1
|
Yang N, Chen J, Zhu Y, Shan W, Cao Z, Fu Y, Cao H, Li Y, Xiang Y, Ding S, Wang H, Zhao Y, Ji L, Zhan R, Wu Y, Wang Z, Dong M, Zheng L. Human cardiac organoid model reveals antibacterial triclocarban promotes myocardial hypertrophy by interfering with endothelial cell metabolism. Sci Bull (Beijing) 2025; 70:342-346. [PMID: 39645468 DOI: 10.1016/j.scib.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Nana Yang
- School of Bioscience and Technology, Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Shandong Second Medical University, Weifang 261053, China
| | - Jiahong Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zheng Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Fu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yanyan Li
- School of Bioscience and Technology, Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Shandong Second Medical University, Weifang 261053, China
| | - Yukun Xiang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Shusi Ding
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yaobo Zhao
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Rui Zhan
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Yufei Wu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Manyuan Dong
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Lewis KA, Stroebel BM, Kanaya AM, Aouizerat B, Longoria KD, Flowers E. Metabolomic Signatures in Adults with Metabolic Syndrome Indicate Preclinical Disruptions in Pathways Associated with High-Density Lipoprotein Cholesterol, Sugar Alcohols. RESEARCH SQUARE 2025:rs.3.rs-5989567. [PMID: 39989952 PMCID: PMC11844646 DOI: 10.21203/rs.3.rs-5989567/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Metabolic syndrome is a pressing public health issue and risk factor for the development of type 2 diabetes (T2D) and cardiovascular disease (CVD), yet clinical practice is lacking in biomarkers that represent pre-clinical perturbations of the heterogenous subtypes of risk. This study aimed to characterize the baseline metabolome in relation to known clinical characteristics of risk in a sample of obese adults. Methods Untargeted metabolome data from N = 126 plasma samples with baseline data from a previously completed study including obese adults with metabolic syndrome. Metabolites were acquired using validated liquid chromatography mass spectrometry methods with 15-25 internal standards quantified by peak heights. Pearson's correlations were used to determine relationships between baseline metabolites, sample characteristics (e.g., age, body mass index (BMI)), and atherosclerotic clinical characteristics (e.g., high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides), adjusting for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (FDR) method. Differences in metabolite levels between clinical classifications of dysglycemia (e.g., normal, prediabetes, diabetes) at baseline were assessed using ANOVA and adjusted for multiple comparisons and adjusted for covariates. Results The sample consisted primarily of female (74%) participants, predominantly white (70%), with an average age of 56 years. After FDR adjustment, two baseline metabolites were significantly associated with age (xylose, threitol), two with BMI (shikimic acid, propane-1,3-diol), one with LDL (tocopherol-alpha), and 42 with HDL cholesterol. Three metabolites were significantly associated with fasting blood glucose (FBG) levels at baseline (glucose, gluconic acid lactone, pelargonic acid). Conclusions This study identified novel metabolite associations with known markers of T2D and CVD risk. Specific metabolites, such as alpha-tocopherol, branched-chain amino acids (BCAAs), and sugar-derived metabolites like mannose and xylose, were significantly associated with age, BMI, lipid profiles, and glucose measures. Although most sample participants had normal HDL cholesterol at baseline, 42 metabolites including branched chain amino acids were significantly associated with HDL, suggesting pre-clinical perturbations in biological pathways associated with both diabetes and cardiovascular comorbidities. Metabolomic signatures Specific to prediabetes and metabolic syndrome can enhance risk stratification and enable targeted prevention strategies for T2D. Longitudinal studies are needed to understand how these associations change over time in at-risk individuals compared with controls.
Collapse
Affiliation(s)
- K A Lewis
- University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
3
|
Tasouli-Drakou V, Ogurek I, Shaikh T, Ringor M, DiCaro MV, Lei K. Atherosclerosis: A Comprehensive Review of Molecular Factors and Mechanisms. Int J Mol Sci 2025; 26:1364. [PMID: 39941130 PMCID: PMC11818631 DOI: 10.3390/ijms26031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a condition characterized by the accumulation of lipids and a culprit behind cardiovascular events, has long been studied. However, in recent years, there has been an increase in interest in its initiation, with researchers shifting focus from traditional pathways involving the vascular infiltration of oxidized lipids and towards the novel presence of chronic inflammatory pathways. The accumulation of pro-inflammatory cytokines, in combination with the activation of transcription factors, creates a positive feedback loop that drives the creation and progression of atherosclerosis. From the upregulation of the nod-like receptor protein 3 (NLRP3) inflammasome and the Notch and Wnt pathways to the increased expression of VEGF-A and the downregulation of connexins Cx32, Cx37, and Cx40, these processes contribute further to endothelial dysfunction and plaque formation. Herein, we aim to provide insight into the molecular pathways and mechanisms implicated in the initiation and progression of atherosclerotic plaques, and to review the risk factors associated with their development.
Collapse
Affiliation(s)
- Vasiliki Tasouli-Drakou
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Ian Ogurek
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Taha Shaikh
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Marc Ringor
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - Michael V. DiCaro
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV 89106, USA; (I.O.); (T.S.); (M.R.); (M.V.D.)
