1
|
Lin M, Huang R, Li W, Peng H, Chen J, Qiu Y, Liu Y, Chen L. Dysbiosis of the gut micro-flora aggravates symptoms and accelerates disease progression in MASLD-IBD Co-morbid mice through host-microbial metabolic imbalance. Arch Biochem Biophys 2025; 769:110441. [PMID: 40320060 DOI: 10.1016/j.abb.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Studies have shown that dysregulation of intestinal microbial structure and co-metabolic imbalance caused by diet and other factors play important role in MASLD and IBD. However, it is unclear how host-microbial interactions differ in the two diseases, and what potential impact they have on accelerating disease progression. Our study aims to find the disease characteristics in MASLD, IBD and their complication from the perspective of host-microbial metabolism. In our study, mouse models of MASLD, IBD, and MASLD-IBD induced by high-fat diet and dextran sulfate sodium. Detecting the pathological changes of colon and liver. Using 16s rRNA to screen out specific micro-flora, and UPLC-MS to monitor the changes of metabolites in feces. The micro-flora-metabolite co-expression network was constructed by Cytoscape software. The result showed that MASLD-IBD mice aggravate intestinal barrier damage, hepatic steatosis and fibrosis, immune inflammation and other pathological changes. In MASLD-IBD mice, the structural change of gut micro-flora is similar to IBD mice, which significantly reduced the abundance of Actinobacteriota, Desulfobacterota while increasing the abundance of Proteobacteria, and the metabolic disorder include nine metabolic pathways, such as tryptophan, bile acids and short-chain fatty acids, is similar to MASLD mice. Their co-expression network indicates that different specific micro-flora are closely related to the metabolic disorder and disease symptoms of MASLD-IBD mice. Analyzing the relationship between intestinal microbial dysregulation and hoetic co-metabolic imbalance is helpful to understand the mechanism of MASLD and IBD comorbidity, which suggesting that combined liver-gut therapy may be a new method for the treatment of MASLD-IBD complication.
Collapse
Affiliation(s)
- Minling Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanyu Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Peng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Li W, Li Y, Qiu Y, Huang R, Niu J, Chen J, Liu Y, Chen L. Kurarinone and Nor-kurarinone inhibit NLRP3 inflammasome activation and regulate macrophage polarization against ulcerative colitis. Int Immunopharmacol 2025; 157:114758. [PMID: 40318276 DOI: 10.1016/j.intimp.2025.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Activation of NOD-like receptor protein 3 (NLRP3) can lead to the production of inflammatory factors and perturbation of macrophage polarization, leading to an intestinal immune imbalance that promotes the progression of ulcerative colitis (UC). In this study, we investigated the therapeutic effect of Kurarinone and Nor-kurarinone on UC and their regulatory mechanisms relating to NLRP3 inflammasome activation and macrophage polarization. UC mice were induced using dextran sulfate sodium (DSS) and treated with Kurarinone and Nor-kurarinone. Results showed that Kurarinone and Nor-kurarinone could alleviate weight loss, decrease the disease activity index (DAI) score, shorten colon length, inhibit formation of the NLRP3 inflammasome in the colon and regulate macrophage polarization in UC mice. The THP-1 cells were used as an in vitro model of the NLRP3 inflammasome, conducted by treatment with lipopolysaccharide (LPS) and ATP/Nigericin. Kurarinone and Nor-kurarinone can inhibit the NLRP3 inflammasome formation response by disrupting the NLRP3/ASC interaction to inhibit NLRP3 assembly and then regulating the polarization of macrophages. In conclusion, Kurarinone and Nor-kurarinone inhibited NLRP3 inflammasome assembly to counteract activation of the NLRP3 inflammasome. This inhibition led to a reduction in M1 polarization of intestinal macrophages in UC mice to keep the balance of M1/ M2 macrophages. Our study suggests that Kurarinone and Nor-kurarinone may be novel therapeutic modalities for UC.
Collapse
Affiliation(s)
- Wanyu Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yadi Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Niu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Hua D, Yang Q, Li X, Zhou X, Kang Y, Zhao Y, Wu D, Zhang Z, Li B, Wang X, Qi X, Chen Z, Cui G, Hong W. The combination of Clostridium butyricum and Akkermansia muciniphila mitigates DSS-induced colitis and attenuates colitis-associated tumorigenesis by modulating gut microbiota and reducing CD8 + T cells in mice. mSystems 2025; 10:e0156724. [PMID: 39840995 PMCID: PMC11834468 DOI: 10.1128/msystems.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
The gut microbiota is closely associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC). Probiotics such as Clostridium butyricum (CB) or Akkermansia muciniphila (AKK) have the potential to treat inflammatory bowel disease (IBD) or colorectal cancer (CRC). However, research on the combined therapeutic effects and immunomodulatory mechanisms of CB and AKK in treating IBD or CRC has never been studied. This study evaluates the potential of co-administration of CB and AKK in treating DSS/AOM-induced IBD and colitis-associated CRC. Our results indicate that compared to mono-administration, the co-administration of CB and AKK not only significantly alleviates symptoms such as weight loss, colon shortening, and increased Disease Activity Index in IBD mice but also regulates the gut microbiota composition and effectively suppresses colonic inflammatory responses. In the colitis-associated CRC mice model, a combination of CB and AKK significantly alleviates weight loss and markedly reduces inflammatory infiltration of macrophages and cytotoxic T lymphocytes (CTLs) in the colon, thereby regulating anti-tumor immunity and inhibiting the occurrence of inflammation-induced CRC. In addition, we found that the combined probiotic therapy of CB and AKK can enhance the sensitivity of colitis-associated CRC mice to the immune checkpoint inhibitor anti-mouse PD-L1 (aPD-L1), significantly improving the anti-tumor efficacy of immunotherapy and the survival rate of colitis-associated CRC mice. Furthermore, fecal microbiota transplantation therapy showed that transplanting feces from CRC mice treated with the co-administration of CB and AKK into other CRC mice alleviated the tumor loads in the colon and significantly extended their survival rate. Our study suggests that the combined use of two probiotics, CB and AKK, can not only alleviate chronic intestinal inflammation but also inhibit the progression to CRC. This may be a natural and relatively safe method to support the gut microbiota and enhance the host's immunity against cancer. IMPORTANCE Our study suggests that the combined administration of CB and AKK probiotics, as opposed to a single probiotic strain, holds considerable promise in preventing the advancement of IBD to CRC. This synergistic effect is attributed to the ability of this probiotic combination to more effectively modulate the gut microbiota, curb inflammatory reactions, bolster the efficacy of immunotherapeutic approaches, and optimize treatment results via fecal microbiota transplantation.
