1
|
Jasim AH, Abu-Raghif AR, Hussein ZA. Protective Effects of Niclosamide Ethanolamine Against Testosterone-Induced Benign Prostatic Hyperplasia in Rats. Drug Res (Stuttg) 2025. [PMID: 40294597 DOI: 10.1055/a-2576-4153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Benign prostatic hyperplasia is a common urological condition in aging men. The anthelmintic agent niclosamide ethanolamide exhibits a wide range of pharmacological activities. This study aimed to evaluate the protective effect of niclosamide ethanolamide in testosterone propionate-induced benign prostatic hyperplasia in rats along with elucidating the probable mechanism of action by investigating the influence on PPAR-γ and Wnt/β-catenin. 40 male Wistar rats were divided randomly into 4 groups. The healthy (control) group, received daily oral and subcutaneous administration of the vehicle. The Induced (TP) group, received only a daily dose of testosterone propionate 3 mg/kg, SC for 28 days. The treated groups (TP+FIN) and (TP+NE), received a concomitant administration of a daily dose of testosterone propionate along with finasteride 5 mg/kg/day and niclosamide ethanolamide 50 mg/kg/day respectively through oral gavage. Animals were euthanized on day 30 of the experiment and prostate tissue samples were collected to evaluate prostate index, prostate hyperplastic markers by ELISA, and gene expression by RT-qPCR. Results revealed that niclosamide ethanolamide significantly reduced prostate index compared to the induced (TP) group (P<0.0001). The agent nearly normalized BPH markers including 5α-reductase type-2 enzyme, dihydrotestosterone, and PCNA compared to the induced (TP) group (P<0.0001). The agent reduced the tissue level of β-catenin while elevating PPAR-γ to control levels (P<0.05). The current study revealed that NE can help prevent BPH in rats by upregulating the PPAR-γ receptor and inhibiting the Wnt pathway.
Collapse
Affiliation(s)
- Ali Hussein Jasim
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | - Zeena Ayad Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
2
|
Waseem T, Zargaham MK, Ahmed M, Rajput TA, Amin A, Nadeem H. Computational investigation to identify multi-targeted anti-hyperglycemic potential of substituted 2-Mercaptobenzimidazole derivatives and synthesis of new α-glucosidase inhibitors. J Comput Aided Mol Des 2025; 39:9. [PMID: 39992499 DOI: 10.1007/s10822-025-00587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
One of the most widespread diseases recognized all over the world is diabetes, accounting for 1.5 million deaths each year. Recent studies have demonstrated benzimidazole derivatives as potential antidiabetic agents. Hence, the present study is focused on designing new derivatives of 2-mercaptobenzimidazole by C-S cross-coupling reaction and are subjected to computational screening to identify the most promising candidate. Molecular docking and MM-GBSA calculations were performed to ascertain the binding potential with different antidiabetic targets, including α-glucosidase, PPaR-γ, DPP-4, and AMPK. We observed somewhat moderate binding interactions of the synthesized compound against the α-glucosidase. Since binding affinities can be improved using synthetic chemistry approaches, synthesis of analogues (A-18a-c) by designing hybrids at sites such as the acidic functionality of A-18 was done. The analogue A-18a, with p-fluorobenzyl substitution, exhibited enhanced binding affinity (-4.339 Kcal/mol) with the α-glucosidase compared to the parent compound (-3.827 Kcal/mol). The synthesized analogues were also subjected to an in-vitro α-glucosidase inhibitory assay. Among them, A-18a exhibited the most significant inhibitory potential, with an IC50 value of 0.521 ± 0.01 µM as compared to the standard drug Acarbose (IC50 21.0 ± 0.5 µM). This aligns with the computational study findings, where A-18a exhibited stronger binding interactions within the active site of the enzyme. Hence, a promising analogue of the designed compound was synthesized through a computationally guided approach as an anti-hyperglycaemic agent. Additionally, most of the designed compounds showed significantly greater binding affinity with PPaR-γ as compared to the standard pioglitazone. A-18 was successfully synthesized by S-arylation reaction using CuI in 89% yield and was subjected to MD-simulation against PPaR-γ, which revealed stable binding throughout the 200 ns run. Future studies will focus on exploring the activity of the designed drugs against PPaR-γ through in-vitro and in-vivo assays.