| | - KaChon Lei
- Department of Cardiovascular Medicine, University of Nevada, Las Vegas, NV 89106, USA;
| |
Collapse
|
4
|
Basta G, Babboni S, Pezzati D, Del Turco S, Balzano E, Catalano G, Russo L, Tincani G, Carrai P, Petruccelli S, Bronzoni J, Martinelli C, Palladino S, Trizzino A, Petagna L, Romagnoli R, Patrono D, Biancofiore G, Peris A, Lazzeri C, Ghinolfi D. Perfusate Liver Arginase 1 Levels After End-Ischemic Machine Perfusion Are Associated with Early Allograft Dysfunction. Biomedicines 2025; 13:244. [PMID: 39857827 PMCID: PMC11760452 DOI: 10.3390/biomedicines13010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The rising use of liver grafts from donation after circulatory death (DCD) has been enabled by advances in normothermic regional perfusion (NRP) and machine perfusion (MP) technologies. We aimed to identify predictive biomarkers in DCD grafts subjected to NRP, followed by randomization to either normothermic machine perfusion (NMP) or dual hypothermic oxygenated perfusion (D-HOPE). Methods: Among 57 DCD donors, 32 liver grafts were transplanted, and recipients were monitored for one week post-transplant. Biomarkers linked with oxidative stress, hepatic injury, mitochondrial dysfunction, inflammation, regeneration, and autophagy were measured during NRP, end-ischemic MP, and one week post-transplant. Results: Arginase-1 (ARG-1) levels were consistently higher in discarded grafts and in recipients who later developed early allograft dysfunction (EAD). Specifically, ARG-1 levels at the end of MP correlated with markers of hepatic injury. Receiver operating characteristic analysis indicated that ARG-1 at the end of MP had a good predictive accuracy for EAD (AUC = 0.713; p = 0.02). Lipid peroxidation (TBARS) elevated at the start of NRP, declined over time, with higher levels in D-HOPE than in NMP, suggesting a more oxidative environment in D-HOPE. Metabolites like flavin mononucleotide (FMN) and NADH exhibited significant disparities between perfusion types, due to differences in perfusate compositions. Inflammatory biomarkers rose during NRP and NMP but normalized post-transplantation. Regenerative markers, including osteopontin and hepatocyte growth factor, increased during NRP and NMP and normalized post-transplant. Conclusions: ARG-1 demonstrates strong potential as an early biomarker for assessing liver graft viability during perfusion, supporting timely and effective decision-making in transplantation.
Collapse
Affiliation(s)
- Giuseppina Basta
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Daniele Pezzati
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Emanuele Balzano
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Gabriele Catalano
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Lara Russo
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Tincani
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Paola Carrai
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Stefania Petruccelli
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Jessica Bronzoni
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Simona Palladino
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Arianna Trizzino
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Lorenzo Petagna
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e Della Scienza di Torino, University of Torino, Corso Bramante 88-90, 10126 Torino, Italy
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e Della Scienza di Torino, University of Torino, Corso Bramante 88-90, 10126 Torino, Italy
| | - Giandomenico Biancofiore
- Department of Anesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy
| | - Adriano Peris
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), 50134 Florence, Italy
| | - Chiara Lazzeri
- Tuscany Regional Transplant Authority, Centro Regionale Allocazione Organi e Tessuti (CRAOT), 50134 Florence, Italy
| | - Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
5
|
Li J, Wei Y, Wang Y, Zhang Y, Xu Y, Ma H, Ma L, Zeng Q. Metabolomics study of APETx2 post-conditioning on myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1470142. [PMID: 39712499 PMCID: PMC11658994 DOI: 10.3389/fphar.2024.1470142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear. These unknowns might be related to the cardioprotective effects observed with APETx2 post-conditioning. Method Rat hearts subjected to Langendorff perfusion were randomly assigned to the normal (Nor) group, ischemia/reperfusion (I/R) group, ASIC3 blockade (AP) group. Rat hearts in group AP were treated with the ASIC3-specific inhibitor APETx2 (630 nM). Molecular and morphological changes were observed to elucidate the role of ASIC3 in MIRI. Bioinformatics analyses identified differential metabolites and pathways associated with APETx2 post-conditioning. Results APETx2 post-conditioning stabilized hemodynamics in the isolated rat heart model of MIRI. It also reduced myocardial infarct size, mitigated mitochondrial damage at the ultrastructural level, and improved markers of myocardial injury and oxidative stress. Further more, we observed that phosphatidylcholine, phosphatidylethanolamine, citric acid, cyanidin 5-O-beta-D-glucoside, and L-aspartic acid decreased after MIRI. The levels of these metabolites were partially restored by APETx2 post-conditioning. These metabolites are primarily involved in autophagy and endogenous cannabinoid signaling pathways. Conclusion ASIC3 is potentially a key player in MIRI. APETx2 post-conditioning may improve MIRI through specific metabolic changes. This study provides valuable data for future research on the metabolic mechanisms underlying the effects of APETx2 post-conditioning in MIRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Shenzhen Women and Children’s Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong Province, China
| | - Yi Wang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yue Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ying Xu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Huanhuan Ma
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lulin Ma
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qingfan Zeng
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
6
|
Naderipour F, Keshavarzi F, Mirfakhraee H, Dini P, Jamshidnezhad N, Abolghasem N, Sabzghabaei F, Shariatinia F. Efficacy of L-Arginine for Preventing Preeclampsia and Improving Maternal and Neonatal Outcomes in High-Risk Pregnancies: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:323-328. [PMID: 39564822 PMCID: PMC11589976 DOI: 10.22074/ijfs.2024.2016433.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 11/21/2024]
Abstract
