1
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
2
|
Li R, Guo L, Liang B, Sun W, Hai F. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Open Med (Wars) 2025; 20:20251159. [PMID: 40028265 PMCID: PMC11868716 DOI: 10.1515/med-2025-1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background The immune system is closely related to hypertension. Hypertension is an immune disorder to a certain extent, and inflammation is the basis of abnormally elevated blood pressure (BP). The accumulation of T cells and their cytokines can increase BP and end organ damage. T cells are activated by antigen-presenting cells of the innate immune system or by the influence of a high-sodium diet, the self-environment, or the gut microbiota. These cells produce inflammatory factors and cytokines, such as interleukin-17A (IL-17A) in T helper 17 cells, causing vascular inflammation, hypertension, and target organ damage. Methods In this article, we provide an insightful review of the research progress regarding the role of IL-17A in the pathogenesis of hypertension and its effects on different organs while emphasizing the role of IL-17A and its mediated functions in the kidneys, brain, intestines, and vascular system in the development and progression of hypertension. Results At the organ level, IL-17A is involved in the development and progression of hypertension in the kidneys, brain, intestines, and blood vessels, interacting with multiple signal pathway. Conclusions These findings have significant implications for developing future immunomodulatory therapies, which may lead to the development of potential treatments for hypertension.
Collapse
Affiliation(s)
- Ruiyuan Li
- Graduate School of Jinzhou Medical University,
Jinzhou, Liaoning, China
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, No. 40 Qianshan Road, Dalian, 116033, Liaoning, China
| | - Bin Liang
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Wei Sun
- Department of Cardiology, Dalian Third People’s Hospital of Jinzhou Medical University, Dalian, 116033, Liaoning, China
| | - Feng Hai
- Department of Critical Care Medicine, Dalian Third People’s Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
3
|
Ghoflchi S, Mansoori A, Islampanah M, Yousefabadi SA, Poudineh M, Derakhshan-Nezhad E, Zardast A, Azmon M, Rezae FA, Ferns G, Esmaily H, Ghayour-Mobarhan M. Blood indices of inflammation and their association with hypertension in smokers: analysis using data mining approaches. J Hum Hypertens 2025; 39:29-37. [PMID: 39472721 DOI: 10.1038/s41371-024-00975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Although there have been reports on the association between smoking and increased level of inflammatory markers in hypertensive this has not been assessed prospectively in a large, modern cohort using data mining approaches. We conducted a cross-sectional analysis of the Mashad trial which was a prospective. 2085 smokers aged 35 to 65 years was studied. Inflammatory indices measured included: Hemoglobin-Platelet Ratio (HPR), Uric acid-high Density Lipoprotein (HDL) Ratio (UHR), Neutrophil-Lymphocyte Ratio (NLR), Systemic Immune Inflammation (SII) index, WBC, Platelet-Lymphocyte Ratio (PLR), and RBC Distribution Width (RDW). The association between these parameters and smoking in hypertensive individuals was examined. Over the course of the 6-year monitoring period, 585 peoples had HTN of whom the majority was female (59%). As per the LR analysis, there was a significant association between hypertension and age, WBC, SII, PLR in female smokers, as well as age and PLR in male smokers. (p-value < 0.05). PLR (OR = 0.993, CI 95% (0.987, 0.999)) and age (1.080 (1.058, 1.102)) for male and WBC (1.340 (1.139, 1.577)) and age (1.091 (1.070, 1.113)) for female exhibits the most appropriate estimate. Using the DT model for male individuals, those with, age ≥ 64 years, and SII < 336 had the correlated with hypertension prevalence (76%). For females, those with age ≥ 62 years, WBC ≥ 6.1, and SII < 445.634 had the highest risk of HTN. Age and SII for smoker males and age and WBC for smoker females showed the strongest correlation with hypertension. Age and WBC were the most significant indicators for predicting HTN.
