1
|
Bradshaw PC, Aldridge JL, Jamerson LE, McNeal C, Pearson AC, Frasier CR. The Role of Cardiolipin in Brain Bioenergetics, Neuroinflammation, and Neurodegeneration. Mol Neurobiol 2025; 62:7022-7040. [PMID: 39557801 DOI: 10.1007/s12035-024-04630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cardiolipin (CL) is an essential phospholipid that supports the functions of mitochondrial membrane transporters and oxidative phosphorylation complexes. Due to the high level of fatty acyl chain unsaturation, CL is prone to peroxidation during aging, neurodegenerative disease, stroke, and traumatic brain or spinal cord injury. Therefore, effective therapies that stabilize and preserve CL levels or enhance healthy CL fatty acyl chain remodeling are needed. In the last few years, great strides have been made in determining the mechanisms through which precursors for CL biosynthesis, such as phosphatidic acid (PA), are transferred from the ER to the outer mitochondrial membrane (OMM) and then to the inner mitochondrial membrane (IMM) where CL biosynthesis takes place. Many neurodegenerative disorders show dysfunctional mitochondrial ER contact sites that may perturb PA transport and CL biosynthesis. However, little is currently known on how neuronal mitochondria regulate the synthesis, remodeling, and degradation of CL. This review will focus on recent developments on the role of CL in neurological disorders. Importantly, due to CL species in the brain being more unsaturated and diverse than in other tissues, this review will also identify areas where more research is needed to determine a complete picture of brain and spinal cord CL function so that effective therapeutics can be developed to restore the rates of CL synthesis and remodeling in neurological disorders.
Collapse
Affiliation(s)
- Patrick C Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Jessa L Aldridge
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Leah E Jamerson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Canah McNeal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - A Catherine Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chad R Frasier
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA.
| |
Collapse
|
2
|
Sousa AAPD, Chaves LDS, Tarso Facundo H. Mitochondrial electron transport chain disruption and oxidative stress in lipopolysaccharide-induced cardiac dysfunction in rats and mice. Free Radic Res 2025:1-15. [PMID: 40337855 DOI: 10.1080/10715762.2025.2503844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Sepsis, characterized by severe systemic inflammation and an excessive immune response to infection, is frequently triggered by bacterial endotoxins like lipopolysaccharide (LPS) from Gram-negative bacteria. Moreover, sepsis-induced cardiac dysfunction remains a leading cause of mortality. This study aims to elucidate the effects of LPS-induced cardiac injury on mitochondrial damage, oxidative stress, and subsequent cardiac dysfunction. LPS injections (in rats and mice) for three days (1.5 mg/kg) impacted the body weight and increased cardiac TNF-α. Additionally, it decreased mitochondrial complexes I and II activities while complexes III and IV remained unaffected. Disturbed in mitochondrial electron transport chain leads to an increase in reactive oxygen species (ROS). Indeed, LPS treatment significantly increased mitochondrial hydrogen peroxide production, reduced the activity of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activity. This was accompanied by decreased mitochondrial and cytosolic sulfhydryl proteins and parallel increased cellular lipid peroxidation in the presence or absence of Fe2+. LPS-treated samples had increased glutathione s-transferase activity, which may be an attempt of the cell to remove toxic lipid peroxidation products. In a more acute Langendorff-perfused rat hearts, LPS infusion (0.5 μg/mL) induced a significant elevation in left ventricular end-diastolic pressure and a decrease in left ventricular developed pressure. These findings elucidate the harmful mitochondrial and oxidative effects of LPS in cardiac tissue and could help the development of targeted therapies to mitigate the adverse effects of sepsis-induced cardiac dysfunction.
Collapse
|
3
|
Frade AF, Guérin H, Nunes JPS, Silva LFSE, Roda VMDP, Madeira RP, Brochet P, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Cardiac and Digestive Forms of Chagas Disease: An Update on Pathogenesis, Genetics, and Therapeutic Targets. Mediators Inflamm 2025; 2025:8862004. [PMID: 40297326 PMCID: PMC12037249 DOI: 10.1155/mi/8862004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/12/2025] [Indexed: 04/30/2025] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a neglected disease affecting around 6 million people, with no effective antiparasitic drugs or vaccines. About 40% of Chagas disease patients develop symptomatic forms in the chronic phase of infection, chronic Chagas cardiomyopathy (CCC) or digestive forms like megaoesophagus and megacolon, while most infected patients (60%) remain asymptomatic (ASY) in the so-called indeterminate form (IF). CCC is an inflammatory cardiomyopathy that occurs decades after the initial infection. Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in heart failure and arrhythmia. Survival in CCC is worse than in other cardiomyopathies. Distinct from other cardiomyopathies, CCC displays a helper T-cell type 1 (Th1-T) cell-rich myocarditis with abundant interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and selectively lower levels of mitochondrial energy metabolism enzymes and high-energy phosphates in the heart. A CD8+ T cell-rich inflammatory infiltrate has also been found in the Chagasic megaesophagus, which is associated with denervation of myoenteric plexi. IFN-γ and TNF-α signaling, which are constitutively upregulated in Chagas disease patients, negatively affect mitochondrial function and adenosine 5'-triphosphate (ATP) production-cytokine-induced mitochondrial dysfunction. In addition, the differential susceptibility to developing CCC has prompted many studies over the past 25 years on the association of genetic polymorphisms with disease outcomes. A comprehensive understanding of Chagas disease pathogenesis is crucial for identifying potential therapeutic targets. Genetic studies may offer valuable insights into factors with prognostic significance. In this review, we present an updated perspective on the pathogenesis and genetic factors associated with Chagas disease, emphasizing key studies that elucidate the differential progression of patients to CCC and other symptomatic forms. Furthermore, we explore the interplay between genetic susceptibility, inflammatory cytokines, mitochondrial dysfunction and discuss emerging therapeutic targets.
Collapse
Affiliation(s)
- Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Hélléa Guérin
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Joao Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Luiz Felipe Souza e Silva
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Rafael Pedro Madeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Pauline Brochet
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Pauline Andrieux
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Christophe Chevillard
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| |
Collapse
|
4
|
Liu CJ, Wang LK, Tsai FM. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr Issues Mol Biol 2025; 47:176. [PMID: 40136430 PMCID: PMC11941228 DOI: 10.3390/cimb47030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Liu
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Veterinary Diagnostic Division, National Laboratory Animal Center, National Institutes of Applied Research, Taipei City 115, Taiwan;
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
5
|
Singh P, Chaudhary M, Kazmi JS, Kuschner CE, Volpe BT, Chaudhuri TD, Becker LB. Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury. Biomed Pharmacother 2025; 184:117898. [PMID: 39923406 DOI: 10.1016/j.biopha.2025.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Vagus Nerve Stimulation (VNS), a neuromodulation technique of applying controlled electrical impulses to the vagus nerve, has now emerged as a potential therapeutic approach for ischemia-reperfusion insults. It provides a pivotal link in improving functional outcomes for the central nervous system and multiple target organs affected by ischemia-reperfusion injury (I/RI). Reduced blood flow during ischemia and subsequent resumption of blood supply during reperfusion to the tissue compromises cellular health because of the combination of mitochondrial dysfunction, oxidative stress, cytokine release, inflammation, apoptosis, intracellular calcium overload, and endoplasmic reticulum stress, which ultimately leads to cell death and irreversible tissue damage. Furthermore, inflammation and apoptosis also play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that VNS in I/RI may act in an anti-inflammatory capacity, reducing oxidative stress and apoptosis, while also improving endothelial and mitochondrial function leading to reduced infarct sizes and cytoprotection in skeletal muscle, gastrointestinal tract, liver, kidney, lung, heart, and brain tissue. In this review, we attempt to shed light on the mechanistic links between tissue-specific damage following I/RI and the therapeutic approach of VNS in attenuating damage, considering both direct and remote I/RI scenarios. Thus, we want to advance the understanding of VNS that could further warrant its clinical implementation, especially as a treatment for I/RI.