Collapse
Affiliation(s)
- Dengxiong Hua
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Qin Yang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Xiaowei Li
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Xuexue Zhou
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Yingqian Kang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Daoyan Wu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Zhengrong Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Boyan Li
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinxin Wang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Wei Hong
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Feizi H, Kafil HS, Plotnikov A, Kataev V, Balkin A, Filonchikova E, Rezaee MA, Ghotaslou R, Sadrkabir M, Kadkhoda H, Kamounah FS, Nikitin S. Polyp and tumor microenvironment reprogramming in colorectal cancer: insights from mucosal bacteriome and metabolite crosstalk. Ann Clin Microbiol Antimicrob 2025; 24:9. [PMID: 39881353 PMCID: PMC11780822 DOI: 10.1186/s12941-025-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development. In this regard, we aimed to investigate the bacteriome and metabolites of healthy, adenomatous polyp, and CRC tissues. METHODS Sixty samples including healthy (H), adenomatous polyps (AP), adenomatous polyps-adjacent (APA), cancer tumor (CT), and cancer tumor-adjacent (CA) tissues were collected and analyzed by 16 S rRNA sequencing and 1H NMR spectroscopy. RESULTS Our results revealed that the bacteriome and metabolites of the H, AP, and CT groups were significantly different. We observed that the Lachnospiraceae family depleted concomitant with acetoacetate and beta-hydroxybutyric acid (BHB) accumulations in the AP tissues. In addition, some bacterial species including Gemella morbillorum, and Morganella morganii were enriched in the AP compared to the H group. Furthermore, fumarate was accumulated concomitant to Aeromonas enteropelogenes, Aeromonas veronii, and Fusobacterium nucleatum subsp. animalis increased abundance in the CT compared to the H group. CONCLUSION These results proposed that beneficial bacteria including the Lachnospiraceae family depletion cross-talk with acetoacetate and BHB accumulations followed by an increased abundance of driver bacteria including G. morbillorum, and M. morganii may reprogram polyp microenvironment leading to tumor initiation. Consequently, passenger bacteria accumulation like A. enteropelogenes, A.veronii, and F. nucleatum subsp. animalis cross-talking fumarate in the TME may aggravate cancer development. So, knowledge of TME bacteriome and metabolites might help in cancer prevention, early diagnosis, and a good prognosis.
Collapse
Affiliation(s)
- Hadi Feizi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Andrey Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Vladimir Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Alexander Balkin
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Ekaterina Filonchikova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Mohammad Ahangarzadeh Rezaee
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadrkabir
- Department of Internal Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Mahabad Faculty of Medical Sciences, , Urmia University of Medical Sciences, Urmia, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Sergei Nikitin
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
5
|
Yang F, Ni B, Liang X, He Y, Yuan C, Chu J, Huang Y, Zhong H, Yang L, Lu J, Xu Y, Zhang Q, Chen W. Mesenchymal stromal cell-derived extracellular vesicles as nanotherapeutics for concanavalin a-induced hepatitis: modulating the gut‒liver axis. Stem Cell Res Ther 2025; 16:4. [PMID: 39773662 PMCID: PMC11706160 DOI: 10.1186/s13287-024-04013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As cell-free nanotherapeutics, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown potential therapeutic action against liver diseases. However, their effects on autoimmune hepatitis (AIH) are not yet well understood. METHODS AND RESULTS In this study, we utilized a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model to investigate the effects of MSC-EVs on AIH. We found that MSC-EVs provide significant protection against Con A-induced hepatitis in C57BL/6 male mice, with their effectiveness being critically dependent on the gut microbiota. MSC-EVs modulate the composition of the gut microbiota, particularly by increasing the abundance of norank_f__Muribaculaceae, and impact liver metabolic profiles, leading to significant amelioration of liver injury. The identification of Acetyl-DL-Valine as a protective metabolite underscores the therapeutic potential of targeting gut‒liver axis interactions in liver diseases. CONCLUSION Overall, our data demonstrate that MSC-EVs exhibit nanotherapeutic potential in Con A-induced hepatitis and provide new insights into the treatment of autoimmune hepatitis.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Beibei Ni
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Xiaoqi Liang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yizhan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University Zhaoqing hospital, Zhaoqing, 526070, P.R. China
| | - Chao Yuan
- General practice, Guangdong provincial people's hospital, Guangzhou, 510080, P.R. China
| | - Jiajie Chu
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yiju Huang
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Hongyu Zhong
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Li Yang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
| | - Jianxi Lu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| | - Wenjie Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
- Xinjiang Stem Cells Special Plateau Disease Engineering Technology Research Center, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, 844000, P.R. China.
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
6
|
Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024; 16:2660. [PMID: 39203797 PMCID: PMC11356848 DOI: 10.3390/nu16162660] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Borui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Muhammad Toheed Akbar
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Li Zhi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| |
Collapse
|
7
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Kong S, Liao Q, Liu Y, Luo Y, Fu S, Lin L, Li H. Prenylated Flavonoids in Sophora flavescens: A Systematic Review of Their Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1087-1135. [PMID: 38864547 DOI: 10.1142/s0192415x24500447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.
Collapse
Affiliation(s)
- Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, 330006 Jiangxi, P. R. China
| |
Collapse
|
9
|
Li W, Zhang Y, Wang Q, Wang Y, Fan Y, Shang E, Jiang S, Duan J. 6-Gingerol ameliorates ulcerative colitis by inhibiting ferroptosis based on the integrative analysis of plasma metabolomics and network pharmacology. Food Funct 2024; 15:6054-6067. [PMID: 38753306 DOI: 10.1039/d4fo00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.
