1
|
Chen J, Du Y, Yu Q, Liu D, Zhang J, Luo T, Huang H, Cai S, Dong H. Bioinformatics-based identification of mirdametinib as a potential therapeutic target for idiopathic pulmonary fibrosis associated with endoplasmic reticulum stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04076-0. [PMID: 40153017 DOI: 10.1007/s00210-025-04076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
The molecular link between endoplasmic reticulum stress (ERS) and idiopathic pulmonary fibrosis (IPF) remains elusive. Our study aimed to uncover core mechanisms and new therapeutic targets for IPF. By analyzing gene expression profiles from the Gene Expression Omnibus (GEO) database, we identified 1519 differentially expressed genes (DEGs) and 11 ERS-related genes (ERSRGs) diagnostic for IPF. Using weighted gene co-expression network analysis (WGCNA) and differential expression analysis, key genes linked to IPF were pinpointed. CIBERSORT was used to assess immune cell infiltration, while the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore biological mechanisms. In three GEO datasets (GSE150910, GSE92592, and GSE124685), the receiver operating characteristic (ROC) curve analysis showed area under the ROC curve (AUC) > 0.7 for all ERSRGs. The Connectivity Map (CMap) database was used to predict small molecules modulating IPF signatures. The molecular docking energies of mirdametinib with protein targets ranged from - 5.1643 to - 8.0154 kcal/mol, while those of linsitinib ranged from - 5.6031 to - 7.902 kcal/mol. Molecular docking and animal experiments were performed to validate the therapeutic potential of identified compounds, with mirdametinib showing specific effects in a murine bleomycin-induced pulmonary fibrosis model. In vitro experiments indicated that mirdametinib may alleviate pulmonary fibrosis by reducing ERS via the PI3K/Akt/mTOR pathway. Our findings highlight 11 ERSRGs as predictors of IPF and demonstrate the feasibility of bioinformatics in drug discovery for IPF treatment.
Collapse
Affiliation(s)
- Junwei Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yuhan Du
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Qi Yu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Dongyu Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Tingyue Luo
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
- Department of Respiratory Medicine, Nanfang Hospital, No. 1838, North Guangzhou Avenue,Baiyun District,, Guangzhou City, China.
| |
Collapse
|
2
|
Liu H, Cui H, Liu G. The Intersection between Immune System and Idiopathic Pulmonary Fibrosis-A Concise Review. FIBROSIS (HONG KONG, CHINA) 2025; 3:10004. [PMID: 40124525 PMCID: PMC11928166 DOI: 10.70322/fibrosis.2025.10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by progressive alveolar destruction, impaired tissue regeneration, and relentless fibrogenesis, culminating in respiratory failure and death. A diverse array of resident and non-resident cells within the lung contribute to disease pathogenesis. Notably, immune cells, both resident and recruited, respond to cues from sites of lung injury by undergoing phenotypic transitions and producing a wide range of mediators that influence, initiate, or dictate the function, or dysfunction, of key effector cells in IPF pathology, such as alveolar epithelial cells, lung fibroblasts, and capillary endothelial cells. The role of the immune system in IPF has undergone an interesting evolution, oscillating from initial enthusiasm to skepticism, and now to a renewed focus. This shift reflects both the past failures of immune-targeting therapies for IPF and the unprecedented insights into immune cell heterogeneity provided by emerging technologies. In this article, we review the historical evolution of perspectives on the immune system's role in IPF pathogenesis and examine the lessons learned from previous therapeutic failures targeting immune responses. We discuss the major immune cell types implicated in IPF progression, highlighting their phenotypic transitions and mechanisms of action. Finally, we identify key knowledge gaps and propose future directions for research on the immune system in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Cheng Y, Jiao Y, Wei W, Kou M, Cai Y, Li Y, Li H, Liu T. FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis. Front Pharmacol 2025; 16:1509665. [PMID: 40008127 PMCID: PMC11850536 DOI: 10.3389/fphar.2025.1509665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF), an interstitial lung disease of unknown etiology, remains incurable with current therapies, which fail to halt disease progression or restore lung function. However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment. Objective This study aimed to investigate the regulatory effect of FBR2 on ferroptosis through the SIRT3/p53 pathway and its therapeutic potential in improving IPF. Methods Pulmonary fibrosis was induced in C57BL/6J mice by intratracheal instillation of Bleomycin (BLM), followed by FBR2 treatment via gavage. Assessments encompassed histopathology, ELISA for cytokine detection, IHC and Western blot for protein expression analysis, and qRT-PCR for gene expression quantification. Transmission electron microscopy (TEM) was used to observe mitochondrial morphology. The roles of Erastin and the SIRT3 inhibitor 3-TYP were also explored to elucidate FBR2's mechanisms of action. Results FBR2 treatment significantly mitigated BLM-induced lung injury in mice, as evidenced by improved body weight and survival rates, and reduced levels of inflammatory cytokines, including IL-6 and TNF-α. FBR2 decreased collagen deposition in lung tissue, as shown by Masson's staining and IHC detection of Col-I and α-SMA, confirming its anti-fibrotic effects. It also reduced iron and MDA levels in lung tissue, increased GSH-Px activity, improved mitochondrial morphology, and enhanced the expression of GPX4 and SLC7A11, indicating its ferroptosis-inhibitory capacity. Furthermore, FBR2 increased SIRT3 levels and suppressed p53 and its acetylated forms, promoting the translocation of p53 from the nucleus to the cytoplasm where it co-localized with SIRT3. The protective effects of FBR2 were reversed by Erastin, confirming the central role of ferroptosis in pulmonary fibrosis treatment. The use of 3-TYP further confirmed FBR2's intervention in ferroptosis and cellular senescence through the SIRT3/p53 pathway. Conclusion FBR2 shows therapeutic potential in a BLM-induced pulmonary fibrosis mouse model, with its effects mediated through modulation of the ferroptosis pathway via the SIRT3/p53 mechanism. This study provides novel evidence for the targeted treatment of IPF and offers further insights into its pathogenesis.
Collapse
Affiliation(s)
- Yu Cheng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Jiao
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan Wei
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengjia Kou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yaodong Cai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Department of Respiratory and Critical Care Medicine, Beijing Jiangong Hospital, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Ochi N, Abidi A, Taamalli W, Ayedi A, Sebai H. Ameliorative effects of avocado oil on bleomycin-induced lung fibrosis and oxidative stress in rats. Physiol Rep 2025; 13:e70228. [PMID: 39903585 PMCID: PMC11792993 DOI: 10.14814/phy2.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025] Open
Abstract
Pulmonary fibrosis (PF), is a chronic interstitial lung disease, characterized by changes in the alveoli, excessive accumulation of extracellular matrix, persistent inflammation, and oxidative stress. In this study, we aimed to explore the therapeutic effects of avocado oil (Ao) on bleomycin (BLM)-induced PF. Four this, 24 male rats were divided into four groups (n = 6): the first group served as a control, the second served as a fibrotic group, instilled intratracheally only with BLM (2 mg/kg bw), and the remaining groups were treated by gastric gavage with Ao at different doses (3.5 and 5 mL/kg bw) for 25 days after BLM instillation. The fibrosis induction revealed significant alterations, including increased lipid peroxidation and decreased antioxidant enzyme activities such as superoxyde dismutase (SOD) and catalase (CAT), level of thiols group coupled with a high fibrosis score (FS) and an inflammatory index (II), along with excessive collagen deposition in the pulmonary interstitium. Ao treatment reversed all disturbances induced by BLM in oxidative stress parameters and relatively repairs the histological damage caused by BLM by reducing the FS and the II. The antioxidant, anti-inflammatory and anti-fibrosis power of Ao, may suggest this last as a promising candidate for the treatment of PF.