Collapse
Affiliation(s)
- Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Arab Yousefabadi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student of Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elahe Derakhshan-Nezhad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Zardast
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Asgharian Rezae
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Habibollah Esmaily
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
5
|
Pereira MJ, Mathioudaki A, Otero AG, Duvvuri PP, Vranic M, Sedigh A, Eriksson JW, Svensson MK. Renal sinus adipose tissue: exploratory study of metabolic features and transcriptome compared with omental and subcutaneous adipose tissue. Obesity (Silver Spring) 2024; 32:1870-1884. [PMID: 39210585 DOI: 10.1002/oby.24114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The objective was to study metabolic characteristics and transcriptome of renal sinus adipose tissue (RSAT) located around renal arteries and veins. METHODS Adipose tissue biopsies from RSAT, omental (OAT), and subcutaneous (SAT) depots were obtained from healthy kidney donors (20 female, 20 male). Adipocyte glucose uptake rate and cell size were measured, and gene expression analyses using transcriptomics were performed. RESULTS RSAT adipocytes were significantly smaller, with a higher basal glucose uptake rate, than adipocytes from SAT and OAT. Transcriptomic analyses revealed 29 differentially expressed genes between RSAT and OAT (RSAT: 23 lower, 6 higher) and 1214 differentially expressed genes between RSAT and SAT (RSAT: 859 lower, 355 higher). RSAT demonstrated molecular resemblance to OAT, both exhibiting lower metabolic gene expression and higher expression of immune-related pathways, including IL-17, TNFα, and NF-κB signaling than SAT. Weighted gene coexpression network analysis associated RSAT with immune response and nucleic acid transport processes. Despite its location near the renal hilum, RSAT closely resembled OAT and there was a lack of expression in the classical brown adipose tissue genes. Gene enrichment analyses suggest an inflammatory environment in RSAT compared with SAT and, to some extent, OAT. CONCLUSIONS The findings suggest specific RSAT functions that could impact renal function and, possibly, the development of renal and cardiometabolic disorders.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Alicia G Otero
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Padma Priya Duvvuri
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Amir Sedigh
- Department of Surgical Sciences, Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 PMCID: PMC12060254 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Stepanova N, Driianska V, Rysyev A, Ostapenko T, Kalinina N. IL-6 and IL-17 as potential links between pre-existing hypertension and long-term COVID sequelae in patients undergoing hemodialysis: a multicenter cross-sectional study. Sci Rep 2024; 14:4968. [PMID: 38424126 PMCID: PMC10904824 DOI: 10.1038/s41598-024-54930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Long COVID, characterized by persistent symptoms following acute infection, poses a significant health challenge, particularly for patients with pre-existing chronic conditions such as hypertension. We hypothesized that an increase in the production of interleukins (IL)-6 and IL-17 could serve as a potential mechanism linking pre-existing uncontrolled blood pressure (BP) to the occurrence of long-term COVID sequelae in patients undergoing hemodialysis (HD). This cross-sectional study examined serum IL-6 and IL-17 levels in 80 patients undergoing HD, considering preinfection BP, the presence of long-term COVID sequelae, and the time interval after acute COVID-19 infection, which was either 5 or 10 months. Controlled BP was defined as a 3-month average pre-dialysis BP < 140/90 mmHg and post-dialysis < 130/80 mmHg. The findings suggest that the prevalence of long-term COVID sequelae was significantly higher in patients with uncontrolled BP than in the BP-controlled group. Both IL-6 and IL-17 concentrations were also significantly higher in patients with uncontrolled BP compared with the BP-controlled group. The patients with long-term COVID sequelae had higher IL-6 and IL-17 values than the fully recovered patients at both time points, but their concentrations decreased significantly over time. Further research and prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Natalia Stepanova
- Department of Nephrology and Dialysis, State Institution "Institute of Nephrology of the National Academy of Medical Sciences", Kyiv, Ukraine.
| | - Victoria Driianska
- Laboratory of Immunology, State Institution "Institute of Nephrology of the National Academy of Medical Sciences", Kyiv, Ukraine
| | - Andriy Rysyev
- Dialysis Medical Center LLC "Link-Medital", Odesa, Ukraine
| | | | - Nataliia Kalinina
- Laboratory of Immunology, State Institution "Institute of Nephrology of the National Academy of Medical Sciences", Kyiv, Ukraine
| |
Collapse
|
8
|
Zhou Q, Wu Y, Zhang D. Exploring the role of T helper subgroups and their cytokines in the development of pregnancy-induced hypertension. Front Immunol 2023; 14:1126784. [PMID: 37342348 PMCID: PMC10277627 DOI: 10.3389/fimmu.2023.1126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
| | - Youcheng Wu
- *Correspondence: Dongmei Zhang, ; Youcheng Wu,
| | | |
Collapse
|
9
|
Baciu SF, Mesaroș AȘ, Kacso IM. Chronic Kidney Disease and Periodontitis Interplay-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1298. [PMID: 36674052 PMCID: PMC9859404 DOI: 10.3390/ijerph20021298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Periodontitis (PO), a chronic microbially-induced inflammation of the supporting tissues of the tooth, is linked to various systemic diseases. We analyze its bidirectional relationship to chronic kidney disease (CKD), a major health-care problem with impressive excess mortality. Overwhelming associative relationship between CKD and PO are analyzed. Major pathophysiologic mechanisms that link CKD to PO are then presented: systemic inflammation, endothelial dysfunction, and imbalance of oxidative stress characteristic of CKD have a role in PO development and might influence escape mechanisms of oral microbiota. Subclinical local and systemic inflammation induced by PO might influence in turn CKD outcomes. Homeostatic changes induced by CKD such as mineral bone disorders, acidosis, uremic milieu, or poor salivary flow are also relevant for the occurrence of PO. There is insufficient evidence to recommend a standardized diagnostic and therapeutic approach regarding association of PO to CKD.
