1
|
Peanlikhit T, Aryal U, Welsh JS, Shroyer KR, Rithidech KN. Evaluation of the Inhibitory Potential of Apigenin and Related Flavonoids on Various Proteins Associated with Human Diseases Using AutoDock. Int J Mol Sci 2025; 26:2548. [PMID: 40141193 PMCID: PMC11942390 DOI: 10.3390/ijms26062548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
We used molecular docking to determine the binding energy and interactions of apigenin and 16 related flavonoids, with 24 distinct proteins having diverse biological functions. We aimed to identify potential inhibitors of these proteins and understand the structural configurations of flavonoids impacting their binding energy. Our results demonstrate that apigenin exhibits high binding energies (a surrogate for binding affinity or inhibitory potential) to all tested proteins. The strongest binding energy was -8.21 kcal/mol for p38 mitogen-activated protein kinases, while the weakest was -5.34 kcal/mol for cyclin-dependent kinase 4. Apigenin and many other flavonoids showed high binding energies on xanthine oxidase (1.1-1.5 fold of febuxostat) and DNA methyltransferases (1.1-1.2 fold of azacytidine). We uncovered high binding energies of apigenin and certain flavonoids with mutated Kirsten rat sarcoma viral oncogene homolog at G12D (KRAS G12D), G12V, and G12C. Consequently, apigenin and certain flavonoids have the potential to effectively inhibit pan-KRAS oncogenic activity, not just on specific KRAS mutations. Apigenin and certain flavonoids also have high binding energies with aromatase (involved in estrogen production) and bacterial infections, i.e., DNA gyrase B and 3R-hydroxy acyl-ACP dehydratase (FABZ). Our findings are pivotal in identifying specific flavonoids that can effectively inhibit targeted proteins, paving the way for the development of innovative flavonoid-based drugs.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; (T.P.); (K.R.S.)
| | - Uma Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - James S. Welsh
- Department of Radiation Oncology, Loyola University Health System, Maywood, IL 60153, USA;
| | - Kenneth R. Shroyer
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; (T.P.); (K.R.S.)
| | - Kanokporn Noy Rithidech
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; (T.P.); (K.R.S.)
| |
Collapse
|
2
|
Kim Y, Park HJ, Kim MK, Kim HJ, Kim YI, Bae SK, Bae MK. Effects of Hispidulin on the Osteo/Odontogenic and Endothelial Differentiation of Dental Pulp Stem Cells. Pharmaceuticals (Basel) 2024; 17:1740. [PMID: 39770583 PMCID: PMC11678453 DOI: 10.3390/ph17121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Human dental pulp stem cells (HDPSCs) with multi-lineage differentiation potential and migration ability are required for HDPSC-based bone and dental regeneration. Hispidulin is a naturally occurring flavonoid with diverse pharmacological activities, but its effects on biological properties of HDPSCs remain unknown. Therefore, we investigated the effects of hispidulin on the differentiation potential and migration ability of HDPSCs and elucidated their underlying mechanisms. Methods: The osteo/odontogenic capacity of HDPSCs was assessed using the alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining. The migration ability of HDPSCs was evaluated using a scratch wound assay. Furthermore, the endothelial differentiation of HDPSCs was examined by using a capillary sprouting assay and by assessing CD31 expression. Results: Hispidulin significantly enhanced the osteo/odontogenic differentiation of HDPSCs with increased expression of osteo/odontogenic differentiation markers. Hispidulin increased the migration of HDPSCs, which was mediated by the upregulation of C-X-C chemokine receptor type 4 (CXCR4). The treatment of HDPSCs with hispidulin enhanced the differentiation of HDPSCs into endothelial cells, as evidenced by increased capillary sprouting and endothelial marker expression. In addition, we demonstrated that hispidulin activated the ERK1/2 signaling, and its inhibition by U0126 significantly suppressed the hispidulin-induced endothelial differentiation of HDPSCs. Conclusions: These findings demonstrate that hispidulin effectively promotes the osteo/odontogenic and endothelial differentiation, and migration of HDPSCs. These results suggest that hispidulin may have potential therapeutic applications in dental pulp regeneration and tissue engineering.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea (H.J.K.)
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea (H.J.K.)
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea (H.J.K.)
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea (H.J.K.)
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Il Kim
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea (H.J.K.)
