1
|
Yang X, Ming Y, Zhou Z, Zhou X, Rao C. Identification of key immune genes of drug-induced liver injury induced by tolvaptan based on bioinformatics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04084-0. [PMID: 40178603 DOI: 10.1007/s00210-025-04084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Drug-induced liver injury (DILI) poses critical challenges in preclinical drug development and is a primary reason for candidate drug attrition. The incidence of DILI has risen in recent years. While immune-related genes (IRGs) are crucial in immune infiltration, their expression and regulatory mechanisms in tolvaptan-induced DILI remain largely uncharacterized. RNA sequencing data related to DILI and associated clinical data were sourced from the Gene Expression Omnibus (GEO), and IRGs were obtained from the ImmPort database. Differentially expressed genes (DEGs) from DILI and IRGs were intersected to identify differentially expressed immune-related genes (DEIRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to elucidate the biological functions of DEIRGs. In addition, a protein-protein interaction (PPI) network of DEIRGs was constructed. Immunocytes and immune regulation analyses were conducted using the CIBERSORT tool. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic accuracy of individual DEIRGs. Networks of transcription factor and microRNA co-regulation were constructed using the NetworkAnalyst database. The expression of DEIRGs in DILI samples was quantified with RT-qPCR. From GSE99878, 204 DEGs were identified, with 23 matching IRGs exhibiting significant expression differences in 17 DEIRGs. The ROC curve analysis suggested satisfactory diagnostic values for six DEIRGs. The potential gene regulatory network comprised 214 microRNAs, 257 transcription factors, and 23 DEIRGs. Finally, RT-qPCR confirmed the expression levels of nine DEIRGs, aligning with public database results. The study revealed numerous immune-related biomarkers, verifying expression in five pivotal genes (ICAM1, CXCL10, IGF1, CX3CL1, and EGFR) and highlighting four genes with notable diagnostic potential (TNFAIP3, BDNF, NR1D2, and PPARA). Additionally, it explored the roles of key biomarkers in inflammatory responses, relevant signaling pathways, and interaction networks, offering new insights into DILI diagnosis, mechanistic understanding, and treatment strategies.
Collapse
Affiliation(s)
- Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Yuxuan Ming
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu Sichuan, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu Sichuan, 611137, China.
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu City, 611137, Sichuan, China.
| |
Collapse
|
2
|
Shinozawa T, Miyamoto K, Baker KS, Faber SC, Flores R, Uetrecht J, von Hehn C, Yukawa T, Tohyama K, Kadali H, von Grotthuss M, Sudo Y, Smith EN, Diogo D, Zhu AZX, Dragan Y, Cebers G, Wagoner MP. TAK-994 mechanistic investigation into drug-induced liver injury. Toxicol Sci 2025; 204:143-153. [PMID: 39786842 PMCID: PMC11939078 DOI: 10.1093/toxsci/kfaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding. Hepatic liabilities were absent in rat and nonhuman primate safety studies, however, murine studies initiated during clinical trials revealed hepatic single-cell necrosis following cytochrome P450 induction at clinically relevant doses. Hepatic cell culture experiments uncovered wide margins to known mechanisms of intrinsic DILI, including cytotoxicity (>100× Cmax/IC50), mitochondrial toxicity (>100× Cmax/IC50), and bile salt efflux pump inhibition (>20× Css, avg/IC50). A potential covalent binding liability was uncovered with TAK-994 following hepatic metabolism consistent with idiosyncratic DILI and the delayed-onset clinical toxicity. Although idiosyncratic DILI is challenging to detect preclinically, reductions in total daily dose and covalent binding can reduce the covalent body binding burden and, subsequently, the clinical incidence of idiosyncratic DILI.
Collapse
Affiliation(s)
| | - Kazumasa Miyamoto
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kevin S Baker
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Samantha C Faber
- Takeda Development Center Americas, Inc, San Diego, CA 92121, United States
| | | | - Jack Uetrecht
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Christian von Hehn
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Yukawa
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kimio Tohyama
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Harisha Kadali
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | | | - Yusuke Sudo
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Erin N Smith
- Takeda Development Center Americas, Inc, San Diego, CA 92121, United States
| | - Dorothée Diogo
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Andy Z X Zhu
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Yvonne Dragan
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Gvido Cebers
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Matthew P Wagoner
- Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| |
Collapse
|
3
|
He C, Mao Y, Wan H. In-depth understanding of the structure-based reactive metabolite formation of organic functional groups. Drug Metab Rev 2025:1-43. [PMID: 40008940 DOI: 10.1080/03602532.2025.2472076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route, and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aid in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hong Wan
- WHDex Consulting AB, Mölndal, Sweden
| |
Collapse
|
4
|
Teschke R. Idiosyncratic Hepatocellular Drug-Induced Liver Injury by Flucloxacillin with Evidence Based on Roussel Uclaf Causality Assessment Method and HLA B*57:01 Genotype: From Metabolic CYP 3A4/3A7 to Immune Mechanisms. Biomedicines 2024; 12:2208. [PMID: 39457521 PMCID: PMC11504411 DOI: 10.3390/biomedicines12102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) by flucloxacillin presents as both cholestatic and hepatocellular injury. Its mechanistic steps are explored in the present analysis as limited data exist on the cascade of events leading to iDILI in patients with an established diagnosis assessed for causality by the Roussel Uclaf Causality Assessment Method (RUCAM). Studies with human liver microsomes showed that flucloxacillin is a substrate of cytochrome P450 (CYP) with ist preferred isoforms CYP 3A4/3A7 that toxified flucloxacillin toward 5'-hydroxymethylflucloxacillin, which was cytotoxic to human biliary epithelial cell cultures, simulating human cholestatic injury. This provided evidence for a restricted role of the metabolic CYP-dependent hypothesis. In contrast, 5'-hydroxymethylflucloxacillin generated metabolically via CYP 3A4/3A7 was not cytotoxic to human hepatocytes due to missing genetic host features and a lack of non-parenchymal cells, including immune cells, which commonly surround the hepatocytes in the intact liver in abundance. This indicated a mechanistic gap regarding the clinical hepatocellular iDILI, now closed by additional studies and clinical evidence based on HLA B*57:01-positive patients with iDILI by flucloxacillin and a verified diagnosis by the RUCAM. Naïve T-cells from volunteers expressing HLA B*57:01 activated by flucloxacillin when the drug antigen was presented by dendritic cells provided the immunological basis for hepatocellular iDILI caused by flucloxacillin. HLA B*57:01-restricted activation of drug-specific T-cells caused covalent binding of flucloxacillin to albumin acting as a hapten. Following drug stimulation, T-cell clones expressing CCR4 and CCR9 migrated toward CCL17 and CCL25 and secreted interferon-γ and cytokines. In conclusion, cholestatic injury can be explained metabolically, while hepatocellular injury requires both metabolic and immune activation.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181-21859; Fax: +49-6181-2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Cho T, Hayes A, Henderson JT, Uetrecht J. The use of PD-1 functional knockout rats to study idiosyncratic adverse reactions to nevirapine. Toxicol Sci 2024; 200:382-393. [PMID: 38767978 DOI: 10.1093/toxsci/kfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Idiosyncratic drug reactions (IDRs) are associated with significant patient morbidity/mortality and lead to considerable drug candidate attrition in drug development. Their idiosyncratic nature makes the study of IDRs difficult. In particular, nevirapine is associated with a relatively high risk of serious skin rash and liver injury. We previously found that nevirapine causes a similar skin rash in female Brown Norway rats, but these animals do not develop significant liver injury. Programmed cell death protein-1 (PD-1) is an immune checkpoint involved in immune tolerance, and anti-PD-1 antibodies have been used to treat cancer. However, they increase the risk of liver injury caused by co-administered drugs. We found that PD-1-/- mice are more susceptible to drug-induced liver injury, but PD-1-/- mice are not a good model for all drugs. In particular, they do not develop a skin rash when treated with nevirapine, at least in part because they lack the sulfotransferase in their skin that forms the reactive metabolite responsible for the rash. Therefore, we developed a PD-1 mutant (PD-1m/m) rat, with an excision in the ligand-binding domain of PD-1, to test whether nevirapine would cause a more serious skin rash in these animals. The PD-1m/m rat was based on a Sprague Dawley background, which has a lower incidence of skin rash than Brown Norway rats. The treated PD-1m/m rats developed more severe liver injury than PD-1-/- mice, but in contrast to expectations, they did not develop a skin rash. Functional knockouts provide a unique tool to study the mechanisms of IDRs.