Collapse
Affiliation(s)
- Sorana Florica Baciu
- Department of Dental Propaedeutics and Esthetics, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca-Ștefania Mesaroș
- Department of Dental Propaedeutics and Esthetics, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ina Maria Kacso
- Department of Nephrology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2 Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Domingues da Silva CHN, Leite Guedes IH, de Lima JCS, Sobrinho JMDR, dos Santos AA. Responses Triggered by the Immune System in Hypertensive Conditions and Repercussions on Target Organ Damage: A Review. Curr Cardiol Rev 2023; 19:e200922208959. [PMID: 36125837 PMCID: PMC10201903 DOI: 10.2174/1573403x18666220920090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hypertension is a chronic, multifactorial clinical condition characterized by sustained high blood pressure levels. It is often associated with functional-structural alterations of target organs, which include heart, brain, kidneys, and vasculature. OBJECTIVE This study highlights the recent correlation between the immune system and hypertension and its repercussions on target-organ damage. METHODS The descriptors used for the search of the study were "hypertension", "immunity", and "target organs". The methodology of the study followed the main recommendations of the PRISMA statement. RESULTS The damage to the vasculature arises mainly from the migration of T cells and monocytes that become pro-inflammatory in the adventitia, releasing TNF-α, IFN-γ, and IL-17, which induce endothelial damage and hinder vascular relaxation. In the renal context, the inflammatory process associated with hypertension culminates in renal invasion by leukocytes, which contribute to the injury of this organ by mechanisms of intense sympathetic stimulation, activation of the reninangiotensin system, sodium retention, and aggravation of oxidative stress. In the cardiac context, hypertension increases the expression of pro-inflammatory elements, such as B, T, and NK cells, in addition to the secretion of IFN-γ, IL-17, IL-23, and TNF-α from angiotensin II, reactive oxygen species, and aldosterone. This pro-inflammatory action is also involved in brain damage through SphK1. In view of the above, the participation of the immune system in hypertension-induced injuries seems to be unequivocal. CONCLUSION Therefore, understanding the multifactorial mechanisms related to hypertension will certainly allow for more efficient interventions in this condition, preventing target organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Angela Amancio dos Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Joao Pessoa 58051-085, Brazil
| |
Collapse
|
11
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
14
|
Tan HB, Zheng YQ, Zhuang YP. IL-17A in diabetic kidney disease: protection or damage. Int Immunopharmacol 2022; 108:108707. [PMID: 35344813 DOI: 10.1016/j.intimp.2022.108707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
The effect of IL-17A in diabetic kidney disease (DKD) has received increasing attention. Interleukin (IL)-17A promotes renal inflammation and the progression of DKD, and IL-17A deficiency improves experimental DKD. However, recent studies have found that the effect of IL-17A on DKD is more complicated than the negative impact. IL-17A alleviates renal inflammation and fibrosis via regulating autophagy or the macrophage phenotype. Moreover, paradoxical expression of IL-17A has been reported in human DKD. This review focuses on how IL-17A affects the progression of DKD and the resulting opportunities and challenges.
Collapse
Affiliation(s)
- Hai-Bo Tan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Yan-Qiu Zheng
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Arch 2022; 474:709-719. [DOI: 10.1007/s00424-022-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
16
|
向 茂, 王 瑜, 梅 仁, 付 计, 陈 静, 都 昌. [Interleukin-17A is closely correlated with the progression of renal epithelial-mesenchymal transition in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:772-779. [PMID: 35673924 PMCID: PMC9178642 DOI: 10.12122/j.issn.1673-4254.2022.05.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of interleukin-17A (IL-17A) in renal epithelial- mesenchymal transition (EMT) in essential hypertensive nephropathy. METHODS Four-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats (control group) were both randomized into 4 groups (n=5) for observation at 4, 6, 10 and 30 weeks of age. Blood pressure of the rats was monitored using a noninvasive tail artery blood pressure measurement instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry. The mRNA and protein expression levels of IL-17A, iNOS, Arg-1, E-cadherin, and α-SMA in the kidneys of the rats were detected using RT-PCR and immunohistochemical staining, respectively, and plasma levels of IL-17A were regularly detected using ELISA. RESULTS At the age of 6 weeks, the SHRs began to show significantly higher blood pressure with greater Th17 cell percentage in the splenocytes and high renal expression and plasma level of IL-17A than WKY rats (P < 0.05 or P < 0.01). At 30 weeks, renal expression of E-cadherin mRNA and protein was significantly lower and the expression of Arg-1 mRNA and protein was significantly higher in SHR than in WKY rats (P < 0.01). Compared with the WKY rats, the SHRs showed significantly higher mRNA and protein expressions of iNOS at 6 and 10 weeks (P < 0.05 or 0.01) and higher α-SMA mRNA and protein expressions since 10 weeks of age (P < 0.05 or 0.01). In SHRs older than 10 weeks, renal IL-17A mRNA and protein expression levels were negatively correlated with those of E-cadherin (r=-0.731, P < 0.05; r=-0.827, P < 0.01) and positively correlated with those of α-SMA (r=0.658, P < 0.05; r=0.968, P < 0.01). CONCLUSION IL-17A is closely correlated with the progression of renal EMT in SHR and plays its role possibly by mediating M1/M2 polarization of renal infiltrating macrophages.