Collapse
Affiliation(s)
- Naoures Ochi
- Laboratory of Functional Physiology and Valorization of Bio‐Resources of the Higher Institute of Biotechnology of BejaUniversity of JendoubaJendoubaBejaTunisia
| | - Anouar Abidi
- Laboratory of Functional Physiology and Valorization of Bio‐Resources of the Higher Institute of Biotechnology of BejaUniversity of JendoubaJendoubaBejaTunisia
| | - Wael Taamalli
- Laboratory of Olive BiotechnologyCentre of Biotechnology of Borj CedriaHammam‐LifTunisia
| | - Ayda Ayedi
- Department of AnatomopathologyAbderrahmane Mami HospitalArianaTunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio‐Resources of the Higher Institute of Biotechnology of BejaUniversity of JendoubaJendoubaBejaTunisia
| |
Collapse
|
5
|
Wei Y, Ni W, Zhao L, Gao Y, Zhou B, Feng Q, Ma Y, Wang L. Phillygenin Inhibits PI3K-Akt-mTOR Signalling Pathway to Prevent bleomycin-Induced Idiopathic Pulmonary Fibrosis in Mice. Clin Exp Pharmacol Physiol 2025; 52:e70017. [PMID: 39746665 DOI: 10.1111/1440-1681.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterised by irreversible lung structure and function. Phillygenin (PHI) is a lignan extracted from Forsythiae fructus with the activities of anti-inflammatory and antioxidant. This study aimed to explore the protective effect of PHI on IPF. The mouse model of IPF was established by bleomycin (BLM), and then treated with PHI. After 15 days of administration, the lung index was calculated. H&E staining, Masson staining and immunohistochemical methods were used to detect the effect of PHI on pulmonary fibrosis. MDA and SOD were tested to evaluate the effect of PHI on lung tissue oxidative stress. Western blot was used to detect the effect of PHI on the expressions of α-SMA, p-smad2, TGF- β1, Nrf2, HO-1 and NQO-1. Network pharmacology was used to identify the key signalling pathways for PHI to improve IPF, and Western blot was used to validate the result. The results showed that PHI prevented mice from BLM-induced IPF, manifested by reducing lung index, improving lung tissue pathological damage, inhibiting collagen deposition and expression of fibrosis markers including α-SMA, collagen1, p-smad2 and TGF-β1. PHI inhibited oxidative stress by upregulating the expressions of Nrf2, HO-1 and NQO-1. Network pharmacology revealed that PI3K-Akt-mTOR signalling pathway was the underlying target of PHI for IPF. Molecular docking indicated strong binding of PHI with PIK3CA, AKT1 and RELA. Western blot validated that PHI downregulated the PI3K-Akt-mTOR signalling pathway and stimulated autophagy. This study indicated that PHI prevented BLM-induced pulmonary fibrosis by inhibiting PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Yongjia Wei
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lizhi Zhao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Yanhong Gao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Bing Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Qun Feng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Yun Ma
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, China
| | - Limin Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
6
|
Wan R, Liu Y, Yan J, Lin J. Cell therapy: A beacon of hope in the battle against pulmonary fibrosis. FASEB J 2025; 39:e70356. [PMID: 39873972 DOI: 10.1096/fj.202402790r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative. In recent years, stem cells have shown great promise in the field of regenerative medicine due to their self-renewal capacity and multidirectional differentiation potential, and a growing body of literature supports the efficacy of stem cell therapy in PF treatment. This paper systematically summarizes the research progress of various stem cell types in the treatment of PF. Furthermore, it discusses the primary methods and clinical outcomes of stem cell therapy in PF, based on both preclinical and clinical data. Finally, the current challenges and key factors to consider in stem cell therapy for PF are objectively analyzed, and future directions for improving this therapy are proposed, providing new insights and references for the clinical treatment of PF patients.
Collapse
Affiliation(s)
- Ruyan Wan
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jingwen Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Tu M, Lu C, Jia H, Chen S, Wang Y, Li J, Cheng J, Yang M, Zhang G. SULF1 expression is increased and promotes fibrosis through the TGF-β1/SMAD pathway in idiopathic pulmonary fibrosis. J Transl Med 2024; 22:885. [PMID: 39354547 PMCID: PMC11446151 DOI: 10.1186/s12967-024-05698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown etiology. Despite the increasing global incidence and poor prognosis, the exact pathogenic mechanisms remain elusive. Currently, effective therapeutic targets and treatment methods for this disease are still lacking. This study tried to explore the pathogenic mechanisms of IPF. We found elevated expression of SULF1 in lung tissues of IPF patients compared to normal control lung tissues. SULF1 is an enzyme that modifies heparan sulfate chains of heparan sulfate proteoglycans, playing a critical role in biological regulation. However, the effect of SULF1 in pulmonary fibrosis remains incompletely understood. Our study aimed to investigate the impact and mechanisms of SULF1 in fibrosis. METHODS We collected lung specimens from IPF patients for transcriptome sequencing. Validation of SULF1 expression in IPF patients was performed using Western blotting and RT-qPCR on lung tissues. ELISA experiments were employed to detect SULF1 concentrations in IPF patient plasma and TGF-β1 levels in cell culture supernatants. We used lentiviral delivery of SULF1 shRNA to knock down SULF1 in HFL1 cells, evaluating its effects on fibroblast secretion, activation, proliferation, migration, and invasion capabilities. Furthermore, we employed Co-Immunoprecipitation (Co-IP) to investigate the regulatory mechanisms involved. RESULTS Through bioinformatic analysis of IPF transcriptomic sequencing data (HTIPF) and datasets GSE24206, and GSE53845, we identified SULF1 may potentially play a crucial role in IPF. Subsequently, we verified that SULF1 was upregulated in IPF and predominantly increased in fibroblasts. Furthermore, SULF1 expression was induced in HFL1 cells following exposure to TGF-β1. Knockdown of SULF1 suppressed fibroblast secretion, activation, proliferation, migration, and invasion under both TGF-β1-driven and non-TGF-β1-driven conditions. We found that SULF1 catalyzes the release of TGF-β1 bound to TGFβRIII, thereby activating the TGF-β1/SMAD pathway to promote fibrosis. Additionally, TGF-β1 induces SULF1 expression through the TGF-β1/SMAD pathway, suggesting a potential positive feedback loop between SULF1 and the TGF-β1/SMAD pathway. CONCLUSIONS Our findings reveal that SULF1 promotes fibrosis through the TGF-β1/SMAD pathway in pulmonary fibrosis. Targeting SULF1 may offer a promising therapeutic strategy against IPF.
Collapse
Affiliation(s)
- Meng Tu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Interstitial Lung Diseases and Lung Transplantation, Zhengzhou, Henan, China
| | - Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Interstitial Lung Diseases and Lung Transplantation, Zhengzhou, Henan, China
| | - Hongxia Jia
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Interstitial Lung Diseases and Lung Transplantation, Zhengzhou, Henan, China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia.
