1
|
Scherer M, Scherer G, Riedel K, Koch HM, Wrobel SA, Murawski A, Lemke N, Weber T, Pluym N, Kolossa-Gehring M. Assessing the exposure to the UV filter DHHB in urine samples from the German Environmental Specimen Bank (2000-2021): Evaluating the impact of a potential impurity of di-n-hexyl phthalate in DHHB. Int J Hyg Environ Health 2025; 266:114565. [PMID: 40117958 DOI: 10.1016/j.ijheh.2025.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Human biomonitoring (HBM) has become a crucial tool for assessing exposure to emerging chemicals. We analyzed 250 24-h urine samples from the German Environmental Specimen Bank (ESB), collected between 2000 and 2021, for exposure to diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a UV filter increasingly used in sunscreens. Three major metabolites were examined: 2-(4-diethylamino)-, 2-(4-ethylamino)-, and 2-(4-amino)-2-hydroxybenzoyl)benzoic acid (DHB, EHB, AHB), with detection rates of 18°%, 13°%, and 87°%, respectively. While EHB and DHB were specific to DHHB, AHB suggested other exposure sources, making it unreliable for assessing DHHB exposure. DHB and EHB were first detected in 2012, with increased detection rates thereafter. The median daily intake of 37 ng/kg bw/d was much lower than the derived no-effect level of 2900 mg/kg bw/d, indicating low risk from DHHB exposure. However, since the analyzed ESB samples were collected in winter, they likely reflect exposure from other products and the environment rather than sunscreen-related exposure. Recently, concerns have emerged regarding the DHHB impurity di-n-hexylphthalate (DnHexP), a reproductive toxicant not authorized in the EU. Retrospective analysis of oral DHHB dosing experiments indeed revealed impurity related dose-dependent excretion of DnHexP metabolites (MnHexP, oxidized 5-OH-MnHexP, and 5-oxo-MnHexP). Due to uncertainties in dose allocation, only a rough excretion fraction of 45°% for MnHexP was derived. Our findings suggest that the DHHB impurity DnHexP may contribute to DnHexP exposure in sunscreen users applying products with contaminated DHHB. Given DnHexP's toxicity, this warrants re-assessment of DHHB's safety in cosmetics and enhanced surveillance of both DHHB and DnHexP in HBM studies.
Collapse
Affiliation(s)
- Max Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg, 82152, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg, 82152, Germany
| | - Kirsten Riedel
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg, 82152, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la Camp Platz 1, 44789, Bochum, Germany
| | - Sonja A Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la Camp Platz 1, 44789, Bochum, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Nora Lemke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Nikola Pluym
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, Planegg, 82152, Germany.
| | | |
Collapse
|
2
|
Min H, Choi KS, Yun S, Jang S. Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions. J Microbiol Biotechnol 2025; 35:e2410054. [PMID: 40081885 PMCID: PMC11925753 DOI: 10.4014/jmb.2410.10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have emerged as major global health challenges. Recent research has revealed that the gut microbiome is closely associated with the development of these conditions. The Food and Drug Administration has recognized certain probiotic strains with therapeutic potential, classifying them as live biotherapeutic products (LBPs). LBPs, which are derived from naturally occurring microorganisms, may present an effective strategy for treating metabolic diseases by restoring gut microbiota balance and regulating metabolic functions. This review explores the development of LBPs specifically for metabolic disease treatments, covering every phase from strain identification, non-clinical and clinical trials, manufacturing and formulation to regulatory approval. Furthermore, it addresses the challenges involved in the commercialization of these therapies. By offering critical insights into the research and development of LBPs for metabolic disease treatment, this review aims to contribute to the progress of these promising therapies.
Collapse
Affiliation(s)
- Heonhae Min
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyu-Sung Choi
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Saebom Yun
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Luque G, Ortiz P, Torres-Sánchez A, Ruiz-Rodríguez A, López-Moreno A, Aguilera M. Impact of Ex Vivo Bisphenol A Exposure on Gut Microbiota Dysbiosis and Its Association with Childhood Obesity. J Xenobiot 2025; 15:14. [PMID: 39846546 PMCID: PMC11755556 DOI: 10.3390/jox15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods. Results showed that direct xenobiotic exposure induced modifications in microbial taxa relative abundance, community structure, and diversity. Specifically, BPA reduced the abundance of bacteria belonging to the phylum Bacteroidota, while taxa from the phylum Actinomycetota were promoted. Consistently, Bacteroides species were classified as sensitive to BPA, whereas bacteria belonging to the class Clostridia were identified as resistant to BPA in our culturomics analysis. Some of the altered bacterial abundance patterns were common for both the BPA-exposed groups and the obese non-exposed group in our pilot study. These findings were also corroborated in a larger cohort of children. Future research will be essential to evaluate these microbial taxa as potential biomarkers for biomonitoring the effect of BPA and its role as an obesogenic substance in children.
Collapse
Affiliation(s)
- Gracia Luque
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Ortiz
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana López-Moreno
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| | - Margarita Aguilera
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| |
Collapse
|
4
|
Schroeter SA, Orme AM, Lehmann K, Lehmann R, Chaudhari NM, Küsel K, Wang H, Hildebrandt A, Totsche KU, Trumbore S, Gleixner G. Hydroclimatic extremes threaten groundwater quality and stability. Nat Commun 2025; 16:720. [PMID: 39820002 PMCID: PMC11739494 DOI: 10.1038/s41467-025-55890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961-1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater. We show that fractions of ingressing surface-derived organic molecules increased significantly as groundwater levels declined, whereas concentrations of dissolved organic carbon remained constant. Molecular composition changeover was accelerated following 2018's extreme summer drought. These findings demonstrate that hydroclimatic extremes promote rapid transport between surface ecosystems and groundwaters, thereby enabling xenobiotic substances to evade microbial processing, accrue in greater abundance in groundwater, and potentially compromise the safe nature of these potable water sources. Groundwater quality is far more vulnerable to the impact of recent climate anomalies than is currently recognized, and the molecular composition of dissolved organic matter can be used as a comprehensive indicator for groundwater quality deterioration.
Collapse
Affiliation(s)
- Simon A Schroeter
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
| | - Alice May Orme
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Katharina Lehmann
- Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
| | - Robert Lehmann
- Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
| | - Narendrakumar M Chaudhari
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, Jena, Germany
| | - He Wang
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Anke Hildebrandt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department Computational Hydrosystems, Helmholtz-Centre for Environmental Science - UFZ, Leipzig, Germany
- Terrestrial Ecohydrology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
| | - Kai Uwe Totsche
- Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, Jena, Germany
| | - Susan Trumbore
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Gerd Gleixner
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
5
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Sabaredzovic A, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Philippat C, Eggesbø M, Lepage P, Slama R. Associations between pre- and post-natal exposure to phthalate and DINCH metabolites and gut microbiota in one-year old children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125204. [PMID: 39490662 DOI: 10.1016/j.envpol.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age. Within SEPAGES cohort (Suivi de l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), we assessed 13 phthalate metabolites and 2 di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) metabolites in repeated urine samples collected in pregnant women and their offspring. We obtained stool samples from 356 children at 12 months of age and sequenced the V3-V4 region of the 16S rRNA gene, allowing gut bacterial profiling. We used single-chemical (linear regressions) and mixture (BKMR, Bayesian Kernel Machine Regression) models to examine associations of phthalates and DINCH metabolites, with gut microbiota indices of α-diversity (specific richness and Shannon diversity) and the relative abundances of the most abundant microbiota phyla and genera. After correction for multiple testing, di(2-ethylhexyl) phthalate (ΣDEHP), diethyl phthalate (DEP) and bis(2-propylheptyl) phthalate (DPHP) metabolites 12-month urinary concentrations were associated with higher Shannon α-diversity of the child gut microbiota in single-chemical models. The multiple-chemical model (BKMR) suggested higher α-diversity with exposure to the phthalate mixture at 12 months, driven by the same phthalates. There were no associations between phthalate and DINCH exposure biomarkers at other time points and α-diversity after correction for multiple testing. ΣDEHP metabolites concentration at 12 months was associated with higher Coprococcus genus. Finally, ΣDEHP exposure at 12 months tended to be associated with higher phylum Firmicutes, an association not maintained after correction for multiple testing. Infancy exposure to phthalate might disrupt children's gut microbiota. The observed associations were cross-sectional, so that reverse causality cannot be excluded.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France.