Collapse
Affiliation(s)
- 茂翠 向
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 瑜 王
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 仁彪 梅
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 计锋 付
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 静 陈
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| | - 昌乐 都
- />安徽理工大学医学院医学机能学教研室,安徽 淮南 232001Department of Medical Functional Sciences, Medical College of Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
17
|
Opazo-Ríos L, Tejera-Muñoz A, Soto Catalan M, Marchant V, Lavoz C, Mas Fontao S, Moreno JA, Fierro Fernandez M, Ramos R, Suarez-Alvarez B, López-Larrea C, Ruiz-Ortega M, Egido J, Rodrigues-Díez RR. Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Front Pharmacol 2022; 13:778776. [PMID: 35370692 PMCID: PMC8966705 DOI: 10.3389/fphar.2022.778776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción, Chile
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Manuel Soto Catalan
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Mas Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marta Fierro Fernandez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Viral Vectors Service, Madrid, Spain
| | - Ricardo Ramos
- Unidad de Genómica Fundación Parque Científico de Madrid, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Raúl R. Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
18
|
Araos P, Amador CA. Neutrophil gelatinase-associated lipocalin as an immunomodulator in endocrine hypertension. Front Endocrinol (Lausanne) 2022; 13:1006790. [PMID: 36387895 PMCID: PMC9640732 DOI: 10.3389/fendo.2022.1006790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase-associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.
Collapse
Affiliation(s)
- Patricio Araos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián A. Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: Cristián A. Amador,
| |
Collapse
|
19
|
Thangaraj SS, Thiesson HC, Svenningsen P, Stubbe J, Palarasah Y, Bistrup C, Jensen BL, Mortensen LA. Mineralocorticoid receptor blockade with spironolactone has no direct effect on plasma IL-17A and injury markers in urine from kidney transplant patients. Am J Physiol Renal Physiol 2021; 322:F138-F149. [PMID: 34894724 DOI: 10.1152/ajprenal.00104.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney transplantation is associated with increased risk of cardiovascular morbidity. Interleukin-17A (IL-17A) mediates kidney injury. Aldosterone promotes T-helper-17 (Th-17) lymphocyte differentiation and IL-17A production through the mineralocorticoid receptor (MR). In this exploratory, post-hoc substudy, it was hypothesized that 1-year intervention with the MR antagonist spironolactone lowers IL-17A and related cytokines and reduces epithelial injury in kidney transplant recipients. Plasma and urine samples were obtained from kidney transplant recipients from a double-blind randomized clinical trial testing spironolactone (n=39) versus placebo (n=41). Plasma concentrations of cytokines IFN-γ, IL-17A, TNF-α, IL-6, IL-1β, and IL-10 were determined before and after 1-year treatment. Urine calbindin, clusterin, KIM-1, osteoactivin, TFF3, and VEGF/creatinine ratios were analyzed. Blood pressure and plasma aldosterone concentration at inclusion did not relate to plasma cytokines and injury markers. None of the cytokines changed in plasma after spironolactone intervention. Plasma IL-17A increased in the placebo group. Spironolactone induced an increase in plasma K+ (0.4 ± 0.4 mmol/L). This increase did not correlate with plasma IL-17A or urine calbindin and TFF3 changes. Ongoing treatment at inclusion with angiotensin-converting-enzyme inhibitor and/or angiotensin II receptor blockers was not associated with changed levels of IL-17A and injury markers and had no effect on the response to spironolactone. Urinary calbindin and TFF3 decreased in the spironolactone group with no difference in between-group analyses. In conclusion, irrespective of ongoing ANGII inhibition, spironolactone has no effect on plasma IL-17A and related cytokines or urinary injury markers in kidney transplant recipients.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, Odense C, Denmark.,Department of Clinical Research, Faculty of Health Science, University of Southern Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of southern Denmark, Odense C, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense C, Denmark.,Department of Clinical Research, Faculty of Health Science, University of Southern Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
Cao C, Yao Y, Zeng R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front Physiol 2021; 12:729084. [PMID: 34616308 PMCID: PMC8488268 DOI: 10.3389/fphys.2021.729084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Acute kidney injury (AKI) remains a major global public health concern due to its high morbidity and mortality. The progression from AKI to chronic kidney disease (CKD) makes it a scientific problem to be solved. However, it is with lack of effective treatments. Summary: Both innate and adaptive immune systems participate in the inflammatory process during AKI, and excessive or dysregulated immune responses play a pathogenic role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis of AKI and CKD have clarified that renal injury induces the production of various chemokines by renal parenchyma cells or resident immune cells, which recruits multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal resident cells, which constructs the inflammatory environment and induces further injury, even death of renal parenchyma cells. Others promote tissue repair by producing protective cytokines. In this review, we outline the diversity of these lymphocytes and their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss the chronological responses and the plasticity of lymphocytes related to AKI and CKD progression; and introduce the potential therapies targeting lymphocytes of AKI and CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of gut microbiota or metabolite regulations based on gut-kidney axis. Key Message: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote the development of specific therapeutic strategies to protect from AKI and prevent the progression of CKD.
