially CDCA, TUDCA, and TCDCA contents, which was the main contributor to NLRP3 inhibition and the hepaprotective effect of GE. Overall, our work provides novel insights that GE as well as Gardeniae Fructus might be the potential attractive candidate for ameliorating BDL-induced liver fibrosis.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Hasnat
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, PR China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
10
|
Cao P, Gan J, Wu S, Hu Y, Xia B, Li X, Zeng H, Cheng B, Yu H, Li F, Si L, Huang J. Molecular mechanisms of hepatoprotective effect of tectorigenin against ANIT-induced cholestatic liver injury: Role of FXR and Nrf2 pathways. Food Chem Toxicol 2023:113914. [PMID: 37348807 DOI: 10.1016/j.fct.2023.113914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Cholestatic liver injury is caused by toxic action or allergic reaction, resulting in abnormality of bile formation and excretion. Few effective therapies have become available for the treatment of cholestasis. Herein, we found that tectorigenin (TG), a natural isoflavone, showed definite protective effects on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury, significantly reversing the abnormality of plasma alanine/aspartate aminotransferase, total/direct bilirubin and alkaline phosphatase, as well as hepatic reactive oxygen species, catalase and superoxide dismutase. Importantly, the targeted metabolomic determination found that BA homeostasis could be well maintained in TG-treated cholestatic mice, especially the levels of glycocholic acid, tauromuricholic acid, taurocholic acid, taurolithocholic acid, tauroursodeoxycholic acid and taurodeoxycholic acid. Overall, primary/secondary and amidated/unamidated bile acid (BA) levels were significantly altered upon ANIT stimulation but could be restored by TG intervention to certain extents. In addition, TG boosted the expression of farnesoid x receptor (FXR), which in turn upregulated multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) to accelerate the excretion of BA. Meanwhile, TG enhanced the expression of Nrf2 and its upstream genes PI3K/Akt and downstream target genes HO-1, NQO1, GCLC and GCLM to strengthen the antioxidant capacity. Taken together, TG plays a vital role in maintaining BA homeostasis and ameliorating cholestatic liver injury through regulating FXR-mediated BA efflux and Nrf2-mediated antioxidative pathways.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jun Gan
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Xia
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyue Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongan Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifan Yu
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fei Li
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Khayat MT, Mohammad KA, Mohamed GA, El-Agamy DS, Elsaed WM, Ibrahim SRM. γ-Mangostin abrogates AINT-induced cholestatic liver injury: Impact on Nrf2/NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD signalling. Life Sci 2023; 322:121663. [PMID: 37023956 DOI: 10.1016/j.lfs.2023.121663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
γ-Mangostin (γ-MN) is one of the abundant xanthones separated from Garcinia mangostana (Clusiaceae) pericarps that has been reported to have varied bioactivities such as neuroprotective, cytotoxic, antihyperglycemic, antioxidant, and anti-inflammation. Yet, its effect on cholestatic liver damage (CLI) has not been investigated. This study explored the protective activity of γ-MN against alpha-naphthyl isothiocyanate (ANIT)-induced CLI in mice. The results showed that γ-MN protected against ANIT-induced CLI as indicated by reduced serum levels of hepatic injury parameters (e.g., ALT, AST, γ-GT, ALP, LDH, bilirubin, and total bile acids). ANIT-induced pathological lesions were improved in γ-MN pre-treated groups. γ-MN exerted potent antioxidant effects as it lowered the parameters of lipid peroxidation (4-HNE, PC, and MDA) and intensified the content and activity of antioxidants (TAC, GSH, GSH-Px, GST, and SOD) in the hepatic tissue. Furthermore, γ-MN enhanced the signalling of Nrf2/HO-1 as it augmented the mRNA expression of Nrf2/downstream genes (HO-1/GCLc/NQO1/SOD). The binding capacity and the immuno-expression of Nrf2 were also increased. γ-MN showed anti-inflammatory capacity as it suppressed the activation of NF-κB signalling, it decreased mRNA expression and levels of NF-κB/TNF-α/IL-6 and the immuno-expression of NF-κB/TNF-α. In addition, γ-MN inhibited the activation of NLRP3 inflammasome as it lowered the mRNA expression of NLRP3/caspase-1/IL-1β along with their levels as well as the immuno-expression of caspase-1/IL-1β. γ-MN also reduced the level of the pyroptotic parameter GSDMD. Collectively, this study demonstrated the potent hepatoprotective potential of γ-MN against CLI which was linked to its ability to potentiate Nrf2/HO-1 and to offset NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD. Hence, γ-MN may be suggested as a new candidate for cholestatic patients.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khadijah A Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
12
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
13
|
Ginsenosides Restore Lipid and Redox Homeostasis in Mice with Intrahepatic Cholestasis through SIRT1/AMPK Pathways. Nutrients 2022; 14:nu14193938. [PMID: 36235592 PMCID: PMC9571347 DOI: 10.3390/nu14193938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intrahepatic cholestasis (IC) occurs when the liver and systemic circulation accumulate bile components, which can then lead to lipid metabolism disorders and oxidative damage. Ginsenosides (GS) are pharmacologically active plant products derived from ginseng that possesses lipid-regulation and antioxidation activities. The purpose of this study was to evaluate the possible protective effects of ginsenosides (GS) on lipid homeostasis disorder and oxidative stress in mice with alpha-naphthylisothiocyanate (ANIT)-induced IC and to investigate the underlying mechanisms. A comprehensive strategy via incorporating pharmacodynamics and molecular biology technology was adopted to investigate the therapeutic mechanisms of GS in ANIT-induced mice liver injury. The effects of GS on cholestasis were studied in mice that had been exposed to ANIT-induced cholestasis. The human HepG2 cell line was then used in vitro to investigate the molecular mechanisms by which GS might improve IC. The gene silencing experiment and liver-specific sirtuin-1 (SIRT1) knockout (SIRT1LKO) mice were used to further elucidate the mechanisms. The general physical indicators were assessed, and biological samples were collected for serum biochemical indexes, lipid metabolism, and oxidative stress-related indicators. Quantitative PCR and H&E staining were used for molecular and pathological analysis. The altered expression levels of key pathway proteins (Sirt1, p-AMPK, Nrf2) were validated by Western blotting. By modulating the AMPK protein expression, GS decreased hepatic lipogenesis, and increased fatty acid β-oxidation and lipoprotein lipolysis, thereby improving lipid homeostasis in IC mice. Furthermore, GS reduced ANIT-triggered oxidative damage by enhancing Nrf2 and its downstream target levels. Notably, the protective results of GS were eliminated by SIRT1 shRNA in vitro and SIRT1LKO mice in vivo. GS can restore the balance of the lipid metabolism and redox in the livers of ANIT-induced IC models via the SIRT1/AMPK signaling pathway, thus exerting a protective effect against ANIT-induced cholestatic liver injury.