Collapse
Affiliation(s)
- Tanya Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Kazim Zargaham
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Tausif Ahmed Rajput
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Adnan Amin
- NPRL Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
3
|
Kounatidis D, Vallianou NG, Rebelos E, Kouveletsou M, Kontrafouri P, Eleftheriadou I, Diakoumopoulou E, Karampela I, Tentolouris N, Dalamaga M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr Obes Rep 2025; 14:19. [PMID: 39934485 DOI: 10.1007/s13679-025-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Obesity is strongly associated with cardiometabolic disorders and certain malignancies, emphasizing the key role of adipose tissue in human health. While incretin mimetics have shown effectiveness in glycemic control and weight loss, a holistic strategy for combating obesity and associated comorbidities remains elusive. This review explores peroxisome proliferator-activated receptor gamma (PPAR-γ) agonism as a potential therapeutic approach, highlighting its benefits, addressing its limitations, and outlining future directions for developing more effective treatment strategies. RECENT FINDINGS Both natural and synthetic PPAR-γ agonists hold significant therapeutic potential as insulin sensitizers, while also demonstrating anti-inflammatory properties and playing a critical role in regulating lipid metabolism. However, the clinical use of natural agonists is limited by poor bioavailability, while synthetic agents like thiazolidinediones are associated with adverse effects, including fluid retention, weight gain, and bone loss. Current research is focused on developing modified, tissue-specific PPAR-γ agonists, as well as dual PPAR-α/PPAR-γ agonists, with improved safety profiles to mitigate these side effects. Nanotechnology-based drug delivery systems also hold promise for enhancing bioavailability and therapeutic efficacy. Furthermore, the transformative potential of machine learning and artificial intelligence offers opportunities to accelerate advancements in this field. PPAR-γ agonists exhibit significant potential in addressing metabolic syndrome, cardiovascular disease, and cancer. However, their clinical use is restricted by safety concerns and suboptimal pharmacokinetics. Innovations in modified PPAR-γ agonists, nanotechnology-based delivery systems, and computational tools hold promise for creating safer and more effective therapeutic options for obesity and its associated disorders.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paraskevi Kontrafouri
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
4
|
Stem AD, Michel CR, Harris PS, Rogers KL, Gibb M, Roncal-Jimenez CA, Reisdorph R, Johnson RJ, Roede JR, Fritz KS, Brown JM. Modulation of the thiol redox proteome by sugarcane ash-derived silica nanoparticles: insights into chronic kidney disease of unknown etiology. Part Fibre Toxicol 2025; 22:3. [PMID: 39910563 PMCID: PMC11800628 DOI: 10.1186/s12989-025-00619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION Chronic kidney disease of unknown etiology (CKDu) is an epidemic which is increasingly prevalent among agricultural workers and nearby communities, particularly those involved in the harvest of sugarcane. While CKDu is likely multifactorial, occupational exposure to silica nanoparticles (SiNPs), a major constituent within sugarcane ash, has gained increased attention as a potential contributor. SiNPs have high potential for generation of reactive oxygen species (ROS), and their accumulation in kidney could result in oxidative stress induced kidney damage consistent with CKDu pathology. METHODS In order to characterize the impact of sugarcane ash derived (SAD) SiNPs on human kidney proximal convoluted tubule (PCT) cells and identify potential mechanisms of toxicity, HK-2 cells were exposed to treatments of either pristine, manufactured, 200 nm SiNPs or SAD SiNPs and changes to cellular energy metabolism and redox state were determined. To determine how the cellular redox environment may influence PCT cell function and toxicity, the redox proteome was examined using cysteine-targeted click chemistry proteomics. RESULTS Pristine, 200 nm SiNPs induced minimal changes to energy metabolism and proteomic profiles in vitro while treatment with SAD SiNPs resulted in mitochondrial membrane hyperpolarization, inhibited mitochondrial respiration, increased reactive oxygen species generation, and redox proteomic trends suggesting activation of aryl hydrocarbon receptor (AHR) and other signaling pathways with known roles in mitochondrial inhibition and CKD progression. CONCLUSION Results suggest that PCT cell exposure to SAD SiNPs could promote glycolytic and fibrotic shifts consistent with CKDu pathology via oxidative stress-mediated disruption of redox signaling pathways.