Collapse
Affiliation(s)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Velikova TV, Kabakchieva PP, Assyov YS, Georgiev TА. Targeting Inflammatory Cytokines to Improve Type 2 Diabetes Control. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7297419. [PMID: 34557550 PMCID: PMC8455209 DOI: 10.1155/2021/7297419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is one of the most common chronic metabolic disorders in adulthood worldwide, whose pathophysiology includes an abnormal immune response accompanied by cytokine dysregulation and inflammation. As the T2D-related inflammation and its progression were associated with the balance between pro and anti-inflammatory cytokines, anticytokine treatments might represent an additional therapeutic option for T2D patients. This review focuses on existing evidence for antihyperglycemic properties of disease-modifying antirheumatic drugs (DMARDs) and anticytokine agents (anti-TNF-α, anti-interleukin-(IL-) 6, -IL-1, -IL-17, -IL-23, etc.). Emphasis is placed on their molecular mechanisms and on the biological rationale for clinical use. Finally, we briefly summarize the results from experimental model studies and promising clinical trials about the potential of anticytokine therapies in T2D, discussing the effects of these drugs on systemic and islet inflammation, beta-cell function, insulin secretion, and insulin sensitivity.
Collapse
Affiliation(s)
- Tsvetelina V. Velikova
- Department of Clinical Immunology, University Hospital “Lozenetz”, Sofia University “St. Kliment Ohridski”, Sofia 1407, Bulgaria
| | - Plamena P. Kabakchieva
- Clinic of Endocrinology, University Hospital “Alexandrovska, ” Department of Internal Medicine, Medical Faculty, Medical University of Sofia, Sofia 1431, Bulgaria
- Clinic of Internal Medicine, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor S. Assyov
- Clinic of Endocrinology, University Hospital “Alexandrovska, ” Department of Internal Medicine, Medical Faculty, Medical University of Sofia, Sofia 1431, Bulgaria
| | - Tsvetoslav А. Georgiev
- Clinic of Rheumatology, University Hospital “St. Marina, ” First Department of Internal Medicine, Medical Faculty, Medical University-Varna, Varna 9010, Bulgaria
| |
Collapse
|
22
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Psoriasis and Cardiovascular Disease: Novel Mechanisms and Evolving Therapeutics. Curr Atheroscler Rep 2021; 23:67. [PMID: 34468875 PMCID: PMC9744099 DOI: 10.1007/s11883-021-00963-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Psoriasis is a chronic inflammatory skin condition that is associated with increased cardiovascular risk compared to those without psoriasis. This review will cover emerging mechanisms of cardiovascular risk, key pathways targeted with biologic therapies, and the current evidence on therapies to modulate this risk in patients with psoriasis. RECENT FINDINGS Recent scientific work has highlighted mechanisms that contribute to this enhanced risk, including the role of vascular endothelial dysfunction, platelet activation, dyslipidemia, and increased cardiometabolic comorbidities. Newer biologic and targeted synthetic therapies have transformed psoriasis treatment with high rates of clinical remission and durable skin disease control now possible. Epidemiological evidence suggests that many of these therapies may lower cardiovascular risk in psoriasis, although prospective interventional data is lacking (or mixed). Recently, caution has also been raised that some treatments may negatively affect cardiovascular risk. Overall, the current data suggests a positive or neutral ability to reduce cardiovascular risk for TNF, IL-17A, and IL-12/23p40 inhibitors, but current evidence remains conflicting for anti-IL-23/p19 and JAK inhibitors. More studies that include prospective cohorts, larger number of patients, treatment duration, and validated surrogate outcomes are needed to better evaluate the role of biologic therapies on cardiovascular risk in psoriasis.
Collapse
|
24
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Marquez-Exposito L, Rodrigues-Diez RR, Rayego-Mateos S, Fierro-Fernandez M, Rodrigues-Diez R, Orejudo M, Santos-Sanchez L, Blanco EM, Laborda J, Mezzano S, Lamas S, Lavoz C, Ruiz-Ortega M. Deletion of delta-like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB J 2021; 35:e21213. [PMID: 33368614 DOI: 10.1096/fj.201903131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida IRBLleida, Lleida, Spain
| | | | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Eva Maria Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jorge Laborda
- Biochemistry and Molecular Biology Branch, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
26
|
Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, Li BZ, Xing T. Periodontitis Exacerbates and Promotes the Progression of Chronic Kidney Disease Through Oral Flora, Cytokines, and Oxidative Stress. Front Microbiol 2021; 12:656372. [PMID: 34211440 PMCID: PMC8238692 DOI: 10.3389/fmicb.2021.656372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a type of systemic immune inflammation that is caused by the complex infection of a variety of microorganisms in the subgingival plaque and the imbalance of the microbial ecological environment in the mouth. Periodontitis and chronic kidney disease (CKD) share many risk factors, such as obesity, smoking, and age. A growing body of data supports a strong correlation between periodontitis and kidney disease. Evidence supports the role of periodontal inflammation and elevated serum inflammatory mediators in renal atherosclerosis, renal deterioration, and end-stage renal disease (ESRD) development. Periodontitis is a risk factor for kidney disease. However, to our knowledge, there are few studies detailing the possible link between periodontitis and CKD. This review summarizes the possible mechanisms underlying periodontitis and CKD. More importantly, it highlights novel and potential pathogenic factors for CKD, including bacteria, pro-inflammatory mediators and oxidative stress. However, most research on the relationship between periodontitis and systemic disease has not determined causality, and these diseases are largely linked by bidirectional associations. Future research will focus on exploring these links to contribute to new treatments for CKD.