Collapse
|
14
|
Karsten REH, Krijnen NJW, Maho W, Permentier H, Verpoorte E, Olinga P. Mouse precision-cut liver slices as an ex vivo model to study drug-induced cholestasis. Arch Toxicol 2022; 96:2523-2543. [PMID: 35708773 PMCID: PMC9325861 DOI: 10.1007/s00204-022-03321-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Drugs are often withdrawn from the market due to the manifestation of drug-induced liver injury (DILI) in patients. Drug-induced cholestasis (DIC), defined as obstruction of hepatic bile flow due to medication, is one form of DILI. Because DILI is idiosyncratic, and the resulting cholestasis complex, there is no suitable in vitro model for early DIC detection during drug development. Our goal was to develop a mouse precision-cut liver slice (mPCLS) model to study DIC and to assess cholestasis development using conventional molecular biology and analytical chemistry methods. Cholestasis was induced in mPCLS through a 48-h-incubation with three drugs known to induce cholestasis in humans, namely chlorpromazine (15, 20, and 30 µM), cyclosporin A (1, 3, and 6 µM) or glibenclamide (25, 50, and 65 µM). A bile-acid mixture (16 µM) that is physiologically representative of the human bile-acid pool was added to the incubation medium with drug, and results were compared to incubations with no added bile acids. Treatment of PCLS with cholestatic drugs increased the intracellular bile-acid concentration of deoxycholic acid and modulated bile-transporter genes. Chlorpromazine led to the most pronounced cholestasis in 48 h, observed as increased toxicity; decreased protein and gene expression of the bile salt export pump; increased gene expression of multidrug resistance-associated protein 4; and accumulation of intracellular bile acids. Moreover, chlorpromazine-induced cholestasis exhibited some transition into fibrosis, evidenced by increased gene expression of collagen 1A1 and heatshock protein 47. In conclusion, we demonstrate that mPCLS can be used to study human DIC onset and progression in a 48 h period. We thus propose this model is suited for other similar studies of human DIC.
Collapse
Affiliation(s)
- R E H Karsten
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - N J W Krijnen
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - W Maho
- Analytical Biochemistry Research Group, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 16, 9713 AV, Groningen, The Netherlands
| | - H Permentier
- Analytical Biochemistry Research Group, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 16, 9713 AV, Groningen, The Netherlands
| | - E Verpoorte
- Pharmaceutical Analysis Research Group, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - P Olinga
- Pharmaceutical Technology and Biopharmacy Research Group, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
15
|
Duan Z, Yang T, Li L, Wang X, Wei C, Xia Z, Chai Y, Huang X, Zhang L, Jiang Z. Comparison of bile acids profiles in the enterohepatic circulation system of mice and rats. J Steroid Biochem Mol Biol 2022; 220:106100. [PMID: 35341917 DOI: 10.1016/j.jsbmb.2022.106100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Bile acids (BAs) were selected as biomarkers for the diagnosis and prevention of multiple liver diseases, and they were also considered as an important signal transductor via "liver-gut" axis. As important factors for maintaining the normal function and tissue morphology, BA homeostasis throughout the enterohepatic circulation system was guaranteed by BA synthases and transporters, nuclear receptors (NRs) and gut microbiota, all of which presented significant species differences. Thus, we simultaneously quantify BA profiles in the enterohepatic circulation of SD rats and C57BL/6 mice to reveal the species differences of BA homeostasis between these two main rodents of preclinical studies. Our results showed that BA profiles of mice plasma, bile and liver were most dissimilar from these of rats. Meanwhile, BAs profiles also presented obvious species differences in the intestine of mice and rats, especially small intestine. Unlike rats, taurine-conjugated bile acids (T-BAs) were predominant in mice small intestine content and tissue, in which taurocholic acid (TCA) was the most prominent BAs. BAs dynamic analysis showed that compared with rats, mice showed stranger taurine and glycine de-conjugations in lager intestine. However, both the ratios of unconjugated bile acids (Un-BAs) to conjugated BAs, and secondary BAs to primary BAs in mice small content and tissue were all much lower than these in rats. Furthermore, ileum BAs profiles also showed significantly separation trend between rats and mice, whether content or tissue. Our data revealed that the patterns of BAs homeostasis in mice enterohepatic circulation system were significantly different from these in rats (especially in intestine), suggesting that more cautious should be paid to the selection of BAs as biomarkers for disease diagnosis or/and drug induced toxicity, and the certain role and mechanism of individual BA in the pathological process of BA-related diseases via "liver-gut" axis should be verified by using of multiple species.
