1
|
Zakyrjanova GF, Matigorova VA, Kuznetsova EA, Dmitrieva SA, Tyapkina OV, Tsentsevitsky AN, Andreyanova SN, Odnoshivkina JG, Shigapova RR, Mukhamedshina YO, Gogolev YV, Petrov AM. Key genes and processes affected by atorvastatin treatment in mouse diaphragm muscle. Arch Toxicol 2025:10.1007/s00204-025-04056-6. [PMID: 40234311 DOI: 10.1007/s00204-025-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Statins are one of the top prescribed medications and are used for preventing or treating cardiovascular diseases. Myalgia, muscle fatigue, weakness, and inflammation are the most common side effects of these drugs collectively named statin-associated muscle symptoms (SAMS). The mechanisms underlying SAMS remain unclear. Given that statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of mevalonate pathway, responsible for synthesis of cholesterol and other vital molecules, SAMS may be mediated by multiple reasons. Herein, using unbiased whole transcriptome sequencing, we identified statin-affected processes and then assessed them using fluorescent, biochemical, and histological approaches in the mouse diaphragm, the main respiratory muscle. Mice were orally treated for 1 month with atorvastatin, the most prescribed statin, at clinically relevant dose. We found that atorvastatin caused downregulation of genes encoding proteins required for oxidative phosphorylation and anabolic processes, whereas genes of proteins engaged inflammation and muscle atrophy were mainly up-regulated. Furthermore, alterations in gene expression pattern suggest oxidative stress and abnormal lipid accumulation. This transcriptome signature correlated to a decrease in mitochondrial polarization and protein synthesis capacity, as well as an increase in lipid peroxidation and reactive oxygen species production. In addition, atorvastatin treatment caused lipid raft disruption, phospholipidosis, myelin de-compactization, and appearance of greater heterogeneity of muscle fiber cross-section diameter. Thus, atorvastatin treatment can negatively affect diaphragm muscle via oxidative stress accompanied by decrease in mitochondrial activity, protein synthesis, and stability of plasma membrane. As a part of compensatory response can serve enhanced activity of superoxide dismutase and cholesterol uptake capacity.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Valeriya A Matigorova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Oksana V Tyapkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Sofya N Andreyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Julia G Odnoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Rezeda R Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
2
|
Shimizu J, Kawano F. DNA hypermethylation preceded by H3K27 trimethylation is linked to downregulation of gene expression in disuse muscle atrophy in male mice. Physiol Rep 2025; 13:e70317. [PMID: 40223401 PMCID: PMC11994892 DOI: 10.14814/phy2.70317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Disuse muscle atrophy can result in downregulated gene expression vital to muscle integrity, yet the mechanisms driving this downregulation remain unclear. Epigenetic alterations regulate transcriptional potential, with repressive changes suppressing gene expression. This study explored epigenetic mechanisms of gene downregulation during disuse muscle atrophy. Male C57BL/6J mice underwent hindlimb suspension for 3 or 7 days. The vastus intermedius (VI) muscle was analyzed, showing unchanged mass on day 3, but on day 7, decreased mass and reduced fiber size were assessed via immunohistochemistry. Corresponding to this atrophy timing, qPCR analysis revealed nine downregulated genes on day 7, which were selected for epigenetic analysis; collectively, they showed no downregulation on day 3. Among the nine genes, methylated DNA immunoprecipitation revealed significantly elevated DNA methylation (hypermethylation) in the upstream regions of transcription start sites (TSS) on day 7, which overall negatively correlated with gene expression. Histone marks (H3K27me3, H3K4me3, H3.3, and total H3) were also assessed using chromatin immunoprecipitation, revealing that the repressive histone mark H3K27me3 increased in the regions on day 3 but decreased on day 7. These findings suggest that DNA hypermethylation in the upstream regions preceded by H3K27me3 enrichment contributes to the downregulation of gene expression during disuse muscle atrophy.