Collapse
Affiliation(s)
- Ling Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Ya-Li Zhang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xing-Yu Liu
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xiang Meng
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rong-Quan Zhao
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Lin-Lin Ou
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Xing
- School of Stomatology, Anhui Medical University, Hefei, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
28
|
Ixekizumab May Improve Renal Function in Psoriasis. Healthcare (Basel) 2021; 9:healthcare9050543. [PMID: 34066917 PMCID: PMC8148436 DOI: 10.3390/healthcare9050543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Psoriasis is a chronic dermatological condition characterized by lesions on extensor surfaces, hands, feet, and genital areas. Chronic renal failure is often associated with metabolic syndrome and inflammatory conditions, such as psoriasis. Case report: In this paper, we report a patient with stage-three chronic renal failure that improved his renal condition after treatment with ixekizumab, an anti-IL17A drug used in the treatment of various cutaneous and rheumatological conditions. Conclusions: IL17A blockage may help to treat various autoimmune and inflammatory conditions, such as psoriasis, that may lead to renal impairment. Further investigation is necessary in order to prove the effectiveness of this drug in renal conditions.
Collapse
|
29
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos-Sanchez L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia 2021; 41:244-257. [PMID: 36166242 DOI: 10.1016/j.nefroe.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/16/2023] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, Spain
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
31
|
Garshick MS, Ward NL, Krueger JG, Berger JS. Cardiovascular Risk in Patients With Psoriasis: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 77:1670-1680. [PMID: 33795041 DOI: 10.1016/j.jacc.2021.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects 2% to 3% of the U.S. population. The immune response in psoriasis includes enhanced activation of T cells and myeloid cells, platelet activation, and up-regulation of interferons, tumor necrosis factor-α, and interleukins (ILs) IL-23, IL-17, and IL-6, which are linked to vascular inflammation and atherosclerosis development. Patients with psoriasis are up to 50% more likely to develop cardiovascular disease (CV) disease, and this CV risk increases with skin severity. Major society guidelines now advocate incorporating a psoriasis diagnosis into CV risk prediction and prevention strategies. Although registry data suggest treatment targeting psoriasis skin disease reduces vascular inflammation and coronary plaque burden, and may reduce CV risk, randomized placebo-controlled trials are inconclusive to date. Further studies are required to define traditional CV risk factor goals, the optimal role of lipid-lowering and antiplatelet therapy, and targeted psoriasis therapies on CV risk.
Collapse
Affiliation(s)
- Michael S Garshick
- Center for the Prevention of Cardiovascular Disease and Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA.
| | - Nicole L Ward
- Departments of Nutrition and Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, USA
| | - Jeffrey S Berger
- Center for the Prevention of Cardiovascular Disease and Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA; Division of Hematology, Department of Medicine, New York University School of Medicine, New York, New York, USA; Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Curr Hypertens Rep 2021; 23:13. [PMID: 33666761 DOI: 10.1007/s11906-021-01128-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation. RECENT FINDINGS While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies. Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.
Collapse
|
33
|
Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med (Lausanne) 2021; 7:628289. [PMID: 33553221 PMCID: PMC7862763 DOI: 10.3389/fmed.2020.628289] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and a main contributing factor for cardiovascular morbidity and mortality in patients with diabetes mellitus. Strategies employed to delay the progression of this pathology focus on the control of traditional risk factors, such as hyperglycemia, and elevated blood pressure. Although the intimate mechanisms involved in the onset and progression of DKD remain incompletely understood, inflammation is currently recognized as one of the main underlying processes. Untangling the mechanisms involved in the appearing of a harmful inflammatory response in the diabetic patient is crucial for the development of new therapeutic strategies. In this review, we focus on the inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic utility of new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Fátima Sánchez-Quintana
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
34
|
Uhlorn JA, Husband NA, Romero‐Aleshire MJ, Moffett C, Lindsey ML, Langlais PR, Brooks HL. CD4 + T Cell-Specific Proteomic Pathways Identified in Progression of Hypertension Across Postmenopausal Transition. J Am Heart Assoc 2021; 10:e018038. [PMID: 33410333 PMCID: PMC7955317 DOI: 10.1161/jaha.120.018038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Background Menopause is associated with an increase in the prevalence and severity of hypertension in women. Although premenopausal females are protected against T cell-dependent immune activation and development of angiotensin II (Ang II) hypertension, this protection is lost in postmenopausal females. Therefore, the current study hypothesized that specific CD4+ T cell pathways are regulated by sex hormones and Ang II to mediate progression from premenopausal protection to postmenopausal hypertension. Methods and Results Menopause was induced in C57BL/6 mice via repeated 4-vinylcyclohexene diepoxide injections, while premenopausal females received sesame oil vehicle. A subset of premenopausal mice and all menopausal mice were infused with Ang II for 14 days (Control, Ang II, Meno/Ang II). Proteomic and phosphoproteomic profiles of CD4+ T cells isolated from spleens were examined. Ang II markedly increased CD4+ T cell protein abundance and phosphorylation associated with DNA and histone methylation in both premenopausal and postmenopausal females. Compared with premenopausal T cells, Ang II infusion in menopausal mice increased T cell phosphorylation of MP2K2, an upstream regulator of ERK, and was associated with upregulated phosphorylation at ERK targeted sites. Additionally, Ang II infusion in menopausal mice decreased T cell phosphorylation of TLN1, a key regulator of IL-2Rα and FOXP3 expression. Conclusions These findings identify novel, distinct T cell pathways that influence T cell-mediated inflammation during postmenopausal hypertension.