Collapse
Affiliation(s)
- Parmeshar Singh
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Manju Chaudhary
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacob S Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Timir D Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA; Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
6
|
Wu T, Li D, Chen Q, Kong D, Zhu H, Zhou H, Zhang Q, Cui G. Identification of VDAC1 as a cardioprotective target of Ginkgolide B. Chem Biol Interact 2025; 406:111358. [PMID: 39716534 DOI: 10.1016/j.cbi.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Ginkgolide B (GB), a compound derived from Ginkgo biloba, exhibits significant cardioprotective properties, although its precise molecular target has yet to be identified. In this study, we synthesized a biotin-labeled GB probe (GB-biotin) to identify the molecular targets of GB. Our experiments demonstrated that treatment with GB or GB-biotin reduced mitochondrial injury, restored mitochondrial membrane potential, and decreased cell apoptosis in a concentration-dependent manner. Additionally, GB increased mitochondrial oxygen consumption rate, indicating improved mitochondrial bioenergetics. Proteomic analysis revealed that the voltage-dependent anion channel 1 (VDAC1) is a key protein that interacts with GB-biotin. This finding was further confirmed through cellular thermal shift assay (CETSA) and molecular docking, which revealed hydrogen bond formation between GB and VDAC1. Furthermore, overexpression of VDAC1 diminished the protective effects of GB, highlighting the crucial role of VDAC1 in GB-mediated cardioprotection. These findings identify VDAC1 as a therapeutic target for GB in vitro, providing valuable insights into the cardioprotective mechanisms of GB and the development of novel cardioprotective strategies.
Collapse
Affiliation(s)
- Tingbiao Wu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China
| | - Deyao Li
- Guangzhou Henovcom Biosciences Co., Ltd., Guangzhou, 510535, China
| | - Qiuyu Chen
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongxuan Zhu
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China
| | - Hefeng Zhou
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China
| | - Guozhen Cui
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China.
| |
Collapse
|
7
|
Kato Y, Nakamura Y, Kondo M, Kanda Y, Nishida M. [Cardiotoxicity risk assessment of anticancer drugs by focusing on mitochondrial quality of human iPS cell-derived cardiomyocytes]. Nihon Yakurigaku Zasshi 2025; 160:9-12. [PMID: 39756913 DOI: 10.1254/fpj.24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.
Collapse
Affiliation(s)
- Yuri Kato
- Graduate School of Pharmaceutical Science, Kyushu University
| | - Yuya Nakamura
- Graduate School of Pharmaceutical Science, Kyushu University
| | - Moe Kondo
- Graduate School of Pharmaceutical Science, Kyushu University
- Graduate School of Medical Sciences, Kyushu University
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Science, Kyushu University
- National Institute for Physiological Sciences, National Institutes of Natural Sciences
| |
Collapse
|
8
|
Mu J, Gao Z, Bo P, You B. Promotion of maturation in CDM3-induced embryonic stem cell-derived cardiomyocytes by palmitic acid. Biomed Mater Eng 2025; 36:34-42. [PMID: 39331088 DOI: 10.3233/bme-240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Myocardial infarction leads to myocardial necrosis, and cardiomyocytes are non-renewable. Fatty acid-containing cardiomyocyte maturation medium promotes maturation of stem cell-derived cardiomyocytes. OBJECTIVE To study the effect palmitic acid on maturation of cardiomyocytes derived from human embryonic stem cells (hESCs) to optimize differentiation for potential treatment of myocardial infarction by hESCs. METHODS hESCs were differentiated into cardiomyocytes using standard chemically defined medium 3 (CDM3). Up to day 20 of differentiation, 200 Mm palmitic acid were added, and then the culture was continued for another 8 days to mimic the environment in which human cardiomyocytes mainly use fatty acids as the main energy source. Light microscopy, transmission electron microscopy, immunofluorescence, reverse transcription-polymerase chain reaction, and cellular ATP assays, were carried out to analyze the expression of relevant cardiomyocyte-related genes, cell morphology, metabolism levels, and other indicators cardiomyocyte maturity. RESULTS Cardiomyocytes derived from hESCs under exogenous palmitic acid had an elongated pike shape and a more regular arrangement. Sarcomere stripes were clear, and the cells color was clearly visible. The cell perimeter and elongation rate were also increased. Myogenic fibers were abundant, myofibrillar z-lines were regularly, the numbers of mitochondria and mitochondrial cristae were higher, more myofilaments were observed, and the structure of round-like discs was occasionally seen. Expression of mature cardiomyocyte-associated genes TNNT2, MYL2 and MYH6, and cardiomyocyte-associated genes KCNJ4, RYR2,and PPARα, was upregulated (p < 0.05). Expression of MYH7, MYL7, KCND2, KCND3, GJA1 and TNNI1 genes was unaffected (p > 0.05). Expression of mature cardiomyocyte-associated sarcomere protein MYL2 was significantly increased (p < 0.05), MYH7 protein expression was unaffected (p > 0.05). hESC-derived cardiomyocytes exposed to exogenous palmitic acid produced more ATP per unit time (p < 0.05). CONCLUSION Exogenous palmitic acid induced more mature hESC-CMs in terms of the cellular architecture, expression of cardiomyocyte maturation genes adnprotein, and metabolism.
Collapse
Affiliation(s)
- Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- The Third Affiliated Hospital of XinXiang Medical University, XinXiang, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Bo
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
9
|
Nakano K, Yamamoto M, Yamada Y, Nakatsukasa T, Kawamatsu N, Sato K, Machino-Ohtsuka T, Murakoshi N, Ishizu T. Mitochondrial Structural Abnormalities and Cardiac Reverse Remodeling in Patients With Systolic Dysfunction. Circ J 2024; 89:101-108. [PMID: 39370292 DOI: 10.1253/circj.cj-24-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND Mitochondrial dysfunction in the heart is associated with the development of heart failure (HF). However, the clinical consequences of mitochondrial structural abnormalities in patients with HF remain unexplored. METHODS AND RESULTS Ninety-one patients with left ventricular (LV) systolic dysfunction who underwent endomyocardial biopsy (EMB) were enrolled in the study. Myocardial specimens were obtained from the right ventricular septum. Specimens were characterized using electron microscopy to assess mitochondrial size, outer membrane disruption, and cristae disorganization. The primary endpoint was a composite of cardiovascular death and unplanned hospitalization for HF. Patients were classified into LV reverse remodeling (LVRR)-positive (n=52; 57.1%) and LVRR-negative (n=39; 42.9%) groups. Cristae disorganization was observed in 21 (23.1%) patients: 6 (11.5%) in the LVRR-positive group and 15 (38.5%) in the LVRR-negative group (P=0.005). During the 1-year post-EMB observation period, 16 patients (17.6%) met the primary endpoint, with 2 (2.2%) cardiovascular deaths and 14 (15.4%) HF hospitalizations. Cristae disorganization (P=0.002) was significantly associated with the endpoints, independent of age (P=0.115), systolic blood pressure (P=0.004), B-type natriuretic peptide level (P=0.042), and mitral regurgitation (P=0.003). CONCLUSIONS We classified mitochondrial structural abnormalities and showed that cristae disorganization was associated with LVRR and worse prognosis. These findings may affect the management of patients with HF and systolic dysfunction who undergo EMB.