Collapse
Affiliation(s)
- Junya Shimizu
- Graduate School of Health ScienceMatsumoto UniversityNaganoJapan
| | - Fuminori Kawano
- Graduate School of Health ScienceMatsumoto UniversityNaganoJapan
| |
Collapse
|
3
|
Jiao XF, Gao Y, Ni R, Zhao WY, Zhao C, Lu X, Zhang HF, Gao W, Luo L. Low serum HSPA12B levels are associated with an increased risk of sarcopenia in a Chinese population of older adults. Cell Stress Chaperones 2025; 30:100-108. [PMID: 39983811 PMCID: PMC11909431 DOI: 10.1016/j.cstres.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Heat shock protein (HSP) A12B is essential for angiogenesis and endothelial function. However, the association of HSPA12B levels with sarcopenia remains unclear. A total of 936 community-dwelling elderly people were recruited, and serum HSPA12B was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. We found that serum HSPA12B levels in patients with sarcopenia (median [interquartile range] = 182.15 [137.58-225.86] ng/mL) were lower than those in elderly people without sarcopenia (228.96 [193.03-292.93] ng/mL, P < 0.001). Receiver operating characteristic curve analysis indicated that the optimal cut-off value of serum HSPA12B level for predicting sarcopenia was 185.50 ng/mL, with a sensitivity of 52.6% and a specificity of 80.8% (area under curve = 0.742, 95% confidence interval [CI] = 0.711-0.772, P < 0.001). Moreover, serum HSPA12B concentration was positively correlated with ASMI (r = 0.354, P < 0.001), grip strength (r = 0.381, P < 0.001), and gait speed (r = 0.169, P < 0.001). Multivariate logistic regression analysis showed that decreased serum HSPA12B levels (<185.50 ng/mL) were a risk factor for increased risk of sarcopenia (adjusted odds ratio = 4.335, 95% CI = 3.136-5.993, P < 0.001). In addition, serum HSPA12B level was also positively correlated with serum levels of angiogenesis markers, vascular endothelial growth factor (r = 0.080, P = 0.014), and angiopoietin-1 (r = 0.108, P = 0.001). In summary, our results indicate that low serum HSPA12B level is associated with an increased risk of sarcopenia in the elderly, suggesting a potential role of HSPA12B in the development of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Ni
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen-Ya Zhao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
5
|
Mackei M, Huber F, Sebők C, Vörösházi J, Tráj P, Márton RA, Neogrády Z, Mátis G. Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees. Heliyon 2025; 11:e41291. [PMID: 39811324 PMCID: PMC11730214 DOI: 10.1016/j.heliyon.2024.e41291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles. The results show that the redox homeostasis, especially the glutathione system, of the exposed animals is severely impaired by the treatment, but flight muscles are able to successfully counteract the detrimental effects by the effective activation of protective processes. This efficient adaptation may have led to overcompensation processes eventually resulting in lower hydrogen peroxide and malondialdehyde concentrations after exposure. It could also be assumed that tebuconazole has a non-monotonic dose-response curve similarly to many other substances with endocrine-disrupting activity concerning parameters such as superoxide dismutase activity or total antioxidant capacity. These findings shed light on the detrimental impact of tebuconazole on the redox balance of honey bee flight muscles, also highlighting, that unlike other organs such as the brain, they may effectively adapt to acute tebuconazole exposure.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Fanni Huber
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
6
|
Al Amaz S, Shahid MAH, Jha R, Mishra B. Prehatch thermal manipulation of embryos and posthatch baicalein supplementation increased liver metabolism, and muscle proliferation in broiler chickens. Poult Sci 2024; 103:104155. [PMID: 39216265 PMCID: PMC11402044 DOI: 10.1016/j.psj.2024.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The exposure of broiler chickens to high ambient temperatures causes heat stress (HS), negatively affecting their health and production performance. To mitigate heat stress in broilers, various strategies, including dietary, managerial, and genetic interventions, have been extensively tested with varying degrees of efficacy. For sustainable broiler production, it is imperative to develop an innovative approach that effectively mitigates the adverse effects of HS. Our previous studies have provided valuable insights into the effects of prehatch embryonic thermal manipulation (TM) and posthatch baicalein supplementation on embryonic thermotolerance, metabolism, and posthatch growth performance. This follow-up study investigated the effect of these interventions on gluconeogenesis and lipid metabolism in the liver, as well as muscle proliferation and regeneration capacity in heat-stressed broiler chickens. A total of six-hundred fertile Cobb 500 eggs were incubated for 21 d. After candling, 238 eggs were subjected to TM at 38.5°C with 55% relative humidity (RH) from embryonic day (ED) 12 to 18. These eggs were transferred to the hatcher and kept at a standard temperature (37.5°C) from ED 19 to 21, while 236 eggs were incubated at a controlled temperature (37.5°C) till hatch. After hatching, 180 day-old chicks from both groups were raised in 36 pens treatment (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) Control heat stress (CHS), 4) Thermal manipulation heat stress (TMHS), 5) Control heat stress supplement (CHSS), and 6) Thermal manipulation heat stress supplement (TMHSS). Baicalein was added to the treatment group diets starting from d 1. All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 ⁰C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24⁰C) environment was maintained in the Control and TM groups. RH was constant (50 ± 5%) throughout the trial. In the liver, TM significantly increased (P < 0.05) IGF2 expression. Baicalein supplementation significantly increased (P < 0.05) HSF3, HSP70, SOD1, SOD2, TXN, PRARα, and GHR expression. Moreover, the combination of TM and baicalein supplementation significantly increased (P < 0.05) the expression of HSPH1, HSPB1, HSP90, LPL, and GHR. In the muscle, TM significantly increased (P < 0.05) HSF3 and Myf5 gene expression. TM and baicalein supplementation significantly increased (P < 0.05) the expression of MyoG and significantly (P < 0.05) decreased mTOR and PAX7. In conclusion, the prehatch TM of embryos and posthatch baicalein supplementation mitigated the deleterious effects of HS on broiler chickens by upregulating genes related to liver gluconeogenesis, lipid metabolism, and muscle proliferation.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Md Ahosanul Haque Shahid
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Manoa, Honolulu, HI 96822.