Collapse
Affiliation(s)
- Arthur D Stem
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Keegan L Rogers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Matthew Gibb
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Zhu JX, Chu F, Zhao WM, Shi R, Wang ZJ, Li XL, Zhu YY, Wang DG. Uncovering the mechanisms of diosmin in treating obesity-related kidney injury based on network pharmacology, molecular docking, and in vitro validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1973-1989. [PMID: 39222242 DOI: 10.1007/s00210-024-03398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Obesity increases the risk of kidney injury, involving various pathological events such as inflammation, insulin resistance, lipid metabolism disorders, and hemodynamic changes, making it a significant risk factor for the development and progression of chronic kidney disease. Diosmin, a natural flavonoid glycoside, exhibits anti-inflammatory, antioxidant, anti-lipid, and vasodilatory effects. However, whether diosmin has a protective effect on obesity-related kidney injury remains unclear. The molecular formula of diosmin was obtained, and diosmin and target genes related to obesity-related kidney injury were screened. The interaction between overlapping target genes was analyzed. GO functional enrichment and KEGG pathway enrichment analyses were performed on overlapping target genes. Molecular docking was employed to assess the binding strength between overlapping target genes. Palmitic acid-induced damage to HK-2 cells, which were then treated with diosmin. Subsequently, the expression levels of relevant mRNAs and proteins were measured. Network analysis identified 219 potential diosmin target genes, 6800 potential target genes related to obesity-related kidney injury, and 93 potential overlapping target genes. Protein-protein interaction networks and molecular docking results revealed that AKT1, TNF-α, SRC, EGFR, ESR1, CASP3, MMP9, PPAR-γ, GSK-3β, and MMP2 were identified as key therapeutic targets, and they exhibited stable binding with diosmin. GO analysis indicated that these key targets may participate in inflammation, chemical stress, and protein phosphorylation. KEGG revealed that pathways in cancer, AGE-RAGE signaling pathway, PI3K-AKT signaling pathway, PPAR signaling pathway, and insulin resistance as crucial in treating obesity-related kidney injury. CCK-8 assay showed that diosmin significantly restored the viability of HK-2 cells affected by palmitic acid. Oil Red O staining demonstrated that diosmin significantly improved lipid deposition in HK-2 cells induced by palmitic acid. PCR results showed that diosmin inhibited the mRNA levels of AKT1, TNF-α, EGFR, ESR1, CASP3, MMP9, GSK-3β, and MMP2 while promoting the mRNA level of PPAR-γ. Western blot analysis revealed that diosmin restored PPAR-γ protein expression, inhibited NF-kB p-p65 protein expression, and reduced TNF-α protein expression. Diosmin demonstrated multi-target and multi-pathway effects in the treatment of obesity-associated renal injury, with key targets including AKT1, TNF-α, EGFR, ESR1, CASP3, MMP9, PPAR-γ, GSK-3β, and MMP2. The mechanism may be through the modulation of the PPAR-γ/NF-κB signaling pathway, which can attenuate inflammatory responses and protect the kidney.