Collapse
Affiliation(s)
- Koji Nakano
- Department of Cardiology, Institute of Medicine, University of Tsukuba
| | | | - Yu Yamada
- Department of Cardiology, Institute of Medicine, University of Tsukuba
| | | | - Naoto Kawamatsu
- Department of Cardiology, Institute of Medicine, University of Tsukuba
| | - Kimi Sato
- Department of Cardiology, Institute of Medicine, University of Tsukuba
| | | | | | - Tomoko Ishizu
- Department of Cardiology, Institute of Medicine, University of Tsukuba
| |
Collapse
|
10
|
Qi P, Zhang W, Gao Y, Chen S, Jiang M, He R, Chen W, Wei X, Hu B, Xu H, Wu M, Tang R. N6-methyladenosine demethyltransferase FTO alleviates sepsis by upregulating BNIP3 to induce mitophagy. J Cell Physiol 2024; 239:e31448. [PMID: 39308045 DOI: 10.1002/jcp.31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 12/18/2024]
Abstract
N6-methyladenosine (m6A) is known to be crucial in various biological processes, but its role in sepsis-induced circulatory and cardiac dysfunction is not well understood. Specifically, mitophagy, a specialized form of autophagy, is excessively activated during lipopolysaccharide (LPS)-induced myocardial injury. This study aimed to investigate the impact of LPS-induced endotoxemia on m6A-RNA methylation and its role in regulating mitophagy in sepsis-induced myocardial dysfunction. Our research demonstrated that FTO (fat mass and obesity-associated protein), an m6A demethylase, significantly affects abnormal m6A modification in the myocardium and cardiomyocytes following LPS treatment. In mice, cardiac dysfunction and cardiomyocyte apoptosis worsened after adeno-associated virus serotype 9 (AAV9)-mediated FTO knockdown. Further analyses to uncover the cellular mechanisms improving cardiac function showed that FTO reduced mitochondrial reactive oxygen species, restored both basal and maximal respiration, and preserved mitochondrial membrane potential. We revealed that FTO plays a critical role in activating mitophagy by targeting BNIP3. Additionally, the cardioprotective effects of AAV-FTO were significantly compromised by mdivi-1, a mitophagy inhibitor. Mechanistically, FTO interacted with BNIP3 transcripts and regulated their expression in an m6A-dependent manner. Following FTO silencing, BNIP3 transcripts with elevated m6A modification levels in their coding regions were bound by YTHDF2 (YT521-B homology m6A RNA-binding protein 2), leading to mRNA destabilization and decreased BNIP3 protein levels. These findings highlight the importance of FTO-dependent cardiac m6A methylation in regulating mitophagy and enhance our understanding of this critical interplay, which is essential for developing therapeutic strategies to protect cardiac mitochondrial function, alleviate cardiac dysfunction, and improve survival during sepsis.
Collapse
Affiliation(s)
- Pingping Qi
- The Second Affiliated Hospital of Guangxi Medical University Blood Transfusion Department, Nanning, 533000, Guangxi, People's Repulic of China
| | - Wei Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 533000, Heilongjiang, People's Repulic of China
| | - Yang Gao
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 533000, Heilongjiang, People's Repulic of China
| | - Shengkui Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Minghe Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Rong He
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Wenzhong Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Xiawei Wei
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Bingquan Hu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Hao Xu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Minsheng Wu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Rong Tang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine Intensive Care Unit, Nanning, 533000, Guangxi, People's Repulic of China
| |
Collapse
|
11
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Kondo M, Nakamura Y, Kato Y, Nishimura A, Fukata M, Moriyama S, Ito T, Umezawa K, Urano Y, Akaike T, Akashi K, Kanda Y, Nishida M. Inorganic sulfides prevent osimertinib-induced mitochondrial dysfunction in human iPS cell-derived cardiomyocytes. J Pharmacol Sci 2024; 156:69-76. [PMID: 39179336 DOI: 10.1016/j.jphs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024] Open
Abstract
Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.
Collapse
Affiliation(s)
- Moe Kondo
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Nakamura
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| |
Collapse
|
13
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
14
|
Joniová J, Gerelli E, Wagnières G. Study and optimization of the photobiomodulation effects induced on mitochondrial metabolic activity of human cardiomyocytes for different radiometric and spectral conditions. Life Sci 2024; 351:122760. [PMID: 38823506 DOI: 10.1016/j.lfs.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photobiomodulation (PBM) represents a promising and powerful approach for non-invasive therapeutic interventions. This emerging field of research has gained a considerable attention due to its potential for multiple disciplines, including medicine, neuroscience, and sports medicine. While PBM has shown the ability to stimulate various cellular processes in numerous medical applications, the fine-tuning of treatment parameters, such as wavelength, irradiance, treatment duration, and illumination geometry, remains an ongoing challenge. Furthermore, additional research is necessary to unveil the specific mechanisms of action and establish standardized protocols for diverse clinical applications. Given the widely accepted understanding that mitochondria play a pivotal role in the PBM mechanisms, our study delves into a multitude of PBM illumination parameters while assessing the PBM's effects on the basis of endpoints reflecting the mitochondrial metabolism of human cardiac myocytes (HCM), that are known for their high mitochondrial density. These endpoints include: i) the endogenous production of protoporphyrin IX (PpIX), ii) changes in mitochondrial potential monitored by Rhodamine 123 (Rhod 123), iii) changes in the HCM's oxygen consumption, iv) the fluorescence lifetime of Rhod 123 in mitochondria, and v) alterations of the mitochondrial morphology. The good correlation observed between these different methods to assess PBM effects underscores that monitoring the endogenous PpIX production offers interesting indirect insights into the mitochondrial metabolic activity. This conclusion is important since many approved therapeutics and cancer detection approaches are based on the use of PpIX. Finally, this correlation strongly suggests that the PBM effects mentioned above have a common "fundamental" mechanistic origin.
Collapse
Affiliation(s)
- Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland; G Life Quantum, Avenue des Bouleaux 117, 01710 Thoiry, France.
| | - Emmanuel Gerelli
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland; G Life Quantum, Avenue des Bouleaux 117, 01710 Thoiry, France
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Zhang T, Chu Y, Wang Y, Wang Y, Wang J, Ji X, Zhang G, Shi G, Cui R, Kang Y. Testosterone deficiency worsens mitochondrial dysfunction in APP/PS1 mice. Front Aging Neurosci 2024; 16:1390915. [PMID: 38752208 PMCID: PMC11094339 DOI: 10.3389/fnagi.2024.1390915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Background Recent studies show testosterone (T) deficiency worsens cognitive impairment in Alzheimer's disease (AD) patients. Mitochondrial dysfunction, as an early event of AD, is becoming critical hallmark of AD pathogenesis. However, currently, whether T deficiency exacerbates mitochondrial dysfunction of men with AD remains unclear. Objective The purpose of this study is to explore the effects of T deficiency on mitochondrial dysfunction of male AD mouse models and its potential mechanisms. Methods Alzheimer's disease animal model with T deficiency was performed by castration to 3-month-old male APP/PS1 mice. Hippocampal mitochondrial function of mice was analyzed by spectrophotometry and flow cytometry. The gene expression levels related to mitochondrial biogenesis and mitochondrial dynamics were determined through quantitative real-time PCR (qPCR) and western blot analysis. SH-SY5Y cells treated with flutamide, T and/or H2O2 were processed for analyzing the potential mechanisms of T on mitochondrial dysfunction. Results Testosterone deficiency significantly aggravated the cognitive deficits and hippocampal pathologic damage of male APP/PS1 mice. These effects were consistent with exacerbated mitochondrial dysfunction by gonadectomy to male APP/PS1 mice, reflected by further increase in oxidative damage and decrease in mitochondrial membrane potential, complex IV activity and ATP levels. More importantly, T deficiency induced the exacerbation of compromised mitochondrial homeostasis in male APP/PS1 mice by exerting detrimental effects on mitochondrial biogenesis and mitochondrial dynamics at mRNA and protein level, leading to more defective mitochondria accumulated in the hippocampus. In vitro studies using SH-SY5Y cells validated T's protective effects on the H2O2-induced mitochondrial dysfunction, mitochondrial biogenesis impairment, and mitochondrial dynamics imbalance. Administering androgen receptor (AR) antagonist flutamide weakened the beneficial effects of T pretreatment on H2O2-treated SH-SY5Y cells, demonstrating a critical role of classical AR pathway in maintaining mitochondrial function. Conclusion Testosterone deficiency exacerbates hippocampal mitochondrial dysfunction of male APP/PS1 mice by accumulating more defective mitochondria. Thus, appropriate T levels in the early stage of AD might be beneficial in delaying AD pathology by improving mitochondrial biogenesis and mitochondrial dynamics.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Jinyang Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Nishimura A, Zhou L, Kato Y, Mi X, Ito T, Ibuki Y, Kanda Y, Nishida M. Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation. J Pharmacol Sci 2024; 154:127-135. [PMID: 38246726 DOI: 10.1016/j.jphs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
17
|
Janz A, Walz K, Cirnu A, Surjanto J, Urlaub D, Leskien M, Kohlhaas M, Nickel A, Brand T, Nose N, Wörsdörfer P, Wagner N, Higuchi T, Maack C, Dudek J, Lorenz K, Klopocki E, Ergün S, Duff HJ, Gerull B. Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes. Mol Metab 2024; 79:101859. [PMID: 38142971 PMCID: PMC10792641 DOI: 10.1016/j.molmet.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. CONCLUSIONS Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.