Preeclampsia (PE) remains a significant cause of maternal and neonatal morbidity and mortality, particularly in high-risk pregnancies. The present study aims to assess the efficacy of L-arginine supplementation in preventing PE and improving maternal and neonatal outcomes in high-risk pregnancies. We searched international databases (ISI, PubMed, Scopus, and Embase) and extracted studies that evaluated the efficacy of L-arginine for preventing PE and improving maternal and neonatal outcomes in high-risk pregnancies. The data collected were analysed utilising the random-effects model in Stata (version 15). Out of the collected studies, 10 met the eligibility criteria, comprising a total sample size of 1165 subjects (586 cases and 584 controls). The mean age of the cases was 28 ± 5.05 years, while that of the controls was 27.32 ± 4.58 years. The results revealed that L-arginine was more effective in reducing the incidence of PE than placebo [odds ratio (OR)=0.36, 95% confidence interval (CI): 0.17, 0.77]. Also, the results showed no statistically significant difference between the two groups in systolic blood pressure (SBP; standard mean difference (SMD): -0.35, 95% CI: -91, 21) and diastolic blood pressure (DBP; SMD: -0.50, 95% CI: -1.08, 0.07). There was a statistically significant difference in neonatal birth weight between the two groups (SMD: -0.16, 95% CI: -31, -0.01). No statistically significant difference existed between the two groups in terms of gestational age (SMD: 0.6, 95% CI: -0.06, 0.18). Furthermore, there was no significant difference between the two groups in the APGAR score at one minute (SMD: 0.40, 95% CI: -0.02, 0.82). Our findings revealed that L-arginine supplementation during pregnancy reduced the incidence of PE in high-risk pregnancies. However, it does not significantly improve maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Fatemeh Naderipour
- Department of Obstetrics and Gynaecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Keshavarzi
- Department of Obstetrics and Gynaecology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosna Mirfakhraee
- Department of Internal Medicine, School of Medicine, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Dini
- Department of Nephrology, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Niousha Jamshidnezhad
- Department of Nephrology, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Nastaran Abolghasem
- Department of Nephrology, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Foroogh Sabzghabaei
- Department of Nephrology, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shariatinia
- Maternal-Fetal Medicine Research Center, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
8
|
Du Z, Jiang W, Yu C, Zhang M, Xia W. Asymmetric dimethylarginine correlates with indicators of prethrombotic state in patients with nonvalvular atrial fibrillation. Pacing Clin Electrophysiol 2024; 47:838-842. [PMID: 38563722 DOI: 10.1111/pace.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE The mechanism of asymmetric dimethylarginine (ADMA) in thrombosis in patients with nonvalvular atrial fibrillation (NVAF) is still unclear. Our aim was to investigate the relationship between ADMA and indicators of prethrombotic state in NVAF patients and to analyze the predictive role of ADMA in NVAF thrombosis. METHODS A total of 192 NVAF patients were continuously selected from January 2023 to October 2023. Plasma ADMA levels were measured by high-performance liquid chromatography. P-selectin (P-sel), von Willebrand factor (vWF), D-dimer (D-D), and plasminogen activator inhibitor-1 (PAI-1) levels were measured by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) levels were measured by the nitrate reductase assay for plasma nitrite/nitrate, then the Griess method (Shanghai Hailian Biotechnology Co., Shanghai, China) was used to calculate plasma NO levels. RESULTS In our study, ADMA levels were significantly elevated and positively correlated with P-sel, vWF, D-D, and PAI-1, whereas NO levels were significantly negatively correlated with these prethrombotic factors in NVAF. Furthermore, multifactorial logistic regression analysis showed that ADMA and LA diameter were independent predictors of high thrombosis risk (CHA2DS2-VASc ≥2 score) in patients with NVAF. CONCLUSIONS Our findings suggested that ADMA correlated with the prethrombotic state in NVAF and that reduction of ADMA levels in NVAF patients may be a novel therapeutic strategy for thrombosis risk reduction.
Collapse
Affiliation(s)
- Zhaona Du
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wenbo Jiang
- Department of Neurosurgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chengyun Yu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ming Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wei Xia
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Ng YYH, Dora KA, Lemmey HA, Lin J, Alden J, Wallis L, Donovan L, Shorthose O, Leiper FC, Leiper J, Garland CJ. Asymmetric Dimethylarginine Enables Depolarizing Spikes and Vasospasm in Mesenteric and Coronary Resistance Arteries. Hypertension 2024; 81:764-775. [PMID: 38226470 PMCID: PMC10956675 DOI: 10.1161/hypertensionaha.123.22454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Increased vasoreactivity due to reduced endothelial NO bioavailability is an underlying feature of cardiovascular disease, including hypertension. In small resistance arteries, declining NO enhances vascular smooth muscle (VSM) reactivity partly by enabling rapid depolarizing Ca2+-based spikes that underlie vasospasm. The endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) is metabolized by DDAH1 (dimethylarginine dimethylaminohydrolase 1) and elevated in cardiovascular disease. We hypothesized ADMA might enable VSM spikes and vasospasm by reducing NO bioavailability, which is opposed by DDAH1 activity and L-arginine. METHODS Rat isolated small mesenteric arteries and myogenic rat-isolated intraseptal coronary arteries (RCA) were studied using myography, VSM intracellular recording, Ca2+ imaging, and DDAH1 immunolabeling. Exogenous ADMA was used to inhibit NO synthase and a selective DDAH1 inhibitor, NG-(2-methoxyethyl) arginine, to assess the functional impact of ADMA metabolism. RESULTS ADMA enhanced rat-isolated small mesenteric arteries vasoreactivity to the α1-adrenoceptor agonist, phenylephrine by enabling T-type voltage-gated calcium channel-dependent depolarizing spikes. However, some endothelium-dependent NO-vasorelaxation remained, which was sensitive to DDAH1-inhibition with NG-(2-methoxyethyl) arginine. In myogenically active RCA, ADMA alone stimulated depolarizing Ca2+ spikes and marked vasoconstriction, while NO vasorelaxation was abolished. DDAH1 expression was greater in rat-isolated small mesenteric arteries endothelium compared with RCA, but low in VSM of both arteries. L-arginine prevented depolarizing spikes and protected NO-vasorelaxation in rat-isolated small mesenteric artery and RCA. CONCLUSIONS ADMA increases VSM electrical excitability enhancing vasoreactivity. Endothelial DDAH1 reduces this effect, and low levels of DDAH1 in RCAs may render them susceptible to endothelial dysfunction contributing to vasospasm, changes opposed by L-arginine.
Collapse
Affiliation(s)
- Yu Y. Hanson Ng
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Kim A. Dora
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Hamish A.L. Lemmey
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - JinHeng Lin
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - James Alden
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Lillian Wallis
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Lucy Donovan
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Oliver Shorthose
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| | - Fiona C. Leiper
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, United Kingdom (F.C.L., J. Leiper)
| | - James Leiper
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, United Kingdom (F.C.L., J. Leiper)
| | - Christopher J. Garland
- Department of Pharmacology, University of Oxford, United Kingdom (Y.Y.H.N., K.A.D., H.A.L.L., J. Lin, J.A., L.W., LD., O.S., C.J.G.)