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Lorthongpanich C, Charoenwongpaiboon T, Septham P, Laowtammathron C, Srisook P, Kheolamai P, Manochantr S, Issaragrisil S. Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. Biosci Rep 2024; 44:BSR20240623. [PMID: 39364538 PMCID: PMC11499385 DOI: 10.1042/bsr20240623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Praphasri Septham
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Surapol Issaragrisil
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
4
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
5
|
Li Y, Selvaraj V, Saravanan S, Abullais SS, Wankhade V. Exploring the osteogenic potential of chitosan-quercetin bio-conjugate: In vitro and in vivo investigations in osteoporosis models. Int J Biol Macromol 2024; 274:133492. [PMID: 38944072 DOI: 10.1016/j.ijbiomac.2024.133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Anti-osteoporotic agents are clinically employed to improve bone health and prevent osteoporotic fractures. In the current study, we investigated the potential of chitosan-quercetin bio-conjugate as an anti-osteoporotic agent. The conjugate was prepared and characterized by FTIR and found notable interactions between chitosan and quercetin. Treating mouse MSCs with the bioconjugate in osteogenic conditions for a week led to elevated expression of differentiation markers Runx2, ALP, and Col-I, as determined by real-time PCR analysis. Evaluation at the cellular level using alizarin red staining demonstrated enhanced calcium deposition in MSCs following treatment with the bioconjugate. Likewise, ELISA analysis showed significantly elevated levels of secretory osteocalcin and osteonectin in groups treated with the conjugate. To broaden our comprehension, we utilized a zebrafish-based in vivo model of dexamethasone-induced osteoporosis to investigate bone regeneration. Toxicity profiling with zebrafish larvae confirmed the bio-conjugate's compatibility at a concentration of 25 μg/ml, underscoring the significance of finding the right dosage. Furthermore, in zebrafish models of osteoporosis, the bio-conjugate demonstrated significant potential for bone regeneration, as indicated by improved bone calcification, callus formation, and overall bone healing in a tail fin fracture model. Additionally, the study revealed that the bio-conjugate inhibited osteoclastic activity, leading to reduced TRAP activity and hydroxyproline release, suggesting its effectiveness in mitigating bone resorption. In conclusion, our research provides compelling evidence for the osteogenic capabilities of the chitosan-quercetin bio-conjugate, highlighting its promising applications in regenerative medicine and the treatment of conditions like osteoporosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Joint Surgery and Sports Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai - 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Science, King Khalid University, College of Dentistry, Abha, Saudi Arabia
| | - Varsha Wankhade
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
6
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Tran TH, Mai TT, Ho TTT, Le TND, Cao TCN, Thai KM, Tran TS. Inhibition of Pancreatic Lipase by Flavonoid Derivatives: In Vitro and In Silico Investigations. Adv Pharmacol Pharm Sci 2024; 2024:6655996. [PMID: 38298460 PMCID: PMC10830309 DOI: 10.1155/2024/6655996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Obesity, characterized by excessive adipose tissue accumulation, has emerged as a crucial determinant for a wide range of chronic medical conditions. The identification of effective interventions for obesity is of utmost importance. Widely researched antiobesity agents focus on pancreatic lipase, a significant therapeutic target. This study presented the evaluation of ten flavonoid compounds in terms of their inhibitory activities against pancreatic lipase, utilizing both in vitro and in silico approaches. The results indicated that all tested compounds demonstrated modest and weaker inhibitory activities compared to the reference compound, orlistat. Among the compounds investigated, F01 exhibited the highest potency, with an IC50 value of 17.68 ± 1.43 µM. The enzymatic inhibition kinetic analysis revealed that F01 operated through a competitive inhibition mechanism with a determined Ki of 7.16 μM. This value suggested a moderate binding affinity for the pancreatic lipase enzyme. Furthermore, the associated Vmax value was quantified at 0.03272 ΔA·min-1. In silico studies revealed that F01 displayed a binding mode similar to that of orlistat, despite lacking an active functional group capable of forming a covalent bond with Ser152 of the catalytic triad. However, F01 formed a hydrogen bond with this crucial amino acid. Furthermore, F01 interacted with other significant residues at the enzyme's active site, particularly those within the lid domain. Based on these findings, F01 demonstrates substantial potential as a candidate for further investigations.
Collapse
Affiliation(s)
- The-Huan Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
| | - Thanh-Tan Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Thi-Thu-Trang Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
| | | | - Thi-Cam-Nhung Cao
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Thai-Son Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
| |
Collapse
|
9
|
Zheng Y, Wang J, Xu K, Chen X. Intake of dietary flavonoids in relation to bone loss among U.S. adults: a promising strategy for improving bone health. Food Funct 2024; 15:766-778. [PMID: 38126227 DOI: 10.1039/d3fo02065g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary flavonoids have been recommended for improving bone health due to their antioxidant, anti-inflammatory and osteogenic properties. However, the effectiveness of each flavonoid subclass in the prevention and treatment of osteoporosis remains controversial. The objective of the current study was to examine the association between the intake of flavonoid subclasses and bone loss in 10 480 U.S. adults in the National Health and Nutrition Examination Survey. We employed a multinomial logistic regression model to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). The intake of flavones, isoflavones, and flavanones was beneficially associated with osteoporosis (ORQ5 vs. Q1 = 0.44; 95% CI: 0.30-0.64 for flavones; ORQ5 vs. Q1 = 0.53; 95% CI: 0.37-0.77 for isoflavones; ORQ5 vs. Q1 = 0.66; 95% CI: 0.45-0.97 for flavanones). A higher intake of flavones and flavanones was significantly associated with a lower risk of bone loss at the femoral neck rather than the lumbar spine. Notably, stratified analysis showed that genistein had a harmful association with osteopenia in the population with lower serum calcium levels, whereas it had a beneficial association with osteoporosis in the population with higher serum calcium levels. Multiple sensitivity analyses were performed to test the robustness of the results, including subgroup analysis, exclusion of individuals' use of anti-osteoporosis, corticosteroid, and estrogenic medications, adjusting more potential confounders and calculation of the E-value. Overall, incorporating this modifiable diet into an individual's lifestyle could provide potential possibilities to prevent and ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
10
|
Singh B, Semwal BC. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr Top Med Chem 2024; 24:2093-2116. [PMID: 39108008 DOI: 10.2174/0115680266316032240718050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.