Collapse
Affiliation(s)
- Joshua A. Uhlorn
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | | | | | - Caitlin Moffett
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Merry L. Lindsey
- Department of Cellular and Integrative PhysiologyCenter for Heart and Vascular ResearchNebraska‐Western Iowa Health Care SystemUniversity of Nebraska Medical Center and Research ServiceOmahaNE
| | - Paul R. Langlais
- Department of MedicineCollege of MedicineUniversity of ArizonaTucsonAZ
| | - Heddwen L. Brooks
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZ
| |
Collapse
|
35
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
36
|
Oliveira KC, Zambom FFF, Albino AH, Alarcon Arias SC, Ávila VF, Faustino VD, Malheiros DMAC, Camara NOS, Fujihara CK, Zatz R. NF-κB blockade during short-term l-NAME and salt overload strongly attenuates the late development of chronic kidney disease. Am J Physiol Renal Physiol 2020; 319:F215-F228. [PMID: 32463727 DOI: 10.1152/ajprenal.00495.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide synthase inhibition by Nω-nitro-l-arginine methyl ester (l-NAME) plus a high-salt diet (HS) is a model of chronic kidney disease (CKD) characterized by marked hypertension and renal injury. With cessation of treatment, most of these changes subside, but progressive renal injury develops, associated with persistent low-grade renal inflammation. We investigated whether innate immunity, and in particular the NF-κB system, is involved in this process. Male Munich-Wistar rats received HS + l-NAME (32 mg·kg-1·day-1), whereas control rats received HS only. Treatment was ceased after week 4 when 30 rats were studied. Additional rats were studied at week 8 (n = 30) and week 28 (n = 30). As expected, HS + l-NAME promoted severe hypertension, albuminuria, and renal injury after 4 wk of treatment, whereas innate immunity activation was evident. After discontinuation of treatments, partial regression of renal injury and inflammation occurred, along with persistence of innate immunity activation at week 8. At week 28, glomerular injury worsened, while renal inflammation persisted and renal innate immunity remained activated. Temporary administration of the NF-κB inhibitor pyrrolidine dithiocarbamate, in concomitancy with the early 4-wk HS + l-NAME treatment, prevented the development of late renal injury and inflammation, an effect that lasted until the end of the study. Early activation of innate immunity may be crucial to the initiation of renal injury in the HS + l-NAME model and to the autonomous progression of chronic nephropathy even after cessation of the original insult. This behavior may be common to other conditions leading to CKD.
Collapse
Affiliation(s)
- Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Viviane Dias Faustino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Inflammatory processes play a critical role in the pathogenesis of hypertension. Innate and adaptive immune responses participate in blood pressure (BP) elevation and end-organ damage. In this review, we discuss recent studies illustrating mechanisms through which immune cells and cytokines regulate BP via their actions in the kidney. RECENT FINDINGS Cells of the innate immune system, including monocytes, neutrophils, and dendritic cells, can all promote BP elevation via effects on kidney function. These innate immune cells can directly impact oxidative stress and cytokine generation in the kidney and/or present antigens to lymphocytes for the engagement of the adaptive immune system. Once activated by dendritic cells, effector memory T cells accumulate in the hypertensive kidney and facilitate renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. B cells, regulate blood pressure via vasopressin receptor 2 (V2R)-dependent effects on fluid transport in the kidney. SUMMARY Immune cells of the innate and adaptive immune systems drive sodium retention and blood pressure elevation in part by altering renal solute transport.