| |
Collapse
|
10
|
Hacioglu A, Firat ST, Caglar AS, Karaca Z, Kalay N, Taheri S, Tanriverdi F, Selcuklu A, Unluhizarci K, Kelestimur F. Cardiovascular evaluation and endothelial dysfunction in Cushing syndrome following remission: a prospective study. J Endocrinol Invest 2024; 47:645-653. [PMID: 37648907 DOI: 10.1007/s40618-023-02183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Cushing syndrome (CS) is a well-known risk factor for cardiovascular morbidities. We aimed to evaluate endothelial and cardiovascular functions, endothelial mediators and pro-inflammatory cytokines in patients with CS before and after remission. METHODS Adult patients with newly diagnosed endogenous CS were included. Metabolic [body mass index (BMI), glucose, and lipid values] and cardiovascular evaluation studies [24-h ambulatory blood pressure monitoring, carotid intima-media thickness (CIMT), flow-mediated dilation (FMD), and echocardiography] were performed, and endothelial mediators [asymmetric dimethyl arginine (ADMA) and endothelin-1 (ET-1)] and pro-inflammatory cytokines [interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α)] were measured. Control group was matched in terms of age, gender, and BMIs. RESULTS Twenty-five patients, mean age 40.60 ± 14.04 years, completed the study. Compared to controls (n = 20) mean arterial pressure (MAP) and CIMT were higher (p < 0.005 and p = 0.012, respectively), and FMD (p < 0.001) and mitral E/A ratio (p = 0.007) lower in the patients during active disease. Baseline serum ADMA, ET-1, and IL-1β were similar between the groups, while TNF-α was lower in the patients (p = 0.030). All patients were in complete remission 1 year following surgery. BMI, LDL cholesterol, serum total cholesterol, fasting plasma glucose, MAPs, and CIMT significantly decreased (p < 0.005), while there was no improvement in FMD (p = 0.11) following remission. There was no significant change in ADMA, IL-1β, and TNF-α levels, but ET-1 increased (p = 0.011). CONCLUSIONS Remission in CS improves some cardiovascular parameters. ADMA and ET-1 are not reliable markers for endothelial dysfunction in CS. Metabolic improvements may not directly reflect on serum concentrations of TNF-α and IL-1β following remission of CS.
Collapse
Affiliation(s)
- A Hacioglu
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - S T Firat
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - A S Caglar
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Z Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey.
| | - N Kalay
- Department of Cardiology, Erciyes University Medical School, Kayseri, Turkey
| | - S Taheri
- Department of Medical Biology, Erciyes University Medical School, Kayseri, Turkey
| | - F Tanriverdi
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - A Selcuklu
- Department of Neurosurgery, Erciyes University Medical School, Kayseri, Turkey
| | - K Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - F Kelestimur
- Faculty of Medicine, Department of Endocrinology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
11
|
Mazumdar D, Singh S. Diabetic Encephalopathy: Role of Oxidative and Nitrosative Factors in Type 2 Diabetes. Indian J Clin Biochem 2024; 39:3-17. [PMID: 38223005 PMCID: PMC10784252 DOI: 10.1007/s12291-022-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is a set of complex metabolic disorders characterized by chronic hyperglycaemic condition due to defective insulin secretion (Type 1) and action (Type 2), which leads to serious micro and macro-vascular damage, inflammation, oxidative and nitrosative stress and a deranged energy homeostasis due to imbalance in the glucose and lipid metabolism. Moreover, patient with diabetes mellitus often showed the nervous system disorders known as diabetic encephalopathy. The precise pathological mechanism of diabetic encephalopathy by which it effects the central nervous system directly or indirectly causing the cognitive and motor impairment, is not completely understood. However, it has been speculated that like other extracerebellar tissues, oxidative and nitrosative stress may play significant role in the pathogenesis of diabetic encephalopathy. Therefore, the present review aimed to explain the possible association of the oxidative and nitrosative stress caused by the chronic hyperglycaemic condition with the central nervous system complications of the type 2 diabetes mellitus induced diabetic encephalopathy.
Collapse
Affiliation(s)
- Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
12
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Craig A, Kruger R, Gafane-Matemane LF, Louw R, Mels CMC. Early vascular ageing phenotypes and urinary targeted metabolomics in children and young adults: the ExAMIN Youth SA and African-PREDICT studies. Amino Acids 2023; 55:1049-1062. [PMID: 37328631 PMCID: PMC10514129 DOI: 10.1007/s00726-023-03293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Some individuals are susceptible to accelerated biological ageing, resulting in premature alterations in arterial structure and function. Identifying early-onset vascular ageing characterised by arterial stiffening is vital for intervention and preventive strategies. We stratified and phenotyped healthy children (5-9 yrs) and young adults (20-30 yrs) into their vascular ageing extremes established by carotid-femoral pulse wave velocity (cfPWV) percentiles (i.e., healthy vascular ageing (HVA) and early vascular ageing (EVA)). We compared anthropometric, cardiovascular, and metabolomic profiles and explored associations between cfPWV and urinary metabolites. Children and adults in the EVA groups displayed higher levels of adiposity, cardiovascular, and lifestyle risk factors (adults only) (all p ≤ 0.018). In adults, several urinary metabolites were lower in the EVA group (all q ≤ 0.039) when compared to the HVA group, with no differences observed in children. In multiple regression analysis (adults only), we found inverse associations between cfPWV with histidine (adj. R2 = 0.038; β = -0.192; p = 0.013) and beta-alanine (adj. R2 = 0.034; β = -0.181; p = 0.019) in the EVA group, but with arginine (adj. R2 = 0.021; β = -0.160; p = 0.024) in the HVA group. The inverse associations of beta-alanine and histidine with cfPWV in the EVA group is suggestive that asymptomatic young adults who present with an altered metabolomic and less desired cardiovascular profile in combination with unfavourable lifestyle behaviours may be predisposed to early-onset vascular ageing. Taken together, screening on both a phenotypic and metabolic level may prove important in the early detection, prevention, and intervention of advanced biological ageing.
Collapse
Affiliation(s)
- Ashleigh Craig
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Carina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
14
|
Sulyok E, Farkas B, Bodis J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants (Basel) 2023; 12:1354. [PMID: 37507894 PMCID: PMC10376205 DOI: 10.3390/antiox12071354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Based on epidemiological observations Barker et al. put forward the hypothesis/concept that an adverse intrauterine environment (involving an insufficient nutrient supply, chronic hypoxia, stress, and toxic substances) is an important risk factor for the development of chronic diseases later in life. The fetus responds to the unfavorable environment with adaptive reactions, which ensure survival in the short run, but at the expense of initiating pathological processes leading to adult diseases. In this review, the major mechanisms (including telomere dysfunction, epigenetic modifications, and cardiovascular-renal-endocrine-metabolic reactions) will be outlined, with a particular emphasis on the role of oxidative stress in the fetal origin of adult diseases.