Collapse
Affiliation(s)
- Anna Janz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Walz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Jessica Surjanto
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Urlaub
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Leskien
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Naoko Nose
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Eva Klopocki
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany; Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
19
|
Zhang Y, He Y, Liu S, Deng L, Zuo Y, Huang K, Liao B, Li G, Feng J. SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. Am J Cardiovasc Drugs 2023; 23:641-662. [PMID: 37620652 DOI: 10.1007/s40256-023-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Population aging combined with higher susceptibility to cardiovascular diseases in older adults is increasing the incidence of conditions such as atherosclerosis, myocardial infarction, heart failure, myocardial hypertrophy, myocardial fibrosis, arrhythmia, and hypertension. sodium-glucose cotransporter 2 inhibitors (SGLT2i) were originally developed as a novel oral drug for patients with type 2 diabetes mellitus. Unexpectedly, recent studies have shown that, beyond their effect on hyperglycemia, SGLT2i also have a variety of beneficial effects on cardiovascular disease. Experimental models of cardiovascular disease have shown that SGLT2i ameliorate the process of aging-related cardiovascular disease by inhibiting inflammation, reducing oxidative stress, and reversing endothelial dysfunction. In this review, we discuss the role of SGLT2i in aging-related cardiovascular disease and propose the use of SGLT2i to prevent and treat these conditions in older adults.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiac Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
20
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
21
|
Deisl C, Chung JH, Hilgemann DW. Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes. J Gen Physiol 2023; 155:e202213329. [PMID: 37555782 PMCID: PMC10412754 DOI: 10.1085/jgp.202213329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Using optical and electrical methods, we document that diffusion in the cytoplasm of BL6 murine cardiomyocytes becomes restricted >20-fold as molecular weight increases from 30 to 2,000, roughly as expected for pores with porin channel dimensions. Bodipy-FL ATP diffuses >40-fold slower than in free water at 25°C. From several fluorophores analyzed, bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. Unbound fluorophores diffuse at 0.5-8 × 10-7 cm2/s (5-80 μm2/s). Analysis of Na/K pump and veratridine-modified Na channel currents suggests that Na diffusion is nearly unrestricted at 35°C (time constant for equilibration with the pipette tip, ∼20 s). Using multiple strategies, we estimate that at 35°C, ATP diffuses four to eight times slower than in free water. To address whether restrictions are caused more by protein or membrane networks, we verified first that a protein gel, 10 g% gelatin, restricts diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is less restricted than in intact myocytes. Notably, myofilaments extracted similarly from skeletal (diaphragm) myocytes are less restrictive. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similar to diffusion in intact myocytes. Restrictions are strain-dependent, being twofold greater in BL6 myocytes than in CD1/J6/129svJ myocytes. Furthermore, longitudinal diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, VDAC1, than in WT CD1/J6/129svJ myocytes. Thus, mitochondria networks restrict long-range diffusion while presumably optimizing nucleotide transfer between myofilaments and mitochondria. We project that diffusion restrictions imposed by both myofilaments and the outer mitochondrial membrane are important determinants of total free cytoplasmic AMP and ADP (∼10 μM). However, the capacity of diffusion to deliver ATP to myofilaments remains ∼100-fold greater than ATP consumption.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX, USA
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
22
|
Zhang Z, Fan H, Richardson W, Gao BZ, Ye T. Management of autofluorescence in formaldehyde-fixed myocardium: choosing the right treatment. Eur J Histochem 2023; 67:3812. [PMID: 37781779 PMCID: PMC10614721 DOI: 10.4081/ejh.2023.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Autofluorescence (AF) poses challenges for detecting proteins of interest in situ when employing immunofluorescence (IF) microscopy. This interference is particularly pronounced in strongly autofluorescent tissues such as myocardium, where tissue AF can be comparable to IF. Although various histochemical methods have been developed to achieve effective AF suppression in different types of tissue, their applications on myocardial samples have not been well validated. Due to inconsistency across different autofluorescent structures in sometypes of tissue, it is unclear if these methods can effectively suppress AF across all autofluorescent structures within the myocardium. Here, we quantitatively evaluated the performance of several commonly used quenching treatments on formaldehyde-fixed myocardial samples, including 0.3 M glycine, 0.3% Sudan Black B (SBB), 0.1% and 1% sodium borohydride (NaBH4), TrueVIEW® and TrueBlack®. We further assessed their quenching performance by employing the pre-treatment and post-treatment protocols, designed to cover two common IF staining scenarios where buffers contained detergents or not. The results suggest that SBB and TrueBlack® outperform other reagents in AF suppression on formaldehyde-fixed myocardial samples in both protocols. Furthermore, we inspected the quenching performance of SBB and TrueBlack® on major autofluorescent myocardial structures and evaluated their influence on IF imaging. The results suggest that SBB outperforms TrueBlack® in quenching major autofluorescent structures, while TrueBlack® excels in preserving IF labeling signal. Surprisingly, we found the treatment of NaBH4 increased AF signal and enhanced the AF contrast of major autofluorescent structures. This finding suggests that NaBH4 has the potential to act as an AF enhancer and may facilitate the interpretation of myocardial structures without the need for counterstaining.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Hongming Fan
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR.
| | - Bruce Z Gao
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, SC; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
23
|
Wen W, Zheng H, Li W, Huang G, Chen P, Zhu X, Cao Y, Li J, Huang X, Huang Y. Transcription factor EB: A potential integrated network regulator in metabolic-associated cardiac injury. Metabolism 2023; 147:155662. [PMID: 37517793 DOI: 10.1016/j.metabol.2023.155662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
With the worldwide pandemic of metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD), cardiometabolic disease (CMD) has become a significant cause of death in humans. However, the pathophysiology of metabolic-associated cardiac injury is complex and not completely clear, and it is important to explore new strategies and targets for the treatment of CMD. A series of pathophysiological disturbances caused by metabolic disorders, such as insulin resistance (IR), hyperglycemia, hyperlipidemia, mitochondrial dysfunction, oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy dysfunction, calcium homeostasis imbalance, and endothelial dysfunction, may be related to the incidence and development of CMD. Transcription Factor EB (TFEB), as a transcription factor, has been extensively studied for its role in regulating lysosomal biogenesis and autophagy. Recently, the regulatory role of TFEB in other biological processes, including the regulation of glucose homeostasis, lipid metabolism, etc. has been gradually revealed. In this review, we will focus on the relationship between TFEB and IR, lipid metabolism, endothelial dysfunction, oxidative stress, inflammation, ERS, calcium homeostasis, autophagy, and mitochondrial quality control (MQC) and the potential regulatory mechanisms among them, to provide a comprehensive summary for TFEB as a potential new therapeutic target for CMD.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
24
|
Li A, Shami GJ, Griffiths L, Lal S, Irving H, Braet F. Giant mitochondria in cardiomyocytes: cellular architecture in health and disease. Basic Res Cardiol 2023; 118:39. [PMID: 37775647 PMCID: PMC10541842 DOI: 10.1007/s00395-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Giant mitochondria are frequently observed in different disease models within the brain, kidney, and liver. In cardiac muscle, these enlarged organelles are present across diverse physiological and pathophysiological conditions including in ageing and exercise, and clinically in alcohol-induced heart disease and various cardiomyopathies. This mitochondrial aberration is widely considered an early structural hallmark of disease leading to adverse organ function. In this thematic paper, we discuss the current state-of-knowledge on the presence, structure and functional implications of giant mitochondria in heart muscle. Despite its demonstrated reoccurrence in different heart diseases, the literature on this pathophysiological phenomenon remains relatively sparse since its initial observations in the early 60s. We review historical and contemporary investigations from cultured cardiomyocytes to human tissue samples to address the role of giant mitochondria in cardiac health and disease. Finally, we discuss their significance for the future development of novel mitochondria-targeted therapies to improve cardiac metabolism and functionality.