Collapse
Affiliation(s)
- Jun-Xing Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Fan Chu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Wen-Man Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Zhi-Juan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Xun-Liang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - Yu-Yu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Lianhua Community, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
6
|
Aryan, Babu B, Divakar S, Gowramma B, Jupudi S, Chand J, Malakar Kumar V. Rational design of thiazolidine-4-one-gallic acid hybrid derivatives as selective partial PPARγ modulators: an in-silico approach for type 2 diabetes treatment. J Biomol Struct Dyn 2025; 43:694-708. [PMID: 37997952 DOI: 10.1080/07391102.2023.2283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Type 2 diabetes mellitus is a bipolar metabolic disorder characterized by abnormalities in insulin production from β-cells and insulin resistance. Thiazolidinediones are potent anti-diabetic agents that act through the modulation of the peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor. However, their full agonistic activity leads to severe side effects by stabilizing Helix12 through strong hydrogen bonding with the TYR473 residue. Partial and selective PPARγ modulators (GW0072, GQ16, VSP-51, MRL-20, MBX-213, INT131) have demonstrated superior results compared to full agonists without causing adverse effects, as reported in existing data. To address this uncertainty and advance therapeutic options, we identified and designed a novel class of compounds (A1-A23) based on a hybrid structure combining phenolic and Thiazolidine-4-one's moieties. Our rational drug design strategy incorporated structural-activity relationship principle, and validated the docking studies through calculated the root mean square deviation. Additionally, we conducted molecular docking, binding energy, molecular dynamics simulations, and post-molecular dynamics calculations to evaluate the dynamics behavior between the ligands and protein. The selected ligands demonstrated highly favorable docking scores and binding energies, comparable to the co-crystal (rosiglitazone) such as A12 (-13.9 kcal/mol and -86.2 kcal/mol), A1 (-11.1 kcal/mol and -79.5 kcal/mol), A13 (-11.3 kcal/mol and -91.4 kcal/mol), and the co-crystal itself (-9.8 kcal/mol and -76 kcal/mol), respectively. Finally, the MD revealed that, the selected ligands were equally contributed for stabilization of Helix12 and β-sheets. It was concluded, the designed ligands (A12, A1, and A13) exhibited weaker hydrogen-bond interactions with specific residue TYR473 which partially modulated the PPARγ protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aryan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Babu
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S Divakar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Vishnu Malakar Kumar
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
7
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Xiao M, Chi X, Zhu X, Xu Z, Zou Y, Peng Y, Luan S, Dong J, Dai Y, Yin L. Proteomic analysis of laser captured tubular tissues reveals complement activation and mitochondrial dysfunction in autoimmune related kidney diseases. Sci Rep 2024; 14:19311. [PMID: 39164435 PMCID: PMC11336080 DOI: 10.1038/s41598-024-70209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Autoimmune related kidney diseases (ARKDs), including minimal change nephropathy (MCN), membranous nephropathy (MN), IgA nephropathy (IgAN), and lupus nephritis (LN), significantly affect renal function. These diseases are characterized by the formation of local immune complexes and the subsequent activation of the complement system, leading to kidney damage and proteinuria. Despite the known patterns of glomerular injury, the specific molecular mechanisms that contribute to renal tubular damage across ARKDs remain underexplored. Laser capture microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to conduct a comparative proteomic analysis of renal tubular tissues from formalin-fixed paraffin-embedded samples. The cohort comprised of 10 normal controls (NC), 5 MCN, 4 MN, 17 IgAN, and 21 LN patients. Clinical parameters and histopathological assessments were integrated with proteomic findings to comprehensively investigate underlying pathogenic processes. Clinical evaluation indicated significant glomerular damage, as reflected by elevated urinary protein levels and reduced plasma albumin levels in patients with ARKD. Histological analyses confirmed varying degrees of tubular damage and deposition of immune complexes. Proteomic analyses identified significant changes in protein expression, particularly in complement components (C3, C4A, C4B, C8G, CFB, and SERPINA1) and mitochondrial proteins (ATP5F1E and ATP5PD), highlighting the common alterations in the complement system and mitochondrial proteins across ARKDs. These alterations suggest a novel complement-mitochondrial-epithelial-mesenchymal transition (EMT) pathway axis that contributes to tubular damage in ARKDs. Notably, significant alterations in CFB in tubular ARKD patients were revealed, implicating it as a therapeutic target. This study underscores the importance of complement activation and mitochondrial dysfunction in the pathogenesis of ARKDs, and proposes CFB as a potential therapeutic target to inhibit complement activation and mitigate tubular damage. Future research should validate the complement-mitochondrial-EMT pathway axis and explore the effects and mechanisms of CFB inhibitors in alleviating ARKD progression.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianggeng Chi
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, Xiaolan People's Hospital of Zhongshan, Zhongshan, China
| | - Xiaohui Zhu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yaoshuang Zou
- Department of Organ Transplantation, 924 Hospital, Guilin, China
| | - Yue Peng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jingjing Dong
- Department of General Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Yong Dai
- School of Medicine, The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China.