Collapse
Affiliation(s)
- Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Balint Farkas
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, School of Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
15
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
16
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
17
|
The role of asymmetric dimethylarginine in endothelial dysfunction and abnormal nitric oxide metabolism in systemic sclerosis: results from a pilot study. Clin Rheumatol 2023; 42:1077-1085. [PMID: 36534350 DOI: 10.1007/s10067-022-06472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION/OBJECTIVES Systemic sclerosis (SSc) is characterized by generalized vasculopathy affecting mainly small vessels while macrovascular involvement is less investigated. The aim of this study was to examine associations between asymmetric dimethylarginine (ADMA) - a biomarker of atherosclerosis - and assessments of macrovascular endothelial function in patients with SSc. METHODS This was a cross-sectional study including consecutive SSc patients attending the Scleroderma Outpatient Clinic. ADMA measurement in serum samples was based on an enzyme immunoassay technique. Participants underwent blood pressure measurement according to 2018 ESC/ESH Guidelines, applanation tonometry for the evaluation of arterial stiffness, and carotid ultrasound for the measurement of the intima-media thickness (cIMT). RESULTS Eighty-one Caucasians (82.3% female) SSc individuals with mean age 55.44 ± 13.4 years were included in this analysis. The correlation analysis of ADMA levels (unadjusted and adjusted values) with functional and morphological parameters of atherosclerosis revealed no statistically significant associations. Subgroup analysis based on disease duration (≤ 4 years), immunologic profile (SCL-70 and ACA antibodies), disease type (limited, diffuse), and inflammatory status (erythrocyte sedimentation rate [ESR] > 25 mm/h and C-reactive protein [CRP] > 5 mg/L) showed no associations, except from a significant positive correlation between ADMA levels and cΙΜΤmean (r = 0.370, p = 0.044) in individuals with early SSc. CONCLUSIONS The results of the study suggest that ADMA may be related with accelerated atherosclerosis in early stages of the disease. However, the lack of association between other morphological and functional parameters of endothelial dysfunction may suggest that other regulators of nitric oxide metabolism may contribute to macrovascular injury in SSc in various phases of the disease. Key Points • ADMA is a biomarker of atherosclerosis and has been linked with microvascular complications of SSc. •ADMA was not correlated with morphological and functional parameters of atherosclerosis in the population of the study. •The demonstrated association between ADMA and cIMT in patients with early SSc may suggest a role of NO/ADMA pathway in the initiation of macrovascular injury in SSc.
Collapse
|
18
|
Cziraki A, Nemeth Z, Szabados S, Nagy T, Szántó M, Nyakas C, Koller A. Morphological and Functional Remodeling of the Ischemic Heart Correlates with Homocysteine Levels. J Cardiovasc Dev Dis 2023; 10:jcdd10030122. [PMID: 36975886 PMCID: PMC10056082 DOI: 10.3390/jcdd10030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Homocysteine (Hcy) is involved in various methylation processes, and its plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morphological and functional changes in the ischemic hearts of humans. Methods: Concentration of total homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were determined by echocardiography, and LV mass was calculated (cLVM). Results: Positive correlations were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001), which was ~10 fold higher than the normal level. Conclusions: We propose that homocysteine is an important cardiac biomarker and may have an important role in the development of cardiac remodeling and dysfunction in chronic myocardial ischemia in humans.
Collapse
Affiliation(s)
- Attila Cziraki
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Zoltan Nemeth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Sandor Szabados
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Tamas Nagy
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Márk Szántó
- Heart Institute, Medical School and Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (A.C.)
| | - Csaba Nyakas
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| | - Akos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
- Eötvös Loránd Research Network, Semmelweis University (ELRN-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Department of Translational Medicine, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: ; Tel.: +1-914-594-4085 or +36-70-902-0681
| |
Collapse
|
19
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
20
|
Seo HJ, Rhim WK, Baek SW, Kim JY, Kim DS, Han DK. Endogenous stimulus-responsive nitric oxide releasing bioactive liposome for a multilayered drug-eluting balloon. Biomater Sci 2023; 11:916-930. [PMID: 36533852 DOI: 10.1039/d2bm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-eluting balloon (DEB) system has been widely utilized for percutaneous coronary intervention (PCI), treating atherosclerosis to overcome the limitations of cardiovascular stents. With the anti-proliferative drug, everolimus (EVL), nitric oxide (NO) plays a key bioregulator role to facilitate the angiogenesis of endothelial cells (ECs) and inhibit the cell proliferation of smooth muscle cells (SMCs) in the lesions of cardiovascular diseases. Due to the very short lifetime and limited exposure area of NO in the body, the continuous release and efficient delivery of NO must be carefully considered. In this respect, a liposome-containing disulfide bonding group was introduced as a delivery vehicle of EVL and NO with the continuous release of NO via successive reaction cycles with GSH and SNAP in the blood vessel without the need for exogenous stimulations. With a multilayer coating platform consisting of a polyvinylpyrrolidone (PVP)/EVL-laden liposome with NO (EVL-NO-Lipo)/PVP, we precluded the loss of the EVL-encapsulated liposome with NO release during the transition time and maximized the transfer rate from the surface of DEB to the tissues. The sustained release of NO was monitored using a nitric oxide analyzer (NOA), and the synergistic bioactivities of EVL and NO were proved in EC and SMC with angiogenesis and cell proliferation-related assays. From the results of hemocompatibility and ex vivo studies, the feasibility was provided for future in vivo applications of the multilayer-coated DEB system.