Collapse
Affiliation(s)
- Tiffany Cho
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Anthony Hayes
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey T Henderson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
6
|
Teschke R, Danan G. Human Leucocyte Antigen Genetics in Idiosyncratic Drug-Induced Liver Injury with Evidence Based on the Roussel Uclaf Causality Assessment Method. MEDICINES (BASEL, SWITZERLAND) 2024; 11:9. [PMID: 38667507 PMCID: PMC11052120 DOI: 10.3390/medicines11040009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The human leucocyte antigen (HLA) allele variability was studied in cohorts of patients with idiosyncratic drug-induced liver injury (iDILI). Some reports showed an association between HLA genetics and iDILI, proposing HLA alleles as a potential risk factor for the liver injury. However, the strength of such assumptions heavily depends on the quality of the iDILI diagnosis, calling for a thorough analysis. Using the PubMed database and Google Science, a total of 25 reports of case series or single cases were retrieved using the terms HLA genes and iDILI. It turned out that in 10/25 reports (40%), HLA genetics were determined in iDILI cases, for which no causality assessment method (CAM) was used or a non-validated tool was applied, meaning the findings were based on subjective opinion, providing disputable results and hence not scoring individual key elements. By contrast, in most iDILI reports (60%), the Roussel Uclaf Causality Assessment Method (RUCAM) was applied, which is the diagnostic algorithm preferred worldwide to assess causality in iDILI cases and represents a quantitative, objective tool that has been well validated by both internal and external DILI experts. The RUCAM provided evidence-based results concerning liver injury by 1 drug class (antituberculotics + antiretrovirals) and 19 different drugs, comprising 900 iDILI cases. Among the top-ranking drugs were amoxicillin-clavulanate (290 cases, HLA A*02:01 or HLA A*30:02), followed by flucloxacillin (255 cases, HLA B*57:01), trimethoprim-sulfamethoxazole (86 cases, HLA B*14:01 or HLA B*14:02), methimazole (40 cases, HLA C*03:02), carbamazepine (29 cases, HLA A*31:01), and nitrofurantoin (26 cases, HLA A*33:01). In conclusion, the HLA genetics in 900 idiosyncratic drug-induced liver injury cases with evidence based on the RUCAM are available for studying the mechanistic steps leading to the injury, including metabolic factors through cytochrome P450 isoforms and processes that activate the innate immune system to the adaptive immune system.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue Des Ormeaux, 75020 Paris, France;
| |
Collapse
|
7
|
Roux S, Cherradi S, Duong HT. Exploiting the predictive power of educated spheroids to detect immune-mediated idiosyncratic drug-induced liver injury: the case of troglitazone. Front Pharmacol 2024; 15:1378371. [PMID: 38659594 PMCID: PMC11039894 DOI: 10.3389/fphar.2024.1378371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a major concern in drug development because its occurrence is unpredictable. Presently, iDILI prediction is a challenge, and cell toxicity is observed only at concentrations that are much higher than the therapeutic doses in preclinical models. Applying a proprietary cell educating technology, we developed a person-dependent spheroid system that contains autologous educated immune cells that can detect iDILI risk at therapeutic concentrations. Integrating this system into a high-throughput screening platform will help pharmaceutical companies accurately detect the iDILI risk of new molecules de-risking drug development.
Collapse
Affiliation(s)
| | | | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| |
Collapse
|
8
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 PMCID: PMC7617395 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Huang R, Cai Y, He Y, Yu Z, Zhao L, Wang T, Shangguan X, Zhao Y, Chen Z, Chen Y, Zhang C. Predictive Model of Oxaliplatin-induced Liver Injury Based on Artificial Neural Network and Logistic Regression. J Clin Transl Hepatol 2023; 11:1455-1464. [PMID: 38161498 PMCID: PMC10752815 DOI: 10.14218/jcth.2023.00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND AIMS Identifying potential high-risk groups of oxaliplatin-induced liver injury (OILI) is valuable, but tools are lacking. So artificial neural network (ANN) and logistic regression (LR) models will be developed to predict the risk of OILI. METHODS The medical information of patients treated with oxaliplatin between May and November 2016 at 10 hospitals was collected prospectively. We used the updated Roussel Uclaf causality assessment method (RUCAM) to identify cases of OILI and summarized the patient and medication characteristics. Furthermore, the ANN and LR models for predicting the risk of OILI were developed and evaluated. RESULTS The incidence of OILI was 3.65%. The median RUCAM score with interquartile range was 6 (4, 9). The ANN model performed similarly to the LR model in sensitivity, specificity, and accuracy. In discrimination, the area under the curve of the ANN model was larger (0.920>0.833, p=0.019). In calibration, the ANN model was slightly improved. The important predictors of both models overlapped partially, including age, chemotherapy regimens and cycles, single and total dose of OXA, glucocorticoid drugs, and antihistamine drugs. CONCLUSIONS When the discriminative and calibration ability was given priority, the ANN model outperformed the LR model in predicting the risk of OILI. Other chemotherapy drugs in oxaliplatin-based chemotherapy regimens could have different degrees of impact on OILI. We suspected that OILI may be idiosyncratic, and chemotherapy dose factors may be weakly correlated. Decision making on prophylactic medications needs to be carefully considered, and the actual preventive effect needed to be supported by more evidence.
Collapse
Affiliation(s)
- Rui Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanxuan Cai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yisheng He
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, Guangdong, China
| | - Zaoqin Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhao
- Hubei Center for Adverse Drug Reaction/Adverse Drug Event Monitoring, Wuhan, Hubei, China
| | - Tao Wang
- National Center for Adverse Drug Reaction Monitoring, Beijing, China
| | - Xiaofang Shangguan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhang Zhao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zherui Chen
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, China
| | - Yunzhou Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Ogese MO, Lister A, Farrell L, Gardner J, Kafu L, Ali SE, Gibson A, Hillegas A, Meng X, Pirmohamed M, Williams GS, Sakatis MZ, Naisbitt DJ. A blinded in vitro analysis of the intrinsic immunogenicity of hepatotoxic drugs: implications for preclinical risk assessment. Toxicol Sci 2023; 197:38-52. [PMID: 37788119 PMCID: PMC10734620 DOI: 10.1093/toxsci/kfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.
Collapse
Affiliation(s)
- Monday O Ogese
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
- Development Science, UCB Biopharma, Slough, Berkshire SL1 3WE, UK
| | - Adam Lister
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Liam Farrell
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Joshua Gardner
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Laila Kafu
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Serat-E Ali
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Aimee Hillegas
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, Collegeville, Pennsylvania, USA
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Geoffrey S Williams
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Melanie Z Sakatis
- Global Investigative Safety, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
11
|
Teschke R, Danan G. Advances in Idiosyncratic Drug-Induced Liver Injury Issues: New Clinical and Mechanistic Analysis Due to Roussel Uclaf Causality Assessment Method Use. Int J Mol Sci 2023; 24:10855. [PMID: 37446036 DOI: 10.3390/ijms241310855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Clinical and mechanistic considerations in idiosyncratic drug-induced liver injury (iDILI) remain challenging topics when they are derived from mere case narratives or iDILI cases without valid diagnosis. To overcome these issues, attempts should be made on pathogenetic aspects based on published clinical iDILI cases firmly diagnosed by the original RUCAM (Roussel Uclaf Causality Assessment Method) or the RUCAM version updated in 2016. Analysis of RUCAM-based iDILI cases allowed for evaluating immune and genetic data obtained from the serum and the liver of affected patients. For instance, strong evidence for immune reactions in the liver of patients with RUCAM-based iDILI was provided by the detection of serum anti-CYP 2E1 due to drugs like volatile anesthetics sevoflurane and desflurane, partially associated with the formation of trifluoroacetyl (TFA) halide as toxic intermediates that form protein adducts and may generate reactive oxygen species (ROS). This is accompanied by production of anti-TFA antibodies detected in the serum of these patients. Other RUCAM-based studies on serum ANA (anti-nuclear antibodies) and SMA (anti-smooth muscle antibodies) associated with AIDILI (autoimmune DILI) syn DIAIH (drug-induced autoimmune hepatitis) provide additional evidence of immunological reactions with monocytes as one of several promoting immune cells. In addition, in the blood plasma of patients, mediators like the cytokines IL-22, IL-22 binding protein (IL-22BP), IL-6, IL-10, IL 12p70, IL-17A, IL-23, IP-10, or chemokines such as CD206 and sCD163 were found in DILI due to anti-tuberculosis drugs as ascertained by the prospective updated RUCAM, which scored a high causality. RUCAM-based analysis also provided compelling evidence of genetic factors such as HLA (human leucocyte antigen) alleles contributing to initiate iDILI by a few drugs. In conclusion, analysis of published RUCAM-based iDILI cases provided firm evidence of immune and genetic processes involved in iDILI caused by specific drugs.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue des Ormeaux, 75020 Paris, France
| |
Collapse
|
12
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Park JE, Ahn CH, Lee HJ, Sim DY, Park SY, Kim B, Shim BS, Lee DY, Kim SH. Antioxidant-Based Preventive Effect of Phytochemicals on Anticancer Drug-Induced Hepatotoxicity. Antioxid Redox Signal 2023; 38:1101-1121. [PMID: 36242510 DOI: 10.1089/ars.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. Recent Advances: To assess DILI, the variety of in vitro and in vivo animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide. Also, the mechanisms on hepatotoxicity by several drugs and herbs have been explored in detail. Recent studies reveal that antioxidants including vitamins and some phytochemicals were reported to prevent against DILI. Critical Issues: Antioxidant therapy with some phytochemicals is noteworthy, since oxidative stress is critically involved in DILI via production of chemically reactive oxygen species or metabolites, impairment of mitochondrial respiratory chain, and induction of redox cycling. Future Directions: For efficient antioxidant therapy, DILI susceptibility, Human Leukocyte Antigen genetic factors, biomarkers, and pathogenesis implicated in hepatotoxicity should be further explored in association with oxidative stress-mediated signaling, while more randomized preclinical and clinical trials are required with optimal safe doses of drugs and/or phytochemicals alone or in combination for efficient clinical practice along with the development of advanced DILI diagnostic tools.