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Interstitial Lung Diseases and Lung Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Petersen AG, Korntner SH, Bousamaki J, Oró D, Arraut AM, Pors SE, Salinas CG, Andersen MW, Madsen MR, Nie Y, Butts J, Roqueta‐Rivera M, Simonsen U, Hansen HH, Feigh M. Reproducible lung protective effects of a TGFβR1/ALK5 inhibitor in a bleomycin-induced and spirometry-confirmed model of IPF in male mice. Physiol Rep 2024; 12:e70077. [PMID: 39394052 PMCID: PMC11469938 DOI: 10.14814/phy2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
This study comprehensively validated the bleomycin (BLEO) induced mouse model of IPF for utility in preclinical drug discovery. To this end, the model was rigorously evaluated for reproducible phenotype and TGFβ-directed treatment outcomes. Lung disease was profiled longitudinally in male C57BL6/JRJ mice receiving a single intratracheal instillation of BLEO (n = 10-12 per group). A TGFβR1/ALK5 inhibitor (ALK5i) was profiled in six independent studies in BLEO-IPF mice, randomized/stratified to treatment according to baseline body weight and non-invasive whole-body plethysmography. ALK5i (60 mg/kg/day) or vehicle (n = 10-16 per study) was administered orally for 21 days, starting 7 days after intratracheal BLEO installation. BLEO-IPF mice recapitulated functional, histological and biochemical hallmarks of IPF, including declining expiratory/inspiratory capacity and inflammatory and fibrotic lung injury accompanied by markedly elevated TGFβ levels in bronchoalveolar lavage fluid and lung tissue. Pulmonary transcriptome signatures of inflammation and fibrosis in BLEO-IPF mice were comparable to reported data in IPF patients. ALK5i promoted reproducible and robust therapeutic outcomes on lung functional, biochemical and histological endpoints in BLEO-IPF mice. The robust lung fibrotic disease phenotype, along with the consistent and reproducible lung protective effects of ALK5i treatment, makes the spirometry-confirmed BLEO-IPF mouse model highly applicable for profiling novel drug candidates for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Nie
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
9
|
Xu Q, Hu G, Lin Q, Wu M, Tang K, Zhang Y, Chen F. The association between testosterone, estradiol, estrogen sulfotransferase and idiopathic pulmonary fibrosis: a bidirectional mendelian randomization study. BMC Pulm Med 2024; 24:435. [PMID: 39227879 PMCID: PMC11373247 DOI: 10.1186/s12890-024-03198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The causal relationships between testosterone, estradiol, estrogen sulfotransferase, and idiopathic pulmonary fibrosis (IPF) are not well understood. This study employs a bidirectional two-sample Mendelian Randomization (MR) approach to explore these associations. METHODS All genetic data utilized in our study were obtained from the IEU Open GWAS project. For the MR analysis, we employed the inverse variance weighted (IVW), MR-Egger, and weighted median methods to assess the causal relationships. We also conducted a multivariate MR (MVMR) analysis, with adjustments made for smoking. To ensure the robustness of our findings, sensitivity analyses were conducted using Cochran's Q test, MR-Egger regression, the MR-PRESSO global test, and the leave-one-out method. RESULTS Genetically predicted increases in serum testosterone levels by one standard deviation were associated with a 58.7% decrease in the risk of developing IPF (OR = 0.413, PIVW=0.029, 95% CI = 0.187 ∼ 0.912), while an increase in serum estrogen sulfotransferase by one standard deviation was associated with a 32.4% increase in risk (OR = 1.324, PIVW=0.006, 95% CI = 1.083 ∼ 1.618). No causal relationship was found between estradiol (OR = 1.094, PIVW=0.735, 95% CI = 0.650 ∼ 1.841) and the risk of IPF. Reverse MR analysis did not reveal any causal relationship between IPF and testosterone (OR = 1.001, PIVW=0.51, 95% CI = 0.998 ∼ 1.004), estradiol (OR = 1.001, PIVW=0.958, 95% CI = 0.982 ∼ 1.019), or estrogen sulfotransferase (OR = 0.975, PIVW=0.251, 95% CI = 0.933 ∼ 1.018). The MVMR analysis demonstrated that the association between testosterone (OR = 0.442, P = 0.037, 95% CI = 0.205 ∼ 0.953) and estrogen sulfotransferase (OR = 1.314, P = 0.001, 95% CI = 1.118 ∼ 1.545) and the risk of IPF persisted even after adjusting for smoking. CONCLUSIONS Increased serum levels of testosterone are associated with a reduced risk of IPF, while increased levels of serum estrogen sulfotransferase are associated with an increased risk. No causal relationship was found between estradiol and the development of IPF. No causal relationship was identified between IPF and testosterone, estradiol, or estrogen sulfotransferase.
Collapse
Affiliation(s)
- Qingying Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Guangwang Hu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qunying Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Respiratory Medicine, Putian Pulmonary Hospital, Putian, China.
- Department of Respiratory Medicine, Affiliated Hospital of Putian University, Putian, China.
| | - Menghang Wu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Kenan Tang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yuyu Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Feng Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Yan H, He B, He L, Ye H. Screening study on significant Chinese herb for anti-idiopathic pulmonary fibrosis by combining clinical experience prescriptions and molecular dynamics simulation technologies. J Biomol Struct Dyn 2024; 42:6393-6409. [PMID: 37963492 DOI: 10.1080/07391102.2023.2263792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/01/2023] [Indexed: 11/16/2023]
Abstract
Various techniques such as data mining, network pharmacology, molecular docking and molecular dynamics simulation were used in this study to screen and validate effective herbal medicines for the treatment of idiopathic pulmonary fibrosis (IPF) and to reveal their mechanisms of action at the molecular level. The use of this approach will provide new tools and ideas for future drug screening, especially for the application of herbal medicines in the treatment of complex diseases. Among them, the five identified core targets, including IL6, TP53, AKT1, VEGFA, and TNF, as well as a series of major active compounds, will be important references for future anti-IPF drug development. This information will accelerate the discovery and development of relevant drugs. Meanwhile, this study further confirmed the potential value of four Chinese herbal medicines, including Gancao, Danshen, Huangqin, and Sanqi, in the treatment of IPF. This will promote more clinical trials and practices to confirm and optimise the application of these herbs. Finally, this study is an important theoretical guide to enhance the advantages of Chinese herbal medicines in the prevention and treatment of major and difficult diseases, as well as to understand and utilise the potential efficacy of Chinese herbal medicines. This will further promote the scientific research and clinical application of herbal medicines and provide more possibilities for future disease treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haiting Yan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Beibei He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Ye
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Zhao J, Jing C, Fan R, Zhang W. Prognostic model of fibroblasts in idiopathic pulmonary fibrosis by combined bulk and single-cell RNA-sequencing. Heliyon 2024; 10:e34519. [PMID: 39113997 PMCID: PMC11305307 DOI: 10.1016/j.heliyon.2024.e34519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Fibroblasts play an important role in the development of idiopathic pulmonary fibrosis (IPF). Methods We employed single-cell RNA-sequencing data obtained from the Gene Expression Omnibus database to perform cell clustering and annotation analyses. We then performed secondary clustering of fibroblasts and conducted functional enrichment and cell trajectory analyses of the two newly defined fibroblast subtypes. Bulk RNA-sequencing data were used to perform consensus clustering and weighted gene co-expression network analysis. We constructed a fibroblast-related prognostic model using least absolute shrinkage, selection operator regression, and Cox regression analysis. The prognostic model was validated using a validation dataset. Immune infiltration and functional enrichment analyses were conducted for patients in the high- and low-risk IPF groups. Results We characterized two fibroblast subtypes that are active in IPF (F3+ and ROBO2+). Using fibroblast-related genes, we identified five genes (CXCL14, TM4SF1, CYTL1, SOD3, and MMP10) for the prognostic model. The area under the curve values of our prognostic model were 0.852, 0.859, and 0.844 at one, two, and three years in the training set, and 0.837, 0.758, and 0.821 at one, two, and three years in the validation set, respectively. Conclusion This study annotates and characterizes different subtypes of fibroblasts in IPF.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanqing Jing
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
12
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Byregowda BH, Baby K, Maity S, Nayak UY, S G, Fayaz SM, Nayak Y. Network pharmacology and in silico approaches to uncover multitargeted mechanism of action of Zingiber zerumbet rhizomes for the treatment of idiopathic pulmonary fibrosis. F1000Res 2024; 13:216. [PMID: 39931327 PMCID: PMC11809647 DOI: 10.12688/f1000research.142513.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 02/13/2025] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a disease with high mortality, and there are only two specific drugs available for therapeutic management with limitations. The study aims to identify comprehensive therapeutic mechanisms of Zingiber zerumbet rhizomes (ZZR) to treat IPF by using network pharmacology followed battery of in silico studies. Methods The protein-protein interaction network was developed using Cytoscape to obtain core disease targets involved in IPF and their interactive molecules of ZZR. Based on the pharmacophore properties of phytomolecules from ZZR, the drug targets in IPF were explored. Protein-protein interaction network was built in Cytoscape to screen potential targets and components of ZZR. Molecular docking and dynamics were conducted as an empirical study to investigate the mechanism explored through network pharmacology in relation to the hub targets. Results The network analysis conferred kaempferol derivatives that had demonstrated a promising therapeutic effect on the perturbed, robust network hubs of TGF-β1, EGFR, TNF-α, MMP2 & MMP9 reported to alter the biological process of mesenchymal transition, myofibroblast proliferation, and cellular matrix deposition in pulmonary fibrosis. The phytomolecules of ZZR act on two major significant pathways, namely the TGF-β-signaling pathway and the FOXO-signaling pathway, to inhibit IPF. Confirmational molecular docking and dynamics simulation studies possessed good stability and interactions of the protein-ligand complexes by RMSD, RMSF, rGyr, SASA, and principal component analysis (PCA). Validated molecular docking and dynamics simulations provided new insight into exploring the mechanism and multi-target effect of ZZR to treat pulmonary fibrosis by restoring the alveolar phenotype through cellular networking. Conclusions Network pharmacology and in silico studies confirm the multitargeted activity of ZZR in the treatment of IPF. Further in vitro and in vivo studies are to be conducted to validate these findings.