Collapse
Affiliation(s)
- Zhicheng Duan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Chujing Wei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| |
Collapse
|
17
|
Salas-Silva S, López-Ramirez J, Barrera-Chimal J, Lazzarini-Lechuga R, Simoni-Nieves A, Souza V, Miranda-Labra RU, Masso F, Roma MG, Gutiérrez-Ruiz MC, Bucio-Ortiz L, Gomez-Quiroz LE. Hepatocyte growth factor reverses cholemic nephropathy associated with α-naphthylisothiocyanate-induced cholestasis in mice. Life Sci 2022; 295:120423. [DOI: 10.1016/j.lfs.2022.120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
18
|
Tong G, Chen X, Lee J, Fan J, Li S, Zhu K, Hu Z, Mei L, Sui Y, Dong Y, Chen R, Jin Z, Zhou B, Li X, Wang X, Cong W, Huang P, Jin L. Fibroblast growth factor 18 attenuates liver fibrosis and HSCs activation via the SMO-LATS1-YAP pathway. Pharmacol Res 2022; 178:106139. [DOI: 10.1016/j.phrs.2022.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
|
19
|
Zheng LY, Zou X, Wang YL, Zou M, Ma F, Wang N, Li JW, Wang MS, Hung HY, Wang Q. Betulinic acid-nucleoside hybrid prevents acute alcohol -induced liver damage by promoting anti-oxidative stress and autophagy. Eur J Pharmacol 2022; 914:174686. [PMID: 34883073 DOI: 10.1016/j.ejphar.2021.174686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Alcoholic abuse is one of the most serious causes of liver diseases worldwide. Although detailed molecular pathogenesis of alcohol-induced liver damages remains elusive with intensive debates, it has been widely recognized that hepatic damage caused by free radicals generated from alcohol metabolism is one of the most critical factors for alcohol-induced liver diseases. Betulinic acid is a potent antioxidant with additional known pharmacological safety characteristics and minimal toxicity. However, poor solubility limited its usage. In this study, we assessed the efficacy of BAN, a betulinic acid and nucleoside hybrid with good water solubility, in reversing acute liver damages using an established alcohol overdose animal model. The results indicated that BAN is an extremely promising therapeutic agent against acute alcohol-induced liver damage. BAN effectively protects liver from alcohol damage by reducing serum ALT level by up to 47%, as well as liver oxidative stress indicated by significantly increased SOD, CAT, and GSH-Px levels. Moreover, hepatic FXR activation and a corresponding downstream anti-oxidative stress transcriptional cascade including Nrf2, HO-1, and NOQ1 induce the protective role of BAN. On the other hand, BAN administration also leads to increase cellular autophagy response, as indicated by the key ATG protein activation. We concluded that BAN, comparing with Betulinic acid, prevents acute alcohol-induced liver damages more effectively, with the dual mechanisms of neutralizing oxidative stress and promoting autophagy.
Collapse
Affiliation(s)
- Li-Yun Zheng
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Xi Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Yan-Li Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, China
| | - Min Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Fang Ma
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Ning Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Jia-Wen Li
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Ming-Sheng Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, China
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.
| | - Qiang Wang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou, China; High& New Technology Research Center, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
20
|
Chen B, Dong W, Shao T, Miao X, Guo Y, Liu X, Feng Y. A KDM4-DBC1-SIRT1 Axis Contributes to TGF-b Induced Mesenchymal Transition of Intestinal Epithelial Cells. Front Cell Dev Biol 2021; 9:697614. [PMID: 34631698 PMCID: PMC8493255 DOI: 10.3389/fcell.2021.697614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-β augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-β and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-β induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Yan M, Guo L, Yang Y, Zhang B, Hou Z, Gao Y, Gu H, Gong H. Glycyrrhetinic Acid Protects α-Naphthylisothiocyanate- Induced Cholestasis Through Regulating Transporters, Inflammation and Apoptosis. Front Pharmacol 2021; 12:701240. [PMID: 34630081 PMCID: PMC8497752 DOI: 10.3389/fphar.2021.701240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhetinic acid (GA), the active metabolic product of Glycyrrhizin (GL) that is the main ingredient of licorice, was reported to protect against α-naphthylisothiocyanate (ANIT)- induced cholestasis. However, its protective mechanism remains unclear. In our work, the cholestatic liver injury in mice was caused by ANIT and GA was used for the treatment. We assessed cholestatic liver injury specific indexes, histopathological changes, bile acid transporters, inflammation and apoptosis. The results of liver biochemical index and histopathological examination showed that GA markedly attenuated ANIT-induced liver injury. Mechanism research suggested that GA could activate the expression of farnesoid x receptor (FXR) and its downstream bile acids transporters Na+/taurocholate co-transporting polypeptide (NTCP), bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), as well as the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins MRP3, MRP4. These transporters play a vital role in mediating bile acid homeostasis in hepatocytes. Moreover, GA could significantly inhibit the ANIT-induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory pathway and the increase of tumor necrosis factor-α (TNF-α) concentration in serum. Also, GA protected against ANIT-induced mitochondrial apoptosis by regulating the expression of Bcl-2, Bax, cleaved caspase 3 and cleaved caspase 9. In conclusion, GA alleviates the hepatotoxicity caused by ANIT by regulating bile acids transporters, inflammation and apoptosis, which suggests that GA may be a potential therapeutic agent for cholestasis.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongmei Gu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Wang Q, Wang Y, Liu S, Sha X, Song X, Dai Y, Zhao M, Cai L, Xu K, Li J. Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE(-/-) mice. J Nanobiotechnology 2021; 19:222. [PMID: 34320994 PMCID: PMC8317354 DOI: 10.1186/s12951-021-00962-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Background Rupture of atherosclerotic plaque can cause acute malignant heart and cerebrovascular events, such as acute coronary heart disease, stroke and so on, which seriously threaten the safety of human life and property. Therefore, the early diagnosis and inhibition of atherosclerotic plaque progress still be a vital task. Results In this study, we presented the development of composite mesoporous silica nanoparticle (Ru(bpy)3@SiO2-mSiO2, CMSN)-based nanomedicines (NMs) (Ru(bpy)3@SiO2-mSiO2@SRT1720@AntiCD36, CMSN@SRT@Anti) for accurate diagnosis and treatment of atherosclerosis (AS). In vitro cell experiments showed that both RAW264.7 and oxidized low density lipoprotein (ox-LDL)-stimulated RAW264.7 cells could significantly uptake CMSN@SRT@Anti. Conversely, little fluorescence signal could be observed in CMSN@SRT group, showing the excellent targeting ability of CMSN@SRT@Anti to Class II scavenger receptor, CD36 on macrophage. Additionally, such fluorescence signal was significantly stronger in ox-LDL-stimulated RAW264.7 cells, which might benefit from the upregulated expression of CD36 on macrophages after ox-LDL treatment. For another, compared with free SRT1720, CMSN@SRT@Anti had a better and more significant effect on the inhibition of macrophage foaming process, which indicated that drug-carrying mesoporous silicon with targeting ability could enhance the efficacy of SRT1720. Animal experimental results showed that after the abdominal injection of CMSN@SRT@Anti, the aortic lesions of ApoE-/-mice could be observed with obvious and persistent fluorescence signals. After 4 weeks post-treatment, the serum total cholesterol, aortic plaque status and area were significantly improved in the mouse, and the effect was better than that in the free SRT1720 group or the CMSN@SRT group. Conclusions The designed CMSN@SRT@Anti with excellent biocompatibility, high-performance and superior atherosclerosis-targeting ability has great potential for accurate identification and targeted therapy of atherosclerotic diseases. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00962-w.
Collapse
Affiliation(s)
- Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Mingming Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
23
|
Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X. An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 2021; 92:107328. [PMID: 33412394 DOI: 10.1016/j.intimp.2020.107328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is one of the most common clinical symptom of liver diseases. If patients do not receive effective treatment, cholestasis can evolve into liver fibrosis, cirrhosis and ultimately liver failure requiring liver transplantation. Currently, only ursodeoxycholic acid, obeticholic acid and bezafibrate are FDA-approved drugs, thereby requiring a breakthrough in new mechanisms and therapeutic development. Inflammation is one of the common complications of cholestasis. Hepatic accumulation of toxic hydrophobic bile acids is a highly immunogenic process involving both resident and immigrating immune cells. And the resulting inflammation may further aggravate hepatocyte injury. Though, great investigations have been made in the immune responses during cholestasis, the relationship between immune responses and cholestasis remains unclear. Moreover, scarce reviews summarize the immune responses during cholestasis and the efficacy of therapies on immune response. The main purpose of this paper is to review the existing literature on dysfunctional immune response during cholestasis and the effect of treatment on immune response which may provide an insight for researchers and drug development.
Collapse
Affiliation(s)
- Mengzhi Zou
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aizhen Wang
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223002, PR China
| | - Jiajie Wei
- Department of Nursing, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng Cai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zixun Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xinzhi Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Yang T, Wang X, Zhou Y, Yu Q, Heng C, Yang H, Yuan Z, Miao Y, Chai Y, Wu Z, Sun L, Huang X, Liu B, Jiang Z, Zhang L. SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1-mediated AMPK signaling pathway. Cell Biol Toxicol 2021; 37:595-609. [PMID: 33400020 DOI: 10.1007/s10565-020-09567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Cholestatic liver injury, a group of diseases characterized with dysregulated bile acid (BA) homeostasis, was partly resulted from BA circulation disorders, which is commonly associated with the damage of hepatocyte barrier function. However, the underlying hepatocyte barrier-protective molecular mechanisms of cholestatic liver injury remain poorly understood. Interestingly, recent studies have shown that sphingosine-1-phosphate (S1P) participated in the process of cholestasis by activating its G protein-coupled receptors S1PRs, regaining the integrity of hepatocyte tight junctions (TJs). Here, we showed that SEW2871, a selective agonist of sphingosine-1-phosphate receptor 1(S1PR1), alleviated ANIT-induced TJs damage in 3D-cultured mice primary hepatocytes. Molecular mechanism studies indicated that AMPK signaling pathways was involved in TJs protection of SEW2871 in ANIT-induced hepatobiliary barrier function deficiency. AMPK antagonist compound C (CC) and agonist AICAR were all used to further identify the important role of AMPK signaling pathway in SEW2871's TJs protection of ANIT-treated mice primary hepatocytes. The in vivo data showed that SEW2871 ameliorated ANIT-induced cholestatic hepatotoxicity. Further protection mechanism research demonstrated that SEW2871 not only regained hepatocyte TJs by the upregulated S1PR1 via AMPK signaling pathway, but also recovered hepatobiliary barrier function deficiency, which was verified by the restored BA homeostasis by using of high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results revealed that the increased expression of S1PR1 induced by SEW2871 could ameliorate ANIT-induced cholestatic liver injury through improving liver barrier function via AMPK signaling and subsequently reversed the disrupted BA homeostasis. Our study provided strong evidence that S1PR1 may be a promising therapeutic approach for treating intrahepatic cholestatic liver injury. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiongna Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziteng Wu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixin Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Picroside II alleviates liver injury induced by alpha-naphthylisothiocyanate through AMPK-FXR pathway. Toxicol Appl Pharmacol 2020; 408:115248. [PMID: 32976922 DOI: 10.1016/j.taap.2020.115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.