Collapse
|
38
|
Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin Sci (Lond) 2020; 134:513-527. [PMID: 32104886 DOI: 10.1042/cs20190682] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
Abstract
An important link exists between hypertension and inflammation. Hypertensive patients present elevated circulating levels of proinflammatory cytokines, including interleukin-17A (IL-17A). This cytokine participates in host defense, autoimmune and chronic inflammatory pathologies, and cardiovascular diseases, mainly through the regulation of proinflammatory factors. Emerging evidence also suggests that IL-17A could play a role in regulating blood pressure and end-organ damage. Here, our preclinical studies in a murine model of systemic IL-17A administration showed that increased levels of circulating IL-17A raised blood pressure induced inward remodeling of small mesenteric arteries (SMAs) and arterial stiffness. In IL-17A-infused mice, treatment with hydralazine and hydrochlorothiazide diminished blood pressure elevation, without modifying mechanical and structural properties of SMA, suggesting a direct vascular effect of IL-17A. The mechanisms of IL-17A seem to involve an induction of vascular smooth muscle cell (VSMC) hypertrophy and phenotype changes, in the absence of extracellular matrix (ECM) proteins accumulation. Accordingly, treatment with an IL-17A neutralizing antibody diminished SMA remodeling in a model of angiotensin II (Ang II) infusion. Moreover, in vitro studies in VSMCs reported here, provide further evidence of the direct effects of IL-17A on cell growth responses. Our experimental data suggest that IL-17A is a key mediator of vascular remodeling of the small arteries, which might contribute, at least in part, to blood pressure elevation.
Collapse
|
39
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
40
|
Travis OK, White D, Baik C, Giachelli C, Thompson W, Stubbs C, Greer M, Lemon JP, Williams JM, Cornelius DC. Interleukin-17 signaling mediates cytolytic natural killer cell activation in response to placental ischemia. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1036-R1046. [PMID: 32320265 DOI: 10.1152/ajpregu.00285.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T-helper (TH)17s, IL-17, and cytolytic natural killer cells (cNKs) are increased in preeclampsia and contribute to the hypertension, inflammation, and fetal growth restriction that occurs in response to placental ischemia in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. As IL-17 stimulates NK cytotoxicity in vitro, we tested the hypothesis that IL-17 inhibition in RUPP rats would decrease cNK activation as a mechanism to improve maternal and fetal outcomes. On gestation day (GD) 14, rats undergoing RUPP received a miniosmotic pump infusing IL-17RC (100 pg/day), a soluble IL-17 receptor (RUPP + IL-17RC). On GD19, mean arterial pressure (MAP) was measured in normal pregnant (NP), RUPP, and RUPP + IL-17RC rats (n = 10-12/group), animals were euthanized, and blood and tissues were collected for analysis. MAP was 30% higher in RUPP compared with NP (P < 0.0001) and was 12% lower in RUPP + IL-17RC (P = 0.0007 vs. RUPP). Placental cytolytic NK cells were 132% higher in RUPP than in NP (P = 0.04 vs. NP) and were normalized in RUPP + IL-17RC (P = 0.03 vs. RUPP). Placental levels of TNF-α, a cNK-secreted cytokine, and macrophage inflammatory protein-3α (MIP-3α), a cNK chemokine, were higher in RUPP vs. NP and lower after IL-17 blockade. Placental VEGF was lower in RUPP vs. NP and was normalized in RUPP + IL-17RC. In vitro cytolytic activity of RUPP placental NKs was higher compared with NP and was blunted in RUPP + IL-17RC NKs. Finally, both fetal weight and placental weight were lower in RUPP compared with NP, and were improved in RUPP + IL-17RC. These data identify IL-17 as a mediator of cNK activation in response to placental ischemia during pregnancy.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dakota White
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Cedar Baik
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie Thompson
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Cassandra Stubbs
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mallory Greer
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - James P Lemon
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan Michael Williams
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
41
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
42
|
Lavoz C, Rayego-Mateos S, Orejudo M, Opazo-Ríos L, Marchant V, Marquez-Exposito L, Tejera-Muñoz A, Navarro-González JF, Droguett A, Ortiz A, Egido J, Mezzano S, Rodrigues-Diez RR, Ruiz-Ortega M. Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy? J Clin Med 2020; 9:E272. [PMID: 31963845 PMCID: PMC7019373 DOI: 10.3390/jcm9010272] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease has become a major medical issue in recent years due to its high prevalence worldwide, its association with premature mortality, and its social and economic implications. A number of patients gradually progress to end-stage renal disease (ESRD), requiring then dialysis and kidney transplantation. Currently, approximately 40% of patients with diabetes develop kidney disease, making it the most prevalent cause of ESRD. Thus, more effective therapies for diabetic nephropathy are needed. In preclinical studies of diabetes, anti-inflammatory therapeutic strategies have been used to protect the kidneys. Recent evidence supports that immune cells play an active role in the pathogenesis of diabetic nephropathy. Th17 immune cells and their effector cytokine IL-17A have recently emerged as promising targets in several clinical conditions, including renal diseases. Here, we review current knowledge regarding the involvement of Th17/IL-17A in the genesis of diabetic renal injury, as well as the rationale behind targeting IL-17A as an additional therapy in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Sandra Rayego-Mateos
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain;
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
| | - Macarena Orejudo
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Laura Marquez-Exposito
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Antonio Tejera-Muñoz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Alejandra Droguett
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.O.-R.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.L.); (V.M.); (A.D.); (S.M.)
| | - Raúl R. Rodrigues-Diez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.O.); (L.M.-E.); (A.T.-M.); (A.O.)
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| |
Collapse
|