Collapse
Affiliation(s)
- Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
10
|
Gu H, Tian Y, Xia J, Deng X, Chen J, Jian T, Ma J. Li-Hong Tang alleviates dextran sodium sulfate-induced colitis by regulating NRF2/HO-1 signaling pathway and gut microbiota. Front Pharmacol 2024; 15:1413666. [PMID: 38873425 PMCID: PMC11169665 DOI: 10.3389/fphar.2024.1413666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Ulcerative colitis (UC) is marked by recurring inflammation. Existing treatments are ineffective and may have toxic side effects. Thus, new therapeutic agents are urgently needed. We studied the botanical formula "Li-Hong Tang (LHT)", which contains two main ingredients, Salvia plebeia R. Br and Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba. In this study, we aimed to identify the effects of LHT on UC and explore its potential mechanism. Methods LHT was analyzed using a mass spectrometer (MS). DSS at a dose of 2.5% was utilized to develop UC in mice. The administered groups received low, medium, and high dosages (0.32 g/kg, 0.64 g/kg, and 1.28 g/kg) of LHT and the positive medication, sulfasalazine (0.2 g/kg), respectively. Body weight, disease activity index (DAI) score, colon length, spleen index, serum myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD) and inflammatory factor concentrations were monitored. The expression of NRF2 and HO-1 in colonic tissues was evaluated by immunohistochemistry. 16S rDNA sequencing was employed to investigate alterations in the gut microbiota of the mice, aiming to elucidate the extent of LHT's impact. Results LHT may ameliorate DSS-induced colitis in mice by lowering inflammation, reducing oxidative stress, restoring the intestinal barrier, and influencing the NRF2/HO-1 pathway. Moreover, LHT treatment exhibited a regulatory effect on the gut microbiota, characterized by elevated levels of Patescibacteria, Verrucomicrobiota, Candidatus_Saccharimonas, Lactobacillus, and Ligilactobacillus levels while decreasing Oscillibacter and Colidextribacter levels. Further study indicated that MPO, NO, and inflammatory factors were positively correlated with Oscillibacter, Colidextribacter, Escherichia-Shigella, Anaerostines, and negatively with Lactobacillus, Clostridiales_unclassified, Candidatus_Saccharimonas, and Patescibacteria. Furthermore, colony network analysis revealed that Lactobacillus was negatively associated with Oscillibacter and Colidextribacter, whereas Oscillibacter was positively related to Colidextribacter. Conclusion LHT protects against DSS-induced mice by inhibiting the inflammatory response, oxidative stress, and mucosal injury. The protective role may involve regulating the NRF2/HO-1 signaling pathway and gut microbiota.
Collapse
Affiliation(s)
- Hong Gu
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jingjing Xia
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xiaoyue Deng
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jiong Ma
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
11
|
Xu X, Shan M, Chu C, Bie S, Wang H, Cai S. Polysaccharides from Polygonatum kingianum Collett & Hemsl ameliorated fatigue by regulating NRF2/HO-1/NQO1 and AMPK/PGC-1α/TFAM signaling pathways, and gut microbiota. Int J Biol Macromol 2024; 266:131440. [PMID: 38593898 DOI: 10.1016/j.ijbiomac.2024.131440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Polygonatum kingianum Coll & Hemsl is an important Chinese medicine used for enhancing physical function and anti-fatigue, and polysaccharides (PKPs) are considered as the main bioactive components. However, the mechanisms through which PKPs exert their anti-fatigue effects are not fully understood. This study aimed more comprehensively to explore the anti-fatigue mechanisms of PKPs, focusing on metabolism, protein expression, and gut flora, by using exhaustive swimming experiments in mice. Results showed a significant increase in the exhaustive swimming time of the mice treated with PKPs, especially in the high-dose group (200 mg/kg/day). Further studies showed that PKPs remarkably improves several fatigue-related physiological indices. Additionally, 16S rRNA sequence analysis showed that PKPs increased antioxidant bacteria (e.g., g_norank_f_Muribaculaceae) and the production of short-chain fatty acids (SCFAs), while reducing the abundance of harmful bacteria (e.g., g_Escherichia-Shigella and g_Helicobacter). PKPs also mitigated oxidative stress through activating the NRF2/HO-1 signaling pathway, and promoted energy metabolism by upregulating the expression of AMPK/PGC-1α/TFAM signaling pathway proteins. This research may offer theoretical support for incorporating PKPs as a novel dietary supplement in functional foods targeting anti-fatigue properties.
Collapse
Affiliation(s)
- Xingrui Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Meimei Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Shenke Bie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212100, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
12
|
Renga G, Nunzi E, Stincardini C, Pariano M, Puccetti M, Pieraccini G, Di Serio C, Fraziano M, Poerio N, Oikonomou V, Mosci P, Garaci E, Fianchi L, Pagano L, Romani L. CPX-351 exploits the gut microbiota to promote mucosal barrier function, colonization resistance, and immune homeostasis. Blood 2024; 143:1628-1645. [PMID: 38227935 DOI: 10.1182/blood.2023021380] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Claudia Di Serio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Noemi Poerio
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | | | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luana Fianchi
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Livio Pagano
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Sulmona, Sulmona, Italy
| |
Collapse
|
13
|
Gao Y, Huang R, Qiu Y, Liu Y, Chen L. Characterization of the chemical composition of different parts of Dolichos lablab L. and revelation of its anti-ulcerative colitis effects by modulating the gut microbiota and host metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117629. [PMID: 38135234 DOI: 10.1016/j.jep.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a non-specific inflammatory disease characterized by long duration and easy relapse. Dolichos lablab L. (DLL) belongs to the family Fabaceae, was listed in a famous Chinese medical classic, Compendium of Materia Medic, and described as possessing features that invigorate the spleen, alleviate dampness, provide diarrhea relief, and other effects. The DLL-dried white mature seeds (DS) and dried flower (DF), which hold significant medicinal value in China, were used in clinical prescriptions to prevent and treat UC. DS and DF have appeared in different editions of the Pharmacopoeia of the People's Republic of China from 1977 to 2020. However, their chemical composition, pharmacological effects, and mechanism of treating UC are unclear. AIM OF THE STUDY This study aimed to characterize the chemical composition of different parts of DLL (seeds and flowers), further explore their pharmacological effects, and elaborate its underlying mechanism of treating UC. METHODS The chemical composition of DS and DF crude polysaccharides (DSP and DFP) and ethanolic extracts (DSE and DFE) were characterized by high-performance anion-exchange chromatography (HPAEC), ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Then, based on the acute UC mice model, the pharmacodynamic effects were investigated by Western blotting, ELISA, and other methods. Finally, the 16S rRNA gene sequencing and metabonomic analysis were used to explore the regulatory effects of DS and DF on intestinal microbiota and host metabolism. RESULTS DSE and DFE inhibited the oxidative stress response, reducing proinflammatory factor production and maintaining intestinal barrier integrity in UC mice. The 16S rRNA gene sequencing and metabonomic analysis revealed that DS and DF treated UC by regulating the intestinal microbiota structure and reversing the abnormal metabolism of the host. CONCLUSION This study suggested that different parts of DLL (flowers and seeds) may be potential medicines for treating UC, which exert their therapeutic effects through various active ingredients and might contribute significantly to reducing the economic pressures and challenges of UC treatment worldwide.