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Merete Eggesbø
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France; SMILE, Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France; PARSEC, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| |
Collapse
|
6
|
Muruganandam A, Migliorini F, Jeyaraman N, Vaishya R, Balaji S, Ramasubramanian S, Maffulli N, Jeyaraman M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med Sci (Basel) 2024; 12:72. [PMID: 39728421 PMCID: PMC11677576 DOI: 10.3390/medsci12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases. This article provides an in-depth exploration of the intricate involvement of the GMB in the context of RA. The oral-GMB axis highlights the complex role of bacteria in RA pathogenesis by producing antibodies to citrullinated proteins (ACPAs) through molecular mimicry. Dysbiosis affects Tregs, cytokine levels, and RA disease activity, suggesting that regulating cytokines could be a strategy for managing inflammation in RA. The GMB also has significant implications for drug responses and toxicity, giving rise to the field of pharmacomicrobiomics. The composition of the microbiota can impact the efficacy and toxicity of drugs, while the microbiota's metabolites can influence drug response. Recent research has identified specific bacteria, metabolites, and immune responses associated with RA, offering potential targets for personalised management. However, several challenges, including the variation in microbial composition, establishing causality, accounting for confounding factors, and translating findings into clinical practice, need to be addressed. Microbiome-targeted therapy is still in its early stages and requires further research and standardisation for effective implementation.
Collapse
Affiliation(s)
- Anandanarayan Muruganandam
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
| | - Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, New Delhi 110076, India;
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185 Roma, Italy;
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| |
Collapse
|
7
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
8
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
9
|
Buytaers FE, Berger N, Van der Heyden J, Roosens NHC, De Keersmaecker SCJ. The potential of including the microbiome as biomarker in population-based health studies: methods and benefits. Front Public Health 2024; 12:1467121. [PMID: 39507669 PMCID: PMC11538166 DOI: 10.3389/fpubh.2024.1467121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
The key role of our microbiome in influencing our health status, and its relationship with our environment and lifestyle or health behaviors, have been shown in the last decades. Therefore, the human microbiome has the potential to act as a biomarker or indicator of health or exposure to health risks in the general population, if information on the microbiome can be collected in population-based health surveys or cohorts. It could then be associated with epidemiological participant data such as demographic, clinical or exposure profiles. However, to our knowledge, microbiome sampling has not yet been included as biological evidence of health or exposure to health risks in large population-based studies representative of the general population. In this mini-review, we first highlight some practical considerations for microbiome sampling and analysis that need to be considered in the context of a population study. We then present some examples of topics where the microbiome could be included as biological evidence in population-based health studies for the benefit of public health, and how this could be developed in the future. In doing so, we aim to highlight the benefits of having microbiome data available at the level of the general population, combined with epidemiological data from health surveys, and hence how microbiological data could be used in the future to assess human health. We also stress the challenges that remain to be overcome to allow the use of this microbiome data in order to improve proactive public health policies.
Collapse
|
10
|
Karačić A, Renko I, Krznarić Ž, Klobučar S, Liberati Pršo AM. The Association between the Firmicutes/Bacteroidetes Ratio and Body Mass among European Population with the Highest Proportion of Adults with Obesity: An Observational Follow-Up Study from Croatia. Biomedicines 2024; 12:2263. [PMID: 39457576 PMCID: PMC11505267 DOI: 10.3390/biomedicines12102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The phyla Firmicutes and Bacteroidetes are the main constituents of the gut microbiota. An imbalance in the gut microbiota is a sign of dysbiosis, and the Firmicutes-to-Bacteroidetes ratio has been proposed to be a marker of it, especially in the context of obesity. Since Croatia is the country with one of the highest obesity rates in Europe, a pilot observational study was conducted. The aim of the study was to investigate the validity of this potential biomarker in a methodological study using sample processing, DNA sequence analysis and characterization of recruited participants, including various health factors. Methods: A study involving Croatian population was conducted. Participants age, body weight, gender, health history and lifestyle factors were recorded. Gut microbiota composition was analyzed using 16S rRNA sequencing. The F/B ratio was calculated and evaluated in the context of health factors. Statistical analysis was performed to detect the possible association of F/B ratio and excess body weight (kg) and possible impact of certain lifestyle factors. Results: No association between the F/B ratio and excess body weight (kg) was found. Excess body weight was significantly associated with higher age, male gender, and history of appendectomy. No significant health predictors of the F/B ratio were found, but weight gain was positively associated with a higher average F/B ratio. Conclusions: Although this study could not confirm the predictive value of the F/B ratio or any other phyla-related biomarker for excess body weight in the study population, it demonstrated interesting insights into the obesity-associated gut microbiota.
Collapse
Affiliation(s)
- Andrija Karačić
- The Gut Microbiome Center (CCM), 10110 Zagreb, Croatia or (A.K.); (I.R.)
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- University Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Ira Renko
- The Gut Microbiome Center (CCM), 10110 Zagreb, Croatia or (A.K.); (I.R.)
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Krznarić
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sanja Klobučar
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital Rijeka, 51000 Rijeka, Croatia
| | - Ana-Marija Liberati Pršo
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- University Hospital “Sveti Duh”, 10000 Zagreb, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
11
|
Tingirikari JMR, Sharma A, Lee HJ. Ethnic foods: impact of probiotics on human health and disease treatment. JOURNAL OF ETHNIC FOODS 2024; 11:31. [DOI: 10.1186/s42779-024-00243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe human gut is inhabited by approximately 100 trillion of microflora, and there exists a reciprocal relationship between human health and the gut microbiota. The major reasons for the dysbiosis in the population of gut microbiota are attributed to changes in lifestyle, medication, and the intake of junk foods. In addition, the proportion of beneficial bacteria in the intestine decreases gradually with age and causes physiological disturbances, malfunctions of the immune system, and several metabolic disorders. Thus, finding safe solutions to improve the diversity of microflora is a big challenge. With an increase in health consciousness among the population, the demand for healthy and nutraceutical food products is growing gradually. Recent research has proved that consumption of probiotics promotes gut health and prevents from several metabolic and other diseases. Hence, in this present review, we will discuss the various probiotic bacteria present in ethnic foods. The importance of these probiotics in the prevention and treatment of gastrointestinal, respiratory, cancer, and metabolic disorders will be elucidated. In addition, we will highlight the importance of the development of new-generation probiotics to cater the needs of the current market.