Collapse
Affiliation(s)
- Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Yeon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Hepatotoxicity of Drugs Used in Multiple Sclerosis, Diagnostic Challenge, and the Role of HLA Genotype Susceptibility. Int J Mol Sci 2023; 24:ijms24010852. [PMID: 36614299 PMCID: PMC9821303 DOI: 10.3390/ijms24010852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and the association with other autoimmune diseases is well-documented. There are many therapeutic options for the treatment of MS. Most of the available drugs cause drug-induced liver injury (DILI) to variable extents with heterogeneous clinical and biological manifestations, including liver injury with or without signs of hypersensitivity and autoimmunity. The diagnosis of DILI may be particularly difficult because MS is frequently associated with idiopathic autoimmune hepatitis. Recent advances suggest that MS and immune-mediated DILI could be promoted by genetic factors, including HLA genotype. In addition, some of these drugs may promote hepatitis B virus reactivation. This review explores the potential hepatotoxicity of drugs used to treat MS and the criteria to distinguish DILI from idiopathic autoimmune hepatitis associated with MS. The role of susceptible genes both promoting MS and causing the hepatotoxicity of the drug used for MS treatment is also discussed.
Collapse
|
16
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
17
|
Hibino Y, Iguchi A, Zaitsu K. Preliminary study to classify mechanisms of mitochondrial toxicity by in vitro metabolomics and bioinformatics. Toxicol Appl Pharmacol 2022; 457:116316. [PMID: 36462684 DOI: 10.1016/j.taap.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
AIM Mitochondrial toxicity is one of the causes for drug-induced liver injury, and the classification of phenotypes or mitochondrial toxicity are highly required though there are no molecular-profiling approaches for classifying mitochondrial toxicity. Therefore, the aim of this study was to classify the mechanisms of mitochondrial toxicity by metabolic profiling in vitro and bioinformatics. MAIN METHODS We applied an established gas chromatography tandem mass spectrometry-based metabolomics to human hepatoma grade 2 (HepG2) cells that were exposed to mitochondrial toxicants, whose mechanisms are different, such as rotenone (0.1 μM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP, 0.5 μM), nefazodone (20 μM), perhexiline (6.25 μM), or digitonin (positive cytotoxic substance, 4 μM). These concentrations were determined by the Mitochondrial ToxGlo Assay. Galactose medium was used for suppressing the Warburg effect in HepG2 cells, and the metabolome analysis successfully identified 125 metabolites in HepG2 cells. Multivariate, metabolic pathway and network analyses were performed by the R software. KEY FINDINGS Metabolic profiling enabled the classifying the mitochondrial toxicity mechanisms of RCC inhibition and uncoupling. The metabolic profiles of respiratory chain complex (RCC) inhibitors (rotenone and nefazodone) and an uncoupler (CCCP) were fully differentiated from those of other compounds. The metabolic pathway analysis revealed that the RCC inhibitors and the uncoupler mainly disrupted TCA-cycle and related metabolic pathways. In addition, the correlation-based network analysis revealed that succinic acid, β-alanine, and glutamic acid were potential metabolic indicators for RCC inhibition and uncoupling. SIGNIFICANCE Our results provided new insights into classifying mechanisms of mitochondrial toxicity by in vitro metabolomics.
Collapse
Affiliation(s)
- Yui Hibino
- Safety Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan; Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan; In Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
18
|
Gao Y, Shi W, Tu C, Li P, Zhao G, Xiao X, Wang J, Bai Z. Immunostimulatory activity and structure-activity relationship of epimedin B from Epimedium brevicornu Maxim. Front Pharmacol 2022; 13:1015846. [PMID: 36386137 PMCID: PMC9659593 DOI: 10.3389/fphar.2022.1015846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Epimedii Folium (EF, Epimedium brevicornu Maxim.), a traditional botanical drug, is famous for treating bone fractures, joint diseases, and several chronic illnesses. However, some studies indicated that EF could induce idiosyncratic drug-induced liver injury (IDILI) in the clinic. The NLRP3 inflammasome plays a crucial role in the pathogenesis of various human diseases, including IDILI. In the present study, we showed that epimedin B could specifically facilitate nigericin- or ATP-induced NLRP3 inflammasome activation under synergistic induction of mitochondrial reactive oxygen species. Moreover, epimedin B resulted in activation of Caspase-1 and IL-1β secretion in a lipopolysaccharide (LPS)-mediated susceptibility mouse model. MCC950 pretreatment completely abrogated activation of the NLRP3 inflammasome and prevented liver injury. Importantly, several studies have confirmed that some active constituents of EF could enhance activation of the NLRP3 inflammasome and may be involved in the pathogenesis of EF-IDILI. No reports are available on whether the structure-activity relationship associated with the immunostimulatory activity in EF contributes to the pathogenesis of EF-IDILI. These findings have changed our conventional understanding about the more glycogen, the more immunostimulatory activity.
Collapse
Affiliation(s)
- Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Shi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Guanyu Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Jiabo Wang, ; Xiaohe Xiao, ; Zhaofang Bai,
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jiabo Wang, ; Xiaohe Xiao, ; Zhaofang Bai,
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Jiabo Wang, ; Xiaohe Xiao, ; Zhaofang Bai,
| |
Collapse
|
19
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
20
|
Teschke R, Eickhoff A. Editorial: chronic DILI and HILI - corticosteroid plus glycyrrhizin as standard therapy? Aliment Pharmacol Ther 2022; 56:166-167. [PMID: 35689326 DOI: 10.1111/apt.16943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Germany.,Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Germany.,Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| |
Collapse
|
21
|
Hernandez N, Bessone F. Hepatotoxicity Induced by Biological Agents: Clinical Features and Current Controversies. J Clin Transl Hepatol 2022; 10:486-495. [PMID: 35836762 PMCID: PMC9240255 DOI: 10.14218/jcth.2021.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/24/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Novel biological agents including cytokines and recombinant fusion proteins are increasingly prescribed for cancer, rheumatologic, autoimmune, and inflammatory diseases, and are currently being evaluated in hepatocellular carcinoma (HCC). They are classified by their mechanism of action and include tumor necrosis factor-alpha (TNF-α) antagonists, T cell mediated antitumor inhibitors, interleukin receptor antagonists, and immune checkpoint inhibitors (ICIs). Some ICIs cause frequent hepatotoxicity with a variable clinical, biochemical, and serological presentation, especially in patients receiving another immunomodulatory agent. Half of the cases of liver damage induced by biological agents spontaneously regress after drug withdrawal, but the others require steroid therapy. Unfortunately, there are no widely accepted recommendation for the use of corticosteroids in these patients, even though international cancer societies have their own guidelines. Differentiating drug-induced autoimmune hepatitis (DIAIH) from classic AIH is challenging for pathologists, but liver biopsy is valuable, particularly in cases with unclear clinical presentation. Interesting, novel histological patterns have been described in liver damage induced by these agents (i.e., endothelitis, ring granuloma and secundary sclerosing cholangitis associated with lymphocytic infiltration of cytotoxic CD8+T cells). Here, we describe the clinical and biochemical characteristics of patients with hepatotoxicity induced by TNF-α antagonists and ICIs. Controversial issues involved in the administration of corticosteroid therapy, and hepatitis B virus (HBV) reactivation induced by immunosuppressive therapy are also discussed.