Collapse
Affiliation(s)
- Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576194, India
| | - Gayathri S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaik Mohammad Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
14
|
Sun Z, Ji Z, Meng H, He W, Li B, Pan X, Zhou Y, Yu G. Lactate facilitated mitochondrial fission-derived ROS to promote pulmonary fibrosis via ERK/DRP-1 signaling. J Transl Med 2024; 22:479. [PMID: 38773615 PMCID: PMC11106888 DOI: 10.1186/s12967-024-05289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung diseases, which mainly existed in middle-aged and elderly people. The accumulation of reactive oxygen species (ROS) is a common characteristic of IPF. Previous research also shown that lactate levels can be abnormally elevated in IPF patients. Emerging evidence suggested a relationship between lactate and ROS in IPF which needs further elucidation. In this article, we utilized a mouse model of BLM-induced pulmonary fibrosis to detect alterations in ROS levels and other indicators associated with fibrosis. Lactate could induce mitochondrial fragmentation by modulating expression and activity of DRP1 and ERK. Moreover, Increased ROS promoted P65 translocation into nucleus, leading to expression of lung fibrotic markers. Finally, Ulixertinib, Mdivi-1 and Mito-TEMPO, which were inhibitor activity of ERK, DRP1 and mtROS, respectively, could effectively prevented mitochondrial damage and production of ROS and eventually alleviate pulmonary fibrosis. Taken together, these findings suggested that lactate could promote lung fibrosis by increasing mitochondrial fission-derived ROS via ERK/DRP1 signaling, which may provide novel therapeutic solutions for IPF.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China.
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Bin Li
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Xiaoyue Pan
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Yanlin Zhou
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China.
| |
Collapse
|
15
|
Yao L, Xu Z, Davies DE, Jones MG, Wang Y. Dysregulated bidirectional epithelial-mesenchymal crosstalk: a core determinant of lung fibrosis progression. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:27-33. [PMID: 38558961 PMCID: PMC7615773 DOI: 10.1016/j.pccm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive lung fibrosis is characterised by dysregulated extracellular matrix (ECM) homeostasis. Understanding of disease pathogenesis remains limited and has prevented the development of effective treatments. While an abnormal wound healing response is strongly implicated in lung fibrosis initiation, factors that determine why fibrosis progresses rather than regular tissue repair occurs are not fully explained. Within human lung fibrosis there is evidence of altered epithelial and mesenchymal lung populations as well as cells undergoing epithelial-mesenchymal transition (EMT), a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties. This review will focus upon the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
16
|
Liu YM, Zhang J, Wu JJ, Guo WW, Tang FS. Strengthening pharmacotherapy research for COVID-19-induced pulmonary fibrosis. World J Clin Cases 2024; 12:875-879. [PMID: 38414600 PMCID: PMC10895630 DOI: 10.12998/wjcc.v12.i5.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 has resulted in a significant number of individuals developing pulmonary fibrosis (PF), an irreversible lung injury. This condition can manifest within a short interval following the onset of pneumonia symptoms, sometimes even within a few days. While lung transplantation is a potentially lifesaving procedure, its limited availability, high costs, intricate surgeries, and risk of immunological rejection present significant drawbacks. The optimal timing of medication administration for coronavirus disease 2019 (COVID-19)-induced PF remains controversial. Despite this, it is crucial to explore pharmacotherapy interventions, involving early and preventative treatment as well as pharmacotherapy options for advanced-stage PF. Additionally, studies have demonstrated disparities in anti-fibrotic treatment based on race and gender factors. Genetic mutations may also impact therapeutic efficacy. Enhancing research efforts on pharmacotherapy interventions, while considering relevant pharmacological factors and optimizing the timing and dosage of medication administration, will lead to enhanced, personalized, and fair treatment for individuals impacted by COVID-19-related PF. These measures are crucial in lessening the burden of the disease on healthcare systems and improving patients' quality of life.
Collapse
Affiliation(s)
- Yan-Miao Liu
- The First Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Jing Zhang
- Department of Respiratory Medicine, Central Hospital in Jinchang City, Jinchang 737102, Gansu Province, China
| | - Jing-Jing Wu
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Wei-Wei Guo
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Fu-Shan Tang
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| |
Collapse
|
17
|
Wu X, Xiao X, Fang H, He C, Wang H, Wang M, Lan P, Wang F, Du Q, Yang H. Elucidating shared biomarkers in gastroesophageal reflux disease and idiopathic pulmonary fibrosis: insights into novel therapeutic targets and the role of angelicae sinensis radix. Front Pharmacol 2024; 15:1348708. [PMID: 38414734 PMCID: PMC10897002 DOI: 10.3389/fphar.2024.1348708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Background: The etiological underpinnings of gastroesophageal reflux disease (GERD) and idiopathic pulmonary fibrosis (IPF) remain elusive, coupled with a scarcity of effective therapeutic interventions for IPF. Angelicae sinensis radix (ASR, also named Danggui) is a Chinese herb with potential anti-fibrotic properties, that holds promise as a therapeutic agent for IPF. Objective: This study seeks to elucidate the causal interplay and potential mechanisms underlying the coexistence of GERD and IPF. Furthermore, it aims to investigate the regulatory effect of ASR on this complex relationship. Methods: A two-sample Mendelian randomization (TSMR) approach was employed to delineate the causal connection between gastroesophageal reflux disease and IPF, with Phennoscanner V2 employed to mitigate confounding factors. Utilizing single nucleotide polymorphism (SNPs) and publicly available microarray data, we analyzed potential targets and mechanisms related to IPF in GERD. Network pharmacology and molecular docking were employed to explore the targets and efficacy of ASR in treating GERD-related IPF. External datasets were subsequently utilized to identify potential diagnostic biomarkers for GERD-related IPF. Results: The IVW analysis demonstrated a positive causal relationship between GERD and IPF (IVW: OR = 1.002, 95%CI: 1.001, 1.003; p < 0.001). Twenty-five shared differentially expressed genes (DEGs) were identified. GO functional analysis revealed enrichment in neural, cellular, and brain development processes, concentrated in chromosomes and plasma membranes, with protein binding and activation involvement. KEGG analysis unveiled enrichment in proteoglycan, ERBB, and neuroactive ligand-receptor interaction pathways in cancer. Protein-protein interaction (PPI) analysis identified seven hub genes. Network pharmacology analysis demonstrated that 104 components of ASR targeted five hub genes (PDE4B, DRD2, ERBB4, ESR1, GRM8), with molecular docking confirming their excellent binding efficiency. GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF (ESR1: AUCGERD = 0.762, AUCIPF = 0.725; GRM8: AUCGERD = 0.717, AUCIPF = 0.908). GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF, validated in external datasets. Conclusion: This study establishes a causal link between GERD and IPF, identifying five key targets and two potential diagnostic biomarkers for GERD-related IPF. ASR exhibits intervention efficacy and favorable binding characteristics, positioning it as a promising candidate for treating GERD-related IPF. The potential regulatory mechanisms may involve cell responses to fibroblast growth factor stimulation and steroidal hormone-mediated signaling pathways.