Collapse
|
12
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
13
|
Zampolli J, De Giani A, Rossi M, Finazzi M, Di Gennaro P. Who inhabits the built environment? A microbiological point of view on the principal bacteria colonizing our urban areas. Front Microbiol 2024; 15:1380953. [PMID: 38863750 PMCID: PMC11165352 DOI: 10.3389/fmicb.2024.1380953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Modern lifestyle greatly influences human well-being. Indeed, nowadays people are centered in the cities and this trend is growing with the ever-increasing population. The main habitat for modern humans is defined as the built environment (BE). The modulation of life quality in the BE is primarily mediated by a biodiversity of microbes. They derive from different sources, such as soil, water, air, pets, and humans. Humans are the main source and vector of bacterial diversity in the BE leaving a characteristic microbial fingerprint on the surfaces and spaces. This review, focusing on articles published from the early 2000s, delves into bacterial populations present in indoor and outdoor urban environments, exploring the characteristics of primary bacterial niches in the BE and their native habitats. It elucidates bacterial interconnections within this context and among themselves, shedding light on pathways for adaptation and survival across diverse environmental conditions. Given the limitations of culture-based methods, emphasis is placed on culture-independent approaches, particularly high-throughput techniques to elucidate the genetic and -omic features of BE bacteria. By elucidating these microbiota profiles, the review aims to contribute to understanding the implications for human health and the assessment of urban environmental quality in modern cities.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
De Filippis F, Valentino V, Sequino G, Borriello G, Riccardi MG, Pierri B, Cerino P, Pizzolante A, Pasolli E, Esposito M, Limone A, Ercolini D. Exposure to environmental pollutants selects for xenobiotic-degrading functions in the human gut microbiome. Nat Commun 2024; 15:4482. [PMID: 38802370 PMCID: PMC11130323 DOI: 10.1038/s41467-024-48739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Environmental pollutants from different chemical families may reach the gut microbiome, where they can be metabolized and transformed. However, how our gut symbionts respond to the exposure to environmental pollution is still underexplored. In this observational, cohort study, we aim to investigate the influence of environmental pollution on the gut microbiome composition and potential activity by shotgun metagenomics. We select as a case study a population living in a highly polluted area in Campania region (Southern Italy), proposed as an ideal field for exposomic studies and we compare the fecal microbiome of 359 subjects living in areas with high, medium and low environmental pollution. We highlight changes in gut microbiome composition and functionality that were driven by pollution exposure. Subjects from highly polluted areas show higher blood concentrations of dioxin and heavy metals, as well as an increase in microbial genes related to degradation and/or resistance to these molecules. Here we demonstrate the dramatic effect that environmental xenobiotics have on gut microbial communities, shaping their composition and boosting the selection of strains with degrading capacity. The gut microbiome can be considered as a pivotal player in the environment-health interaction that may contribute to detoxifying toxic compounds and should be taken into account when developing risk assessment models. The study was registered at ClinicalTrials.gov with the identifier NCT05976126.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I, 40, Napoli, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, Italy
| | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | | | - Biancamaria Pierri
- National Reference Centre for the Analysis and Study of the Correlation between Environment, Animal and Human, Via Salute, 2, Portici, Italy
| | - Pellegrino Cerino
- National Reference Centre for the Analysis and Study of the Correlation between Environment, Animal and Human, Via Salute, 2, Portici, Italy
| | - Antonio Pizzolante
- National Reference Centre for the Analysis and Study of the Correlation between Environment, Animal and Human, Via Salute, 2, Portici, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I, 40, Napoli, Italy
| | - Mauro Esposito
- National Reference Centre for the Analysis and Study of the Correlation between Environment, Animal and Human, Via Salute, 2, Portici, Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I, 40, Napoli, Italy.
| |
Collapse
|
15
|
Lopez-Moreno A, Cerk K, Rodrigo L, Suarez A, Aguilera M, Ruiz-Rodriguez A. Bisphenol A exposure affects specific gut taxa and drives microbiota dynamics in childhood obesity. mSystems 2024; 9:e0095723. [PMID: 38426791 PMCID: PMC10949422 DOI: 10.1128/msystems.00957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.
Collapse
Affiliation(s)
- Ana Lopez-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Klara Cerk
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Lourdes Rodrigo
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
| | - Antonio Suarez
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Alicia Ruiz-Rodriguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Liang X, Liu J, Di J, Xiao N, Peng Y, Tian Q, Chen L. Toxicity evaluation of processing Evodiae fructus based on intestinal microbiota. Front Microbiol 2024; 15:1336777. [PMID: 38435687 PMCID: PMC10904473 DOI: 10.3389/fmicb.2024.1336777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Background With the development of healthcare services, drug efficacy, and safety have become the focus of drug use, and processing alters drug toxicity and efficacy, exploring the effects of processing on Evodiae fructus (EF) can guide the clinical use of drugs. Methods Fifty male Kunming mice were randomly divided into the control group (CCN), raw small-flowered EF group (CRSEF), raw medium-flowered EF group (CRMEF), processing small-flowered EF group (CPSEF), and processing medium-flowered EF group (CPMEF). The CRSEF, CRMEF, CPSEF, and CPMEF groups were gavaged with aqueous extracts of raw small-flowered EF dry paste (RSEF), medium-flowered EF dry paste (RMEF), processing small-flowered EF dry paste (PSEF) and processing medium-flowered EF dry paste (PMEF), respectively, for 21 days at 5 times the pharmacopeial dosage. Upon concluding the experiment, histopathological sections of liver and kidney tissues were examined. Additionally, levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (SCr), and blood urea nitrogen (BUN) were determined. DNA from the intestinal contents of the mice was extracted, and 16S rRNA full-length high-throughput sequencing was performed. Results After fed EF 21 days, mice exhibited a decreasing trend in body weight. Comparative analysis with the CCN group revealed an upward trend in SCr, BUN, AST, and ALT levels in both CRSEF and CRMEF groups. The CRMEF group displayed notably elevated BUN and AST levels, with an observed increasing trend in Scr and ALT. Kidney sections unveiled cellular edema and considerable inflammatory cell infiltrates, whereas significant liver damage was not evident. Compared with CRSEF, Bun levels were significantly lower while AST levels were significantly higher in the CPMEF group. Additionally, the intestinal microbiota diversity and the relative abundance of Psychrobacter decreased significantly, and the relative abundance of Staphylococcus, Jeotgalicoccus, and Salinicoccus increased significantly in the CPMEF group. AST, ALT, and SCr were positively correlated with Staphylococcus, Jeotgalicoccus, and Salinicoccus. Conclusion In conclusion, PMEF significantly increased harmful bacteria (Staphylococcus, Jeotgalicoccus, and Salinicoccu) and decreased beneficial bacteria. SEF with 5 times the clinical dose showed nephrotoxicity and SEF nephrotoxicity decreased after processing, but EF hepatotoxicity was not significant, which may be due to insufficient dose concentration and time.