Collapse
Affiliation(s)
- Nelia Hernandez
- Hospital de Clinicas, Universidad de la Republica, Montevideo, Uruguay
| | - Fernando Bessone
- Hospital Provincial del Centenario, University of Rosario School of Medicine, Rosario, Argentina
| |
Collapse
|
22
|
Tasnim F, Huang X, Lee CZW, Ginhoux F, Yu H. Recent Advances in Models of Immune-Mediated Drug-Induced Liver Injury. FRONTIERS IN TOXICOLOGY 2022; 3:605392. [PMID: 35295156 PMCID: PMC8915912 DOI: 10.3389/ftox.2021.605392] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic inflammation is a key feature of a variety of liver diseases including drug-induced liver injury (DILI), orchestrated by the innate immune response (Kupffer cells, monocytes, neutrophils, dendritic cells) and the adaptive immune system (T cells and natural killer T cells). In contrast to acute DILI, prediction of immune-mediated DILI (im-DILI) has been more challenging due to complex disease pathogenesis, lack of reliable models and limited knowledge of underlying mechanisms. This review summarizes in vivo and in vitro systems that have been used to model im-DILI. In particular, the review focuses on state-of-the-art in vitro human-based multicellular models which have been developed to supplement the use of in vivo models due to interspecies variation and increasing ethical concerns regarding animal use. Advantages of the co-cultures in maintaining hepatocyte functions and importantly, introducing heterotypic cell-cell interactions to mimic inflammatory hepatic microenvironment are discussed. Challenges regarding cell source and incorporation of different cells with physical cell-cell contact are outlined and potential solutions are proposed. It is likely that better understanding of the interplay of immune cells in liver models will allow for the development of more accurate systems to better predict hepatotoxicity and stratification of drugs that can cause immune-mediated effects.
Collapse
Affiliation(s)
- Farah Tasnim
- Innovations in Food & Chemical Safety Programme, ASTAR, Singapore, Singapore.,Institute of Bioengineering and Nanotechnology, The Nanos, Singapore, Singapore
| | - Xiaozhong Huang
- Innovations in Food & Chemical Safety Programme, ASTAR, Singapore, Singapore.,Institute of Bioengineering and Nanotechnology, The Nanos, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher Zhe Wei Lee
- Innovations in Food & Chemical Safety Programme, ASTAR, Singapore, Singapore.,Singapore Immunology Network, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Florent Ginhoux
- Innovations in Food & Chemical Safety Programme, ASTAR, Singapore, Singapore.,Singapore Immunology Network, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Hanry Yu
- Innovations in Food & Chemical Safety Programme, ASTAR, Singapore, Singapore.,Institute of Bioengineering and Nanotechnology, The Nanos, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (NUS) Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, Singapore.,T-Labs, Mechanobiology Institute, Singapore, Singapore.,Critical Analytics for Manufacturing Personalised-Medicine Interdisciplinary Research Groups (CAMP-IRG), Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
23
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
24
|
Girish C, Sanjay S. Role of immune dysfunction in drug induced liver injury. World J Hepatol 2021; 13:1677-1687. [PMID: 34904037 PMCID: PMC8637670 DOI: 10.4254/wjh.v13.i11.1677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of liver failure and withdrawal of drugs from the market. A poor understanding of the precipitating event aetiology and mechanisms of disease progression has rendered the prediction and subsequent treatment intractable. Recent literature suggests that some drugs can alter the liver’s repair systems resulting in injury. The pathophysiology of DILI is complex, and immune dysfunction plays an important role in determining the course and severity of the disease. Immune dysfunction is influenced by the host response to drug toxicity. A deeper understanding of these processes may be beneficial in the management of DILI and aid in drug development. This review provides a structured framework presenting DILI in three progressive stages that summarize the interplay between drugs and the host defence networks.
Collapse
Affiliation(s)
- Chandrashekaran Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sukumaran Sanjay
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
25
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
26
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
27
|
Lewis JH, Cottu PH, Lehr M, Dick E, Shearer T, Rencher W, Bexon AS, Campone M, Varga A, Italiano A. Onapristone Extended Release: Safety Evaluation from Phase I-II Studies with an Emphasis on Hepatotoxicity. Drug Saf 2021; 43:1045-1055. [PMID: 32594454 PMCID: PMC7497701 DOI: 10.1007/s40264-020-00964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Antiprogestins have demonstrated promising activity against breast and gynecological cancers, but liver-related safety concerns limited the advancement of this therapeutic class. Onapristone is a full progesterone receptor antagonist originally developed as an oral contraceptive and later evaluated in phase II studies for metastatic breast cancer. Because of liver enzyme elevations identified during clinical studies, further development was halted. Evaluation of antiprogestin pharmacology and pharmacokinetic data suggested that liver enzyme elevations might be related to off-target or metabolic effects associated with clinical drug exposure. Objective We explored whether the use of a pharmaceutic strategy targeting efficacious systemic dose concentrations, but with diminished peak serum concentrations and/or total drug exposure would mitigate hepatotoxicity. Twice-daily dosing of an extended-release formulation of onapristone was developed and clinically evaluated in light of renewed interest in antiprogestin therapy for treating progesterone receptor-positive breast and gynecologic cancers. The hepatotoxic potential of extended-release onapristone was assessed from two phase I–II studies involving patients with breast, ovarian, endometrial, and prostate cancer. Results Among the 88 patients in two phase I–II studies in progesterone receptor-positive malignancies treated with extended-release onapristone, elevated alanine aminotransferase/aspartate aminotransferase levels were found in 20% of patients with liver metastases compared with 6.3% without metastases. Of five patients with grade 3 or higher alanine aminotransferase elevations with or without bilirubin elevations (four with breast cancer and one with endometrial cancer), four were assessed as unrelated to extended-release onapristone by the safety data review committee. Furthermore, while the fifth patient’s liver enzyme elevations were considered possibly drug related by the study investigator, they were adjudicated as unlikely to be related (< 25% likelihood) by a subsequent independent hepatologist. Conclusions These results suggest that the extended-release formulation by reducing drug exposure may be associated with a reduced risk of hepatotoxicity, and supports the continued clinical evaluation of extended-release onapristone for treating progesterone receptor-positive cancers.
Collapse
Affiliation(s)
- James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| | - Paul H Cottu
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Martin Lehr
- Context Therapeutics LLC, Philadelphia, PA, USA
| | - Evan Dick
- Context Therapeutics LLC, Philadelphia, PA, USA
| | | | - William Rencher
- Context Therapeutics LLC, Philadelphia, PA, USA.,Drug and Device Development Solutions LLC (D3S), Raleigh-Durham, NC, USA
| | | | - Mario Campone
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest-René Gauducheau, Nantes, France
| | - Andrea Varga
- Department of Drug Development (DITEP), Gustave Roussy, Villejuif, France
| | | |
Collapse
|
28
|
Hedenmalm K, Pacurariu A, Slattery J, Kurz X, Candore G, Flynn R. Is There an Increased Risk of Hepatotoxicity with Metamizole? A Comparative Cohort Study in Incident Users. Drug Saf 2021; 44:973-985. [PMID: 34273099 DOI: 10.1007/s40264-021-01087-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The analgesic metamizole, which has been withdrawn from the market in several countries due to the risk of agranulocytosis but is still available on the market in Germany and some other countries, has been associated with liver injury in published case reports; however, epidemiological studies on the risk of liver injury are limited. OBJECTIVE The aim of this study was to compare the risk of liver injury up to 270 days after the first start of treatment with metamizole with the corresponding risk in patients starting treatment with paracetamol, using a retrospective cohort incident user design. METHODS The first prescription for either metamizole or paracetamol in the Intercontinental Medical Statistics (IMS)® Disease Analyzer Germany database during the study period (2009-2018) was identified in patients with at least 365 days of observation and no prior diagnosis of liver events, cancer or HIV, or treatment within the last 6 months with hepatotoxic drugs typically administered for chronic conditions. Each patient was followed for specific liver events for 90 days after the prescription. In case of a new prescription within 90 days, a new 90-day observation period started, up to a maximum of 270 days. Cox regression was used to compare the risk of liver injury in the two groups. RESULTS Metamizole was associated with a higher risk of liver injury compared with paracetamol (adjusted hazard ratio 1.69, 95% confidence interval 1.46-1.97). Sensitivity analyses were performed to evaluate the robustness of these findings. In all the sensitivity analyses, metamizole was still associated with a higher risk of liver injury, including an analysis where naproxen was used as a comparator instead of paracetamol. CONCLUSIONS Results from this study support previous studies suggesting that metamizole is associated with a significant risk of liver injury. Nevertheless, a possible impact of residual confounding cannot be excluded.