Collapse
|
26
|
Sanjel B, Shim WS. Recent advances in understanding the molecular mechanisms of cholestatic pruritus: A review. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165958. [PMID: 32896605 DOI: 10.1016/j.bbadis.2020.165958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Cholestasis, a condition characterized by an abnormal decrease in bile flow, is accompanied by various symptoms such as pruritus. Although cholestatic pruritus is a prominent condition, its precise mechanisms have largely been elusive. Recently, advancements have been made for understanding the etiology and pathogenesis of cholestatic pruritus. The current review therefore focuses on summarizing the overall progress made in the elucidation of its molecular mechanisms. We have reviewed the available animal models on cholestasis to compare the differences between them, characterized potential pruritogens involved in cholestatic pruritus, and have summarized the receptor and ion channels implicated in the condition. Finally, we have discussed the available treatment options for alleviation of cholestatic pruritus. As our understanding of the mechanisms of cholestatic pruritus deepens, novel strategies to cure this condition are awaited.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
27
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, Shao T, Song Q, Zhu F, Zhang L, Jiang M, Zhou Y, Barve S, Zhang X, McClain CJ, Feng W. Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology 2020; 71:2050-2066. [PMID: 31571251 PMCID: PMC7317518 DOI: 10.1002/hep.30975] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholestatic liver disease is characterized by gut dysbiosis and excessive toxic hepatic bile acids (BAs). Modification of gut microbiota and repression of BA synthesis are potential strategies for the treatment of cholestatic liver disease. The purpose of this study was to examine the effects and to understand the mechanisms of the probiotic Lactobacillus rhamnosus GG (LGG) on hepatic BA synthesis, liver injury, and fibrosis in bile duct ligation (BDL) and multidrug resistance protein 2 knockout (Mdr2-/- ) mice. APPROACH AND RESULTS Global and intestine-specific farnesoid X receptor (FXR) inhibitors were used to dissect the role of FXR. LGG treatment significantly attenuated liver inflammation, injury, and fibrosis with a significant reduction of hepatic BAs in BDL mice. Hepatic concentration of taurine-β-muricholic acid (T-βMCA), an FXR antagonist, was markedly increased in BDL mice and reduced in LGG-treated mice, while chenodeoxycholic acid, an FXR agonist, was decreased in BDL mice and normalized in LGG-treated mice. LGG treatment significantly increased the expression of serum and ileum fibroblast growth factor 15 (FGF-15) and subsequently reduced hepatic cholesterol 7α-hydroxylase and BA synthesis in BDL and Mdr2-/- mice. At the molecular level, these changes were reversed by global and intestine-specific FXR inhibitors in BDL mice. In addition, LGG treatment altered gut microbiota, which was associated with increased BA deconjugation and increased fecal and urine BA excretion in both BDL and Mdr2-/- mice. In vitro studies showed that LGG suppressed the inhibitory effect of T-βMCA on FXR and FGF-19 expression in Caco-2 cells. CONCLUSION LGG supplementation decreases hepatic BA by increasing intestinal FXR-FGF-15 signaling pathway-mediated suppression of BA de novo synthesis and enhances BA excretion, which prevents excessive BA-induced liver injury and fibrosis in mice.
Collapse
Affiliation(s)
- Yunhuan Liu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Kefei Chen
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Liver Surgery and Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
| | - Fengyuan Li
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
| | - Zelin Gu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Qi Liu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Liqing He
- Department of ChemistryUniversity of LouisvilleLouisvilleKY
| | - Tuo Shao
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Qing Song
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fenxia Zhu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lihua Zhang
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Mengwei Jiang
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
| | - Yun Zhou
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Shirish Barve
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| | - Xiang Zhang
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Department of ChemistryUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| | - Craig J. McClain
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
- Robley Rex VA Medical CenterLouisvilleKY
| | - Wenke Feng
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| |
Collapse
|
29
|
Wang X, Wang G, Qu J, Yuan Z, Pan R, Li K. Calcipotriol Inhibits NLRP3 Signal Through YAP1 Activation to Alleviate Cholestatic Liver Injury and Fibrosis. Front Pharmacol 2020; 11:200. [PMID: 32296329 PMCID: PMC7136474 DOI: 10.3389/fphar.2020.