Collapse
Affiliation(s)
| | - Jing Liu
- Hunan University of Chinese Medicine, Changsha, China
| | - Jiaxin Di
- Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Qixue Tian
- Hunan Province Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Linglong Chen
- Hunan Academy of Chinese Medicine, Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Attia H, ElBanna SA, Khattab RA, Farag MA, Yassin AS, Aziz RK. Integrating Microbiome Analysis, Metabolomics, Bioinformatics, and Histopathology to Elucidate the Protective Effects of Pomegranate Juice against Benzo-alpha-pyrene-Induced Colon Pathologies. Int J Mol Sci 2023; 24:10691. [PMID: 37445869 DOI: 10.3390/ijms241310691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Polycyclic aromatic hydrocarbons, e.g., benzo[a]pyrene (BaP), are common dietary pollutants with potential carcinogenic activity, while polyphenols are potential chemopreventive antioxidants. Although several health benefits are attributed to polyphenol-rich pomegranate, little is known about its interaction with BaP. This study integrates histochemical, microbiomic, and metabolomic approaches to investigate the protective effects of pomegranate juice from BaP-induced pathologies. To this end, 48 Sprague-Dawley rats received, for four weeks, either pomegranate, BaP, both, or neither (n = 12 rats per group). Whereas histochemical examination of the colon indicated tissue damage marked by mucin depletion in BaP-fed animals, which was partially restored by administration of pomegranate juice, the fecal microbiome and metabolome retained their resilience, except for key changes related to pomegranate and BaP biotransformation. Meanwhile, dramatic microbiome restructuring and metabolome shift were observed as a consequence of the elapsed time (age factor). Additionally, the analysis allowed a thorough examination of fecal microbiome-metabolome associations, which delineated six microbiome clusters (marked by a differential abundance of Lactobacillaceae and Prevotellaceae, Rumincococcaceae, and Erysipelotrichaceae) and two major metabolome clusters (a sugar- and amino-acids-dominated metabotype vs. a cluster of fatty acids and hydrocarbons), with sugar alcohols maintaining a unique signature. In conclusion, using paired comparisons to minimize inter-individual animal variations allowed the dissection of temporal vs. treatment-derived variations. Microbiome-metabolome association clusters may be further exploited for metabotype prediction and gut-health biomarker discovery.
Collapse
Affiliation(s)
- Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Center for Genome and Microbiome Research, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Center for Genome and Microbiome Research, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rania A Khattab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Center for Genome and Microbiome Research, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Center for Genome and Microbiome Research, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| |
Collapse
|
18
|
Ibarra-Mendoza B, Gomez-Gil B, Betancourt-Lozano M, Raggi L, Yáñez-Rivera B. Microbial gut dysbiosis induced by xenobiotics in model organisms and the relevance of experimental criteria: a minireview. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e7. [PMID: 39295907 PMCID: PMC11406412 DOI: 10.1017/gmb.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiota is a dynamic ecosystem involved in multiple physiological processes that affect host health. Several factors affect intestinal microbial communities including dietary exposure to xenobiotics, which is highly concerning due to their widespread distribution. Current knowledge of this topic comes from culture-dependent methods, 16S rRNA amplicon fingerprinting, and metagenomics, but a standardised procedures framework remains lacking. This minireview integrates 45 studies from a systematic search using terms related to gut microbiota and its disruption. Only publications encompassing dietary-oral exposure and experimental gut microbiota assessments were included. The results were divided and described according to the biological model used and the disruption observed in the gut microbiota. An overall dysbiotic effect was unclear due to the variety of contaminants and hosts evaluated and the experimental gaps between publications. More standardised experimental designs, including WGS and physiological tests, are needed to establish how a particular xenobiotic can alter the gut microbiota and how the results can be extrapolated.
Collapse
Affiliation(s)
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, Mazatlán, Mexico
| | | | - Luciana Raggi
- Universidad Michoacana de San Nicolás de Hidalgo - CONACYT, Mexico City, Mexico
| | - Beatriz Yáñez-Rivera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| |
Collapse
|
19
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
20
|
Średnicka P, Roszko MŁ, Popowski D, Kowalczyk M, Wójcicki M, Emanowicz P, Szczepańska M, Kotyrba D, Juszczuk-Kubiak E. Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci Rep 2023; 13:3026. [PMID: 36810418 PMCID: PMC9945476 DOI: 10.1038/s41598-023-29637-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Gut microbiota (GM) plays many key functions and helps maintain the host's health. Consequently, the development of GM cultivation under in vitro stimulating physiological conditions has gained extreme interest in different fields. In this study, we evaluated the impact of four culture media: Gut Microbiota Medium (GMM), Schaedler Broth (SM), Fermentation Medium (FM), and Carbohydrate Free Basal Medium (CFBM) on preserving the biodiversity and metabolic activity of human GM in batch in vitro cultures using PMA treatment coupled with 16S rDNA sequencing (PMA-seq) and LC-HR-MS/MS untargeted metabolomics supplemented with GC-MS SCFA profiling. Before the experiments, we determined the possibility of using the pooled faecal samples (MIX) from healthy donors (n = 15) as inoculum to reduce the number of variables and ensure the reproducibility of in vitro cultivation tests. Results showed the suitability of pooling faecal samples for in vitro cultivation study. Non-cultured MIX inoculum was characterized by higher α-diversity (Shannon effective count, and Effective microbial richness) compared to inocula from individual donors. After 24 h of cultivation, a significant effect of culture media composition on GM taxonomic and metabolomic profiles was observed. The SM and GMM had the highest α-diversity (Shannon effective count). The highest number of core ASVs (125) shared with non-cultured MIX inoculum and total SCFAs production was observed in the SM. These results might contribute to the development of standardized protocols for human GM in vitro cultivation by preventing methodological bias in the data.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Magdalena Szczepańska
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Danuta Kotyrba
- Department of Research, Scientific Information and Marketing Coordination, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| |
Collapse
|
21
|
Using chemical and biological data to predict drug toxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:53-64. [PMID: 36639032 DOI: 10.1016/j.slasd.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, in vitro and in vivo information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.
Collapse
|
22
|
Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane AL, Zmora N, Petrova MI, Collado MC, Morelli L, Montoya GA, Szajewska H, Tancredi DJ, Sanders ME. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023; 15:2185034. [PMID: 36919522 PMCID: PMC10026873 DOI: 10.1080/19490976.2023.2185034] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are used for both generally healthy consumers and in clinical settings. However, theoretical and proven adverse events from probiotic consumption exist. New probiotic strains and products, as well as expanding use of probiotics into vulnerable populations, warrants concise, and actionable recommendations on how to work toward their safe and effective use. The International Scientific Association for Probiotics and Prebiotics convened a meeting to discuss and produce evidence-based recommendations on potential acute and long-term risks, risks to vulnerable populations, the importance for probiotic product quality to match the needs of vulnerable populations, and the need for adverse event reporting related to probiotic use. The importance of whole genome sequencing, which enables determination of virulence, toxin, and antibiotic resistance genes, as well as clear assignment of species and strain identity, is emphasized. We present recommendations to guide the scientific and medical community on judging probiotic safety.
Collapse
Affiliation(s)
- Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DCUSA
| | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| | | | - Arthur C. Ouwehand
- Global Health & Nutrition Sciences, International Flavors & Fragrances, Kantvik, Finland
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Christopher A. Elkins
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Andi L. Shane
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Emory Children’s Center, Atlanta, Georgia
| | - Niv Zmora
- Scientific consultant, Elinav Lab, Immunology Department, Weizmann Institute of Science, Department of Gastroenterology and Liver Diseases, Tel Aviv, Israel
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Lorenzo Morelli
- Department of Food Science and Technology, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gina A. Montoya
- Department of Chemical Risk Assessment, Nestlé S.A., Lausanne, Switzerland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Daniel J. Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| |
Collapse
|
23
|
Djokoski F, Hiljadnikova-Bajro M. Novel insights in pharmacomicrobiomics. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Filip Djokoski
- Faculty of Pharmacy, Institute of Applied Biochemistry, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| | - Marija Hiljadnikova-Bajro
- Faculty of Pharmacy, Institute of Applied Biochemistry, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
24
|
Conti G, D’Amico F, Fabbrini M, Brigidi P, Barone M, Turroni S. Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out. Genes (Basel) 2022; 14:55. [PMID: 36672796 PMCID: PMC9859289 DOI: 10.3390/genes14010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.