Collapse
Affiliation(s)
- Amy Li
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia.
- Centre for Healthy Futures, Torrens University Australia, Surry Hills, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.
| | - Gerald J Shami
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia
| | - Lisa Griffiths
- Anatomical Pathology, PathWest, QEII Medical Centre, Nedlands, WA, Australia
| | - Sean Lal
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Filip Braet
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Camperdown, NSW, Australia.
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
25
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
26
|
Guo Y, You Y, Shang FF, Wang X, Huang B, Zhao B, Lv D, Yang S, Xie M, Kong L, Du D, Luo S, Tian X, Xia Y. iNOS aggravates pressure overload-induced cardiac dysfunction via activation of the cytosolic-mtDNA-mediated cGAS-STING pathway. Theranostics 2023; 13:4229-4246. [PMID: 37554263 PMCID: PMC10405855 DOI: 10.7150/thno.84049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Sterile inflammation contributes to the pathogenesis of cardiac dysfunction caused by various conditions including pressure overload in hypertension. Mitochondrial DNA (mtDNA) released from damaged mitochondria has been implicated in cardiac inflammation. However, the upstream mechanisms governing mtDNA release and how mtDNA activates sterile inflammation in pressure-overloaded hearts remain largely unknown. Here, we investigated the role of inducible NO synthase (iNOS) on pressure overload-induced cytosolic accumulation of mtDNA and whether mtDNA activated inflammation through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Methods: To investigate whether the cGAS-STING cascade was involved in sterile inflammation and cardiac dysfunction upon pressure overload, cardiomyocyte-specific STING depletion mice and mice injected with adeno-associated virus-9 (AAV-9) to suppress the cGAS-STING cascade in the heart were subjected to transverse aortic constriction (TAC). iNOS null mice were used to determine the role of iNOS in cGAS-STING pathway activation in pressure-stressed hearts. Results: iNOS knockout abrogated mtDNA release and alleviated cardiac sterile inflammation resulting in improved cardiac function. Conversely, activating the cGAS-STING pathway blunted the protective effects of iNOS knockout. Moreover, iNOS activated the cGAS-STING pathway in isolated myocytes and this was prevented by depleting cytosolic mtDNA. In addition, disruption of the cGAS-STING pathway suppressed inflammatory cytokine transcription and modulated M1/M2 macrophage polarization, and thus mitigated cardiac remodeling and improved heart function. Finally, increased iNOS expression along with cytosolic mtDNA accumulation and cGAS-STING activation were also seen in human hypertensive hearts. Conclusion: Our findings demonstrate that mtDNA is released into the cytosol and triggers sterile inflammation through the cGAS-STING pathway leading to cardiac dysfunction after pressure overload. iNOS controls mtDNA release and subsequent cGAS activation in pressure-stressed hearts.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bi Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Boying Zhao
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Dingyi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shenglan Yang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ming Xie
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
- Davis Heart & Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA
| |
Collapse
|
27
|
Mejia G, Su L, Pandey P, Jeanne Dit Fouque K, McGoron AJ, Fernandez-Lima F, He J, Mebel AM, Leng F. Anticancer Drug Doxorubicin Spontaneously Reacts with GTP and dGTP. Chem Res Toxicol 2023; 36:660-668. [PMID: 37000908 DOI: 10.1021/acs.chemrestox.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Here, we reported a spontaneous reaction between anticancer drug doxorubicin and GTP or dGTP. Incubation of doxorubicin with GTP or dGTP at 37 °C or above yields a covalent product: the doxorubicin-GTP or -dGTP conjugate where a covalent bond is formed between the C14 position of doxorubicin and the 2-amino group of guanine. Density functional theory calculations show the feasibility of this spontaneous reaction. Fluorescence imaging studies demonstrate that the doxorubicin-GTP and -dGTP conjugates cannot enter nuclei although they rapidly accumulate in human SK-OV-3 and NCI/ADR-RES cells. Consequently, the doxorubicin-GTP and -dGTP conjugates are less cytotoxic than doxorubicin. We also demonstrate that doxorubicin binds to ATP, GTP, and other nucleotides with a dissociation constant (Kd) in the sub-millimolar range. Since human cells contain millimolar levels of ATP and GTP, these results suggest that doxorubicin may target ATP and GTP, energy molecules that support essential processes in living organisms.
Collapse
Affiliation(s)
- German Mejia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Popular Pandey
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Anthony J McGoron
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
28
|
Bencurova M, Lysikova T, Leskova Majdova K, Kaplan P, Racay P, Lehotsky J, Tatarkova Z. Age-Dependent Changes in Calcium Regulation after Myocardial Ischemia-Reperfusion Injury. Biomedicines 2023; 11:biomedicines11041193. [PMID: 37189811 DOI: 10.3390/biomedicines11041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
During aging, heart structure and function gradually deteriorate, which subsequently increases susceptibility to ischemia-reperfusion (IR). Maintenance of Ca2+ homeostasis is critical for cardiac contractility. We used Langendorff's model to monitor the susceptibility of aging (6-, 15-, and 24-month-old) hearts to IR, with a specific focus on Ca2+-handling proteins. IR, but not aging itself, triggered left ventricular changes when the maximum rate of pressure development decreased in 24-month-olds, and the maximum rate of relaxation was most affected in 6-month-old hearts. Aging caused a deprivation of Ca2+-ATPase (SERCA2a), Na+/Ca2+ exchanger, mitochondrial Ca2+ uniporter, and ryanodine receptor contents. IR-induced damage to ryanodine receptor stimulates Ca2+ leakage in 6-month-old hearts and elevated phospholamban (PLN)-to-SERCA2a ratio can slow down Ca2+ reuptake seen at 2-5 μM Ca2+. Total and monomeric PLN mirrored the response of overexpressed SERCA2a after IR in 24-month-old hearts, resulting in stable Ca2+-ATPase activity. Upregulated PLN accelerated inhibition of Ca2+-ATPase activity at low free Ca2+ in 15-month-old after IR, and reduced SERCA2a content subsequently impairs the Ca2+-sequestering capacity. In conclusion, our study suggests that aging is associated with a significant decrease in the abundance and function of Ca2+-handling proteins. However, the IR-induced damage was not increased during aging.
Collapse
Affiliation(s)
- Maria Bencurova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
29
|
Bhatti JS, Khullar N, Vijayvergiya R, Navik U, Bhatti GK, Reddy PH. Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens. Ageing Res Rev 2023; 86:101882. [PMID: 36780957 DOI: 10.1016/j.arr.2023.101882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Rajesh Vijayvergiya
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
30
|
Zemniaçak ÂB, Roginski AC, Ribeiro RT, Bender JG, Marschner RA, Wajner SM, Wajner M, Amaral AU. Disruption of mitochondrial bioenergetics and calcium homeostasis by phytanic acid in the heart: Potential relevance for the cardiomyopathy in Refsum disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148961. [PMID: 36812958 DOI: 10.1016/j.bbabio.2023.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Refsum disease is an inherited peroxisomal disorder caused by severe deficiency of phytanoyl-CoA hydroxylase activity. Affected patients develop severe cardiomyopathy of poorly known pathogenesis that may lead to a fatal outcome. Since phytanic acid (Phyt) concentrations are highly increased in tissues of individuals with this disease, it is conceivable that this branched-chain fatty acid is cardiotoxic. The present study investigated whether Phyt (10-30 μM) could disturb important mitochondrial functions in rat heart mitochondria. We also determined the influence of Phyt (50-100 μM) on cell viability (MTT reduction) in cardiac cells (H9C2). Phyt markedly increased mitochondrial state 4 (resting) and decreased state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respirations, besides reducing the respiratory control ratio, ATP synthesis and the activities of the respiratory chain complexes I-III, II, and II-III. This fatty acid also reduced mitochondrial membrane potential and induced swelling in mitochondria supplemented by exogenous Ca2+, which were prevented by cyclosporin A alone or combined with ADP, suggesting the involvement of the mitochondrial permeability transition (MPT) pore opening. Mitochondrial NAD(P)H content and Ca2+ retention capacity were also decreased by Phyt in the presence of Ca2+. Finally, Phyt significantly reduced cellular viability (MTT reduction) in cultured cardiomyocytes. The present data indicate that Phyt, at concentrations found in the plasma of patients with Refsum disease, disrupts by multiple mechanisms mitochondrial bioenergetics and Ca2+ homeostasis, which could presumably be involved in the cardiomyopathy of this disease.