Collapse
Affiliation(s)
- Yanping Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Yuan X, Liu J, Nie C, Ma Q, Wang C, Liu H, Chen Z, Zhang M, Li J. Comparative Study of the Effects of Dietary-Free and -Bound Nε-Carboxymethyllysine on Gut Microbiota and Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5014-5025. [PMID: 38388339 DOI: 10.1021/acs.jafc.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Liu W, Wang L, Yuan Q, Hao W, Wang Y, Wu D, Chen X, Wang S. Agaricus bisporus polysaccharides ameliorate ulcerative colitis in mice by modulating gut microbiota and its metabolism. Food Funct 2024; 15:1191-1207. [PMID: 38230753 DOI: 10.1039/d3fo04430k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The gut microbiota plays a central role in maintaining human health and has been linked to many gastrointestinal diseases such as ulcerative colitis (UC). Agaricus bisporus is a famous edible mushroom, and Agaricus bisporus polysaccharides (ABPs) and the two purified fractions (ABP-1 and ABP-2) were demonstrated to exhibit immunomodulatory activity in our previous study. Herein, we further found that ABPs, ABP-1, and ABP-2 possessed therapeutic effects against dextran sodium sulfate (DSS)-induced colitis in mice. ABPs, ABP-1, and ABP-2 could relieve body weight loss, colon atrophy, and histological injury, increase tight junction proteins, restore gut-barrier function, and inhibit inflammation. ABP-2 with a lower molecular weight (1.76 × 104 Da) showed a superior therapeutic effect than ABP-1 with a higher molecular weight (8.86 × 106 Da). Furthermore, the effects of ABP-1 and ABP-2 were microbiota-dependent, which worked by inducing Norank_f__Muribaculaceae and Akkermansia and inhibiting Escherichia-Shigella and Proteus. In addition, untargeted fecal metabolomic analysis revealed distinct modulation patterns of ABP-1 and ABP-2. ABP-1 mainly enriched steroid hormone biosynthesis, while ABP-2 significantly enriched bile secretion and tryptophan metabolism. In summary, ABPs, especially low-molecular-weight fraction, represent novel prebiotics for treatment of inflammatory gastrointestinal diseases.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd, Zhangzhou 363000, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| | - Dingtao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
16
|
Liu M, Zhang J, Zhou Y, Xiong S, Zhou M, Wu L, Liu Q, Chen Z, Jiang H, Yang J, Liu Y, Wang Y, Chen C, Huang L. Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones. J Anim Sci Biotechnol 2023; 14:155. [PMID: 38115159 PMCID: PMC10731813 DOI: 10.1186/s40104-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown. RESULTS In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows. Using metagenomic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promoting estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return. CONCLUSIONS An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
Collapse
Affiliation(s)
- Min Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Zhang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Xiong
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mengqing Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Wu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhe Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Jiang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaxiang Wang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Rajalingam A, Sekar K, Ganjiwale A. Identification of Potential Genes and Critical Pathways in Postoperative Recurrence of Crohn's Disease by Machine Learning And WGCNA Network Analysis. Curr Genomics 2023; 24:84-99. [PMID: 37994325 PMCID: PMC10662376 DOI: 10.2174/1389202924666230601122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 11/24/2023] Open
Abstract
Background Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.
Collapse
Affiliation(s)
- Aruna Rajalingam
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| |
Collapse
|
18
|
Xia P, Zhao M, Jin H, Hou T, Deng Z, Zhang M, Zhou Q, Zhan F, Li B, Li J. Konjac glucomannan-assisted curcumin alleviated dextran sulfate sodium-induced mice colitis via regulating immune response and maintaining intestinal barrier integrity. Food Funct 2023; 14:8747-8760. [PMID: 37698392 DOI: 10.1039/d3fo01068f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Curcumin has been proven to be an effective strategy for reducing inflammatory responses. However, low bioavailability and instability at the physiological pH have limited its anti-inflammatory activity in ulcerative colitis patients. In the present study, a complex of curcumin and konjac glucomannan (KGM) effectively inhibited intestinal inflammation and this effect was associated with KGM degradation degrees. Results demonstrated that treatment with the complex markedly mitigated colitis symptoms and decreased inflammatory cytokines levels, especially in the complex treatment groups with K110 (KGM treated in 110 °C) and konjac oligosaccharides (KOSs). Furthermore, increasing the KOS content in KOC (the complex of curcumin and KOS) promoted the gene expressions of the intestinal barrier and inhibited the gene expressions of inflammatory cytokines, as well as improved gut microbiota dysregulation. Overall, our studies suggest that the complex of curcumin and KGM exerts effective anti-inflammatory effects by regulating the intestinal immune response and modulating microbiota diversity and composition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Mengge Zhao
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hong Jin
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Hou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhichang Deng
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mengting Zhang
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Zhou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fuchao Zhan
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jing Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
19
|
Guo M, Xing D, Wang J, Zhang Y, Li Z, Jiao X. Potent Intestinal Mucosal Barrier Enhancement of Nostoc commune Vaucher Polysaccharide Supplementation Ameliorates Acute Ulcerative Colitis in Mice Mediated by Gut Microbiota. Nutrients 2023; 15:3054. [PMID: 37447380 DOI: 10.3390/nu15133054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is evolving into a global burden with a substantially increasing incidence in developing countries. It is characterized by inflammation confined to mucosa and is recognized as an intestinal barrier disease. The intestinal microbiota plays a crucial role in UC pathogenesis. N. commune has long been appreciated as a healthy food and supplement worldwide and polysaccharides account for 60%. Here, we examined the amelioration of N. commune polysaccharides against acute colitis in mice induced by DSS and assessed the mediating role of gut microbiota. An integrated analysis of microbiome, metabolomics, and transcriptomics fully elaborated it markedly enhanced intestinal mucosal barrier function, including: increasing the relative abundance of Akkermansia muciniphila, uncultured_bacterium_g__norank_f__Muribaculaceae, and unclassified_g__norank_f__norank_o__Clostridia_UCG-014; decreasing microbiota-derived phosphatidylcholines and thromboxane 2 levels mapped to arachidonic acid metabolism; improving mucin2 biosynthesis and secretion; enhancing ZO-1 and occludin expression; reducing neutrophil infiltration; regulating the level of colitis-related inflammatory cytokines; involving inflammation and immune function-associated signaling pathways. Further, the mediation effect of gut microbiota was evaluated by administering a cocktail of antibiotics. In conclusion, our results demonstrated that N. commune polysaccharides predominantly reinforced the gut microbiota-mediated intestinal mucosal barrier to confer protection against UC and exhibited dramatic prebiotic-like functions, providing an alternative or complementary treatment for UC.