Collapse
Affiliation(s)
- Bhoopendra Singh
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| | - Bhupesh Chander Semwal
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| |
Collapse
|
11
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
12
|
Liga S, Paul C, Péter F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. PLANTS (BASEL, SWITZERLAND) 2023; 12:2732. [PMID: 37514347 PMCID: PMC10384615 DOI: 10.3390/plants12142732] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
- Research Institute for Renewable Energies, Politehnica University Timisoara, Gavril Muzicescu 138, 300501 Timisoara, Romania
| |
Collapse
|
13
|
Ariano A, Posa F, Storlino G, Mori G. Molecules Inducing Dental Stem Cells Differentiation and Bone Regeneration: State of the Art. Int J Mol Sci 2023; 24:9897. [PMID: 37373044 DOI: 10.3390/ijms24129897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration.
Collapse
Affiliation(s)
- Anastasia Ariano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
14
|
Zeng C, Wang S, Chen F, Wang Z, Li J, Xie Z, Ma M, Wang P, Shen H, Wu Y. Alpinetin alleviates osteoporosis by promoting osteogenic differentiation in BMSCs by triggering autophagy via PKA/mTOR/ULK1 signaling. Phytother Res 2023; 37:252-270. [PMID: 36104214 PMCID: PMC10087978 DOI: 10.1002/ptr.7610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Osteoporosis, a systemic bone disease that is characterized by a reduction in bone mass and destruction of bone microstructure, is becoming a serious problem worldwide. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into bone-forming osteoblasts, and play an important role in maintaining homeostasis of bone metabolism, thus being a potential therapeutic target for osteoporosis. Although the phytochemical alpinetin (APT) has been reported to possess a variety of pharmacological activities, it is still unclear whether APT can influence the osteogenic differentiation of on BMSCs and if it can improve osteoporosis. In this study, we found that APT treatment was able to enhance osteogenic differentiation levels of human BMSCs in vitro and mouse ones in vivo as revealed by multiple osteogenic markers including increased alkaline phosphatase activity and osteocalcin expression. Mechanistically, the protein kinase A (PKA)/mTOR/ULK1 signaling was involved in the action of APT to enhance the osteogenic differentiation of BMSCs. In addition, oral administration of APT significantly mitigated the bone loss in a dexamethasone-induced mouse model of osteoporosis through strengthening PKA signaling and autophagy. Altogether, these data demonstrate that APT promotes osteogenic differentiation in BMSCs by augmenting the PKA/mTOR/ULK1 autophagy signaling, highlighting its potential therapeutic application for treating osteoporotic diseases.
Collapse
Affiliation(s)
- Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing. Front Med (Lausanne) 2022; 9:978120. [PMID: 36262272 PMCID: PMC9573991 DOI: 10.3389/fmed.2022.978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Scars are pathological marks left after an injury heals that inflict physical and psychological harm, especially the great threat to development and aesthetics posed by oral and maxillofacial scars. The differential expression of genes such as transforming growth factor-β, local adherent plaque kinase, and yes-related transcriptional regulators at infancy or the oral mucosa is thought to be the reason of scarless regenerative capacity after tissue defects. Currently, tissue engineering products for defect repair frequently overlook the management of postoperative scars, and inhibitors of important genes alone have negative consequences for the organism. Natural flavonoids have hemostatic, anti-inflammatory, antioxidant, and antibacterial properties, which promote wound healing and have anti-scar properties by interfering with the transmission of key signaling pathways involved in scar formation. The combination of flavonoid-rich drug dressings provides a platform for clinical translation of compounds that aid in drug disintegration, prolonged release, and targeted delivery. Therefore, we present a review of the mechanisms and effects of flavonoids in promoting scar-free regeneration and the application of flavonoid-laden dressings.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaohang Chen
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jing Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,Jing Zhao,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Xing Wang,
| |
Collapse
|