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is common in multiple clinical circumstances. The NOD-like receptor protein 3 (NLRP3) inflammasome pathway has been demonstrated to play an important role in liver injury and fibrosis induced by cholestasis. We previously proved that MCC950, a selective NLRP3 inhibitor, alleviates liver fibrosis and injury in experimental liver cholestasis induced by bile-duct ligation (BDL) in mice. Herein, we investigate the role of calcipotriol, a potent vitamin D receptor agonist, in experimental liver cholestasis, test its therapeutic efficacy, and explore its potential protective mechanism. C57BL/6 mice were made to undergo BDL or fed the 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to establish two classic cholestatic models. Calcipotriol was administered intraperitoneally to these mice daily. Serum makers of liver damage and integrity, liver histological changes, levels of liver pro-fibrotic markers, bile acid synthetases and transporters were measured in vivo. The underlying mechanism by which calcipotriol alleviates cholestatic liver injury and fibrosis was further investigated. The results of the current study demonstrated that calcipotriol supplement significantly alleviate cholestatic liver injury and fibrosis. Moreover, calcipotriol supplement markedly inhibited NLRP3 inflammasome pathway activation to alleviate liver injury and fibrosis in vivo and inhibit hepatic stellate cell (HSC) activation in vitro. In addition, VDR agonist calcipotriol exert inhibitory effect on NLRP3 inflammasome activation through activating yes-associated protein 1 (YAP1). In conclusion, our findings proved that calcipotriol suppressed the NLRP3 signal by activating YAP1 to alleviate liver injury and retard fibrogenesis in cholestasis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiyang Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Second Military Medical University, Shanghai, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruogu Pan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Li Y, Xi Y, Tao G, Xu G, Yang Z, Fu X, Liang Y, Qian J, Cui Y, Jiang T. Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. Int Immunopharmacol 2020; 83:106386. [PMID: 32193100 DOI: 10.1016/j.intimp.2020.106386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
This report sought to establish the mechanistic role of sirtuin-1 (Sirt1), a NAD+-dependent deacetylase in the modulation of primary biliary cholangitis (PBC) pathogenesis. 64 PBC patients (diagnosed based on practice guidelines for American Association for the Study of Liver Diseases) and 60 healthy controls were included in this study. Clinically, the mRNA expression level of Sirt1 in macrophages differentiated from peripheral blood mononuclear cells (PBMCs) of PBC subjects substantially decreased when compared with the healthy controls but not in other Sirt family genes (Sirt2-7). Consistent with clinical results, a PBC murine model showed that levels of Sirt1 significantly decreased in the liver and Kupffer cells of mice treated with polyinosinic/polycytidylic acid (poly I:C) for 16 weeks. A TAK1 inhibitor (NG25) prevented the poly I:C-induced Sirt1 protein level decreasing in Kupffer cells but not MAPK inhibitor. Sirt1 activators resveratrol (RSV) and SRT1720 (SRT) ameliorated poly I:C-induced hepatic injury observed via histopathologic analysis and decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the PBC murine model. Furthermore, Sirt1 activators significantly reduced pro-inflammatory cytokines levels such as interleukin-1 beta (IL-1β), IL-6, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in serum in poly I:C-induced mice. In addition, Sirt1 activators significantly inhibited the phosphorylated and acetylated levels of the RelA/p65 subunit of the nuclear transcription factor (NF-κB) but not the interferon regulatory factor (IRF) 3 in poly I:C-injured mice livers. Significantly, RSV improved the interaction between Sirt1 and p65, which may contribute to the decreased activity of NF-κB. In summary, the Sirt1 signaling pathway plays an essential role in the development of PBC and this may represent a novel approach and target for the treatment of PBC.
Collapse
Affiliation(s)
- Yong Li
- Department of Laboratory Medicine, First People's Hospital of Taicang, Taicang Hospital Affiliated to Suzhou University, Taicang 215400, Jiangsu, China
| | - Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guohua Tao
- Department of Laboratory Medicine, First People's Hospital of Nantong, 226001 Jiangsu, China
| | - Guohua Xu
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Zhejiang, China
| | - Xingli Fu
- Jiangsu University Health Science Center, Zhenjiang, Jiangsu, China
| | - Yan Liang
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianping Qian
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Yanhong Cui
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China.
| |
Collapse
|
31
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
32
|
Lin H, Zhou C, Hou Y, Li Q, Qiao G, Wang Y, Huang Z, Niu J. Paracrine Fibroblast Growth Factor 1 Functions as Potent Therapeutic Agent for Intrahepatic Cholestasis by Downregulating Synthesis of Bile Acid. Front Pharmacol 2019; 10:1515. [PMID: 31920680 PMCID: PMC6933012 DOI: 10.3389/fphar.2019.01515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine fibroblast growth factor (FGF) 19 has been shown to be capable of maintaining bile acid (BA) homeostasis and thus hold promise to be a potential therapeutic agent for cholestasis liver disease. However, whether paracrine FGFs possess this BA regulatory activity remains to be determined. In our study, we identified that paracrine fibroblast growth factor 1 (FGF1) was selectively downregulated in the liver of alpha naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis mice, suggesting a pathological relevance of this paracrine FGF with abnormal BA metabolism. Therefore, we evaluated the effects of engineered FGF1 mutant - FGF1ΔHBS on the metabolism of hepatic BA and found that this protein showed a more potent inhibitory effect of BA biosynthesis than FGF19 without any hepatic mitogenic activity. Moreover, the chronic administration of FGF1ΔHBS protected liver against ANIT-induced injury by reducing hepatic BA accumulation. Taken together, these data suggest that FGF1ΔHBS may function as a potent therapeutic agent for intrahepatic cholestasis liver disease.