Collapse
Affiliation(s)
- Min Guo
- Department of Physiology, Key Laboratory of Physiology of Shanxi Province, Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Dehai Xing
- Department of Physiology, Key Laboratory of Physiology of Shanxi Province, Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Wang
- Department of Physiology, Key Laboratory of Physiology of Shanxi Province, Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Physiology of Shanxi Province, Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
20
|
Li Z, Song Y, Xu W, Chen J, Zhou R, Yang M, Zhu G, Luo X, Ai Z, Liu Y, Su D. Pulsatilla chinensis saponins improve SCFAs regulating GPR43-NLRP3 signaling pathway in the treatment of ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116215. [PMID: 36806339 DOI: 10.1016/j.jep.2023.116215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulsatilla decoction has been extensively used to treat ulcerative colitis (UC) in recent years. Pulsatilla chinensis saponin (PRS), the active ingredient of its monarch medicine Pulsatilla chinensis (Bunge) Regel, plays a crucial role in the treatment of UC, but its specific mechanism of action has not been fully elucidated. AIM OF THE STUDY This study aims to investigate the protective effect and possible mechanism of PRS on DSS-induced ulcerative colitis in rats. MATERIALS AND METHODS In this study, the DSS-induced colitis model was used to explore the metabolism and absorption of PRS under UC, detect the content of short-chain fatty acids (SCFAs) in colon tissue, the expression of receptor G Protein-Coupled Receptor 43 (GPR43) protein and inflammasome NLRP3, and observe the expression level of IL-1β, IL-6 and TNF-α in colon tissue. The protective effect of the PRS was also observed. RESULTS It was found that in the UC group, the absorption rate and extent of drugs increased, and the elimination was accelerated. Compared with the control group, PRS increased the content of short-chain fatty acids (SCFAs) in colon tissue, promoted the expression of SCFAs receptor GPR43 protein, inhibited the activation of the NLRP3 inflammasome, and decreased the content of IL-1β, IL-6 and TNF-α. PRS protects the colon in DSS-induced inflammatory bowel disease by increasing the content of SCFAs, promoting the expression of GPR43 protein, inhibiting the activation of the NLRP3 inflammasome, and reversing the increase in IL-1β, IL-6 and TNF-α levels. CONCLUSIONS PRS can increase the content of colonic SCFAs, activate the GPR43-NLRP3 signaling pathway, and reduce the levels of pro-inflammatory cytokines, thereby improving the symptoms of DSS-induced colitis.
Collapse
Affiliation(s)
- Zexie Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Weize Xu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Jingbin Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Rou Zhou
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Xiaoquan Luo
- SPF Exeriment mice and rats Production base in Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, 1688 Meiling Road, Nanchang, 330006, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine; Nanchang Medical College, 1688 Meiling Road, Nanchang, 330006, China.
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficcacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China.
| |
Collapse
|
21
|
Zhang D, Cheng H, Zhang Y, Zhou Y, Wu J, Liu J, Feng W, Peng C. Ameliorative effect of Aconite aqueous extract on diarrhea is associated with modulation of the gut microbiota and bile acid metabolism. Front Pharmacol 2023; 14:1189971. [PMID: 37266146 PMCID: PMC10229775 DOI: 10.3389/fphar.2023.1189971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aconite is a form of traditional Chinese medicine (TCM) that has been widely used to treat diarrhea for thousands of years. However, it is not clear whether the anti-diarrhea role of aconite aqueous extract (AA) is associated with regulation of the gut microbiota or with bile acid (BA) metabolism. This study aimed to confirm whether AA exerts its anti-diarrhea effects by regulating the gut microbiota and BA metabolism. Methods: The therapeutic effect of AA in a mouse model of diarrhea was measured based on analysis of body weight, fecal water content, diarrhea scores, intestinal propulsion rate, colonic pathology, and colonic immunohistochemistry. In addition, 16S rRNA high-throughput sequencing was conducted to analyze the effect of AA on the gut microbiota, and targeted metabolomics was employed to analyze the effect of AA on metabolism of BAs. Results: The results showed that treatment with AA reduced fecal water content and diarrhea scores, inhibited intestinal propulsion rate and pathological changes in the colon, and increased AQP3 and AQP4 content in the colon. In addition, AA was found to be capable of regulating the gut microbiota. Effects included increasing its richness (according to the ACE and Chao1 indices); altering the gut microbiota community structure (PCA, PCoA, and NMDS); increasing the relative abundance of norank_f_Muribaculaceae, Ruminococcus, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, and norank_f_norank_o_Clostridia_UCG-014; and decreasing the relative abundance of Escherichia-Shigella, unclassified_f_Ruminococcaceae, Ruminococcus_torques_group, and Parasutterella. More importantly, AA significantly increased fecal TCA (a primary BA) and DCA, LCA, GDCA, dehydro-LCA, and 12-keto-LCA (secondary BAs), thus restoring BA homeostasis. Moreover, AA increased the ratios of DCA/CA, DCA/TCA, and LCA/CDCA and decreased the ratios of TLCA/LCA, GLCA/LCA, and TUDCA/UDCA. Conclusion: The anti-diarrhea effect of AA was associated with restoration of the gut microbiota and BA metabolism-related homeostasis. The results of this study provide insights into the application of AA and the treatment of diarrhea.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3645-3658. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Nan Q, Ye Y, Tao Y, Jiang X, Miao Y, Jia J, Miao J. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14:1027658. [PMID: 36846795 PMCID: PMC9947474 DOI: 10.3389/fmicb.2023.1027658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. Methods Here, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and Discussion In total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yinglei Miao,
| | - Jie Jia
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Jie Jia,
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Jiarong Miao,
| |
Collapse
|
24
|
Yin H, Liu W, Ji X, Yan G, Zeng X, Zhao W, Wang Y. Study on the mechanism of Wumei San in treating piglet diarrhea using network pharmacology and molecular docking. Front Vet Sci 2023; 10:1138684. [PMID: 36925608 PMCID: PMC10011153 DOI: 10.3389/fvets.2023.1138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Wumei San (WMS) is a traditional Chinese medicine that has been widely applied in the treatment of piglet diarrhea (PD). However, the mechanism of WMS in PD has not been investigated. In this study, the main active compounds of WMS and the target proteins were obtained from the Traditional Chinese Medicine Systematic Pharmacology, PubChem, and SwissTargetPrediction databases. The molecular targets of PD were identified using GeneCards, OMIM, and NCBI databases. The common targets of WMS and PD were screened out and converted into UniProt gene symbols. PD-related target genes were constructed into a protein-protein interaction network, which was further analyzed by the STRING online database. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to construct the component-target gene-disease network. Molecular docking was then used to examine the relationship between the core compounds and proteins. As a result, a total of 32 active compounds and 638 target genes of WMS were identified, and a WMS-compound-target network was successfully constructed. Through network pharmacology analysis, 14 core compounds in WMS that showed an effect on PD were identified. The targets revealed by GO and KEGG enrichment analysis were associated with the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, IL-17 signaling pathway, and other pathways and physiological processes. Molecular docking analysis revealed that the active compounds in WMS spontaneously bind to their targets. The results indicated that WMS may regulate the local immune response and inflammatory factors mainly through the TNF signaling pathway, IL-17 signaling pathway, and other pathways. WMS is a promising treatment strategy for PD. This study provides new insights into the potential mechanism of WMS in PD.