Collapse
Affiliation(s)
- Karin Hedenmalm
- Data Analytics and Methods Task force, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands. .,Department of Laboratory Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Alexandra Pacurariu
- Pharmacovigilance and Epidemiology Department, European Medicines Agency, Amsterdam, The Netherlands
| | - Jim Slattery
- Data Analytics and Methods Task force, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Xavier Kurz
- Data Analytics and Methods Task force, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Gianmario Candore
- Data Analytics and Methods Task force, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Rob Flynn
- Data Analytics and Methods Task force, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Yang CX, Yao DM. Research advances in pathogenesis and diagnostic markers of drug-induced liver injury. Shijie Huaren Xiaohua Zazhi 2021; 29:726-732. [DOI: 10.11569/wcjd.v29.i13.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of drug-induced liver injury (DILI) is complex, involving a variety of factors; so far, it has not been very clear yet. In recent years, scholars have carried out many studies on the pathogenesis of DILI. The diversity of clinical manifestations and the lack of specific and unified diagnostic criteria for DILI increase the complexity of diagnosis and treatment of DILI. In order to strengthen the understanding of DILI, this paper summarizes the recent research progress on the pathogenesis and diagnostic markers of DILI.
Collapse
Affiliation(s)
- Chen-Xi Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Dong-Mei Yao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
30
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
31
|
Hwang S, Yang YM. Exosomal microRNAs as diagnostic and therapeutic biomarkers in non-malignant liver diseases. Arch Pharm Res 2021; 44:574-587. [PMID: 34165701 PMCID: PMC8223764 DOI: 10.1007/s12272-021-01338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022]
Abstract
The liver is a vital organ responsible for various physiological functions, such as metabolism, immune response, digestion, and detoxification. Crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells is critical for liver pathology. Exosomes are small extracellular vesicles (50-150 nm) that play an important role in cell-cell or organ-organ communication as they transfer their cargo, such as protein, DNA, and RNA to recipient cells or distant organs. In various liver diseases, the number of liver cell-derived exosomes is increased and the exosomal microRNA (miRNA) profile is altered. Early studies investigated the value of circulating exosomal miRNAs as biomarkers. Several exosomal miRNAs showed excellent diagnostic values, suggesting their potential as diagnostic biomarkers in liver diseases. Exosomal miRNAs have emerged as critical regulators of liver pathology because they control the expression of multiple genes in recipient cells. In this review, we discuss the biology of exosomes and summarize the recent findings of exosome-mediated intercellular and organ-to-organ communication during liver pathology. As there are many review articles dealing with exosomal miRNAs in liver cancer, we focused on non-malignant liver diseases. The therapeutic potential of exosomal miRNAs in liver pathology is also highlighted.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, South Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea.
- KNU Researcher training program for developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
32
|
Wei S, Ma W, Zhang B, Li W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol 2021; 9:634607. [PMID: 33912556 PMCID: PMC8072389 DOI: 10.3389/fcell.2021.634607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced toxicity, which impairs human organ function, is a serious problem during drug development that hinders the clinical use of many marketed drugs, and the underlying mechanisms are complicated. As a sensor of infections and external stimuli, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role in the pathological process of various diseases. In this review, we specifically focused on the role of NLRP3 inflammasome in drug-induced diverse organ toxicities, especially the hepatotoxicity, nephrotoxicity, and cardiotoxicity. NLRP3 inflammasome is involved in the initiation and deterioration of drug-induced toxicity through multiple signaling pathways. Therapeutic strategies via inhibiting NLRP3 inflammasome for drug-induced toxicity have made significant progress, especially in the protective effects of the phytochemicals. Growing evidence collected in this review indicates that NLRP3 is a promising therapeutic target for drug-induced toxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
33
|
Teschke R, Uetrecht J. Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:730. [PMID: 33987428 PMCID: PMC8106057 DOI: 10.21037/atm-2020-ubih-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical features of idiosyncratic drug induced liver injury (DILI) are well described in cases that have been assessed for causality using the Roussel Uclaf Causality Assessment Method (RUCAM), but our understanding of the mechanistic steps leading to injury is fragmentary. The difficulties describing mechanistic events can be traced back to the lack of an animal model of experimental idiosyncratic DILI that can mimic the genetic requirements of human idiosyncratic DILI. However, immune tolerance plays a dominant role in the immune response of the liver, and impairment of immune tolerance with immune checkpoint inhibitors increases DILI in both humans and animals. This may provide one method to study the individual steps involved. In general. the human DILI liver is a secret keeper providing little insight into what occurs in the diseased organ. Sufficient evidence exists that most idiosyncratic cases are mediated by the adaptive immune system, which depends on stimulation of the innate immune system, but the triggering factors are unknown. It is attractive to hypothesize that the gut microbiome plays a role; however, it is very difficult to study. Similarly, exosomes are likely to play an important role in communication between hepatic cells and the immune system, but there is a lack of data on blood exosomes in affected patients. Reactive metabolites are likely to play an important role. This is supported by the current analysis, which revealed an association between metabolism by cytochrome P450 and drugs most commonly involved in causing idiosyncratic DILI with causality verified by RUCAM. Circumstantial evidence suggests that reactive oxygen species (ROS) generated by cytochrome P450 could be responsible for the initial steps of injury, but details are unknown. In conclusion, most of the mechanistic steps leading to idiosyncratic DILI remain unclear.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, ON, Canada
| |
Collapse
|
34
|
Teschke R, Danan G. Idiosyncratic Drug Induced Liver Injury, Cytochrome P450, Metabolic Risk Factors and Lipophilicity: Highlights and Controversies. Int J Mol Sci 2021; 22:3441. [PMID: 33810530 PMCID: PMC8037096 DOI: 10.3390/ijms22073441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Progress in understanding the mechanisms of the idiosyncratic drug induced liver injury (iDILI) was highlighted in a scientometric investigation on the knowledge mapping of iDILI throughout the world, but uncertainty remained on metabolic risk factors of iDILI, the focus of the present review article. For the first time, a quantitative analysis of 3312 cases of iDILI assessed for causality with RUCAM (Roussel Uclaf Causality Assessment Method) showed that most drugs (61.1%) were metabolized by cytochrome P450 (CYP) isoforms: 49.6% by CYP 3A4/5, 24.6% by CYP 2C9, 13.2% by CYP 2E1, 7.3% by CYP 2C19, 3.5% by CYP 1A2 and 1.8% by CYP 2D6. Other studies showed high OR (odds ratio) for drugs metabolized by unspecified CYPs but the iDILI cases were not assessed for causality with RUCAM, a major shortcoming. In addition to critical comments on methodological flaws, several risk factors of iDILI were identified such as high but yet recommended daily drug doses, actual daily drug doses taken by the patients, hepatic drug metabolism and drug lipophilicity. These risk factors are subject to controversies by many experts seen critically also by others who outlined that none of these medication characteristics is able to predict iDILI with high confidence, leading to the statement of an outstanding caveat. It was also argued that all previous studies lacked comprehensive data because the number of examined drugs was relatively small as compared to the number of approved new molecular entities or currently used oral prescription drugs. In conclusion, trends are evident that some metabolic parameters are likely risk factors of iDILI but strong evidence can only be achieved when methodological issues will be successfully met.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
35
|
Teschke R, Danan G. Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM). Diagnostics (Basel) 2021; 11:458. [PMID: 33800917 PMCID: PMC7999240 DOI: 10.3390/diagnostics11030458] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Causality assessment in liver injury induced by drugs and herbs remains a debated issue, requiring innovation and thorough understanding based on detailed information. Artificial intelligence (AI) principles recommend the use of algorithms for solving complex processes and are included in the diagnostic algorithm of Roussel Uclaf Causality Assessment Method (RUCAM) to help assess causality in suspected cases of idiosyncratic drug-induced liver injury (DILI) and herb-induced liver injury (HILI). From 1993 until the middle of 2020, a total of 95,865 DILI and HILI cases were assessed by RUCAM, outperforming by case numbers any other causality assessment method. The success of RUCAM can be traced back to its quantitative features with specific data elements that are individually scored leading to a final causality grading. RUCAM is objective, user friendly, transparent, and liver injury specific, with an updated version that should be used in future DILI and HILI cases. Support of RUCAM was also provided by scientists from China, not affiliated to any network, in the results of a scientometric evaluation of the global knowledge base of DILI. They highlighted the original RUCAM of 1993 and their authors as a publication quoted the greatest number of times and ranked first in the category of the top 10 references related to DILI. In conclusion, for stakeholders involved in DILI and HILI, RUCAM seems to be an effective diagnostic algorithm in line with AI principles.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, D-63450 Hanau, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
36
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
37
|
Cho T, Wang X, Yeung K, Cao Y, Uetrecht J. Liver Injury Caused by Green Tea Extract in PD-1 -/- Mice: An Impaired Immune Tolerance Model for Idiosyncratic Drug-Induced Liver Injury. Chem Res Toxicol 2021; 34:849-856. [PMID: 33617238 DOI: 10.1021/acs.chemrestox.0c00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is an idiosyncratic drug reaction that is specific to an individual and can lead to liver failure and even death. The mechanism of IDILI remains poorly understood, but most IDILI appears to be immune-mediated. We have developed the first validated animal model by using a PD-1-/- mouse model in combination with anti-CTLA-4 to block immune checkpoints and impair immune tolerance. Treatment of these mice with drugs that cause IDILI in humans led to delayed-onset liver injury with characteristics similar to IDILI in humans. The current study investigates the effects of green tea extract, a weight-loss dietary supplement that has been reported to cause IDILI in humans. Green tea extracts contain a highly variable content of catechins including (-)-epigallocatechin gallate, the major catechin in green tea formulations. If the liver injury caused by green tea extract in humans is immune-mediated, it may occur in our impaired immune tolerance model. Female PD-1-/- mice treated with anti-CTLA-4 antibody and green tea extract (500 mg/kg), a dose that is considered a no-observed-adverse-effect level for liver in rodents, produced a delayed onset increase in serum alanine transaminase levels and an increase in hepatic CD8+ T cells. In contrast, the response in male PD-1-/- mice was less pronounced, and there was no evidence of liver injury in wild-type mice. These findings are consistent with the hypothesis that the IDILI caused by green tea extract is immune-mediated and is similar to IDILI caused by medications that are associated with IDILI.