Collapse
Affiliation(s)
- Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
21
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
22
|
Wang S, Deng Z, Zhang H, Zhang R, Yan D, Zheng X, Jia W, Hu C. The effect of haptoglobin genotype on the association of asymmetric dimethylarginine and DDAH 1 polymorphism with diabetic macroangiopathy. Cardiovasc Diabetol 2022; 21:265. [PMID: 36461077 PMCID: PMC9716717 DOI: 10.1186/s12933-022-01702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Dimethylarginine dimethylaminohydrolase (DDAH) 1 maintains the bioavailability of nitric oxide by degrading asymmetric dimethylarginine (ADMA). Here, we aimed to investigate the effect of haptoglobin (Hp) genotype on the association of ADMA and DDAH 1 polymorphism with diabetic macroangiopathy. METHODS In stage 1, 90 Chinese participants with type 2 diabetes were enrolled to measure a panel of targeted metabolites, including ADMA, using tandem mass spectrometry (BIOCRATES AbsoluteIDQ™ p180 kit). In stage 2, an independent cohort of 2965 Chinese patients with type 2 diabetes was recruited to analyze the effect of Hp genotype on the association between DDAH 1 rs233109 and diabetic macroangiopathy. Hp genotypes were detected using a validated assay based on the TaqMan method. DDAH 1 rs233109 was genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy using the MassARRAY platform. RESULTS In stage 1, serum ADMA levels correlated with common Hp genotypes (β ± SE = - 0.049 ± 0.023, P = 0.035), but not with diabetic macroangiopathy (P = 0.316). In stage 2, the distribution of DDAH 1 rs233109 genotype frequencies was 15% (CC), 47% (TC), and 38% (TT), which was in Hardy-Weinberg equilibrium (P = 0.948). A significant Hp genotype by rs 233109 genotype interaction effect on diabetic macroangiopathy was found (P = 0.017). After adjusting for confounders, patients homozygous for rs233109 CC were more likely to develop diabetic macroangiopathy than those carrying TT homozygotes in the Hp 2-2 subgroup [odds ratio = 1.750 (95% confidence interval, 1.101-2.783), P = 0.018]. CONCLUSION Hp genotype affects the association between DDAH 1 rs233109 and diabetic macroangiopathy in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Shiyun Wang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Zixuan Deng
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Hong Zhang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Dandan Yan
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Xiaojiao Zheng
- grid.16821.3c0000 0004 0368 8293Center for Translational Medicine, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Weiping Jia
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China
| | - Cheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai, 200233 People’s Republic of China ,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, 201499 Shanghai, People’s Republic of China
| |
Collapse
|
23
|
Bodis J, Farkas B, Nagy B, Kovacs K, Sulyok E. The Role of L-Arginine-NO System in Female Reproduction: A Narrative Review. Int J Mol Sci 2022; 23:14908. [PMID: 36499238 PMCID: PMC9735906 DOI: 10.3390/ijms232314908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine and methylarginines to outcome measures of women undergoing in vitro fertilization (IVF). This review attempts to summarize the expression and function of the essential elements of this system with particular reference to the different stages of female reproduction. A literature search was performed on the PubMed and Google Scholar systems. Publications were selected for evaluation according to the results presented in the Abstract. The regulatory role of NO during the period of folliculogenesis, oocyte maturation, fertilization, embryogenesis, implantation, placentation, pregnancy, and delivery was surveyed. The major aspects of cellular l-arginine uptake via cationic amino acid transporters (CATs), arginine catabolism by nitric oxide synthases (NOSs) to NO and l-citrulline and by arginase to ornithine, and polyamines are presented. The importance of NOS inhibition by methylated arginines and the redox-sensitive elements of the process of NO generation are also shown. The l-arginine-NO system plays a crucial role in all stages of female reproduction. Insufficiently low or excessively high rates of NO generation may have adverse influences on IVF outcome.
Collapse
Affiliation(s)
- Jozsef Bodis
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Balint Farkas
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Bernadett Nagy
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Kalman Kovacs
- Department of Obstetrics and Gynecology, University of Pecs School of Medicine, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
| | - Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| |
Collapse
|
24
|
Travieso A, Jeronimo-Baza A, Faria D, Shabbir A, Mejia-Rentería H, Escaned J. Invasive evaluation of coronary microvascular dysfunction. J Nucl Cardiol 2022; 29:2474-2486. [PMID: 35618991 PMCID: PMC9553758 DOI: 10.1007/s12350-022-02997-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022]
Abstract
Coronary microvascular dysfunction (CMD) is a prevalent cause of ischemic heart disease and is associated with poorer quality of life and worse patient outcomes. Both functional and structural abnormalities of the microcirculation can generate ischemia in the absence of epicardial stenosis or worsen concomitant obstructive coronary artery disease (CAD). The invasive assessment of CMD allows for the evaluation of the entirety of the coronary vascular tree, from the large epicardial vessels to the microcirculation, and enables the study of vasomotor function through vasoreactivity testing. The standard evaluation of CMD includes vasomotor assessment with acetylcholine, as well as flow- and resistance-derived indices calculated with either thermodilution or Doppler guidewires. Tailored treatment based upon the information gathered from the invasive evaluation of CMD has been demonstrated to reduce the burden of angina; therefore, a thorough understanding of these procedures is warranted with the aim of improving the quality of life of the patient. This review summarizes the most widespread approaches for the invasive evaluation of CMD, with a focus on patients with ischemia and non-obstructive CAD.
Collapse
Affiliation(s)
- Alejandro Travieso
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain
| | - Adrian Jeronimo-Baza
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain
| | - Daniel Faria
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain
| | - Asad Shabbir
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain
| | - Hernan Mejia-Rentería
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, c/ Profesor Martin Lagos, s/n, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Singh J, Lee Y, Kellum JA. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 2022; 26:246. [PMID: 35962414 PMCID: PMC9373887 DOI: 10.1186/s13054-022-04075-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The nitric oxide pathway plays a critical role in vascular homeostasis. Increased levels of systemic nitric oxide (NO) are observed in preclinical models of sepsis and endotoxemia. This has led to the postulation that vasodilation by inducible nitric oxide synthase (iNOS) generated NO may be a mechanism of hypotension in sepsis. However, contrary to the expected pharmacological action of a nitric oxide synthase (NOS) inhibitor, clinical studies with L-NAME produced adverse cardiac and pulmonary events, and higher mortality in sepsis patients. Thus, the potential adverse effects of NO in human sepsis and shock have not been fully established. In recent years, the emerging new understanding of the NO pathway has shown that an endogenously produced inhibitor of NOS, asymmetric dimethylarginine (ADMA), a host response to infection, may play an important role in the pathophysiology of sepsis as well as organ damage during ischemia–reperfusion. ADMA induces microvascular dysfunction, proinflammatory and prothrombotic state in endothelium, release of inflammatory cytokines, oxidative stress and mitochondrial dysfunction. High levels of ADMA exist in sepsis patients, which may produce adverse effects like those observed with L-NAME. Several studies have demonstrated the association of plasma ADMA levels with mortality in sepsis patients. Preclinical studies in sepsis and ischemia–reperfusion animal models have shown that lowering of ADMA reduced organ damage and improved survival. The clinical finding with L-NAME and the preclinical research on ADMA “bed to bench” suggest that ADMA lowering could be a potential therapeutic approach to attenuate progressive organ damage and mortality in sepsis. Testing of this approach is now feasible by using the pharmacological molecules that specifically lower ADMA.