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Hsu YC, Shih YH, Ho C, Liu CC, Liaw CC, Lin HY, Lin CL. Ethyl Acetate Fractions of Salvia miltiorrhiza Bunge (Danshen) Crude Extract Modulate Fibrotic Signals to Ameliorate Diabetic Kidney Injury. Int J Mol Sci 2024; 25:8986. [PMID: 39201671 PMCID: PMC11354680 DOI: 10.3390/ijms25168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1β, transforming growth factor-β1 (TGF-β1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-β1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333423, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Cheng-Chi Liu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112304, Taiwan;
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-C.H.); (Y.-H.S.); (C.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
10
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
11
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Mujalli A, Farrash WF, Obaid AA, Khan AA, Almaimani RA, Idris S, Elzubier ME, Khidir EBA, Aslam A, Minshawi F, Alobaidy MA, Alharbi AB, Almasmoum HA, Ghaith M, Alqethami K, Refaat B. Improved Glycaemic Control and Nephroprotective Effects of Empagliflozin and Paricalcitol Co-Therapy in Mice with Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:17380. [PMID: 38139208 PMCID: PMC10743534 DOI: 10.3390/ijms242417380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Herein, we measured the antidiabetic and nephroprotective effects of the sodium-glucose cotransporter-2 inhibitor (empagliflozin; SGLT2i) and synthetic active vitamin D (paricalcitol; Pcal) mono- and co-therapy against diabetic nephropathy (DN). Fifty mice were assigned into negative (NC) and positive (PC) control, SGLT2i, Pcal, and SGLT2i+Pcal groups. Following establishment of DN, SGLT2i (5.1 mg/kg/day) and/or Pcal (0.5 µg/kg/day) were used in the designated groups (5 times/week/day). DN was affirmed in the PC group by hyperglycaemia, dyslipidaemia, polyuria, proteinuria, elevated urine protein/creatinine ratio, and abnormal renal biochemical parameters. Renal SREBP-1 lipogenic molecule, adipokines (leptin/resistin), pro-oxidant (MDA/H2O2), pro-inflammatory (IL1β/IL6/TNF-α), tissue damage (iNOS/TGF-β1/NGAL/KIM-1), and apoptosis (TUNEL/Caspase-3) markers also increased in the PC group. In contrast, renal lipolytic (PPARα/PPARγ), adiponectin, antioxidant (GSH/GPx1/SOD1/CAT), and anti-inflammatory (IL10) molecules decreased in the PC group. Both monotherapies increased insulin levels and mitigated hyperglycaemia, dyslipidaemia, renal and urine biochemical profiles alongside renal lipid regulatory molecules, inflammation, and oxidative stress. While SGLT2i monotherapy showed superior effects to Pcal, their combination demonstrated enhanced remedial actions related to metabolic control alongside renal oxidative stress, inflammation, and apoptosis. In conclusion, SGLT2i was better than Pcal monotherapy against DN, and their combination revealed better nephroprotection, plausibly by enhanced glycaemic control with boosted renal antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Ahmad A. Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Anmar A. Khan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Riyad A. Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed E. Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Elshiekh Babiker A. Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Akhmed Aslam
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohammad A. Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm AlQura University, Makkah P.O. Box 7607, Saudi Arabia
| | - Adel B. Alharbi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mazen Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Khalid Alqethami
- Department of Laboratory, Al-Noor Specialist Hospital, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| |
Collapse
|
13
|
Kim YJ, Oh SH, Lim JH, Cho JH, Jung HY, Kim CD, Park SH, Kwon TH, Kim YL. Impact of Ring Finger Protein 20 and Its Downstream Regulation on Renal Tubular Injury in a Unilateral Nephrectomy Mouse Model Fed a High-Fat Diet. Nutrients 2023; 15:4959. [PMID: 38068817 PMCID: PMC10708490 DOI: 10.3390/nu15234959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Abnormal lipid metabolism increases the relative risk of kidney disease in patients with a single kidney. Using transcriptome analysis, we investigated whether a high-fat diet leads to abnormalities in lipid metabolism and induces kidney cell-specific damage in unilateral nephrectomy mice. Mice with unilateral nephrectomy fed a high-fat diet for 12 weeks exhibited progressive renal dysfunction in proximal