Collapse
Affiliation(s)
- Huihui Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wei Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
- *Correspondence: Wei Liu ✉
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoqing Yan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Xueyan Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanhua Wang
- Guangxi Mountain Comprehensive Technology Development Center, Nanning, China
| |
Collapse
|
25
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
26
|
Li Z, Lin M, Li Y, Shao J, Huang R, Qiu Y, Liu Y, Chen L. Total flavonoids of Sophora flavescens and kurarinone ameliorated ulcerative colitis by regulating Th17/Treg cell homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115500. [PMID: 35863614 DOI: 10.1016/j.jep.2022.115500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is relevant to dysregulation of inflammation and immune processes. Sophora flavescens Aiton is a classic medicine widely used in the treatment of UC in ancient and modern China, alkaloids and flavonoids are the main components. Previous studies reveal that Sophora flavescens Aiton total flavonoids extracts (SFE) exert an anti-UC effect by regulating the intestinal microbe structure and restoring the balance of the "host-microbe" co-metabolic network in UC mice. However, whether SFE influences immune inflammation remains unclear, which is the core link to UC disease. It also remains to be verified flavonoids are the material basis that plays a role in SFE. AIM OF THE STUDY To identify the action mechanism of the immune-inflammatory regulation of SFE and its main active component Kurarinone against UC. METHODS This study constructed UC mice and abnormal immune RAW 264.7 cell models, and subsequently used western blotting and flow cytometry (FCM) to evaluate the effects of SFE on the NF-κB pathway and the regulation of immunity in UC mice. Kurarinone was screened from flavonoid compounds of SFE by lipopolysaccharide (LPS)-induced RAW 264.7 cells, and its effect was subsequently investigated in UC mice. Western blotting, ELISA, FCM, and RT-PCR were used to determine the regulation of Kurarinone on the Th17/Treg differentiation and the JAK2/STAT3 signaling pathway. RESULTS SFE regulated the differentiation of Th17/Treg in peripheral blood and inhibited immune-inflammatory response to treat UC. Various flavonoid components in SFE inhibited the synthesis of IL-6 and TNF-α in RAW 264.7 cells, among which Kurarinone had better effect. This study revealed the therapeutic effects of Kurarinone in UC mice for the first time. Kurarinone promoted the secretion of SIgA to improve the regulation of the intestinal mucosal barrier and resistance to pathogens. It also regulated the transcription level of RORγt and Foxp3 in colon, decreased the expression of pro-inflammatory factor IL-17A and up-regulated the expression of immunosuppressive factors TGF-β1 and IL-10 in colon. Furthermore, Kurarinone restored intestinal immune system homeostasis by down-regulating the JAK2/STAT3 signaling pathway and regulating the balance of Th17/Treg cell differentiation in UC. CONCLUSIONS SFE, especially the flavonoid ingredients represented by Kurarinone, has significant effects on immunoregulation against UC. And their mechanism of effect is related to inhibiting the activation of JAK2/STAT3 signaling pathway and regulating differentiation of Th17/Treg cells. KEYWORK Immunoregulatory; Kurarinone; Th17 cells; Treg cells; Ulcerative colitis.
Collapse
Affiliation(s)
- Zhaocheng Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minling Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yadi Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruiting Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongyi Qiu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chines Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
27
|
Li T, Gao X, Yan Z, Wai TS, Yang W, Chen J, Yan R. Understanding the tonifying and the detoxifying properties of Chinese medicines from their impacts on gut microbiota and host metabolism: a case study with four medicinal herbs in experimental colitis rat model. Chin Med 2022; 17:118. [PMID: 36195889 PMCID: PMC9533630 DOI: 10.1186/s13020-022-00673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese medicines (CMs) have emerged as an alternative therapy for ulcerative colitis through reinforcing the vital qi and/or eliminating the pathogenic factors according to the traditional Chinese medicinal theory. Presystemic interactions of CMs with gut microbiota and the associated metabolic network shift are believed to be essential to achieve their holistic health benefits in traditional oral application. METHODS This study first employed 16S rDNA-based microbial profiling and mass spectrometry-based urinary metabolomics to simultaneously evaluate four single CMs frequently prescribed as main constituent herbs for alleviating UC, the tonic ginseng and Astragali Radix (AR) and the detoxifying Scutellaria Radix (SR) and Rhubarb, on a dextran sodium sulfate (DSS)-induced colitis rat model, with aims to understanding the tonifying or detoxifying properties of CMs through clinical phenotypes, the common features and herb-specific signatures in gut microbial alterations and the associated host metabolic shifts. Colitis was induced in rats receiving 5% DSS for consecutive 7 days. Control group received water alone. Herbal groups received 5% DSS and respective herbal preparation by gavage once daily. Body weight, stool consistency, and rectal bleeding were recorded daily. Feces and urine were freshly collected at multiple time points. On day 7, blood and colon tissues were collected to determine anti-/pro-inflammatory cytokines levels, colonic myeloperoxidase activity, and histopathologic alterations. RESULTS Gut microbiome was more prone to herb intervention than metabolome and displayed increasing associations with metabolic dynamics. Although both the tonic and the detoxifying herbs alleviated colitis and caused some similar changes in DSS-induced microbiome and metabolome disturbance, the tonic herbs were more effective and shared more common microbial and metabolic signatures. The detoxifying herbs elicited herb-specific changes. Rhubarb uniquely affected phenylalanine metabolism and established high correlations between Akkermansia muciniphila and Parasutterella and hydroxyphenylacetylglycine and phenylbutyrylglycine, while SR caused significant elevation of steroidal glucuronides dehydropregnenolone glucuronide and estriol glucuronide, both displaying exclusive correlations with genus Acetatifactor. CONCLUSION Both tonic and detoxifying herbs tested ameliorated experimental colitis and elicited alternative microbial and host metabolic reprogramming. The findings highlight the importance of presystemic interactions with gut microbiota to host metabolic shifts and promote modern translation of tonic and detoxifying properties of CMs.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Tai-Seng Wai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Wei Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| |
Collapse
|
28
|