Collapse
|
26
|
Pasqua T, Tropea T, Granieri MC, De Bartolo A, Spena A, Moccia F, Rocca C, Angelone T. Novel molecular insights and potential approaches for targeting hypertrophic cardiomyopathy: Focus on coronary modulators. Vascul Pharmacol 2022; 145:107003. [DOI: 10.1016/j.vph.2022.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
27
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
28
|
Wijaya A, Wang Y, Tang D, Zhong Y, Liu B, Yan M, Jiu Q, Wu W, Wang G. A study of lovastatin and L-arginine co-loaded PLGA nanomedicine for enhancing nitric oxide production and eNOS expression. J Mater Chem B 2022; 10:607-624. [PMID: 34994373 DOI: 10.1039/d1tb01455b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is an exceptional endogenous biological gas that mediates and regulates physiological and pathological processes in the human body. However, its synthesis process is impaired during athero-progression and formation. Hence, a strategy to boost NO production and target endothelial nitric oxide synthase (eNOS) is crucial and intriguing in atherosclerosis (AS) management. Herein, we prepare L-arginine (LA) and lovastatin (LV) co-loaded PLGA nanomedicine to achieve sustainable release for enhancing NO production. The utilization of LA reveals that LA has dual contributions, acting as a NO donor and enhancing the solubility of LV by stabilizing PLGA NPs. PLGA-LA/LV demonstrated its potential to boost NO in vitro and in vivo confirmed using DAF-FM DA, augment eNOS and p-eNOS mRNA and protein levels, and suppress the ki67 proliferation marker in VSMCs; in addition, it lowers the total cholesterol level of blood plasma in C57BL/6 mice. Moreover, PLGA can protect the compound delivered and enhance the bioavailability to reach and get released in the blood circulation after oral administration. Collectively, our results endow a safe and efficient nanomedicine outcome, specifically with potential for AS management.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dan Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Boyan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Quhui Jiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
29
|
Khanyukov OO, Zaiats IO. NITRIC OXIDE DONATORS IN COMPLEX TREATMENT OF PATIENTS WITH CORONARY HEART DISEASE AND ANEMIA: ANTIISCHEMIC AND ANTIARRHYTHMIC EFFECTS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-277-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - I. O. Zaiats
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| |
Collapse
|
30
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
31
|
Ni GH, Cheng JF, Li YJ, Xie QY, Yang TL, Chen MF. Effect of profilin-1 on the asymmetric dimethylarginine-induced vascular lesion-associated hypertension. Kaohsiung J Med Sci 2021; 38:149-156. [PMID: 34741409 DOI: 10.1002/kjm2.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that the levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, are strongly associated with hypertension, diabetes, and cardiovascular diseases. Profilin-1, an actin-binding protein, has been documented to be involved in endothelial injury and in the proliferation of vascular smooth muscle cells resulting from hypertension. However, the role of profilin-1 in ADMA-induced vascular injury in hypertension remains largely unknown. Forty healthy subjects and forty-two matched patients with essential hypertension were enrolled, and the related indexes of vascular injury in plasma were detected. Rat aortic smooth muscle cells (RASMCs) were treated with different concentrations of ADMA for different periods of time and transfected with profilin-1 small hairpin RNA to interrupt the expression of profilin-1. To determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, RASMCs were pretreated with AG490 or rapamycin. The expression of profilin-1 was tested using real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation was measured by flow cytometry and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide assays. Compared with healthy subjects, the levels of ADMA and profilin-1 were markedly elevated in hypertensive individuals, while the levels of NO were significantly decreased (p < 0.05). In vitro, studies showed ADMA-induced profilin-1 expression in a concentration- and time-dependent manner in RASMCs (p < 0.05), concomitantly with promoting the proliferation of RASMCs. Furthermore, ADMA-mediated proliferation of RASMCs and upregulation expression of profilin-1 were inhibited by blockade of the JAK2/STAT3 pathway or knockdown of profilin-1. Profilin-1 implicated in the ADMA-mediated vascular lesions in hypertension.
Collapse
Affiliation(s)
- Guo-Hua Ni
- Health Management Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (Chengdu Jinjiang Sohome Comprehensive Outpatient Clinic), Chengdu, China
| | - Jin-Fang Cheng
- Department of Cardiology, Shanxi Baiqiuen Hospital, Taiyuan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi-Ying Xie
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian-Lun Yang
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Fang Chen
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Recent Updates and Advances in Winiwarter-Buerger Disease (Thromboangiitis Obliterans): Biomolecular Mechanisms, Diagnostics and Clinical Consequences. Diagnostics (Basel) 2021; 11:diagnostics11101736. [PMID: 34679434 PMCID: PMC8535045 DOI: 10.3390/diagnostics11101736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023] Open
Abstract
Thromboangiitis obliterans (TAO) or Buerger’s disease is a segmental inflammatory, thrombotic occlusive peripheral vascular disease with unknown aetiology that usually involves the medium and small-sized vessels of young male smokers. Due to its unknown aetiology and similarities with atherosclerosis and vasculitis, TAO diagnosis is still challenging. We aimed to review the status of biomolecular and laboratory para-clinical markers in TAO compared to atherosclerosis and vasculitis. We reported that, although some biomarkers might be common in TAO, atherosclerosis, and vasculitis, each disease occurs through a different pathway and, to our knowledge, there is no specific and definitive marker for differentiating TAO from atherosclerosis or vasculitis. Our review highlighted that pro-inflammatory and cell-mediated immunity cytokines, IL-33, HMGB1, neopterin, MMPs, ICAM1, complement components, fibrinogen, oxidative stress, NO levels, eNOS polymorphism, adrenalin and noradrenalin, lead, cadmium, and homocysteine are common markers. Nitric oxide, MPV, TLRs, MDA, ox-LDL, sST2, antioxidant system, autoantibodies, and type of infection are differential markers, whereas platelet and leukocyte count, haemoglobin, lipid profile, CRP, ESR, FBS, creatinine, d-dimer, hypercoagulation activity, as well as protein C and S are controversial markers. Finally, our study proposed diagnostic panels for laboratory differential diagnosis to be considered at first and in more advanced stages.