Collapse
Affiliation(s)
- Ângela Beatriz Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Gabrieli Bender
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Aguiar Marschner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil.
| |
Collapse
|
31
|
Ribeiro RT, Roginski AC, Marschner RA, Wajner SM, Castilho RF, Amaral AU, Wajner M. Disruption of mitochondrial bioenergetics, calcium retention capacity and cell viability caused by D-2-hydroxyglutaric acid in the heart. Biochimie 2023; 207:153-164. [PMID: 36372308 DOI: 10.1016/j.biochi.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Accumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of D-2-hydroxyglutaric aciduria type I and, particularly, of D-2-hydroxyglutaric aciduria type II (D2HGA2). D2HGA2 is a metabolic inherited disease caused by gain-of-function mutations in the gene isocitrate dehydrogenase 2. It is clinically characterized by neurological abnormalities and a severe cardiomyopathy whose pathogenesis is still poorly established. The present work investigated the potential cardiotoxicity D-2-HG, by studying its in vitro effects on a large spectrum of bioenergetics parameters in heart of young rats and in cultivated H9c2 cardiac myoblasts. D-2-HG impaired cellular respiration in purified mitochondrial preparations and crude homogenates from heart of young rats, as well as in digitonin-permeabilized H9c2 cells. ATP production and the activities of cytochrome c oxidase (complex IV), alpha-ketoglutarate dehydrogenase, citrate synthase and creatine kinase were also inhibited by D-2-HG, whereas the activities of complexes I, II and II-III of the respiratory chain, glutamate, succinate and malate dehydrogenases were not altered. We also found that this organic acid compromised mitochondrial Ca2+ retention capacity in heart mitochondrial preparations and H9c2 myoblasts. Finally, D-2-HG reduced the viability of H9c2 cardiac myoblasts, as determined by the MTT test and by propidium iodide incorporation. Noteworthy, L-2-hydroxyglutaric acid did not change some of these measurements (complex IV and creatine kinase activities) in heart preparations, indicating a selective inhibitory effect of the enantiomer D. In conclusion, it is presumed that D-2-HG-disrupts mitochondrial bioenergetics and Ca2+ retention capacity, which may be involved in the cardiomyopathy commonly observed in D2HGA2.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Aguiar Marschner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada Do Alto Uruguai e Das Missões, Erechim, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
GAO Z, ZHOU F, MU J. Research Progress towards the Effects of Fatty Acids on the Differentiation and Maturation of Human Induced Pluripotent Stem Cells into Cardiomyocytes. Rev Cardiovasc Med 2023; 24:69. [PMID: 39077493 PMCID: PMC11264038 DOI: 10.31083/j.rcm2403069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2024] Open
Abstract
The incidence of cardiovascular disease has been continuously increasing. Because cardiomyocytes (CM) are non-renewable cells, it is difficult to find appropriate CM sources to repair injured hearts. Research of human induced pluripotent stem cell (hiPSC) differentiation and maturation into CM has been invaluable for the treatment of heart diseases. The use of hiPSCs as regenerative therapy allows for the treatment of many diseases that cannot be cured, including progressive heart failure. This review contributes to the study of cardiac repair and targeted treatment of cardiovascular diseases at the cytological level. Recent studies have shown that for differentiation and maturation of hiPSCs into CMs, fatty acids have a strong influence on cellular metabolism, organelle development, expression of specific genes, and functional performance. This review describes the recent research progress on how fatty acids affect the differentiation of hiPSCs into CMs and their maturation.
Collapse
Affiliation(s)
- Zhen GAO
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| | - Fan ZHOU
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, 100039 Beijing, China
| | - Junsheng MU
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| |
Collapse
|
33
|
Deisl C, Chung JA, Hilgemann DW. Pore-like diffusion barriers in murine cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522313. [PMID: 36712045 PMCID: PMC9881867 DOI: 10.1101/2023.01.02.522313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using both optical and electrical methods, we document that solute diffusion in the cytoplasm of BL6 murine cardiac myocytes becomes restricted >30-fold as molecular weight increases from 30 to 2000, roughly as expected for pores with dimensions of cardiac porin channels. The Bodipy-FL ATP analogue diffuses ∼50-fold slower in BL6 cardiac cytoplasm than in free water. From several fluorophores analyzed, our estimates of bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. We estimate that diffusion coefficients of unbound fluorophores range from 0.5 to 8 x 10 -7 cm 2 /s. Analysis of Na/K pump and veratridine-modified Na channel currents confirms that Na diffusion is nearly unrestricted (time constant for equilibration with the pipette tip, ∼20 s). Using three different approaches, we estimate that ATP diffuses 8 to 10-times slower in the cytoplasm of BL6 myocytes than in free water. To address whether restrictions are caused more by cytoplasmic protein or membrane networks, we verified first that a protein gel, 10 gram% gelatin, restricts solute diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is however less restricted than in intact myocytes. Notably, myofilaments from equivalently extracted skeletal (diaphragm) myocytes restrict diffusion less than cardiac myofilaments. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similarly restricted as in intact myocytes. Diffusion restriction in cardiac myocytes is strain-dependent, being about two-fold greater in BL6 myocytes than in myocytes with a CD1/J6/129svJ background. Furthermore, diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, Vdac1, than in WT CD1/J6/129svJ myocytes. We conclude that both myofilaments and mitochondria networks restrict diffusion in cardiac myocytes. As a result, long-range solute diffusion may preferentially occur via passage through porin channels and intramembrane mitochondrial spaces, where diffusion is less restricted than in myofilament spaces.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| | - Jay A Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Donald W Hilgemann
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| |
Collapse
|
34
|
Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria. Cells 2022; 11:cells11244020. [PMID: 36552784 PMCID: PMC9777548 DOI: 10.3390/cells11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent process that consumes catabolized nutrients to produce adenosine triphosphate (ATP) to drive energy-dependent biological processes such as excitation-contraction coupling in cardiomyocytes. In addition to in vivo and in vitro experiments, in silico models are valuable for investigating the underlying mechanisms of OXPHOS and predicting its consequences in both physiological and pathological conditions. Here, we compare several prominent kinetic models of OXPHOS in cardiomyocytes. We examine how their mathematical expressions were derived, how their parameters were obtained, the conditions of their experimental counterparts, and the predictions they generated. We aim to explore the general landscape of energy production mechanisms in cardiomyocytes for future in silico models.