Burakova I, Smirnova Y, Gryaznova M, Syromyatnikov M, Chizhkov P, Popov E, Popov V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022; 14:3384. [PMID: 36014890 PMCID: PMC9415828 DOI: 10.3390/nu14163384] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a problem of modern health care that causes the occurrence of many concomitant diseases: arterial hypertension, diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. New strategies for the treatment and prevention of obesity are being developed that are based on using probiotics for modulation of the gut microbiota. Our study aimed to evaluate the bacterial composition of the gut of obese patients before and after two weeks of lactic acid bacteria (Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Lactobacillus delbrueckii) intake. The results obtained showed an increase in the number of members of the phylum Actinobacteriota in the group taking nutritional supplements, while the number of phylum Bacteroidota decreased in comparison with the control group. There has also been an increase in potentially beneficial groups: Bifidobacterium, Blautia, Eubacterium, Anaerostipes, Lactococcus, Lachnospiraceae ND3007, Streptococcus, Escherichia-Shigella, and Lachnoclostridium. Along with this, a decrease in the genera was demonstrated: Faecalibacterium, Pseudobutyrivibrio, Subdoligranulum, Faecalibacterium, Clostridium sensu stricto 1 and 2, Catenibacterium, Megasphaera, Phascolarctobacterium, and the Oscillospiraceae NK4A214 group, which contribute to the development of various metabolic disorders. Modulation of the gut microbiota by lactic acid bacteria may be one of the ways to treat obesity.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
29
|
Fu Q, Song T, Ma X, Cui J. Research progress on the relationship between intestinal microecology and intestinal bowel disease. Animal Model Exp Med 2022; 5:297-310. [PMID: 35962562 PMCID: PMC9434592 DOI: 10.1002/ame2.12262] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microecology is the main component of human microecology. Intestinal microecology consists of intestinal microbiota, intestinal epithelial cells, and intestinal mucosal immune system. These components are interdependent and establish a complex interaction network that restricts each other. According to the impact on the human body, there are three categories of symbiotic bacteria, opportunistic pathogens, and pathogenic bacteria. The intestinal microecology participates in digestion and absorption, and material metabolism, and inhibits the growth of pathogenic microorganisms. It also acts as the body's natural immune barrier, regulates the innate immunity of the intestine, controls the mucosal barrier function, and also participates in the intestinal epithelial cells' physiological activities such as hyperplasia or apoptosis. When the steady‐state balance of the intestinal microecology is disturbed, the existing core intestinal microbiota network changes and leads to obesity, diabetes, and many other diseases, especially irritable bowel syndrome, inflammatory bowel disease (IBD), and colorectal malignancy. Intestinal diseases, including tumors, are particularly closely related to intestinal microecology. This article systematically discusses the research progress on the relationship between IBD and intestinal microecology from the pathogenesis, treatment methods of IBD, and the changes in intestinal microbiota.
Collapse
Affiliation(s)
- Qianhui Fu
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Jian Cui
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| |
Collapse
|
30
|
Wan Y, Yang L, Li H, Ren H, Zhu K, Dong Z, Jiang S, Shang E, Qian D, Duan J. Zingiber officinale and Panax ginseng ameliorate ulcerative colitis in mice via modulating gut microbiota and its metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123313. [PMID: 35662877 DOI: 10.1016/j.jchromb.2022.123313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Zingiber officinale and Panax ginseng, as well-known traditional Chinese medicines, have been used together to clinically treat ulcerative colitis with synergistic effects for thousands of years. However, their compatibility mechanism remains unclear. In this study, the shift of gut microbiome and fecal metabolic profiles were monitored by 16S rRNA sequencing technology and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis, respectively, which aimed to reveal the synergistic mechanism of Zingiber officinale and Panax ginseng on the amelioration of ulcerative colitis. The results showed that the relative abundance of beneficial bacteria (such as Muribaculaceae_norank, Lachnospiraceae NK4A136 group and Akkermansia) was significantly increased and the abundance of pathogenic bacteria (such as Bacteroides, Parabacteroides and Desulfovibrio) was markedly decreased after the intervention of Zingiber officinale-Panax ginseng herb pair. And a total of 16 differential metabolites related to ulcerative colitis were identified by the metabolomics analysis, which were majorly associated with the metabolic pathways, including arachidonic acid metabolism, tryptophan metabolism, and steroid biosynthesis. Based on these findings, it was suggested that the regulation of the gut microbiota-metabolite axis might be a potential target for the synergistic mechanism of Zingiber officinale-Panax ginseng herb pair in the treatment of ulcerative colitis. Furthermore, the integrated analysis of microbiome and metabolomics used in this study could also serve as a useful template for exploring the mechanism of other drugs.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Huifang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Hui Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Ke Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Zhiling Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
31
|
Hu J, Zheng P, Qiu J, Chen Q, Zeng S, Zhang Y, Lin S, Zheng B. High-Amylose Corn Starch Regulated Gut Microbiota and Serum Bile Acids in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms23115905. [PMID: 35682591 PMCID: PMC9180756 DOI: 10.3390/ijms23115905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary High-amylose corn starch, as a kind of resistant starch, could profoundly regulate the gut microbiota and exert anti-obesity properties. Since the gut microbiota was found to improve metabolic health by altering circulating bile acids, therefore, here we investigated the association between the gut microbiota and serum bile acids in high fat diet induced obese mice fed with high-amylose corn starch. We found high-amylose corn starch could modulate the gut microbiota composition and partially restore the alternations in circulating bile acid profiles in obese mice. These influences on gut microbiota and circulating bile acids could be the underlying mechanisms of anti-obesity activity of high-amylose corn starch. Abstract High-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.
Collapse
Affiliation(s)
- Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Peiying Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Jinhui Qiu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qingyan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (J.H.); (P.Z.); (Q.C.); (S.Z.); (Y.Z.)