Collapse
Affiliation(s)
- Xuanyu Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Cuifang He
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyue Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peishu Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Barron SL, Wyatt O, O'Connor A, Mansfield D, Suzanne Cohen E, Witkos TM, Strickson S, Owens RM. Modelling bronchial epithelial-fibroblast cross-talk in idiopathic pulmonary fibrosis (IPF) using a human-derived in vitro air liquid interface (ALI) culture. Sci Rep 2024; 14:240. [PMID: 38168149 PMCID: PMC10761879 DOI: 10.1038/s41598-023-50618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating form of respiratory disease with a life expectancy of 3-4 years. Inflammation, epithelial injury and myofibroblast proliferation have been implicated in disease initiation and, recently, epithelial-fibroblastic crosstalk has been identified as a central driver. However, the ability to interrogate this crosstalk is limited due to the absence of in vitro models that mimic physiological conditions. To investigate IPF dysregulated cross-talk, primary normal human bronchial epithelial (NHBE) cells and primary normal human lung fibroblasts (NHLF) or diseased human lung fibroblasts (DHLF) from IPF patients, were co-cultured in direct contact at the air-liquid interface (ALI). Intercellular crosstalk was assessed by comparing cellular phenotypes of co-cultures to respective monocultures, through optical, biomolecular and electrical methods. A co-culture-dependent decrease in epithelium thickness, basal cell mRNA (P63, KRT5) and an increase in transepithelial electrical resistance (TEER) was observed. This effect was significantly enhanced in DHLF co-cultures and lead to the induction of epithelial to mesenchymal transition (EMT) and increased mRNA expression of TGFβ-2, ZO-1 and DN12. When stimulated with exogenous TGFβ, NHBE and NHLF monocultures showed a significant upregulation of EMT (COL1A1, FN1, VIM, ASMA) and senescence (P21) markers, respectively. In contrast, direct NHLF/NHBE co-culture indicated a protective role of epithelial-fibroblastic cross-talk against TGFβ-induced EMT, fibroblast-to-myofibroblast transition (FMT) and inflammatory cytokine release (IL-6, IL-8, IL-13, IL-1β, TNF-α). DHLF co-cultures showed no significant phenotypic transition upon stimulation, likely due to the constitutively high expression of TGFβ isoforms prior to any exogenous stimulation. The model developed provides an alternative method to generate IPF-related bronchial epithelial phenotypes in vitro, through the direct co-culture of human lung fibroblasts with NHBEs. These findings highlight the importance of fibroblast TGFβ signaling in EMT but that monocultures give rise to differential responses compared to co-cultures, when exposed to this pro-inflammatory stimulus. This holds implications for any translation conclusions drawn from monoculture studies and is an important step in development of more biomimetic models of IPF. In summary, we believe this in vitro system to study fibroblast-epithelial crosstalk, within the context of IPF, provides a platform which will aid in the identification and validation of novel targets.
Collapse
Affiliation(s)
- Sarah L Barron
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| | - Owen Wyatt
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Andy O'Connor
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - David Mansfield
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Tomasz M Witkos
- Analytical Sciences, Bioassay, Biosafety and Impurities, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sam Strickson
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Róisín M Owens
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Ding D, Luan R, Xue Q, Yang J. Prognostic significance of peripheral blood S100A12, S100A8, and S100A9 concentrations in idiopathic pulmonary fibrosis. Cytokine 2023; 172:156387. [PMID: 37826869 DOI: 10.1016/j.cyto.2023.156387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND S100A12, S100A8, and S100A9 are inflammatory disease biomarkers whose functional significance in idiopathic pulmonary fibrosis (IPF) remains unclear. We evaluated the significance of S100A12, S100A8, and S100A9 levels in IPF development and prognosis. METHODS The dataset was collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes were screened using GEO2R. We conducted a retrospective study of 106 patients with IPF to explore the relationships between different biomarkers and poor outcomes. Pearson's correlation coefficient, Kaplan-Meier, Cox regression, and functional enrichment analyses were used to evaluate relationships between these biomarkers' levels and clinical parameters or prognosis. RESULTS Serum levels of S100A12, S100A8, and S100A9 were significantly elevated in patients with IPF. The two most significant co-expression genes of S100A12 were S100A8 and S100A9. Patients with levels of S100A12 (median 231.21 ng/mL), S100A9 (median 57.09 ng/mL) or S100A8 (median 52.20 ng/mL), as well as combined elevated S100A12, S100A9, and S100A8 levels, exhibited shorter progression-free survival and overall survival. Serum S100A12 and S100A8, S100A12 and S100A9, S100A9 and S100A8 concentrations also displayed a strong positive correlation (rs2 = 0.4558, rs2 = 0.4558, rs2 = 0.6373; P < 0.001). S100A12 and S100A8/9 concentrations were independent of FVC%, DLCO%, and other clinical parameters (age, laboratory test data, and smoking habit). Finally, in multivariate analysis, the serum levels of S100A12, S100A8, and S100A9 were significant prognostic factors (hazard ratio 1.002, P = 0.032, hazard ratio 1.039, P = 0.001, and hazard ratio 1.048, P = 0.003). CONCLUSIONS S100A12, S100A8, and S100A9 are promising circulating biomarkers that may aid in determining IPF patient prognosis. Multicenter clinical trials are needed to confirm their clinical value.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Department of Respiratory Medicine, The University Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Liu Q, Liu X, Wang G, Wu F, Hou Y, Liu H. Genome-wide DNA methylation analysis of Astragalus and Danshen on the intervention of myofibroblast activation in idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:325. [PMID: 37667288 PMCID: PMC10478235 DOI: 10.1186/s12890-023-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial lung disease of unknown etiology, is characterized by continuous damage to alveolar epithelial cells, abnormal repair of alveolar tissue, and alveolar wall scar formation. Currently, the recommended treatment for IPF in Western medicine is relatively limited. In contrast, traditional Chinese medicine and compound prescriptions show advantages in the diagnosis and treatment of IPF, which can be attributed to their multi-channel and multi-target characteristics and minimal side-effects. The purpose of this study was to further corroborate the effectiveness and significance of the traditional Chinese medications Astragalus and Danshen in IPF treatment. METHODS We performed whole-genome methylation analysis on nine rat lung tissue samples to determine the epigenetic variation between IPF and non-fibrotic lungs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and quantitative reverse transcription polymerase chain reactions. RESULTS We identified differentially methylated regions and 105 associated key functional genes in samples related to IPF and Chinese medicine treatment. Based on the methylation levels and gene expression profiles between the Chinese medicine intervention and pulmonary fibrosis model groups, we speculated that Astragalus and Salvia miltiorrhiza (traditionally known as Danshen) act on the Isl1, forkhead box O3, and Sonic hedgehog genes via regulation at transcriptional and epigenetic levels during IPF. CONCLUSIONS These findings provide novel insights into the epigenetic regulation of IPF, indicate the effectiveness of Astragalus and Danshen in treating IPF, and suggest several promising therapeutic targets for preventing and treating IPF.