Collapse
|
33
|
Gemmel M, Sutton EF, Brands J, Burnette L, Gallaher MJ, Powers RW. l-Citrulline supplementation during pregnancy improves perinatal and postpartum maternal vascular function in a mouse model of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R364-R376. [PMID: 34259017 DOI: 10.1152/ajpregu.00115.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Preeclampsia is a spontaneously occurring pregnancy complication diagnosed by new-onset hypertension and end-organ dysfunction with or without proteinuria. This pregnancy-specific syndrome contributes to maternal morbidity and mortality and can have detrimental effects on fetal outcomes. Preeclampsia is also linked to increased risk of maternal cardiovascular disease throughout life. Despite intense investigation of this disorder, few treatment options are available. The aim of this study was to investigate the potential therapeutic effects of maternal l-citrulline supplementation on pregnancy-specific vascular dysfunction in the male C57BL/6J × female C57BL/6J C1q-/- preeclampsia-like mouse model. l-Citrulline is a nonessential amino acid that is converted to l-arginine to promote smooth muscle and blood vessel relaxation and improve nitric oxide (NO)-mediated vascular function. To model a preeclampsia-like pregnancy, female C57BL/6J mice were mated to C1q-/- male mice, and a subset of dams was supplemented with l-citrulline throughout pregnancy. Blood pressure, systemic vascular glycocalyx, and ex vivo vascular function were investigated in late pregnancy, and postpartum at 6 and 10 mo of age. Main findings show that l-citrulline reduced blood pressure, increased vascular glycocalyx volume, and rescued ex-vivo vascular function at gestation day 17.5 in this preeclampsia-like model. The vascular benefit of l-citrulline also extended postpartum, with improved vascular function and glycocalyx measures at 6 and 10 mo of age. l-Citrulline-mediated vascular improvements appear, in part, attributable to NO pathway signaling. Taken together, l-citrulline supplementation during pregnancy appears to have beneficial effects on maternal vascular health, which may have translational implications for improved maternal cardiovascular health.
Collapse
Affiliation(s)
- Mary Gemmel
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth F Sutton
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judith Brands
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Robert W Powers
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Contreras-Duarte S, Claudette C, Farias M, Leiva A. High total cholesterol and triglycerides levels increase arginases metabolism, impairing nitric oxide signaling and worsening fetoplacental endothelial dysfunction in gestational diabetes mellitus pregnancies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166216. [PMID: 34314821 DOI: 10.1016/j.bbadis.2021.166216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
During human pregnancy, maternal physiological dyslipidemia (MPD) supports fetal development. However, some women develop maternal supraphysiological dyslipidemia (MSPD: increased total cholesterol (TC) and triglycerides (TG) levels). MSPD is present in normal and pregnancies with gestational diabetes mellitus (GDM). Both pathologies associate with fetoplacental endothelial dysfunction, producing alterations in nitric oxide (NO)-L-arginine/arginase metabolism. Nevertheless, the effect of MSPD on GDM, and how this synergy alters fetoplacental endothelial function is unknown, which is the aim of this study. 123 women at term of pregnancy were classified as MPD (n=40), MSPD (n=35), GDM with normal lipids (GDM- MPD, n=23) and with increased lipids (GDM-MSPD, n=25). TC ≥291 mg/dL and TG ≥275 mg/dL were considered as MSPD. Endothelial NO synthase (eNOS), human cationic amino acid transporter 1 (hCat1), and arginase II protein abundance and activity, were assayed in umbilical vein endothelial cells. In MSPD and MSPD-GDM, TC and TG increased respect to MPD and MPD-GDM. eNOS activity was reduced in MSPD and MSPD-GDM, but increased in MPD-GDM compared with MPD. No changes were observed in eNOS protein. However, decreased tetrahydrobiopterin levels were observed in all groups compared with MPD. Increased hCat1 protein and L-arginine transport were observed in both GDM groups compared with MPD. However, the transport was higher in GDM-MSPD compared to GDM-MPD. Higher Arginase II protein and activity were observed in MSPD-GDM compared with MPD. Thus, MSPD in GDM pregnancies alters fetal endothelial function associated with NO metabolism.
Collapse
Affiliation(s)
- S Contreras-Duarte
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile.
| | - C Claudette
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - M Farias
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510156, Chile
| | - A Leiva
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
35
|
Wiecek M, Szygula Z, Gradek J, Kusmierczyk J, Szymura J. Whole-Body Cryotherapy Increases the Activity of Nitric Oxide Synthase in Older Men. Biomolecules 2021; 11:biom11071041. [PMID: 34356664 PMCID: PMC8301999 DOI: 10.3390/biom11071041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Aging causes oxidative stress, endothelial dysfunction and a reduction in the bioavailability of nitric oxide. The study aim was to determine whether, as a result of repeated whole-body exposure to cryogenic temperature (3 min −130 °C), there is an increase of inducible nitric oxide synthase (iNOS) concentration in senior subjects (59 ± 6 years), and if this effect is stronger in athletes. In 10 long-distance runners (RUN) and 10 untraining (UTR) men, 24 whole-body cryotherapy (WBC) procedures were performed. Prior to WBC, after 12th and 24th treatments and 7 days later, the concentration of iNOS, asymmetric dimethylarginine (ADMA), 3-nitrotyrosine (3-NTR), homocysteine (HCY), C-reactive protein (CRP) and interleukins such as: IL-6, IL-1β, IL-10 were measured. In the RUN and UTR groups, after 24 WBC, iNOS concentration was found to be comparable and significantly higher (F = 5.95, p < 0.01) (large clinical effect size) compared to before 1st WBC and after 12th WBC sessions. There were no changes in the concentration of the remaining markers as a result of WBC (p > 0.05). As a result of applying 24 WBC treatments, using the every-other-day model, iNOS concentration increased in the group of older men, regardless of their physical activity level. Along with this increase, there were no changes in nitro-oxidative stress or inflammation marker levels.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
- Correspondence: (M.W.); (J.S.)
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Joanna Gradek
- Department of Athletics, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Justyna Kusmierczyk
- Department of Physiology and Biochemistry, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland
- Correspondence: (M.W.); (J.S.)
| |
Collapse
|