Collapse
Affiliation(s)
- Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
25
|
Ampatzoglou A, Gruszecka‐Kosowska A, Aguilera‐Gómez M. Microbiota analysis for risk assessment of xenobiotics: toxicomicrobiomics, incorporating the gut microbiome in the risk assessment of xenobiotics and identifying beneficial components for One Health. EFSA J 2022; 20:e200915. [PMID: 36531267 PMCID: PMC9749437 DOI: 10.2903/j.efsa.2022.e200915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work explores three areas of relevance to the gut microbiome in the context of One Health; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and specifically, in the context of antimicrobial resistance. We conclude that, although challenging, focusing on the microbiota resilience, function and active components, are critical for advancing the incorporation of the gut microbiome in the risk assessment of xenobiotics. Moreover, research technologies, such as toxicomicrobiomics, culturomics and genomics, especially in combination, have revealed that the human microbiota may be a promising source of beneficial taxa or other components, with the potential to metabolise and biodegrade xenobiotics. These may have possible applications in several health areas, including in animals or plants for detoxification or in the environment for bioremediation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, we propose that the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation in the pursuit of holistically elucidating their involvement in the balance between health and disease.
Collapse
Affiliation(s)
- Antonios Ampatzoglou
- "José Mataix Verdú" Institute of Nutrition and Food TechnologyUniversity of Granada (INYTA‐UGR)GranadaSpain
| | | | - Margarita Aguilera‐Gómez
- "José Mataix Verdú" Institute of Nutrition and Food TechnologyUniversity of Granada (INYTA‐UGR)GranadaSpain
| |
Collapse
|
26
|
Gruszecka‐Kosowska A, Ampatzoglou A, Aguilera‐Gómez M. Microbiota analysis for risk assessment of xenobiotics: cumulative xenobiotic exposure and impact on human gut microbiota under One Health approach. EFSA J 2022; 20:e200916. [PMID: 36531282 PMCID: PMC9749440 DOI: 10.2903/j.efsa.2022.e200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human gut microbiota is the microbial community that, through the constant bidirectional communication with its host, plays the critical role of maintaining the state of eubiosis and health balance, contributing to food digestion, detoxification, and proper endocrine, neurological, immunological and potentially reproductive health. To this extent, gut microbiota is called the 'second brain' as well as the 'second liver'. Xenobiotics, including environmental pollutants, are widely spread in the environment and easily accessible in food, cosmetics, personal care products, drugs and medicinal products. Thus, the gut microbiota can be exposed to these xenobiotics, which in turn might alter its composition and metabolism that can trigger dysbiosis, and they seem associated with disorders and diseases in the host. A specific group of xenobiotics, called endocrine-disrupting chemicals, is particularly important due to relevant adverse health effects. A considerable challenge in risk assessment is the combined exposure to xenobiotics, for which the integrated approaches, including the One Health concept, are still under development. Nevertheless, recent research advancements focus on molecular data in the search for elucidating crucial microbiome biomarkers, associated with physiopathology and specific dysfunctions triggered by xenobiotic exposure. In this context, the application of meta-omics and integration of genomics, metagenomics, metabolomics, metatranscriptomics, proteomics and multidisciplinary approaches are particularly important.
Collapse
Affiliation(s)
| | - Antonios Ampatzoglou
- University of Granada (INYTA‐UGR)Institute of Nutrition and Food TechnologyGranadaSpain
| | | |
Collapse
|
27
|
Torres-Sánchez A, Ruiz-Rodríguez A, Ortiz P, Moreno MA, Ampatzoglou A, Gruszecka-Kosowska A, Monteoliva-Sánchez M, Aguilera M. Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. Int J Mol Sci 2022; 23:12917. [PMID: 36361709 PMCID: PMC9655105 DOI: 10.3390/ijms232112917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Pilar Ortiz
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - María Alejandra Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
| |
Collapse
|
28
|
Peskett ST, Rand AA. The human fecal microbiome contributes to the biotransformation of the PFAS surfactant 8:2 monosubstituted polyfluoroalkyl phosphate ester. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1758-1768. [PMID: 35979739 DOI: 10.1039/d2em00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) can be found throughout society due to their numerous commercial applications. However, they also pose an environmental and health concern given their ability to undergo hydrolysis and oxidation to several bioactive and persistent products, including the perfluorocarboxylic acids (PFCAs). The metabolism of PAPs has been shown to occur in mammalian liver and intestine, however metabolism by the gut microbiome has not yet been investigated. In this study, human fecal samples were used to model the microbial population of the colon, to test whether these anaerobic microbes could facilitate 8:2 monosubstituted PAP (monoPAP) transformation. In vitro testing was completed by incubating the fecal samples with 8:2 monoPAP (400-10,000 nM) up to 120 minutes in an anaerobic chamber. Reactions were then terminated and the samples prepared for GC- and LC-MS/MS analysis. Metabolites of interest were the immediate hydrolysis product, the 8:2 fluorotelomer alcohol (FTOH), and 11 additional metabolites previously shown to form from 8:2 FTOH in both oxic and anoxic environments. The kinetics of 8:2 monoPAP transformation by gut microbiota were compared to those in human S9 liver and intestine fractions, both of which have active levels of hydrolyzing and oxidative enzymes that transform 8:2 monoPAP. Transformation rates from 8:2 monoPAP to 8:2 FTOH were highest in liver S9 > intestine S9 > fecal suspensions. The gut microbiome also produced a unique composition of oxidative metabolites, where the following intermediate metabolites were more abundant than terminal PFCAs: 8:2 fluorotelomer unsaturated carboxylic acid (FTUCA) > 8:2 fluorotelomer carboxylic acid (FTCA) > 7:2 Ketone ≈ perfluorohexanoic acid (PFHxA). Hydrolytic and oxidative metabolites contributed up to 30% of the molar balance after microbial 8:2 monoPAP transformation. Together, the results suggest that the gut microbiome can play a notable role in PAP biotransformation.