Collapse
Affiliation(s)
- Tiffany Cho
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Xijin Wang
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Karen Yeung
- Temerty Faculty of Medicine, Department of Immunology, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yanshan Cao
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
38
|
Ahn JH, Jegal H, Choi MS, Kim S, Park SM, Ahn J, Han HY, Cho HS, Yoon S, Oh JH. TNFα enhances trovafloxacin-induced in vitro hepatotoxicity by inhibiting protective autophagy. Toxicol Lett 2021; 342:73-84. [PMID: 33609687 DOI: 10.1016/j.toxlet.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Trovafloxacin (TVX) is associated with idiosyncratic drug-induced liver injury (iDILI) and inflammation-mediated hepatotoxicity. However, the inflammatory stress-regulated mechanisms in iDILI remain unclear. Herein, we elucidated the novel role of tumor-necrosis factor alpha (TNFα), an inflammatory stress factor, in TVX-induced in vitro hepatotoxicity and synergistic toxicity. TVX specifically induced synergistic toxicity in HepG2 cells with TNFα, which inhibits autophagy. TVX-treated HepG2 cells induced protective autophagy by inhibiting the expression of mTOR signaling proteins, while ATG5 knockdown in HepG2 cells, responsible for the impairment of autophagy, enhanced TVX-induced toxicity due to the increase in cytochrome C release and JNK pathway activation. Interestingly, the expression of mTOR signal proteins, which were suppressed by TVX, disrupted the negative feedback of the PI3K/AKT pathway and TNFα rebounded p70S6K phosphorylation. Co-treatment with TVX and TNFα inhibited protective autophagy by maintaining p70S6K activity, which enhanced TVX-induced cytotoxicity. Phosphorylation of p70S6K was inhibited by siRNA knockdown and rapamycin to restore TNFα-inhibited autophagy, which prevented the synergistic effect on TVX-induced cytotoxicity. These results indicate that TVX activates protective autophagy in HepG2 cells exposed to toxicity and an imbalance in negative feedback regulation of autophagy by TNFα synergistically enhanced the toxicity. The finding from this study may contribute to a better understanding of the mechanisms underlying iDILI associated with inflammatory stress.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Hyun Jegal
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jaehwan Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Gao Y, Xu G, Ma L, Shi W, Wang Z, Zhan X, Qin N, He T, Guo Y, Niu M, Wang J, Bai Z, Xiao X. Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity. Cell Commun Signal 2021; 19:13. [PMID: 33573688 PMCID: PMC7879676 DOI: 10.1186/s12964-020-00647-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epimedii Folium (EF) is commonly used for treating bone fractures and joint diseases, but the potential hepatotoxicity of EF limits its clinical application. Our previous study confirms that EF could lead to idiosyncratic drug-induced liver injury (IDILI) and hepatocyte apoptosis, but the mechanism remains unknown. Studies have shown that NLRP3 inflammasome plays an important role in the development of various inflammatory diseases such as IDILI. Specific stimulus-induced NLRP3 inflammasome activation may has been a key strategy for lead to liver injury. Therefore, main compounds derived from EF were chosen to test whether the ingredients in EF could activate the NLRP3 inflammasome and to induce IDILI. METHODS Bone-marrow-derived macrophages (BMDMs) were treated with Icariside I, and then stimulated with inflammasome stimuli and assayed for the production of caspase-1 and interleukin 1β (IL-1β) and the release of lactate dehydrogenase (LDH). Determination of intracellular potassium, ASC oligomerization as well as reactive oxygen species (ROS) production were used to evaluate the stimulative mechanism of Icariside I on inflammasome activation. Mouse models of NLRP3 diseases were used to test whether Icariside I has hepatocyte apoptosis effects and promoted NLRP3 inflammasome activation in vivo. RESULTS Icariside I specifically enhances NLRP3 inflammasome activation triggered by ATP or nigericin but not SiO2, poly(I:C) or cytosolic LPS. Additionally, Icariside I does not alter the activation of NLRC4 and AIM2 inflammasomes. Mechanically, Icariside I alone does not induce mitochondrial reactive oxygen species (mtROS), which is one of the critical upstream events of NLRP3 inflammasome activation; however, Icariside I increases mtROS production induced by ATP or nigericin but not SiO2. Importantly, Icariside I leads to liver injury and NLRP3 inflammasome activation in an LPS-mediated susceptibility mouse model of IDILI, but the effect of Icariside I is absent in the LPS-mediated mouse model pretreated with MCC950, which is used to mimic knockdown of NLRP3 inflammasome activation. CONCLUSIONS Our study reveals that Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity. The findings suggest that Icariside I or EF should be avoided in patients with diseases related to ATP or nigericin-induced NLRP3 inflammasome activation, which may be risk factors for IDILI. Video abstract.
Collapse
Affiliation(s)
- Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Guang Xu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Shi
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Nan Qin
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Tingting He
- Integrative Medical Center, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuming Guo
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Ming Niu
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China.
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, No. 100 Xisihuan, Beijing, 100039, China.
- Integrative Medical Center, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
40
|
Yang Z. Achieving a low human dose for targeted covalent drugs: Pharmacokinetic and pharmacodynamic considerations on target characteristics and drug attributes. Biopharm Drug Dispos 2021; 42:150-159. [PMID: 33547681 DOI: 10.1002/bdd.2263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 11/08/2022]
Abstract
Covalent modifications of off-target biomolecules remain to be a concern for targeted covalent drugs. To guide the design of targeted covalent drugs in achieving a low human daily dose, a pharmacokinetic/pharmacodynamic (PK/PD) model was established to quantitatively evaluate target characteristics and drug properties that affect the human dose. Target characteristics, such as expression levels, turnover, and degree of inhibition relevant to efficacy, were evaluated systematically using the model. The drug properties including inactivation potency and drug clearance were also examined. Model simulations revealed that the interplay of target characteristics and drug properties governed the human dose. Particularly, the extent and the duration of target inactivation meaningful to efficacy, as well as the target resynthesis rate measured as the target turnover half-life, needed to be determined. The target information then served as a basis to inform desired drug inactivation potency and PK properties. The model-based approach provided a theoretical framework in achieving a low human dose of targeted covalent drugs, and the resultant strategy was successfully applied in the early stage of a Bruton's tyrosine kinase covalent inhibitor project that discovered low-dose branebrutinib. The PK/PD considerations described are also applicable to the drug design for protein degraders that share the same endpoint as targeted covalent drugs in reducing target levels.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
41
|
Wang Y, Xu G, Wang Z, Li R, Zhan X, Liu H, Qin Q, Li W, Wang X, Zhang M, Tang J, Bai Z, Xiao X. Psoralidin, a major component of Psoraleae Fructus, induces inflammasome activation and idiosyncratic liver injury. Int Immunopharmacol 2021; 92:107352. [PMID: 33422760 DOI: 10.1016/j.intimp.2020.107352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially fatal disease that is unpredictable and independent of the dose of the drug. Increasing evidence suggests that the majority of IDILI cases are immune-mediated, and the aberrant activation of inflammasome plays a vital role in progression. Psoraleae Fructus (PF), a tonic Chinese medicine, has been able to cause IDILI, but the precise mechanism of hepatotoxicity remains unclear. In this study, eight bioactive compounds involved in PF-induced inflammasome activation were investigated. The results demonstrated that psoralidin activated the inflammasomes followed by secreting caspase-1 and interleukin 1β (IL-1β) in a dose-dependent manner. Interestingly, MCC950, a potent inhibitor of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, could not entirely suppress the psoralidin-induced inflammasome activation. Moreover, psoralidin significantly induced IL-1β maturation and caspase-1 activation in NLRP3-knockout bone marrow-derived macrophages (BMDMs), suggesting that psoralidin not only activates the NLRP3 inflammasome but also activates other types of inflammasomes. The results also demonstrated that psoralidin activated the inflammasomes by promoting the C-terminal caspase recruitment domain (ASC) oligomerization, and the production of mitochondrial reactive oxygen species (mtROS) is a decisive factor in psoralidin-induced inflammasome activation. Importantly, in vivo data revealed that psoralidin induced hepatic inflammation, increased aminotransferase activity and increased the production of IL-1β and tumor necrosis factor(TNF-α) in a susceptible mouse model of lipopolysaccharide (LPS)-mediated IDILI. In summary, these results confirmed that psoralidin causes IDILI by inducing inflammasome activation. The study suggests that psoralidin is a possible risk factor and is responsible for PF-induced IDILI.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Guang Xu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100500, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Hongbin Liu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Qin
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Weixia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xiaoyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Mingliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jinfa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China.