tubules, including lipid accumulation, vacuolization, and cell damage. Ring finger protein 20 (RNF20) is a ligase of nuclear receptor corepressor of peroxisome proliferator-activated receptors (PPARs). The transcriptome analysis revealed the involvement of RNF20-related transcriptome changes in PPAR signaling, lipid metabolism, and water transmembrane transporter under a high-fat diet and unilateral nephrectomy. In vitro treatment of proximal tubular cells with palmitic acid induced lipotoxicity by altering RNF20, PPARα, and ATP-binding cassette subfamily A member 1 (ABCA1) expression. PPARγ and aquaporin 2 (AQP2) expression decreased in collecting duct cells, regulating genetic changes in the water reabsorption process. In conclusion, a high-fat diet induces lipid accumulation under unilateral nephrectomy via altering RNF20-mediated regulation and causing functional damage to cells as a result of abnormal lipid metabolism, thereby leading to structural and functional kidney deterioration.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Se-Hyun Oh
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Intermanl Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
14
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Saxena S, Dagar N, Shelke V, Lech M, Khare P, Gaikwad AB. Metabolic reprogramming: Unveiling the therapeutic potential of targeted therapies against kidney disease. Drug Discov Today 2023; 28:103765. [PMID: 37690600 DOI: 10.1016/j.drudis.2023.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
As a high-metabolic-rate organ, the kidney exhibits metabolic reprogramming (MR) in various disease states. Given the >800 million cases of kidney disease worldwide in 2022, understanding the specific bioenergetic pathways involved and developing targeted interventions are vital needs. The reprogramming of metabolic pathways (glucose metabolism, amino acid metabolism, etc.) has been observed in kidney disease. Therapies targeting these specific pathways have proven to be an efficient approach for retarding kidney disease progression. In this review, we focus on potential pharmacological interventions targeting MR that have advanced through Phase III/IV clinical trials for the management of kidney disease and promising preclinical studies laying the groundwork for future clinical investigations.
Collapse
Affiliation(s)
- Shubhangi Saxena
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Pragyanshu Khare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
16
|
de Oliveira AS, Convento MB, Razvickas CV, Castino B, Leme AM, da Silva Luiz R, da Silva WH, da Glória MA, Guirão TP, Bondan E, Schor N, Borges FT. The Nephroprotective Effects of the Allogeneic Transplantation with Mesenchymal Stromal Cells Were Potentiated by ω3 Stimulating Up-Regulation of the PPAR-γ. Pharmaceuticals (Basel) 2023; 16:1484. [PMID: 37895955 PMCID: PMC10610511 DOI: 10.3390/ph16101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.
Collapse
Affiliation(s)
- Andreia Silva de Oliveira
- Translational Medicine Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil;
| | - Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Clara Versolato Razvickas
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Bianca Castino
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| | - Ala Moana Leme
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Wesley Henrique da Silva
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Maria Aparecida da Glória
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Tatiana Pinotti Guirão
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Eduardo Bondan
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, Brazil;
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04038-901, Brazil; (M.B.C.); (C.V.R.); (A.M.L.); (R.d.S.L.); (W.H.d.S.); (M.A.d.G.); (T.P.G.); (N.S.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil;
| |
Collapse
|
17
|
Iqbal S, Jabeen F, Kahwa I, Omara T. Suberosin Alleviates Thiazolidinedione-Induced Cardiomyopathy in Diabetic Rats by Inhibiting Ferroptosis via Modulation of ACSL4-LPCAT3 and PI3K-AKT Signaling Pathways. Cardiovasc Toxicol 2023; 23:295-304. [PMID: 37676618 DOI: 10.1007/s12012-023-09804-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023]
Abstract
Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90 mg/kg/day) with thiazolidinedione (TZ at 15 mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4 weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3β as compared to the group administered with TZ at 15 mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan Government College University, Faisalabad, Pakistan.