Collapse
|
35
|
Kim CW, Lee HJ, Ahn D, Go RE, Choi KC. Establishment of a platform for measuring mitochondrial oxygen consumption rate for cardiac mitochondrial toxicity. Toxicol Res 2022; 38:511-522. [PMID: 36277363 PMCID: PMC9532483 DOI: 10.1007/s43188-022-00136-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
The heart has an abundance of mitochondria since cardiac muscles require copious amounts of energy for providing continuous blood through the circulatory system, thereby implying that myocardial function is largely reliant on mitochondrial energy. Thus, cardiomyocytes are susceptible to mitochondrial dysfunction and are likely targets of mitochondrial toxic drugs. Various methods have been developed to evaluate mitochondrial toxicity by evaluating toxicological mechanisms, but an optimized and standardized assay for cardiomyocytes remains unmet. We have therefore attempted to standardize the evaluation system for determining cardiac mitochondrial toxicity, using AC16 human and H9C2 rat cardiomyocytes. Three clinically administered drugs (acetaminophen, amiodarone, and valproic acid) and two anticancer drugs (doxorubicin and tamoxifen) which are reported to have mitochondrial effects, were applied in this study. The oxygen consumption rate (OCR), which directly reflects mitochondrial function, and changes in mRNA levels of mitochondrial respiratory complex I to complex V, were analyzed. Our results reveal that exposure to all five drugs results in a concentration-dependent decrease in the basal and maximal levels of OCR in AC16 cells and H9C2 cells. In particular, marked reduction in the OCR was observed after treatment with doxorubicin. The reduction in OCR after exposure to mitochondrial toxic drugs was found to be associated with reduced mRNA expression in the mitochondrial respiratory complexes, suggesting that the cardiac mitochondrial toxicity of drugs is majorly due to dysfunction of mitochondrial respiration. Based on the results of this study, we established and standardized a protocol to measure OCR in cardiomyocytes. We expect that this standardized evaluation system for mitochondrial toxicity can be applied as basic data for establishing a screening platform to evaluate cardiac mitochondrial toxicity of drugs, during the developmental stage of new drug discovery.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Hee-Jin Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
36
|
Willi L, Abramovich I, Fernandez-Garcia J, Agranovich B, Shulman M, Milman H, Baskin P, Eisen B, Michele DE, Arad M, Binah O, Gottlieb E. Bioenergetic and Metabolic Impairments in Induced Pluripotent Stem Cell-Derived Cardiomyocytes Generated from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2022; 23:ijms23179808. [PMID: 36077200 PMCID: PMC9456153 DOI: 10.3390/ijms23179808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC–MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with “healthy-like” metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45–48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient’s phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Jonatan Fernandez-Garcia
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Margarita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| |
Collapse
|
37
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
38
|
Resveratrol as a Promising Polyphenol in Age-Associated Cardiac Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7911222. [PMID: 35761875 PMCID: PMC9233576 DOI: 10.1155/2022/7911222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
According to a widely accepted theory, oxidative stress is considered to be the number one trigger of aging-associated degenerative processes including cardiovascular diseases. In the context of aging-research, resveratrol receives special attention with its surprising number of health benefits. The aim of our study was to examine the anti-inflammatory and antioxidant effects of this dietary polyphenol in aging rat heart. 20-month-old female and male Wistar rats were divided into control (untreated) and resveratrol-treated groups. Resveratrol was administered at a dose of 0.05 mg/ml for 12 weeks dissolved in drinking water, while the control rats received ad libitum water. Cardiac level of reactive oxygen species (ROS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNF-α), and glutathione (GSH) parameters, as well as the activity of myeloperoxidase (MPO) and heme oxygenase (HO) enzymes were detected. Together with the biochemical measurements, hearts were isolated and used for an exposure of ischemic-reperfusion injury via Langendorff perfusion system. 12 week of resveratrol treatment suppressed the age-related inflammatory pathways including the expression of TNF-α, NFκB, and the activity of MPO while intensified the endogenous antioxidant defenses through the induction of GSH and HO system. Presumably, as a result of these processes, the necrotic area of the heart in response to an acute injury was also significantly reduced in the resveratrol-treated groups. Our findings confirmed that resveratrol has cardioprotective effects at several points by counteracting the aging-associated cellular malfunctions in the heart.
Collapse
|
39
|
Mitochondrial Ca 2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022; 23:ijms23063025. [PMID: 35328444 PMCID: PMC8954803 DOI: 10.3390/ijms23063025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.
Collapse
|
40
|
Sayles NM, Southwell N, McAvoy K, Kim K, Pesini A, Anderson CJ, Quinzii C, Cloonan S, Kawamata H, Manfredi G. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep 2022; 38:110475. [PMID: 35263592 PMCID: PMC9013208 DOI: 10.1016/j.celrep.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt. Sayles et al. report that mutant CHCHD10 proteotoxicity activates the mitochondrial integrated stress response (ISRmt) in a mouse model of mitochondrial cardiomyopathy. Chronic ISRmt causes profound metabolic imbalances, culminating in oxidative stress and iron dysregulation, ultimately resulting in mitochondrial dysfunction and contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Nicole M Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Nneka Southwell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alba Pesini
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Corey J Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Catarina Quinzii
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Suzanne Cloonan
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; The School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Pearse St, Dublin 2 52-160, Ireland; Tallaght University Hospital, Tallaght, Dublin 24 D24 NR0A, Ireland
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
41
|
Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharmacol 2022; 13:811406. [PMID: 35211017 PMCID: PMC8861498 DOI: 10.3389/fphar.2022.811406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
Collapse
Affiliation(s)
- Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rundong Wu
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linyi Chen
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqiang Yang
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Daoguang Yan
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingchuan Li
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Nishimura A, Tanaka T, Kato Y, Nishiyama K, Nishida M. Cardiac robustness regulated by reactive sulfur species. J Clin Biochem Nutr 2022; 70:1-6. [PMID: 35068674 PMCID: PMC8764107 DOI: 10.3164/jcbn.21-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
The human myocardium contains robust cells that constantly beat from birth to death without being replaced, even when exposed to various environmental stresses. Myocardial robustness is thought to depend primarily on the strength of the reducing power to protect the heart from oxidative stress. Myocardial antioxidant systems are controlled by redox reactions, primarily via the redox reaction of Cys sulfhydryl groups, such as found in thioredoxin and glutathione. However, the specific molecular entities that regulate myocardial reducing power have long been debated. Recently, reactive sulfide species, with excellent electron transfer ability, consisting of a series of multiple sulfur atoms, i.e., Cys persulfide and Cys polysulfides, have been found to play an essential role in maintaining mitochondrial quality and function, as well as myocardial robustness. This review presents the latest findings on the molecular mechanisms underlying mitochondrial energy metabolism and the maintenance of quality control by reactive sulfide species and provides a new insight for the prevention of chronic heart failure.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| | - Tomohiro Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences
| |
Collapse
|
44
|
Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt Systolic Heart Failure. Int J Mol Sci 2021; 23:ijms23010235. [PMID: 35008662 PMCID: PMC8745344 DOI: 10.3390/ijms23010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023] Open
Abstract
Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography–mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid β-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum–mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.
Collapse
|
45
|
Johnson BB, Reinhold J, Holmes TL, Moore JA, Cowell V, Bernardo AS, Rushworth SA, Vassiliou V, Smith JGW. Modelling Metabolic Shifts during Cardiomyocyte Differentiation, Iron Deficiency and Transferrin Rescue Using Human Pluripotent Stem Cells. Metabolites 2021; 12:9. [PMID: 35050131 PMCID: PMC8778576 DOI: 10.3390/metabo12010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023] Open
Abstract
Cardiomyocytes rely on specialised metabolism to meet the high energy demand of the heart. During heart development, metabolism matures and shifts from the predominant utilisation of glycolysis and glutamine oxidation towards lactate and fatty acid oxidation. Iron deficiency (ID) leads to cellular metabolism perturbations. However, the exact alterations in substrate metabolism during ID are poorly defined. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), the present study investigated changes in major metabolic substrate utilisation in the context of ID or upon transferrin rescue. Typically, during hiPSC-CM differentiation, the greatest increase in total metabolic output and rate was seen in fatty acid metabolism. When ID was induced, hiPSC-CMs displayed increased reliance on glycolytic metabolism, and six TCA cycle, five amino acid, and four fatty acid substrates were significantly impaired. Transferrin rescue was able to improve TCA cycle substrate metabolism, but the amino acid and fatty acid metabolism remained perturbed. Replenishing iron stores partially reverses the adverse metabolic changes that occur during ID. Understanding the changes in metabolic substrate utilisation and their modification may provide potential for discovery of new biomarkers and therapeutic targets in cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin B. Johnson
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Johannes Reinhold
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Terri L. Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Jamie A. Moore
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Verity Cowell
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Andreia S. Bernardo
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK;
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Stuart A. Rushworth
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - Vassilios Vassiliou
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| | - James G. W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (B.B.J.); (T.L.H.); (J.A.M.); (V.C.); (S.A.R.); (V.V.)