Collapse
Affiliation(s)
- Sierra T Peskett
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| |
Collapse
|
29
|
In silico identification of the potential molecular mechanisms involved in protective effects of prolactin on motor and memory deficits induced by 1,2-Diacetylbenzene in young and old rats. Neurotoxicology 2022; 93:45-59. [PMID: 36100143 DOI: 10.1016/j.neuro.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
We aimed to identify the molecular mechanisms through which prolactin protects against 1,2-Diacetylbenzene (DAB)-induced memory and motor impairments. The gene expression omnibus database (no. GSE119435), transcriptomic data, GeneMANIA, ToppGeneSuite, Metascape, STRING database, Cytoscape, and Autodock were used as the core tools in in-silico analyses. We observed that prolactin may improve memory and motor deficits caused by DAB via 13 genes (Scn5a, Lmntd1, LOC100360619, Rgs9, Srpk3, Syndig1l, Gpr88, Egr2, Ctxn3, Drd2, Ttr, Gpr6, and Ecel1) in young rats and 9 genes (Scn5a, Chat, RGD1560608, Ucma, Lrrc31, Gpr88, Col1a2, Cnbd1, and Ttr) in old rats. Almost all of these genes were downregulated in both young and old rats given DAB, but they were increased in both young and old rats given prolactin. Co-expression interactions were identified as the most important interactions (83.2 % for young rats and 100 % for old rats). The most important mechanisms associated with prolactin's ability to counteract DAB were identified, including "learning and memory," and "positive regulation of ion transport" in young rats, as well as "acetylcholine related pathways," "inflammatory response pathway," and "neurotransmitter release cycle" in old rats. We also identified several key miRNAs associated with memory and motor deficits, as well as prolactin and DAB exposure (rno-miR-141-3p, rno-miR-200a-3p, rno-miR-124-3p, rno-miR-26, and rno-let-7 families). The most significant transcription factors associated with differentially expressed gene regulation were Six3, Rxrg, Nkx26, and Tbx20. These findings will contribute to our understanding of the processes through which prolactin's beneficial effects counteract DAB-induced memory and motor deficits.
Collapse
|
30
|
Maheshwari N, Khan AA, Ali A, Mahmood R. Oral administration of pentachlorophenol impairs antioxidant system, inhibits enzymes of brush border membrane, causes DNA damage and histological changes in rat intestine. Toxicol Res (Camb) 2022; 11:616-627. [PMID: 36051662 PMCID: PMC9424705 DOI: 10.1093/toxres/tfac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 10/28/2023] Open
Abstract
Pentachlorophenol (PCP) is a broad spectrum biocide that has many domestic and industrial applications. PCP enters the environment due to its wide use, especially as a wood preservative. Human exposure to PCP is through contaminated water and adulterated food products. PCP is highly toxic and is classified as class 2B or probable human carcinogen. In this study, we explored the effect of PCP on rat intestine. Adult rats were orally given different doses of PCP (25-150-mg/kg body weight/day) in corn oil for 5 days, whereas controls were given similar amount of corn oil. The rats were sacrificed 24 h after the last treatment. A marked increase in lipid peroxidation, carbonyl content, and hydrogen peroxide level was seen. The glutathione and sulfhydryl group content was decreased in all PCP treated groups. This strongly suggests the generation of reactive oxygen species (ROS) in the intestine. PCP administration suppressed carbohydrate metabolism, inhibited enzymes of brush border membrane (BBM), and antioxidant defense system. It also led to increase in DNA damage, which was evident from comet assay, DNA-protein cross-linking, and DNA fragmentation. Histological studies supported the biochemical results showing marked dose-dependent tissue damage in intestines from PCP treated animals. This study reports for the first time that oral administration of PCP induces ROS, impairs the antioxidant system, damages DNA, and alters the enzyme activities of BBM and metabolic pathways in rat intestine.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Aijaz Ahmed Khan
- Departments of Anatomy, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Asif Ali
- Departments of Biochemistry, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
31
|
Gruszecka-Kosowska A, Ampatzoglou A, Aguilera M. Integration of Omics Approaches Enhances the Impact of Scientific Research in Environmental Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148758. [PMID: 35886610 PMCID: PMC9317225 DOI: 10.3390/ijerph19148758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
In the original article [...]
Collapse
Affiliation(s)
- Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada (UGR), 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada (UGR-INYTA), 18016 Granada, Spain
- Correspondence: (A.G.-K.); (M.A.)
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada (UGR), 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada (UGR-INYTA), 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada (UGR), 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada (UGR-INYTA), 18016 Granada, Spain
- IBS—Instituto de Investigación Biosanitaria, 18012 Granada, Spain
- Correspondence: (A.G.-K.); (M.A.)
| |
Collapse
|
32
|
Miryala SK, Anbarasu A, Ramaiah S. Organ-specific host differential gene expression analysis in systemic candidiasis: A systems biology approach. Microb Pathog 2022; 169:105677. [PMID: 35839997 PMCID: PMC9283004 DOI: 10.1016/j.micpath.2022.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
33
|
Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 2022; 20:431-443. [PMID: 35102308 PMCID: PMC7615390 DOI: 10.1038/s41579-022-00681-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic-microbiota-host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.
Collapse
Affiliation(s)
- Anna E Lindell
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran R Patil
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Miri AH, Kamankesh M, Llopis-Lorente A, Liu C, Wacker MG, Haririan I, Asadzadeh Aghdaei H, Hamblin MR, Yadegar A, Rad-Malekshahi M, Zali MR. The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Front Pharmacol 2022; 13:917184. [PMID: 35833028 PMCID: PMC9271669 DOI: 10.3389/fphar.2022.917184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Antoni Llopis-Lorente
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Yin Q, Sun Y, Li B, Feng Z, Wu G. The r/K selection theory and its application in biological wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153836. [PMID: 35176382 DOI: 10.1016/j.scitotenv.2022.153836] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the characteristics of functional organisms is the key to managing and updating biological processes for wastewater treatment. This review, for the first time, systematically characterized two typical types of strategists in wastewater treatment ecosystems via the r/K selection theory and provided novel strategies for selectively enriching microbial community. Functional organisms involved in nitrification (e.g., Nitrosomonas and Nitrosococcus), anammox (Candidatus Brocadia), and methanogenesis (Methanosarcinaceae) are identified as r-strategists with fast growth capacities and low substrate affinities. These r-strategists can achieve high pollutant removal loading rates. On the other hand, other organisms such as Nitrosospira spp., Candidatus Kuenenia, and Methanosaetaceae, are characterized as K-strategists with slow growth rates but high substrate affinities, which can decrease the pollutant concentration to low levels. More importantly, K-strategists may play crucial roles in the biodegradation of recalcitrant organic pollutants. The food-to-microorganism ratio, mass transfer, cell size, and biomass morphology are the key factors determining the selection of r-/K-strategists. These factors can be related with operating parameters (e.g., solids and hydraulic retention time), biomass morphology (biofilm or granules), and operating modes (continuous-flow or sequencing batch), etc., to achieve the efficient acclimation of targeted r-/K-strategists. For practical applications, the concept of substrate flux was put forward to further benefit the selective enrichment of r-/K-strategists, fulfilling effective management and improvement of engineered pollution control bioprocesses. Finally, the future perspectives regarding the development of the r/K selection theory in wastewater treatment processes were discussed.
Collapse
Affiliation(s)
- Qidong Yin
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Yuepeng Sun
- Department of Civil and Environmental Engineering, Virginia Tech, Ashburn, VA 20147, United States
| | - Bo Li
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Zhaolu Feng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
36
|
Patel SM, Young MC. The Identification and Management of Small Intestinal Bacterial Overgrowth. Phys Med Rehabil Clin N Am 2022; 33:587-603. [PMID: 35989053 DOI: 10.1016/j.pmr.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Dikeocha IJ, Al-Kabsi AM, Miftahussurur M, Alshawsh MA. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB J 2022; 36:e22350. [PMID: 35579628 DOI: 10.1096/fj.202101986r] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
Gut microbiota is the most diverse and complex biological ecosystem, which is estimated to consist of greater than 5 million distinct genes and 100 trillion cells which are in constant communication with the host environment. The interaction between the gut microbiota and drugs and other xenobiotic compounds is bidirectional, quite complicated, and not fully understood yet. The impact of xenobiotics from pollution, manufacturing processes or from the environment is harmful to human health at varying degrees and this needs to be recognized and addressed. The gut microbiota is capable of biotransforming/metabolizing of various drugs and xenobiotic compounds as well as altering the activity and toxicity of these substances, thereby influencing how a host responds to drugs and xenobiotics and this emerging field is known as pharmacomicrobiomics. In this review, we discussed different mechanisms of drug-gut microbiota interaction and highlighted the influence of drug-gut microbiome interactions on the clinical response in humans.