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
42
|
Wu X, Zhang Y, Qiu J, Xu Y, Zhang J, Huang J, Bai J, Huang Z, Qiu X, Xu W. Lipidomics Analysis Indicates Disturbed Hepatocellular Lipid Metabolism in Reynoutria multiflora-Induced Idiosyncratic Liver Injury. Front Pharmacol 2020; 11:569144. [PMID: 33408629 PMCID: PMC7779765 DOI: 10.3389/fphar.2020.569144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The root of Reynoutria multiflora (Thunb.) Moldenke (syn.: Polygonum multiflorum Thunb., HSW) is a distinguished herb that has been popularly used in traditional Chinese medicine (TCM). Evidence of its potential side effect on liver injury has accumulated and received much attention. The objective of this study was to profile the metabolic characteristics of lipids in injured liver of rats induced by HSW and to find out potential lipid biomarkers of toxic consequence. A lipopolysaccharide (LPS)-induced rat model of idiosyncratic drug-induced liver injury (IDILI) was constructed and evident liver injury caused by HSW was confirmed based on the combination of biochemical, morphological, and functional tests. A lipidomics method was developed for the first time to investigate the alteration of lipid metabolism in HSW-induced IDILI rat liver by using ultra-high-performance liquid chromatography/Q-exactive Orbitrap mass spectrometry coupled with multivariate analysis. A total of 202 characterized lipids, including phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), sphingomyelin (SM), phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylserine (PS), phosphoglycerols (PG), and ceramide (Cer), were compared among groups of LPS and LPS + HSW. A total of 14 out 26 LPC, 22 out of 47 PC, 19 out of 29 LPE, 16 out of 36 PE, and 10 out of 15 PI species were increased in HSW-treated rat liver, which indicated that HSW may cause liver damage via interfering the phospholipid metabolism. The present work may assist lipid biomarker development of HSW-induced DILI and it also provide new insights into the relationships between phospholipid perturbation and herbal-induced idiosyncratic DILI.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yating Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| | - Juan Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqi Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| |
Collapse
|
43
|
Firman JW, Pestana CB, Rathman JF, Vinken M, Yang C, Cronin MTD. A Robust, Mechanistically Based In Silico Structural Profiler for Hepatic Cholestasis. Chem Res Toxicol 2020; 34:641-655. [PMID: 33314907 DOI: 10.1021/acs.chemrestox.0c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to the primary role which it holds within metabolism of xenobiotics, the liver stands at heightened risk of exposure to, and injury from, potentially hazardous substances. A principal manifestation of liver dysfunction is cholestasis-the impairment of physiological bile circulation from its point of origin within the organ to the site of action in the small intestine. The capacity for early identification of compounds liable to exert cholestatic effects is of particular utility within the field of pharmaceutical development, where contribution toward candidate attrition is great. Shortcomings associated with the present in vitro methodologies forecasting cholestasis render their predictivity questionable, permitting scope for the adoption of computational toxicology techniques. As such, the intention of this study has been to construct an in silico profiler, founded upon clinical data, highlighting structural motifs most reliably associated with the end point. Drawing upon a list of >1500 small molecular drugs, compiled and annotated by Kotsampasakou, E. and Ecker, G. F. (J. Chem. Inf. Model. 2017, 57, 608-615), we have formulated a series of 15 structural alerts. These describe fragments intrinsic within distinct pharmaceutical classes including psychoactive tricyclics, β-lactam antimicrobials, and estrogenic/androgenic steroids. Description of the coverage and selectivity of each are provided, alongside consideration of the underlying reactive mechanisms and relevant structure-activity concerns. Provision of mechanistic anchoring ensures that potential exists for framing within the adverse outcome pathway paradigm-the chemistry conveyed through the alert, in particular enabling rationalization at the level of the molecular initiating event.
Collapse
Affiliation(s)
- James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Cynthia B Pestana
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - James F Rathman
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States.,Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Chihae Yang
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
44
|
Vazquez JH, Clemens MM, Allard FD, Yee EU, Kennon-McGill S, Mackintosh SG, Jaeschke H, Hambuchen MD, McGill MR. Identification of Serum Biomarkers to Distinguish Hazardous and Benign Aminotransferase Elevations. Toxicol Sci 2020; 173:244-254. [PMID: 31651977 DOI: 10.1093/toxsci/kfz222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The standard circulating biomarker of liver injury in both clinical settings and drug safety testing is alanine aminotransferase (ALT). However, ALT elevations sometimes lack specificity for tissue damage. To identify novel serum biomarkers with greater specificity for injury, we combined unique animal models with untargeted proteomics, followed by confirmation with immunoblotting. Using proteomics, we identified 109 proteins in serum from mice with acetaminophen (APAP)-induced liver injury that were not detectable in serum from mice with benign ALT elevations due to high-dose dexamethasone (Dex). We selected 4 (alcohol dehydrogenase 1A1 [Aldh1a1], aldehyde dehydrogenase 1 [Adh1], argininosuccinate synthetase 1 [Ass1], and adenosylhomocysteinase [Ahcy]) with high levels for further evaluation. Importantly, all 4 were specific for injury when using immunoblots to compare serum from Dex-treated mice and mice with similar lower ALT elevations due to milder models of APAP or bromobenzene-induced liver injury. Immunoblotting for ALDH1A1, ADH1, and ASS1 in serum from APAP overdose patients without liver injury and APAP overdose patients with mild liver injury revealed that these candidate biomarkers can be detected in humans with moderate liver injury as well. Interestingly, further experiments with serum from rats with bile duct ligation-induced liver disease indicated that Aldh1a1 and Adh1 are not detectable in serum in cholestasis and may therefore be specific for hepatocellular injury and possibly even drug-induced liver injury, in particular. Overall, our results strongly indicate that ALDH1A1, ADH1, and ASS1 are promising specific biomarkers for liver injury. Adoption of these biomarkers could improve preapproval drug safety assessment.
Collapse
Affiliation(s)
- Joel H Vazquez
- Department of Pharmacology and Toxicology.,Graduate Program in Interdisciplinary Biomedical Sciences
| | - Melissa M Clemens
- Department of Pharmacology and Toxicology.,Graduate Program in Interdisciplinary Biomedical Sciences
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health
| | - Samuel G Mackintosh
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael D Hambuchen
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, West Virginia 25701
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology.,Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health
| |
Collapse
|
45
|
Ozawa S, Miura T, Terashima J, Habano W, Ishida S. Recent Progress in Prediction Systems for Drug-induced Liver Injury Using in vitro Cell Culture. Drug Metab Lett 2020; 14:25-40. [PMID: 33267768 DOI: 10.2174/1872312814666201202112610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/26/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In order to avoid drug-induced liver injury (DILI), in vitro assays, which enable the assessment of both metabolic activation and immune reaction processes that ultimately result in DILI, are needed. OBJECTIVE In this study, the recent progress in the application of in vitro assays using cell culture systems is reviewed for potential DILI-causing drugs/xenobiotics and a mechanistic study on DILI, as well as for the limitations of in vitro cell culture systems for DILI research. METHODS Information related to DILI was collected through a literature search of the PubMed database. RESULTS The initial biological event for the onset of DILI is the formation of cellular protein adducts after drugs have been metabolically activated by drug metabolizing enzymes. The damaged peptides derived from protein adducts lead to the activation of CD4+ helper T lymphocytes and recognition by CD8+ cytotoxic T lymphocytes, which destroy hepatocytes through immunological reactions. Because DILI is a major cause of drug attrition and drug withdrawal, numerous in vitro systems consisting of hepatocytes and immune/inflammatory cells, or spheroids of human primary hepatocytes containing non-parenchymal cells have been developed. These cellular-based systems have identified DILIinducing drugs with approximately 50% sensitivity and 90% specificity. CONCLUSION Different co-culture systems consisting of human hepatocyte-derived cells and other immune/inflammatory cells have enabled the identification of DILI-causing drugs and of the actual mechanisms of action.