Collapse
Affiliation(s)
- Huan Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Chuanren Zhou
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yushu Hou
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qi Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Guanting Qiao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jianlou Niu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Wu JS, Liu Q, Fang SH, Liu X, Zheng M, Wang TM, Zhang H, Liu P, Zhou H, Ma YM. Quantitative Proteomics Reveals the Protective Effects of Huangqi Decoction Against Acute Cholestatic Liver Injury by Inhibiting the NF-κB/IL-6/STAT3 Signaling Pathway. J Proteome Res 2019; 19:677-687. [DOI: 10.1021/acs.jproteome.9b00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Qian Liu
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Shan-Hua Fang
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | | |
Collapse
|
34
|
Shearn CT, Fennimore B, Orlicky DJ, Gao YR, Saba LM, Battista KD, Aivazidis S, Assiri M, Harris PS, Michel C, Merrill GF, Schmidt EE, Colgan SP, Petersen DR. Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med 2019; 143:101-114. [PMID: 31377417 PMCID: PMC6848778 DOI: 10.1016/j.freeradbiomed.2019.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/30/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023]
Abstract
Cholangiopathies such as primary sclerosing cholangitis (PSC) are chronic liver diseases characterized by increased cholestasis, biliary inflammation and oxidative stress. The objective of this study was to elucidate the impact of cholestatic injury on oxidative stress-related factors. Using hepatic tissue and whole cell liver extracts (LE) isolated from 11-week old C57BL/6J (WT) and Mdr2KO mice, inflammation and oxidative stress was assessed. Concurrently, specific targets of carbonylation were assessed in LE prepared from murine groups as well as from normal and human patients with end-stage PSC. Identified carbonylated proteins were further evaluated using bioinformatics analyses. Picrosirius red staining revealed extensive fibrosis in Mdr2KO liver, and fibrosis colocalized with increased periportal inflammatory cells and both acrolein and 4-HNE staining. Western blot analysis revealed elevated periportal expression of antioxidant proteins Cbr3, GSTμ, Prdx5, TrxR1 and HO-1 but not GCLC, GSTπ or catalase in the Mdr2KO group when compared to WT. From immunohistochemical analysis, increased periportal reactive aldehyde production colocalized with elevated staining of Cbr3, GSTμ and TrxR1 but surprisingly not with Nrf2. Mass spectrometric analysis revealed an increase in carbonylated proteins in the Mdr2KO and PSC groups compared to respective controls. Gene ontology and KEGG pathway analysis of carbonylated proteins revealed a propensity for increased carbonylation of proteins broadly involved in metabolic processes as well more specifically in Rab-mediated signal transduction, lysosomes and the large ribosomal subunit in human PSC. Western blot analysis of Rab-GTPase expression revealed no significant differences in Mdr2KO mice when compared to WT livers. In contrast, PSC tissue exhibited decreased levels of Rabs 4, 5 and increased abundance of Rabs 6 and 9a protein. Results herein reveal that cholestasis induces stage-dependent increases in periportal oxidative stress responses and protein carbonylation, potentially contributing to pathogenesis in Mdr2KO. Furthermore, during early stage cholestasis, there is cell-specific upregulation of some but not all, antioxidant proteins.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.
| | - Blair Fennimore
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Yue R Gao
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Kayla D Battista
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Mohammed Assiri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvalis, OR, 97331, United States
| | - Edward E Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States
| | - Sean P Colgan
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
35
|
Liu X, Zhao H, Luo C, Du D, Huang J, Ming Q, Jin F, Wang D, Huang W. Acetaminophen Responsive miR-19b Modulates SIRT1/Nrf2 Signaling Pathway in Drug-Induced Hepatotoxicity. Toxicol Sci 2019; 170:476-488. [PMID: 31077331 DOI: 10.1093/toxsci/kfz095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractPrevious studies suggest that activation of SIRT1 protects liver from acetaminophen (APAP)-induced injury; however, the detailed mechanism of SIRT1 modulation in this process is still incomplete. Therefore, this study was to investigate the pathophysiological role of SIRT1 in APAP-mediated hepatotoxicity. We found that SIRT1 mRNA and protein were markedly upregulated in human LO2 cells and mouse liver upon APAP exposure. In vitro, the specific knockdown of SIRT1 expression ultimately aggravated APAP-evoked cellular antioxidant defense in LO2 cells. Moreover, lentivirus-mediated knockdown of hepatic SIRT1 expression exacerbated APAP-induced oxidative stress and liver injury, especially reduction of Nrf2 and subsequent downregulation of several antioxidant genes. Intriguingly, 30 mg/kg SRT1720, the specific SIRT1 activator, which greatly enhanced Nrf2 expression and antioxidant defense, and then eventually reversed APAP-induced hepatic liver injury in mice. Furthermore, APAP responsive miR-19b played an important role in regulating SIRT1 expression, whereas overexpression miR-19b largely abolished the induction of SIRT1 by APAP in vitro and in vivo. Specific SIRT1 3′-UTR mutation, which disrupted the interaction of miRNA-3′UTR, and successfully abrogated the modulation by miR-19b. Notably, hepatic miR-19b overexpression worsened the APAP-induced hepatotoxicity. In general, our results support the notion that the strong elevation of SIRT1 by APAP responsive miR-19b may represent a compensatory mechanism to protect liver against the drug-induced damage, at least in part by enhancing Nrf2-mediated antioxidant capacity in the liver.
Collapse
Affiliation(s)
- Xing Liu
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Hongqian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Chunyan Luo
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Debin Du
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Jinlong Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Quan Ming
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Fen Jin
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Weifeng Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| |
Collapse
|
36
|
Zhao Q, Liu F, Cheng Y, Xiao XR, Hu DD, Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, Gonzalez FJ, Li F. Celastrol Protects From Cholestatic Liver Injury Through Modulation of SIRT1-FXR Signaling. Mol Cell Proteomics 2019; 18:520-533. [PMID: 30617157 PMCID: PMC6398203 DOI: 10.1074/mcp.ra118.000817] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/03/2018] [Indexed: 12/24/2022] Open
Abstract
Celastrol, derived from the roots of the Tripterygium Wilfordi, shows a striking effect on obesity. In the present study, the role of celastrol in cholestasis was investigated using metabolomics and transcriptomics. Celastrol treatment significantly alleviated cholestatic liver injury in mice induced by α-naphthyl isothiocyanate (ANIT) and thioacetamide (TAA). Celastrol was found to activate sirtuin 1 (SIRT1), increase farnesoid X receptor (FXR) signaling and inhibit nuclear factor-kappa B and P53 signaling. The protective role of celastrol in cholestatic liver injury was diminished in mice on co-administration of SIRT1 inhibitors. Further, the effects of celastrol on cholestatic liver injury were dramatically decreased in Fxr-null mice, suggesting that the SIRT1-FXR signaling pathway mediates the protective effects of celastrol. These observations demonstrated a novel role for celastrol in protecting against cholestatic liver injury through modulation of the SIRT1 and FXR.