Collapse
Affiliation(s)
- Qingyin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Xue Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Guoyu Wang
- Capital Medical University, No. 10, Xizhang Road, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Fan Wu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Yuan Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Huaman Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China.
| |
Collapse
|
21
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
22
|
Kim KI, Hossain R, Li X, Lee HJ, Lee CJ. Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review. Biomol Ther (Seoul) 2023; 31:484-495. [PMID: 37254717 PMCID: PMC10468426 DOI: 10.4062/biomolther.2023.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)-β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.
Collapse
Affiliation(s)
- Kyung-il Kim
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
23
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
24
|
Sakamoto N, Okuno D, Tokito T, Yura H, Kido T, Ishimoto H, Tanaka Y, Mukae H. HSP47: A Therapeutic Target in Pulmonary Fibrosis. Biomedicines 2023; 11:2387. [PMID: 37760828 PMCID: PMC10525413 DOI: 10.3390/biomedicines11092387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by a progressive decline in lung function and poor prognosis. The deposition of the extracellular matrix (ECM) by myofibroblasts contributes to the stiffening of lung tissue and impaired oxygen exchange in IPF. Type I collagen is the major ECM component and predominant collagen protein deposited in chronic fibrosis, suggesting that type I collagen could be a target of drugs for fibrosis treatment. Heat shock protein 47 (HSP47), encoded by the serpin peptidase inhibitor clade H, member 1 gene, is a stress-inducible collagen-binding protein. It is an endoplasmic reticulum-resident molecular chaperone essential for the correct folding of procollagen. HSP47 expression is increased in cellular and animal models of pulmonary fibrosis and correlates with pathological manifestations in human interstitial lung diseases. Various factors affect HSP47 expression directly or indirectly in pulmonary fibrosis models. Overall, understanding the relationship between HSP47 expression and pulmonary fibrosis may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takatomo Tokito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
25
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
26
|
Han MM, He XY, Tang L, Qi L, Yang MY, Wang Y, Xing L, Jeong JH, Jiang HL. Nanoengineered mesenchymal stem cell therapy for pulmonary fibrosis in young and aged mice. SCIENCE ADVANCES 2023; 9:eadg5358. [PMID: 37467328 PMCID: PMC10355834 DOI: 10.1126/sciadv.adg5358] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Pulmonary fibrosis (PF) is an age-related interstitial lung disease that results in notable morbidity and mortality. The Food and Drug Administration-approved drugs can decelerate the progression of PF; however, curing aged patients with severe fibrosis is ineffective because of insufficient accumulation of these drugs and wide necrocytosis of type II alveolar epithelial cells (AEC IIs). Here, we constructed a mesenchymal stem cell (MSC)-based nanoengineered platform via the bioconjugation of MSCs and type I collagenase-modified liposomes loaded with nintedanib (MSCs-Lip@NCAF) for treating severe fibrosis. Specifically, MSCs-Lip@NCAF migrated to fibrotic lungs because of the homing characteristic of MSCs and then Lip@NCAF was sensitively released. Subsequently, Lip@NCAF ablated collagen fibers, delivered nintedanib into fibroblasts, and inhibited fibroblast overactivation. MSCs differentiated into AEC IIs to repair alveolar structure and ultimately promote the regeneration of damaged lungs in aged mice. Our findings indicated that MSCs-Lip@NCAF could be used as a promising therapeutic candidate for PF therapy, especially in aged patients.
Collapse
Affiliation(s)
- Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Yue He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
27
|
Scherer MJ, Kampe S, Fredebeul-Beverungen J, Weinreich G, Costabel U, Bonella F. Thoracic pain in patients with chronic interstitial lung disease-an underestimated symptom. Front Med (Lausanne) 2023; 10:1147555. [PMID: 37215705 PMCID: PMC10196162 DOI: 10.3389/fmed.2023.1147555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Prevalence and predisposing factors for the development of thoracic pain (TP) in patients with chronic interstitial lung disease (cILD) are largely unknown. Underestimation and insufficient therapy of pain can lead to worsened ventilatory function. Quantitative sensory testing is an established tool for characterization of chronic pain and its neuropathic components. We investigated frequency and intensity of TP in cILD patients and the potential association with lung function and quality of life. Materials and methods We prospectively investigated patients with chronic interstitial lung disease to analyze risk factors for the development of thoracic pain and quantify thoracic pain through quantitative sensory testing. In addition, we studied the relationship between pain sensitivity and lung function impairment. Results Seventy-eight patients with chronic interstitial lung disease and 36 healthy controls (HCs) were included. Thoracic pain occurred in 38 of 78 patients (49%), most frequently in 13 of 18 (72%, p = 0.02) patients with pulmonary sarcoidosis. The occurrence was mostly spontaneous and not related to thoracic surgical interventions (76%, p = 0.48). Patients with thoracic pain showed a significant impairment of mental well-being (p = 0.004). A higher sensitivity to pinprick stimulation during QST can be observed in patients with thoracic pain (p < 0.001). Steroid treatment was associated with lower sensitivity within thermal (p = 0.034 and p = 0.032) and pressure pain testing (p = 0.046). We observed a significant correlation between total lung capacity and thermal (p = 0.019 and p = 0.03) or pressure pain sensitivity (p = 0.006 and p = 0.024). Conclusion This study was performed to investigate prevalence, risk factors and thoracic pain in patients with chronic interstitial lung disease. Thoracic pain mostly occurs spontaneous as a frequent symptom, and seems to be an underestimated symptom in patients with chronic interstitial lung disease, especially those with pulmonary sarcoidosis. Timely identification of thoracic pain may allow starting symptomatic treatment at early stage, before impairment in quality of life occurs. Clinical Trial Registration https://www.drks.de/drks_web/, Deutsches Register Klinischer Studien (DRKS) DRKS00022978.
Collapse
Affiliation(s)
- Manuela J. Scherer
- Department of Anaesthesiology and Pain Medicine, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Sandra Kampe
- Department of Anaesthesiology and Pain Medicine, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jonas Fredebeul-Beverungen
- Department of Anaesthesiology and Pain Medicine, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Gerhard Weinreich
- Pneumology Department, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Ulrich Costabel
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Francesco Bonella
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, University Medicine Essen—Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Han S, Lu Q, Liu X. Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Exp Ther Med 2023; 25:145. [PMID: 36911379 PMCID: PMC9995810 DOI: 10.3892/etm.2023.11844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and fatal interstitial lung disease of unknown cause, with a median survival of 2-3 years. Its pathogenesis is unclear and there is currently no effective treatment for IPF. Approximately two-thirds of patients with IPF are >60 years old, with a mean age of 66 years, suggesting a link between aging and IPF. However, the mechanism by which aging promotes development of PF remains unclear. Senescence of alveolar epithelial cells and lung fibroblasts (LFs) and their senescence-associated secretion phenotype (SASP) may be involved in the occurrence and development of IPF. The present review focus on senescence of LFs and epithelial and stem cells, as well as SASP, the activation of profibrotic signaling pathways and potential treatments for pathogenesis of IPF.