- Correspondence: (S.L.); (B.Z.); Tel.: +86-15606025198 (S.L.); +86-13705009016 (B.Z.)
| |
Collapse
|
32
|
Xia P, Hou T, Ma M, Li S, Jin H, Luo X, Li J, Geng F, Li B. Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food Funct 2022; 13:5626-5639. [PMID: 35506498 DOI: 10.1039/d1fo04004a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study aims to explore the protective effect of konjac oligosaccharides (KOS) on inflammatory bowel disease in colitis mice. During the experimental period, mice were administered 200 mg kg-1 or 600 mg kg-1 KOS, 200 mg kg-1 sulfasalazine and a combination of KOS and sulfasalazine for 14 days. The mice were then treated with drinking water containing 2.5% DSS for 9 days, while the intervention of KOS and sulfasalazine continued. At the end of the experiment, the phenotype, pathological lesion of the colon, parameters of cytokines and gut microbiota were evaluated. The results showed that mice treated with KOS exhibited alleviated pathological lesion of the colon tissue and significantly increased expression of tight junction proteins (p < 0.05). The level of inflammatory cytokines in the colon tissue of the colitis mice tended to be normal. Moreover, the analysis of the gut microbiota revealed that the structures and composition of the intestinal microorganisms were also regulated by KOS treatment. The possible internal mechanism is that KOS down-regulates the abundance of pro-inflammatory bacteria (Proteobacteria, Campilobacterota and Clostridiaceae) and up-regulates the abundance of anti-inflammatory bacteria (Bifidobacteriaceae and Akkermansiaceae). These findings provide new insights into dietary management for patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Muyuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xuan Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
33
|
Cheng H, Liu J, Zhang D, Wang J, Tan Y, Feng W, Peng C. Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Front Immunol 2022; 13:817600. [PMID: 35655785 PMCID: PMC9152015 DOI: 10.3389/fimmu.2022.817600] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disorder in the gastrointestinal tract. Here, we examined the pharmacological effects of ginsenoside Rg1, a natural compound with low bioavailability, on the acute experimental colitis mice induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Acute UC was induced in C57BL/6 mice by 2.5% DSS for 7 days, meanwhile, 2 mg/10 g b.w. ginsenoside Rg1 was administrated to treat the mice. Body weight, colon length, colon tissue pathology, and colon tissue inflammatory cytokines were assessed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. Global metabolomic profiling of the feces was performed, and tryptophan and its metabolites in the serum were detected. The results showed that Rg1 significantly ameliorated DSS-induced colonic injury and colonic inflammation. In addition, Rg1 also partly reversed the imbalance of gut microbiota composition caused by DSS. Rg1 intervention can regulate various metabolic pathways of gut microbiota such as valine, leucine, and isoleucine biosynthesis and vitamin B6 metabolism and the most prominent metabolic alteration was tryptophan metabolism. DSS decreased the levels of tryptophan metabolites in the serum, including indole-3-carboxaldehyde, indole-3-lactic acid, 3-indolepropionic acid, and niacinamide and Rg1 can increase the levels of these metabolites. In conclusion, the study discovered that Rg1 can protect the intestinal barrier and alleviate colon inflammation in UC mice, and the underlying mechanism is closely related to the regulation of gut microbiota composition and microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms 2022; 10:microorganisms10051020. [PMID: 35630460 PMCID: PMC9144108 DOI: 10.3390/microorganisms10051020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Collapse
|
35
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022; 14:2108655. [PMID: 35951774 PMCID: PMC9373750 DOI: 10.1080/19490976.2022.2108655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
As Helicobacter pylori management has become more challenging and less efficient over the last decade, the interest in innovative interventions is growing by the day. Probiotic co-supplementation to antibiotic therapies is reported in several studies, presenting a moderate reduction in drug-related side effects and a promotion in positive treatment outcomes. However, the significance of gut microbiota involvement in the competence of probiotic co-supplementation is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness of probiotic oral administration.Abbreviations: acyl-CoA- acyl-coenzyme A; AMP- antimicrobial peptide; AMPK- AMP-activated protein kinase; AP-1- activator protein 1; BA- bile acid; BAR- bile acid receptor; BCAA- branched-chain amino acid; C2- acetate; C3- propionate; C4- butyrate; C5- valeric acid; CagA- Cytotoxin-associated gene A; cAMP- cyclic adenosine monophosphate; CD- Crohn's disease; CDI- C. difficile infection; COX-2- cyclooxygenase-2; DC- dendritic cell; EMT- epithelial-mesenchymal transition; FMO- flavin monooxygenases; FXR- farnesoid X receptor; GPBAR1- G-protein-coupled bile acid receptor 1; GPR4- G protein-coupled receptor 4; H2O2- hydrogen peroxide; HCC- hepatocellular carcinoma; HSC- hepatic stellate cell; IBD- inflammatory bowel disease; IBS- irritable bowel syndrome; IFN-γ- interferon-gamma; IgA immunoglobulin A; IL- interleukin; iNOS- induced nitric oxide synthase; JAK1- janus kinase 1; JAM-A- junctional adhesion molecule A; LAB- lactic acid bacteria; LPS- lipopolysaccharide; MALT- mucosa-associated lymphoid tissue; MAMP- microbe-associated molecular pattern; MCP-1- monocyte chemoattractant protein-1; MDR- multiple drug resistance; mTOR- mammalian target of rapamycin; MUC- mucin; NAFLD- nonalcoholic fatty liver disease; NF-κB- nuclear factor kappa B; NK- natural killer; NLRP3- NLR family pyrin domain containing 3; NOC- N-nitroso compounds; NOD- nucleotide-binding oligomerization domain; PICRUSt- phylogenetic investigation of communities by reconstruction of unobserved states; PRR- pattern recognition receptor; RA- retinoic acid; RNS- reactive nitrogen species; ROS- reactive oxygen species; rRNA- ribosomal RNA; SCFA- short-chain fatty acids; SDR- single drug resistance; SIgA- secretory immunoglobulin A; STAT3- signal transducer and activator of transcription 3; T1D- type 1 diabetes; T2D- type 2 diabetes; Th17- T helper 17; TLR- toll-like receptor; TMAO- trimethylamine N-oxide; TML- trimethyllysine; TNF-α- tumor necrosis factor-alpha; Tr1- type 1 regulatory T cell; Treg- regulatory T cell; UC- ulcerative colitis; VacA- Vacuolating toxin A.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|