Collapse
Affiliation(s)
- Qi Zhao
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- §University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Cheng
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Rong Xiao
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dan-Dan Hu
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-Mei Tang
- ¶Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming 650033, China;
| | - Wei-Min Bao
- ‖Department of General Surgery, Yunnan Provincial 1st People's Hospital, Kunming 650032, China
| | - Jin-Hui Yang
- ¶Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming 650033, China
| | - Tao Jiang
- ¶Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming 650033, China
| | - Jia-Peng Hu
- **Clinical Laboratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Frank J Gonzalez
- ‡‡Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Fei Li
- From the ‡State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- §§State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
37
|
Andrographolide impairs alpha-naphthylisothiocyanate-induced cholestatic liver injury in vivo. J Nat Med 2019; 73:388-396. [DOI: 10.1007/s11418-018-01275-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
38
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
39
|
18β-Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacol Sin 2018; 39:1865-1873. [PMID: 30061734 DOI: 10.1038/s41401-018-0110-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023]
Abstract
Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18β-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.
Collapse
|
40
|
Qu X, Zhang Y, Zhang S, Zhai J, Gao H, Tao L, Song Y. Dysregulation of BSEP and MRP2 May Play an Important Role in Isoniazid-Induced Liver Injury via the SIRT1/FXR Pathway in Rats and HepG2 Cells. Biol Pharm Bull 2018; 41:1211-1218. [DOI: 10.1248/bpb.b18-00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University
| | - Sixi Zhang
- Department of Pharmacy, The First Hospital of Jilin University
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University
| |
Collapse
|
41
|
Dong L, Han X, Tao X, Xu L, Xu Y, Fang L, Yin L, Qi Y, Li H, Peng J. Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling. Foods 2018; 7:88. [PMID: 29890650 PMCID: PMC6025249 DOI: 10.3390/foods7060088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs against lipopolysaccharide (LPS)-induced liver injury. In this paper, liver injury in mice was induced by LPS, and R. Laevigata extract was intragastrically administered to the mice for 7 days. Biochemical parameters in serum and liver tissue were examined, and pathological changes were observed by transmission electron microscopy, hematoxylin and eosin (H&E) and Oil Red O staining. The results showed that the TFs markedly reduced serum ALT (alanine transferase), AST (aspartate transaminase), TG (total triglyceride), and TC (total cholesterol) levels and relative liver weights and improved liver pathological changes. In addition, the TFs markedly decreased tissue MDA (malondialdehyde) level and increased the levels of SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase). A mechanistic study showed that the TFs significantly increased the expression levels of Nrf2 (nuclear erythroid factor2-related factor 2), HO-1 (heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase (quinone 1), GCLC (glutamate-cysteine ligase catalytic subunit), and GCLM (glutamate-cysteine ligase regulatory subunit) and decreased Keap1 (Kelch-like ECH-associated protein 1) level by activating FXR (farnesoid X receptor) against oxidative stress. Furthermore, the TFs markedly suppressed the nuclear translocation of NF-κB (nuclear factor-kappa B) and subsequently decreased the expression levels of IL (interleukin)-1β, IL-6, HMGB-1 (high -mobility group box 1), and COX-2 (cyclooxygenase-2) by activating FXR and FOXO3a (forkhead box O3) against inflammation. Besides, the TFs obviously reduced the expression levels of SREBP-1c (sterol regulatory element-binding proteins-1c), ACC1 (acetyl-CoA carboxylase-1), FASN (fatty acid synthase), and SCD1 (stearoyl-coenzyme A desaturase 1), and improved CPT1 (carnitine palmitoyltransferase 1) level by activating FXR to regulate lipid metabolism. Our results suggest that TFs exhibited protective effect against LPS-induced liver injury by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism, and should be developed as an effective food and healthcare product for the therapy of liver injury in the future.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
42
|
The Ethanol Extract of Licorice (Glycyrrhiza uralensis) Protects against Triptolide-Induced Oxidative Stress through Activation of Nrf2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2752389. [PMID: 29234377 PMCID: PMC5634606 DOI: 10.1155/2017/2752389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 01/21/2023]
Abstract
To investigate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2) in licorice ethanol extract (LEE) against triptolide- (TP-) induced hepatotoxicity, HepG2 cells were exposed to LEE (30, 60, and 90 mg·L−1) for 12 h and then treated with TP (50 nM) for 24 h. Besides, an acute liver injury model was established in ICR mice by a single dose of TP (1.0 mg·kg−1, i.p.). Relevant oxidant and antioxidant mediators were analyzed. TP led to an obvious oxidative stress as evidenced by increasing levels of ROS and decreasing GSH contents in HepG2 cells. In vitro results were likely to hold true in in vivo experiments. LEE protected against TP-induced oxidative stress in both in vitro and in vivo conditions. Furthermore, the decreased level of Nrf2 in the TP-treated group was observed. The mRNA levels of downstream genes decreased as well in ICR mice liver, whereas they increased in HepG2 cells. In contrast, LEE pretreatment significantly increased the level of Nrf2 and its downstream genes. LEE protects against TP-induced oxidative stress partly via the activation of Nrf2 pathway.
Collapse
|