| |
Collapse
|
46
|
He W, Tang Y, Li C, Zhang X, Huang S, Tan B, Yang Z. Exercise Enhanced Cardiac Function in Mice With Radiation-Induced Heart Disease via the FNDC5/Irisin-Dependent Mitochondrial Turnover Pathway. Front Physiol 2021; 12:739485. [PMID: 34899376 PMCID: PMC8660102 DOI: 10.3389/fphys.2021.739485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Despite the development of radiation therapy (RT) techniques, concern regarding the serious and irreversible heart injury induced by RT has grown due to the lack of early intervention measures. Although exercise can act as an effective and economic nonpharmacologic strategy to combat fatigue and improve quality of life for cancer survivors, limited data on its application in radiation-induced heart disease (RIHD) and the underlying molecular mechanism are available. Methods: Fifteen young adult male mice were enrolled in this study and divided into 3 groups (including exercised RIHD group, sedentary RIHD group, and controls; n =5 samples/group). While the mice in the control group were kept in cages without irradiation, those in the exercised RIHD group underwent 3weeks of aerobic exercise on the treadmill after radiotherapy. At the end of the 3rd week following RT, FNDC5/irisin expression, cardiac function, aerobic fitness, cardiomyocyte apoptosis, mitochondrial function, and mitochondrial turnover in the myocardium were assessed to identify the protective role of exercise in RIHD and investigate the potential mechanism. Results: While sedentary RIHD group had impaired cardiac function and aerobic fitness than controls, the exercised RIHD mice had improved cardiac function and aerobic fitness, elevated ATP production and the mitochondrial protein content, decreased mitochondrial length, and increased formation of mitophagosomes compared with sedentary RIHD mice. These changes were accompanied by the elevated expression of FNDC5/irisin, a fission marker (DRP1) and mitophagy markers (PINK1 and LC3B) in exercised RIHD group than that of sedentary RIHD group, but the expression of biogenesis (TFAM) and fusion (MFN2) markers was not significantly changed. Conclusion: Exercise could enhance cardiac function and aerobic fitness in RIHD mice partly through an autocrine mechanism via FNDC5/irisin, in which autophagy was selectively activated, suggesting that FNDC5/irisin may act as an intervening target to prevent the development of RIHD.
Collapse
Affiliation(s)
- Wuyang He
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinghong Tang
- Department of Geriatric Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunqiu Li
- Department of Geriatric Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyue Zhang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunping Huang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benxu Tan
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Yang
- Oncology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Azimzadeh O, Subramanian V, Sievert W, Merl-Pham J, Oleksenko K, Rosemann M, Multhoff G, Atkinson MJ, Tapio S. Activation of PPARα by Fenofibrate Attenuates the Effect of Local Heart High Dose Irradiation on the Mouse Cardiac Proteome. Biomedicines 2021; 9:biomedicines9121845. [PMID: 34944662 PMCID: PMC8698387 DOI: 10.3390/biomedicines9121845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023] Open
Abstract
Radiation-induced cardiovascular disease is associated with metabolic remodeling in the heart, mainly due to the inactivation of the transcription factor peroxisome proliferator-activated receptor alpha (PPARα), thereby inhibiting lipid metabolic enzymes. The objective of the present study was to investigate the potential protective effect of fenofibrate, a known agonist of PPARα on radiation-induced cardiac toxicity. To this end, we compared, for the first time, the cardiac proteome of fenofibrate- and placebo-treated mice 20 weeks after local heart irradiation (16 Gy) using label-free proteomics. The observations were further validated using immunoblotting, enzyme activity assays, and ELISA. The analysis showed that fenofibrate restored signalling pathways that were negatively affected by irradiation, including lipid metabolism, mitochondrial respiratory chain, redox response, tissue homeostasis, endothelial NO signalling and the inflammatory status. The results presented here indicate that PPARα activation by fenofibrate attenuates the cardiac proteome alterations induced by irradiation. These findings suggest a potential benefit of fenofibrate administration in the prevention of cardiovascular diseases, following radiation exposure.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection, 85764 Neuherberg, Germany
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
- Correspondence: ; Tel.: +49-030/18333-2242
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| | - Wolfgang Sievert
- Department of Radiation Oncology, Campus Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (W.S.); (G.M.)
- Central Institute for Translational Cancer Research-TranslaTUM, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München—German Research Centre for Environmental Health GmbH, 80939 Munich, Germany;
| | - Kateryna Oleksenko
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
| | - Michael Rosemann
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
| | - Gabriele Multhoff
- Department of Radiation Oncology, Campus Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (W.S.); (G.M.)
- Central Institute for Translational Cancer Research-TranslaTUM, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
- Chair of Radiation Biology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (V.S.); (K.O.); (M.R.); (M.J.A.); (S.T.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
48
|
Song H, Polster BM, Thompson LP. Chronic hypoxia alters cardiac mitochondrial complex protein expression and activity in fetal guinea pigs in a sex-selective manner. Am J Physiol Regul Integr Comp Physiol 2021; 321:R912-R924. [PMID: 34730023 PMCID: PMC8714812 DOI: 10.1152/ajpregu.00004.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O2), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all P < 0.05). Late-onset HPX decreased (P < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Loren P Thompson
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
49
|
Velasco-Ruiz A, Nuñez-Torres R, Pita G, Wildiers H, Lambrechts D, Hatse S, Delombaerde D, Van Brussel T, Alonso MR, Alvarez N, Herraez B, Vulsteke C, Zamora P, Lopez-Fernandez T, Gonzalez-Neira A. POLRMT as a Novel Susceptibility Gene for Cardiotoxicity in Epirubicin Treatment of Breast Cancer Patients. Pharmaceutics 2021; 13:1942. [PMID: 34834357 PMCID: PMC8622627 DOI: 10.3390/pharmaceutics13111942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Anthracyclines are among the most used chemotherapeutic agents in breast cancer (BC). However their use is hampered by anthracycline-induced cardiotoxicity (AIC). The currently known clinical and genetic risk factors do not fully explain the observed inter-individual variability and only have a limited ability to predict which patients are more likely to develop this severe toxicity. To identify novel predictive genes, we conducted a two-stage genome-wide association study in epirubicin-treated BC patients. In the discovery phase, we genotyped over 700,000 single nucleotide variants in a cohort of 227 patients. The most interesting finding was rs62134260, located 4kb upstream of POLRMT (OR = 5.76, P = 2.23 × 10-5). We replicated this association in a validation cohort of 123 patients (P = 0.021). This variant regulates the expression of POLRMT, a gene that encodes a mitochondrial DNA-directed RNA polymerase, responsible for mitochondrial gene expression. Individuals harbouring the risk allele had a decreased expression of POLRMT in heart tissue that may cause an impaired capacity to maintain a healthy mitochondrial population in cardiomyocytes under stressful conditions, as is treatment with epirubicin. This finding suggests a novel molecular mechanism involved in the development of AIC and may improve our ability to predict patients who are at risk.
Collapse
Affiliation(s)
- Alejandro Velasco-Ruiz
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Rocio Nuñez-Torres
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Guillermo Pita
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - Sigrid Hatse
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Thomas Van Brussel
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - M. Rosario Alonso
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Nuria Alvarez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Belen Herraez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pilar Zamora
- Department of Medical Oncology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Teresa Lopez-Fernandez
- Department of Cardiology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Anna Gonzalez-Neira
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| |
Collapse
|
50
|
Targeting PINK1 Using Natural Products for the Treatment of Human Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4045819. [PMID: 34751247 PMCID: PMC8572127 DOI: 10.1155/2021/4045819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
PINK1, also known as PARK6, is a PTEN-induced putative kinase 1 that is encoded by nuclear genes. PINK1 is ubiquitously expressed and regulates mitochondrial function and mitophagy in a range of cell types. The dysregulation of PINK1 is associated with the pathogenesis and development of mitochondrial-associated disorders. Many natural products could regulate PINK1 to relieve PINK1-associated diseases. Here, we review the structure and function of PINK1, its relationship to human diseases, and the regulation of natural products to PINK1. We further highlight that the discovery of natural PINK1 regulators represents an attractive strategy for the treatment of PINK1-related diseases, including liver and heart diseases, cancer, and Parkinson's disease. Moreover, investigating PINK1 regulation of natural products can enhance the in-depth comprehension of the mechanism of action of natural products.
Collapse
|