Collapse
Affiliation(s)
- Shogo Ozawa
- Department of Clinical Pharmaceutical Sciences, Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba. Japan
| | - Toshitaka Miura
- Department of Clinical Pharmaceutical Sciences, Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba. Japan
| | - Jun Terashima
- Department of Clinical Pharmaceutical Sciences, Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba. Japan
| | - Wataru Habano
- Department of Clinical Pharmaceutical Sciences, Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Yahaba. Japan
| | - Seiichi Ishida
- Department of Pharmacology, National Institute of Health Sciences, Kawasaki. Japan
| |
Collapse
|
46
|
Teschke R, Danan G. Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993-Mid 2020: A Comprehensive Analysis. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E62. [PMID: 33003400 PMCID: PMC7600114 DOI: 10.3390/medicines7100062] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 04/12/2023]
Abstract
Background: A large number of idiosyncratic drug induced liver injury (iDILI) and herb induced liver injury(HILI) cases of variable quality has been published but some are a matter of concern if the cases were not evaluated for causality using a robust causality assessment method (CAM) such as RUCAM (Roussel Uclaf Causality Assessment Method) as diagnostiinjuryc algorithm. The purpose of this analysis was to evaluate the worldwide use of RUCAM in iDILI and HILI cases. Methods: The PubMed database (1993-30 June 2020) was searched for articles by using the following key terms: Roussel Uclaf Causality Assessment Method; RUCAM; Idiosyncratic drug induced liver injury; iDILI; Herb induced liver injury; HILI. Results: Considering reports published worldwide since 1993, our analysis showed the use of RUCAM for causality assessment in 95,885 cases of liver injury including 81,856 cases of idiosyncratic DILI and 14,029 cases of HILI. Among the top countries providing RUCAM based DILI cases were, in decreasing order, China, the US, Germany, Korea, and Italy, with China, Korea, Germany, India, and the US as the top countries for HILI. Conclusion: Since 1993 RUCAM is certainly the most widely used method to assess causality in IDILI and HILI. This should encourage practitioner, experts, and regulatory agencies to use it in order to reinforce their diagnosis and to take sound decisions.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-60590 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
47
|
Ikeyama Y, Sato T, Takemura A, Sekine S, Ito K. Hypoxia/reoxygenation exacerbates drug-induced cytotoxicity by opening mitochondrial permeability transition pore: Possible application for toxicity screening. Toxicol In Vitro 2020; 67:104889. [PMID: 32417306 DOI: 10.1016/j.tiv.2020.104889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Recently, mitochondrial dysfunction is thought of as an important factor leading to a drug-induced liver injury. Our previous reports show that mitochondria-related toxicity, including respiratory chain inhibition (RCI) and reactive oxygen species (ROS) induction, can be detected by the modification of sugar resource substitution and high oxygen condition. However, this in vitro model does not detect mitochondrial permeability transition (MPT)-induced toxicity. Another study with a lipopolysaccharide-pre-administered rodent model showed that ischemia/reperfusion induced ROS, sensitized the susceptibility of MPT pore opening and, finally developed drug-induced liver toxicity. Based on this result, the present study investigated the effect of hypoxia/reoxygenation (H/R) treatment mimicking the ischemia/reperfusion on MPT-dependent toxicity, aiming to construct a system that can evaluate MPT by drugs in hepatocytes. Mitochondrial ROS were enhanced by H/R treatment only in the galactose culture condition. Amiodarone, benzbromarone, flutamide and troglitazone which induced MPT pore opening led to hepatocyte death only in combination with H/R and galactose. Moreover, this alteration was significantly suppressed in hepatocytes lacking cyclophilin D. In conclusion, MPT-induced cytotoxicity can be detected by activating mitochondrial function and H/R. This cell-based assay system could evaluate MPT induced-cytotoxicity by drugs, besides RCI and ROS induction.
Collapse
Affiliation(s)
- Yugo Ikeyama
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
48
|
Oda S, Uchida Y, Aleo MD, Koza-Taylor PH, Matsui Y, Hizue M, Marroquin LD, Whritenour J, Uchida E, Yokoi T. An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol 2020; 95:149-168. [PMID: 32816093 DOI: 10.1007/s00204-020-02882-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Preventing clinical drug-induced liver injury (DILI) remains a major challenge, because DILI develops via multifactorial mechanisms. Immune and inflammatory reactions are considered important mechanisms of DILI; however, biomarkers from in vitro systems using immune cells have not been comprehensively studied. The aims of this study were (1) to identify promising biomarker genes for predicting DILI in an in vitro coculture model of peripheral blood mononuclear cells (PBMCs) with a human liver cell line, and (2) to evaluate these genes as predictors of DILI using a panel of drugs with different clinical DILI risk. Transcriptome-wide analysis of PBMCs cocultured with HepG2 or differentiated HepaRG cells that were treated with several drugs revealed an appropriate separation of DILI-positive and DILI-negative drugs, from which 12 putative biomarker genes were selected. To evaluate the predictive performance of these genes, PBMCs cocultured with HepG2 cells were exposed to 77 different drugs, and gene expression levels in PBMCs were determined. The MET proto-oncogene receptor tyrosine kinase (MET) showed the highest area under the receiver-operating characteristic curve (AUC) value of 0.81 among the 12 genes with a high sensitivity/specificity (85/66%). However, a stepwise logistic regression model using the 12 identified genes showed the highest AUC value of 0.94 with a high sensitivity/specificity (93/86%). Taken together, we established a coculture system using PBMCs and HepG2 cells and selected biomarkers that can predict DILI risk. The established model would be useful in detecting the DILI potential of compounds, in particular those that involve an immune mechanism.
Collapse
Affiliation(s)
- Shingo Oda
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yuka Uchida
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Michael D Aleo
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
- TOXinsights LLC, East Lyme, CT, USA
| | | | - Yusuke Matsui
- Laboratory of Intelligence Healthcare, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Hizue
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Lisa D Marroquin
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | | | - Eri Uchida
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Tsuyoshi Yokoi
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
49
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
50
|
Li CY, Niu M, Liu YL, Tang JF, Chen W, Qian G, Zhang MY, Shi YF, Lin JZ, Li XJ, Li RS, Xiao XH, Li GH, Wang JB. Screening for Susceptibility-Related Factors and Biomarkers of Xianling Gubao Capsule-Induced Liver Injury. Front Pharmacol 2020; 11:810. [PMID: 32547402 PMCID: PMC7274038 DOI: 10.3389/fphar.2020.00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Although increasing reports from the literature on herbal-related hepatotoxicity, the identification of susceptibility-related factors and biomarkers remains challenging due to idiosyncratic drug-induced liver injury (IDILI). As a well-known Chinese medicine prescription, Xianling Gubao Capsule (XLGB) has attracted great attention due to reports of potential liver toxicity. But the mechanism behind it is difficult to determine. In this paper, we found that XLGB-induced liver injury belongs to IDILI through the analysis of clinical liver injury cases. In toxicological experiment assessment, co-exposure to XLGB and non-toxic dose of lipopolysaccharide (LPS) could cause evident liver injury as manifested by significantly increased plasma alanine aminotransferase activity and obvious liver histological damage. However, it failed to induce observable liver injury in normal rats, suggesting that mild immune stress may be a susceptibility factor for XLGB-induced idiosyncratic liver injury. Furthermore, plasma cytokines were determined and 15 cytokines (such as IL-1β, IFN-γ, and MIP-2α etc) were acquired by receiver operating characteristic (ROC) curves analysis. The expression of these 15 cytokines in LPS group was significantly up-regulated in contrast to the normal group. Meanwhile, the metabolomics profile showed that mild immune stress caused metabolic reprogramming, including sphingolipid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. 8 potential biomarkers (such as sphinganine, glycerophosphoethanolamine, and phenylalanine etc.) were identified by correlation analysis. Therefore, these results suggested that intracellular metabolism and immune changes induced by mild immune stress may be important susceptibility mechanisms for XLGB IDILI.
Collapse
Affiliation(s)
- Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Liu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Qian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Yu Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Fei Shi
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Zhi Lin
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing-Jie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Hui Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|