Collapse
Affiliation(s)
- Shan Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Qiangwei Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiaoqiu Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
29
|
Attenuation of Ventilation-Enhanced Epithelial–Mesenchymal Transition through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model. Int J Mol Sci 2023; 24:ijms24065538. [PMID: 36982609 PMCID: PMC10053679 DOI: 10.3390/ijms24065538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Mechanical ventilation (MV) used in patients with acute lung injury (ALI) induces lung inflammation and causes fibroblast proliferation and excessive collagen deposition—a process termed epithelial–mesenchymal transition (EMT). Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating EMT during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, EMT, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase EMT through the PI3K-γ pathway. C57BL/6 mice, either wild-type or PI3K-γ-deficient, were exposed to 6 or 30 mL/kg MV for 5 h after receiving 5 mg/kg AS605240 intraperitoneally 5 days after bleomycin administration. We found that, after bleomycin exposure in wild-type mice, high-tidal-volume MV induced substantial increases in inflammatory cytokine production, oxidative loads, Masson’s trichrome staining level, positive staining of α-smooth muscle actin, PI3K-γ expression, and bronchial epithelial apoptosis (p < 0.05). Decreased respiratory function, antioxidants, and staining of the epithelial marker Zonula occludens-1 were also observed (p < 0.05). MV-augmented bleomycin-induced pulmonary fibrogenesis and epithelial apoptosis were attenuated in PI3K-γ-deficient mice, and we found pharmacological inhibition of PI3K-γ activity through AS605240 (p < 0.05). Our data suggest that MV augmented EMT after bleomycin-induced ALI, partially through the PI3K-γ pathway. Therapy targeting PI3K-γ may ameliorate MV-associated EMT.
Collapse
|
30
|
Shetty S, Idell S. Caveolin-1-Related Intervention for Fibrotic Lung Diseases. Cells 2023; 12:554. [PMID: 36831221 PMCID: PMC9953971 DOI: 10.3390/cells12040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease (ILD) for which there are no effective treatments. Lung transplantation is the only viable option for patients with end-stage PF but is only available to a minority of patients. Lung lesions in ILDs, including IPF, are characterized by alveolar epithelial cell (AEC) senescence and apoptosis and accumulation of activated myofibroblasts and/or fibrotic lung (fL) fibroblasts (fLfs). These composite populations of fLfs show a high rate of basal proliferation, resist apoptosis and senescence, and have increased migration and invasiveness. They also more readily deposit ECM proteins. These features eventuate in progressive destruction of alveolar architecture and loss of lung function in patients with PF. The identification of new, safer, and more effective therapy is therefore mandatory for patients with IPF or related ILDs. We found that increased caveolin-1 and tumor suppressor protein, p53 expression, and apoptosis in AECs occur prior to and then with the proliferation of fLfs in fibrotic lungs. AECs with elevated p53 typically undergo apoptosis. fLfs alternatively demonstrate strikingly low basal levels of caveolin-1 and p53, while mouse double minute 2 homolog (mdm2) levels and mdm2-mediated degradation of p53 protein are markedly increased. The disparities in the expression of p53 in injured AECs and fLfs appear to be due to increased basal expression of caveolin-1 in apoptotic AECs with a relative paucity of caveolin-1 and increased mdm2 in fLfs. Therefore, targeting caveolin-1 using a caveolin 1 scaffolding domain peptide, CSP7, represents a new and promising approach for patients with IPF, perhaps other forms of progressive ILD or even other forms of organ injury characterized by fibrotic repair. The mechanisms of action differ in the injured AECs and in fLfs, in which differential signaling enables the preservation of AEC viability with concurrent limitation of fLf expansion and collagen secretion. The findings in three models of PF indicate that lung scarring can be nearly abrogated by airway delivery of the peptide. Phase 1 clinical trial testing of this approach in healthy volunteers has been successfully completed; Phase 1b in IPF patients is soon to be initiated and, if successful, will be followed by phase 2 testing in short order. Apart from the treatment of IPF, this intervention may be applicable to other forms of tissue injury characterized by fibrotic repair.
Collapse
Affiliation(s)
- Sreerama Shetty
- Texas Lung Injury Institute, Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | | |
Collapse
|
31
|
MicroRNA let-7d attenuates hypertrophic scar fibrosis through modulation of iron metabolism by reducing DMT1 expression. J Mol Histol 2023; 54:77-87. [PMID: 36705783 DOI: 10.1007/s10735-023-10113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Hypertrophic scar is an unavoidable result of wound healing following burns and trauma, which remains a challenging problem for clinicians. Previously, we demonstrated that exosomal microRNAs (miRs) of human amniotic epithelial cells accelerated wound healing and inhibited scar formation. However, the underlying mechanism is still unclear. In this particular study, we found that miR-let-7d reduced collagen deposition, and this was accompanied by decreased level of iron content in myofibroblasts. Importantly, inhibition of miR-let-7d in myofibroblasts accelerated collagen deposition and promoted cell proliferation. In addition, bioinformatics prediction combined with classical dual-luciferase reporter gene assay demonstrated that the cellular iron importer divalent metal transporter 1 (DMT1) was a target gene of miR-let-7d, and the miR-let-7d mimics inhibited the expression of DMT1 in myofibroblasts. Moreover, silencing of DMT1 with small interfering RNA (siRNA) reduced the deposition of extracellular matrix. Consistent with the results in vitro, the miR-let-7d mimics effectively ameliorated hypertrophic scar fibrosis in a rabbit ear hypertrophic scar model. Taken together, our results indicated for the first time that miR-let-7d attenuated hypertrophic scar fibrosis through modulation of iron metabolism by reducing iron uptake through DMT1, which may provide a novel therapeutic strategy for hypertrophic scar.
Collapse
|
32
|
Park SJ, Hahn HJ, Oh SR, Lee HJ. Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. Int J Mol Sci 2023; 24:ijms24021019. [PMID: 36674533 PMCID: PMC9860752 DOI: 10.3390/ijms24021019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and refractory interstitial lung disease. Although there are two approved drugs for IPF, they were not able to completely cure the disease. Therefore, the development of new drugs is required for the effective treatment of IPF. In this study, we investigated the effect of theophylline, which has long been used for the treatment of asthma, on pulmonary fibrosis. The administration of theophylline attenuated the fibrotic changes of lung tissues and improved mechanical pulmonary functions in bleomycin (BLM)-induced pulmonary fibrosis. Theophylline treatment suppressed IL-17 production through inhibiting cytokines controlling Th17 differentiation; TGF-β, IL-6, IL-1β, and IL-23. The inhibition of IL-6 and IL-1β by theophylline is mediated by suppressing BLM-induced ROS production and NF-κB activation in epithelial cells. We further demonstrated that theophylline inhibited TGF-β-induced epithelial-to-mesenchymal transition in epithelial cells through suppressing the phosphorylation of Smad2/3 and AKT. The inhibitory effects of theophylline on the phosphorylation of Smad2/3 and AKT were recapitulated in BLM-treated lung tissues. Taken together, these results demonstrated that theophylline prevents pulmonary fibrosis by inhibiting Th17 differentiation and TGF-β signaling.