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan Government College University, Faisalabad, Pakistan
| | - Ivan Kahwa
- Pharma-Biotechnology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| |
Collapse
|
18
|
Wang Z, Shi W, Wu T, Peng T, Wang X, Liu S, Yang Z, Wang J, Li PL, Tian R, Hong Y, Yang H, Bai L, Hu Y, Cheng X, Li H, Zhang XJ, She ZG. A high-throughput drug screening identifies luteolin as a therapeutic candidate for pathological cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1130635. [PMID: 36998980 PMCID: PMC10043402 DOI: 10.3389/fcvm.2023.1130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Pathological cardiac hypertrophy is commonly resulted from sustained pressure overload and/or metabolic disorder and eventually leads to heart failure, lacking specific drugs in clinic. Here, we aimed to identify promising anti-hypertrophic drug(s) for heart failure and related metabolic disorders by using a luciferase reporter-based high-throughput screening. METHODS A screen of the FDA-approved compounds based on luciferase reporter was performed, with identified luteolin as a promising anti-hypertrophic drug. We systematically examined the therapeutic efficacy of luteolin on cardiac hypertrophy and heart failure in vitro and in vivo models. Transcriptome examination was performed to probe the molecular mechanisms of luteolin. RESULTS Among 2,570 compounds in the library, luteolin emerged as the most robust candidate against cardiomyocyte hypertrophy. Luteolin dose-dependently blocked phenylephrine-induced cardiomyocyte hypertrophy and showed extensive cardioprotective roles in cardiomyocytes as evidenced by transcriptomics. More importantly, gastric administration of luteolin effectively ameliorated pathological cardiac hypertrophy, fibrosis, metabolic disorder, and heart failure in mice. Cross analysis of large-scale transcriptomics and drug-target interacting investigations indicated that peroxisome proliferator activated receptor γ (PPARγ) was the direct target of luteolin in the setting of pathological cardiac hypertrophy and metabolic disorders. Luteolin can directly interact with PPARγ to inhibit its ubiquitination and subsequent proteasomal degradation. Furthermore, PPARγ inhibitor and PPARγ knockdown both prevented the protective effect of luteolin against phenylephrine-induced cardiomyocyte hypertrophy in vitro. CONCLUSION Our data clearly supported that luteolin is a promising therapeutic compound for pathological cardiac hypertrophy and heart failure by directly targeting ubiquitin-proteasomal degradation of PPARγ and the related metabolic homeostasis.
Collapse
Affiliation(s)
- Zhenya Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wei Shi
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Taibo Wu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tian Peng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiaoming Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Shuaiyang Liu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zifeng Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jia Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng-Long Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ying Hong
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Hailong Yang
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Tang A, Zhang Y, Wu L, Lin Y, Lv L, Zhao L, Xu B, Huang Y, Li M. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1180169. [PMID: 37143722 PMCID: PMC10151763 DOI: 10.3389/fendo.2023.1180169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide and is a significant burden on healthcare systems. α-klotho (klotho) is a protein known for its anti-aging properties and has been shown to delay the onset of age-related diseases. Soluble klotho is produced by cleavage of the full-length transmembrane protein by a disintegrin and metalloproteases, and it exerts various physiological effects by circulating throughout the body. In type 2 diabetes and its complications DN, a significant decrease in klotho expression has been observed. This reduction in klotho levels may indicate the progression of DN and suggest that klotho may be involved in multiple pathological mechanisms that contribute to the onset and development of DN. This article examines the potential of soluble klotho as a therapeutic agent for DN, with a focus on its ability to impact multiple pathways. These pathways include anti-inflammatory and oxidative stress, anti-fibrotic, endothelial protection, prevention of vascular calcification, regulation of metabolism, maintenance of calcium and phosphate homeostasis, and regulation of cell fate through modulation of autophagy, apoptosis, and pyroptosis pathways. Diabetic retinopathy shares similar pathological mechanisms with DN, and targeting klotho may offer new insights into the prevention and treatment of both conditions. Finally, this review assesses the potential of various drugs used in clinical practice to modulate klotho levels through different mechanisms and their potential to improve DN by impacting klotho levels.
Collapse
Affiliation(s)
- Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yong Lin
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- *Correspondence: Mingquan Li,
| |
Collapse
|