Collapse
Affiliation(s)
| | | | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
38
|
Ampatzoglou A, Gruszecka-Kosowska A, Torres-Sánchez A, López-Moreno A, Cerk K, Ortiz P, Monteoliva-Sánchez M, Aguilera M. Incorporating the Gut Microbiome in the Risk Assessment of Xenobiotics and Identifying Beneficial Components for One Health. Front Microbiol 2022; 13:872583. [PMID: 35602014 PMCID: PMC9116292 DOI: 10.3389/fmicb.2022.872583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Three areas of relevance to the gut microbiome in the context of One Health were explored; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and; specifically, in the context of antimicrobial resistance. Although challenging, focusing on the microbiota resilience, function and active components is critical for advancing the incorporation of microbiome data in the risk assessment of xenobiotics. Moreover, the human microbiota may be a promising source of beneficial components, with the potential to metabolize xenobiotics. These may have possible applications in several areas, e.g., in animals or plants for detoxification or in the environment for biodegradation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation.
Collapse
Affiliation(s)
- Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| |
Collapse
|
39
|
The Soil Microbiota Recovery in the Agroecosystem: Minimal Information and a New Framework for Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095423. [PMID: 35564818 PMCID: PMC9105074 DOI: 10.3390/ijerph19095423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
The efficient management of soil represents a mission of vital importance for meeting the continuously increasing agricultural demand in a sustainable way. Decades of research identified in the biotechnological potential of soil microorganisms an always more practicable channel for achieving these goals. Due to the complexity of soil microbial communities and their tight connection to soil characteristics, it is still difficult to define universal strategies for an efficient and sustainable agroecosystem management. We here propose a new framework for the assessment of the impact of agricultural practices in the agroecosystem that revolves around the concept of microbial community recovery. This assessment is based on the selection of (i) a representative temporal interval, (ii) a representative agricultural system and (iii) monitoring tools able to assess the expression levels of microbial functionality in soil. This approach can be especially valuable for evaluating the effects of agrochemicals and other agronomical amendments (of different nature: biological, physical, chemical) on the soil microbiota. In the same way precision-medicine tries to tailor drugs on an always smaller subset of patients' characteristics, a new generation of agrochemicals can be developed and tested considering soil characteristics in order to minimize their off-target effects. What remains central in this paradigm is the promotion of Soil Health maintenance practices. As for healthy humans, a healthy soil is more resilient and tolerates treatments and stresses better while recovering more quickly.
Collapse
|
40
|
Ortiz P, Torres-Sánchez A, López-Moreno A, Cerk K, Ruiz-Moreno Á, Monteoliva-Sánchez M, Ampatzoglou A, Aguilera M, Gruszecka-Kosowska A. Impact of Cumulative Environmental and Dietary Xenobiotics on Human Microbiota: Risk Assessment for One Health. J Xenobiot 2022; 12:56-63. [PMID: 35323221 PMCID: PMC8949313 DOI: 10.3390/jox12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Chemical risk assessment in the context of the risk analysis framework was initially designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the need of multiple stressors assessment was revealed to be more reliable regarding the occurrence and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started to be the recommended approach. As toxicant mixtures and their "cocktail effects" are considered to be main hazards, the most important exposure for these xenobiotics would be of dietary and environmental origin. In fact, even a more holistic prism should currently be considered. In this sense, the definition of One Health refers to simultaneous actions for improving human, animal, and environmental health through transdisciplinary cooperation. Global policies necessitate going beyond the classical risk assessment for guaranteeing human health through actions and implementation of the One Health approach. In this context, a new perspective is proposed for the integration of microbiome biomarkers and next generation probiotics potentially impacting and modulating not only human health, but plant, animal health, and the environment.
Collapse
Affiliation(s)
- Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
41
|
Giambò F, Costa C, Teodoro M, Fenga C. Role-Playing Between Environmental Pollutants and Human Gut Microbiota: A Complex Bidirectional Interaction. Front Med (Lausanne) 2022; 9:810397. [PMID: 35252248 PMCID: PMC8888443 DOI: 10.3389/fmed.2022.810397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in the characterization of the involvement of toxicant and pollutant exposures in the development and the progression of several diseases such as obesity, diabetes, cancer, as well as in the disruption of the immune and reproductive homeostasis. The gut microbiota is considered a pivotal player against the toxic properties of chemicals with the establishment of a dynamic bidirectional relationship, underlining the toxicological significance of this mutual interplay. In fact, several environmental chemicals have been demonstrated to affect the composition, the biodiversity of the intestinal microbiota together with the underlining modulated metabolic pathways, which may play an important role in tailoring the microbiotype of an individual. In this review, we aimed to discuss the latest updates concerning the environmental chemicals–microbiota dual interaction, toward the identification of a distinctiveness of the gut microbial community, which, in turn, may allow to adopt personalized preventive strategies to improve risk assessment for more susceptible workers.
Collapse
Affiliation(s)
- Federica Giambò
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina, Italy
| | - Michele Teodoro
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concettina Fenga
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
42
|
Dhurjad P, Dhavaliker C, Gupta K, Sonti R. Exploring Drug Metabolism by the Gut Microbiota: Modes of Metabolism and Experimental Approaches. Drug Metab Dispos 2022; 50:224-234. [PMID: 34969660 DOI: 10.1124/dmd.121.000669] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence uncovers the involvement of gut microbiota in the metabolism of numerous pharmaceutical drugs. The human gut microbiome harbors 10-100 trillion symbiotic gut microbial bacteria that use drugs as substrates for enzymatic processes to alter host metabolism. Thus, microbiota-mediated drug metabolism can change the conventional drug action course and cause inter-individual differences in efficacy and toxicity, making it vital for drug discovery and development. This review focuses on drug biotransformation pathways and discusses different models for evaluating the role of gut microbiota in drug metabolism. SIGNIFICANCE STATEMENT: This review emphasizes the importance of gut microbiota and different modes of drug metabolism mediated by them. It provides information on in vivo, in vitro, ex vivo, in silico and multi-omics approaches for identifying the role of gut microbiota in metabolism. Further, it highlights the significance of gut microbiota-mediated metabolism in the process of new drug discovery and development as a rationale for safe and efficacious drug therapy.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chinmayi Dhavaliker
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kajal Gupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
43
|
Zheng S, Wang L, Xiong J, Liang G, Xu Y, Lin F. Consensus Prediction of Human Gut Microbiota-Mediated Metabolism Susceptibility for Small Molecules by Machine Learning, Structural Alerts, and Dietary Compounds-Based Average Similarity Methods. J Chem Inf Model 2022; 62:1078-1099. [PMID: 35156807 DOI: 10.1021/acs.jcim.1c00948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human gut microbiota (HGM) colonizing human gastrointestinal tract (HGT) confers a repertoire of dynamic and unique metabolic capacities that are not possessed by the host and therefore is tentatively perceived as an alternative metabolic ″organ″ besides the liver in the host. Nevertheless, the significant contribution of HGM to the overall human metabolism is often overlooked in the modern drug discovery pipeline. Hence, a systematic evaluation of HGM-mediated drug metabolism is gradually important, and its computational prediction becomes increasingly necessary. In this work, a new data set containing both the HGM-mediated metabolism susceptible (HGMMS) and insusceptible (HGMMI) compounds (329 vs 320) was manually curated. Based on this data set, the first machine learning (ML) model, a new structural alerts (SA) model, and the K-nearest neighboring dietary compounds-based average similarity (AS) model were proposed to directly predict the HGM-mediated metabolism susceptibility for small molecules, and exhibit promising performance on three independent test sets. Finally, consensus prediction (ML/SA/AS) for DrugBank molecules revealed an intriguing phenomenon that a typical Michael acceptor ″α,β-unsaturated carbonyl group″ is a very common warhead for the design of covalent inhibitors and inclined to be metabolized by HGM in anaerobic HGT to generate the reduced metabolite without the reactive warhead, which could be a new concern to medicinal chemists. To the best of our knowledge, we gleaned the first HGMMS/HGMMI data set, developed the first HGMMS/HGMMI classification model, implemented a relatively comprehensive program based on ML/SA/AS approaches, and found a new phenomenon on the HGM-mediated deactivation of an extensively used warhead for covalent inhibitors.