Collapse
|
33
|
De Vitis C, D’Ascanio M, Sacconi A, Pizzirusso D, Salvati V, Mancini M, Scafetta G, Cirombella R, Ascenzi F, Bruschini S, Esposito A, Castelli S, Salvucci C, Teodonio L, Sposato B, Catizone A, Di Napoli A, Vecchione A, Ciliberto G, Sciacchitano S, Ricci A, Mancini R. B4GALT1 as a New Biomarker of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:15040. [PMID: 36499368 PMCID: PMC9738382 DOI: 10.3390/ijms232315040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by progressive scarring of the lung that involves the pulmonary interstitium. The disease may rapidly progress, leading to respiratory failure, and the long-term survival is poor. There are no accurate biomarkers available so far. Our aim was to evaluate the expression of the B4GALT1 in patients with IPF. Analysis of B4GALT1 gene expression was performed in silico on two gene sets, retrieved from the Gene Expression Omnibus database. Expression of B4GALT1 was then evaluated, both at the mRNA and protein levels, on lung specimens obtained from lung biopsies of 4 IPF patients, on one IPF-derived human primary cell and on 11 cases of IPF associated with cancer. In silico re-analysis demonstrated that the B4GALT1 gene was overexpressed in patients and human cell cultures with IPF (p = 0.03). Network analysis demonstrated that B4GALT1 upregulation was correlated with genes belonging to the EMT pathway (p = 0.01). The overexpression of B4GALT1 was observed, both at mRNA and protein levels, in lung biopsies of our four IPF patients and in the IPF-derived human primary cell, in other fibrotic non-lung tissues, and in IPF associated with cancer. In conclusion, our results indicate that B4GALT1 is overexpressed in IPF and could represent a novel marker of this disease.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | | | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Dario Pizzirusso
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Massimiliano Mancini
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, 00189 Rome, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Silvia Castelli
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Claudia Salvucci
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Leonardo Teodonio
- Division of Thoracic Surgery, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Bruno Sposato
- Pneumology Department, Azienda USL Toscana Sud-Est, “Misericordia” Hospital, 58100 Grosseto, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| |
Collapse
|
34
|
Yang L, Zhai Z, Zhang J. The Role of Serum 1,25-Dihydroxy Vitamin D3 and PCT in Idiopathic Pulmonary Fibrosis. Int J Gen Med 2022; 15:8081-8092. [PMID: 36389018 PMCID: PMC9653052 DOI: 10.2147/ijgm.s386984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Biomarkers for the acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) are urgently needed to provide better patient management. We aimed to investigate whether serum 1,25(OH)2D3 (1,25-dihydroxy vitamin D3) levels predict AE-IPF and whether they could be a potential prognostic biomarker for IPF. PARTICIPANTS AND METHODS This prospective study included 72 patients with IPF (31 with stable IPF and 41 with AE-IPF). All participants were recruited during hospitalisation at Tianjin Chest Hospital and were followed up for at least 12 months. Demographics, comorbidities, arterial blood gas, and serum biochemical profile, radiological features, and anti-fibrotic therapy were evaluated. Serum concentrations of 1,25(OH)2D3 and transforming growth factor beta1 (TGFβ1) were detected using enzyme-linked immunosorbent assay (ELISA). Risk factors for AE-IPF were identified using multivariate analysis. Prognostic factors were assessed using Kaplan-Meier and Cox regression analyses. RESULTS Baseline values of alveolar-arterial oxygen difference (A-aDO2) (40.85 mmHg vs 29.2 mmHg, p =0.035), white blood cell counts (10.09 ± 4.2×109/L vs 7.46 ± 7.84×109/L, p <0.001), percentage of monocytes (7.36 ± 1.36% vs 6.6 ± 1.2%, p =0.017), C-reactive protein (CRP) (2.1 mg/dL vs 1.12 mg/dL, p =0.015) and procalcitonin (PCT) (36.59% vs 3.23%, p <0.001) were significantly higher in AE-IPF patients than in stable IPF patients. Instead, the mean concentration of serum calcium and 1,25(OH)2D3 at baseline were higher in IPF patients with stable disease than in those with acute exacerbation (2.17 ± 0.13 nmol/L vs 2.09 ± 0.13 nmol/L, p =0.023 and 16.62 pg/mL vs 11.58 pg/mL, p <0.001, respectively). In multivariate analysis, a higher proportion of patients with lower serum 1,25(OH)2D3 levels experienced AE-IPF (OR 0.884, 95% CI 0.791-0.987, p =0.029), and rising serum PCT level (PCT > 0.05 ng/mL) was associated with an increased risk of mortality (HR 3.664, 95% CI 1.010-12.900, p =0.043). CONCLUSION Decreased serum 1,25(OH)2D3 is associated with an increased risk of acute exacerbation for patients with IPF. A high serum PCT level is predictive of worse prognosis in IPF patients. 1,25(OH)2D3 may be a potential biomarker for AE-IPF, while PCT could be a prognostic biomarker for IPF.
Collapse
Affiliation(s)
- Li Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Zhinan Zhai
- Department of Medical Laboratory Science, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| | - Jinxiang Zhang
- Department of Nutrition, Tianjin Chest Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
35
|
Koga T, Okamoto M, Satoh M, Fujimoto K, Zaizen Y, Chikasue T, Sumi A, Kaieda S, Matsuo N, Matama G, Nouno T, Tominaga M, Yatera K, Ida H, Hoshino T. Positive Autoantibody Is Associated with Malignancies in Patients with Idiopathic Interstitial Pneumonias. Biomedicines 2022; 10:biomedicines10102469. [PMID: 36289730 PMCID: PMC9598916 DOI: 10.3390/biomedicines10102469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Various autoantibodies are associated with clinical outcomes in patients with idiopathic interstitial pneumonias (IIPs). We retrospectively analyzed the association between autoantibodies and malignancies in IIP patients. Comprehensive analyses of autoantibodies were performed using immunoprecipitation and enzyme-linked immunosorbent assays in 193 consecutive IIP patients. Cancer-related factors were analyzed using logistic regression analysis. In total, 22 of 193 patients (11.4%) with IIP had malignant disease. In univariate analysis, positivity for any autoantibody (odds ratio (OR), 3.1; 95% confidence interval (CI), 1.2-7.7; p = 0.017) and antinuclear antibody titer ≥1:320 (OR, 3.4; CI, 1.2-9.8; p = 0.024) were significantly associated with malignancies. Positive anti-aminoacyl tRNA synthetase (ARS) (OR, 3.7; CI, 0.88-15.5; p = 0.074) and anti-Ro52 antibody (OR, 3.2; CI, 0.93-11.2; p = 0.065) tended to be associated with malignancies. In multivariate analysis, independent risk factors were male sex (OR, 3.7; CI, 1.0-13.5; p = 0.029) and positivity for any autoantibody (OR, 3.9; CI, 1.5-10.1; p = 0.004) in model 1, and male sex (OR, 3.9; CI, 1.0-15.3; p = 0.049), antinuclear antibody titer ≥1:320 (OR, 4.2; CI, 1.4-13.3; p = 0.013), and positivity for anti-ARS antibody (OR, 6.5; CI, 1.2-34.1; p = 0.026) in model 2. Positivity for any autoantibody, antinuclear and anti-ARS antibodies, and male sex were independent risk factors for malignancies in IIP patients. Testing autoantibodies in IIP patients might help the early diagnosis of malignancies.
Collapse
Affiliation(s)
- Takuma Koga
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-0065, Japan
- Correspondence: ; Tel.: +81-92-852-0700
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan
- Department of Medicine, Kitakyushu Yahata Higashi Hospital, Fukuoka 805-0071, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tomonori Chikasue
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Akiko Sumi
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Shinjiro Kaieda
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-0065, Japan
| | - Goushi Matama
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takashi Nouno
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-0065, Japan
| | - Masaki Tominaga
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Fukuoka 807-8555, Japan
| | - Hiroaki Ida
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
36
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|