Collapse
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yong Xu
- Center of Chemical Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Fu Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
44
|
López-Moreno A, Ruiz-Moreno Á, Pardo-Cacho J, Cerk K, Torres-Sánchez A, Ortiz P, Úbeda M, Aguilera M. Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children's Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure. Nutrients 2022; 14:nu14020241. [PMID: 35057422 PMCID: PMC8778816 DOI: 10.3390/nu14020241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Integrated data from molecular and improved culturomics studies might offer holistic insights on gut microbiome dysbiosis triggered by xenobiotics, such as obesity and metabolic disorders. Bisphenol A (BPA), a dietary xenobiotic obesogen, was chosen for a directed culturing approach using microbiota specimens from 46 children with obesity and normal-weight profiles. In parallel, a complementary molecular analysis was carried out to estimate the BPA metabolising capacities. Firstly, catalogues of 237 BPA directed-cultured microorganisms were isolated using five selected media and several BPA treatments and conditions. Taxa from Firmicutes, Proteobacteria, and Actinobacteria were the most abundant in normal-weight and overweight/obese children, with species belonging to the genera Enterococcus, Escherichia, Staphylococcus, Bacillus, and Clostridium. Secondly, the representative isolated taxa from normal-weight vs. overweight/obese were grouped as BPA biodegrader, tolerant, or resistant bacteria, according to the presence of genes encoding BPA enzymes in their whole genome sequences. Remarkably, the presence of sporobiota and concretely Bacillus spp. showed the higher BPA biodegradation potential in overweight/obese group compared to normal-weight, which could drive a relevant role in obesity and metabolic dysbiosis triggered by these xenobiotics.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
- Microbiota Laboratory, IBS: Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
- Correspondence: (A.L.-M.); (M.A.); Tel.: +34-9-5824-5129 (M.A.)
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
| | - Jesús Pardo-Cacho
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
| | - Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
| | - Marina Úbeda
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (J.P.-C.); (K.C.); (A.T.-S.); (P.O.); (M.Ú.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18016 Granada, Spain
- Microbiota Laboratory, IBS: Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
- Correspondence: (A.L.-M.); (M.A.); Tel.: +34-9-5824-5129 (M.A.)
| |
Collapse
|
45
|
Ahrodia T, Das S, Bakshi S, Das B. Structure, functions, and diversity of the healthy human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:53-82. [DOI: 10.1016/bs.pmbts.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo[ a]Pyrene Metabolite Profile and Its Distribution in 3D Skin. mBio 2021; 12:e0122321. [PMID: 34579573 PMCID: PMC8546866 DOI: 10.1128/mbio.01223-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[a]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[a]P on and in human skin in situ, using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[a]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[a]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[a]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies.
Collapse
|
47
|
Zahran SA, Ali-Tammam M, Ali AE, Aziz RK. Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study. Gut Pathog 2021; 13:58. [PMID: 34625106 PMCID: PMC8499468 DOI: 10.1186/s13099-021-00454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022] Open
Abstract
Background Through an arsenal of microbial enzymes, the gut microbiota considerably contributes to human metabolic processes, affecting nutrients, drugs, and environmental poisons. Azoreductases are a predominant group of microbiota-derived enzymes involved in xenobiotic metabolism and drug activation, but little is known about how compositional changes in the gut microbiota correlate with its azo-reducing activity. Results To this end, we used high-throughput 16S rRNA amplicon sequencing, with Illumina MiSeq, to determine the microbial community composition of stool samples from 16 adults with different azo-reducing activity. High azo-reducing activity positively
correlated with the relative abundance of phylum Firmicutes (especially genera Streptococcus and Coprococcus) but negatively with phylum Bacteroidetes (especially genus Bacteroides). Typical variations in the Firmicutes-to-Bacteroidetes and Prevotella-to-Bacteroides ratios were observed among samples. Multivariate analysis of the relative abundance of key microbial taxa and other diversity parameters confirmed the Firmicutes proportion as a major variable differentiating high and non-azo-reducers, while Bacteroidetes relative abundance was correlated with azo-reduction, sex, and BMI. Conclusions This pilot study showed that stool samples with higher azo-reducing activity were enriched in Firmicutes but with relatively fewer Bacteroidetes. More samples and studies from different geographical areas are needed to bolster this conclusion. Better characterization of different azoreductase-producing gut microbes will increase our knowledge about the fate and differential human responses to azodye-containing drugs or orally consumed chemicals, thus contributing to efforts towards implementing microbiome testing in precision medicine and toxicology. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00454-0.
Collapse
Affiliation(s)
- Sara A Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, New Cairo, 11835, Egypt
| | - Marwa Ali-Tammam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, New Cairo, 11835, Egypt
| | - Amal E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, New Cairo, 11835, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt. .,The Center for Genome and Microbiome Research, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt. .,Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt.
| |
Collapse
|
48
|
Food-grade lactic acid bacteria and probiotics as a potential protective tool against erythrotoxic dietary xenobiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
50
|
Kim HM, Kang JS. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021; 11:485. [PMID: 34436425 PMCID: PMC8402193 DOI: 10.3390/metabo11080485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental pollution causes significant toxicity to ecosystems. Thus, acquiring a deeper understanding of the concentration of environmental pollutants in ecosystems and, clarifying their potential toxicities is of great significance. Environmental metabolomics is a powerful technique in investigating the effects of pollutants on living organisms in the environment. In this review, we cover the different aspects of the environmental metabolomics approach, which allows the acquisition of reliable data. A step-by-step procedure from sample preparation to data interpretation is also discussed. Additionally, other factors, including model organisms and various types of emerging environmental toxicants are discussed. Moreover, we cover the considerations for successful environmental metabolomics as well as the identification of toxic effects based on data interpretation in combination with phenotype assays. Finally, the effects induced by various types of environmental toxicants in model organisms based on the application of environmental metabolomics are also discussed.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|