| |
Collapse
|
7
|
Bai Y, Harvey T, Bilyou C, Hu M, Fan CM. Skeletal Muscle Satellite Cells Co-Opt the Tenogenic Gene Scleraxis to Instruct Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570982. [PMID: 38168349 PMCID: PMC10760055 DOI: 10.1101/2023.12.10.570982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skeletal muscles connect bones and tendons for locomotion and posture. Understanding the regenerative processes of muscle, bone and tendon is of importance to basic research and clinical applications. Despite their interconnections, distinct transcription factors have been reported to orchestrate each tissue's developmental and regenerative processes. Here we show that Scx expression is not detectable in adult muscle stem cells (also known as satellite cells, SCs) during quiescence. Scx expression begins in activated SCs and continues throughout regenerative myogenesis after injury. By SC-specific Scx gene inactivation (ScxcKO), we show that Scx function is required for SC expansion/renewal and robust new myofiber formation after injury. We combined single-cell RNA-sequencing and CUT&RUN to identify direct Scx target genes during muscle regeneration. These target genes help explain the muscle regeneration defects of ScxcKO, and are not overlapping with Scx -target genes identified in tendon development. Together with a recent finding of a subpopulation of Scx -expressing connective tissue fibroblasts with myogenic potential during early embryogenesis, we propose that regenerative and developmental myogenesis co-opt the Scx gene via different mechanisms.
Collapse
|
8
|
Makhnovskii PA, Kukushkina IV, Kurochkina NS, Popov DV. Knockout of Hsp70 genes significantly affects locomotion speed and gene expression in leg skeletal muscles of Drosophila melanogaster. Physiol Genomics 2024; 56:567-575. [PMID: 38881428 DOI: 10.1152/physiolgenomics.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The functions of the heat shock protein 70 (Hsp70) genes were studied using a line of Drosophila melanogaster with a knockout of 6 of these genes out of 13. Namely, the effect of knockout of Hsp70 genes on negative geotaxis climbing (locomotor) speed and the ability to adapt to climbing training (0.5-1.5 h/day, 7 days/wk, 19 days) were examined. Seven- and 23-day-old Hsp70- flies demonstrated a comparable reduction (twofold) in locomotor speed and widespread changes in leg skeletal muscle transcriptome (RNA sequencing) compared with w1118 flies. To identify the functions of genes related to decreased locomotor speed, the overlapped differentially expressed genes at both time points were analyzed: the upregulated genes encoded extracellular proteins, regulators of drug metabolism, and the antioxidant response, whereas downregulated genes encoded regulators of carbohydrate metabolism and transmembrane proteins. In addition, in Hsp70- flies, activation of transcription factors related to disruption of the fibril structure and heat shock response (Hsf) was predicted, using the position weight matrix approach. In control flies, adaptation to chronic exercise training was associated mainly with gene response to a single exercise bout, whereas the predicted transcription factors were related to stress/immune (Hsf, NF-κB, etc.) and early gene response. In contrast, Hsp70- flies demonstrated no adaptation to training as well as a significantly impaired gene response to a single exercise bout. In conclusion, the knockout of Hsp70 genes not only reduced physical performance but also disrupted adaptation to chronic physical training, which is associated with changes in the leg skeletal muscle transcriptome and impaired gene response to a single exercise bout.NEW & NOTEWORTHY Knockout of six heat shock protein 70 (Hsp70) genes in Drosophila melanogaster reduced locomotion (climbing) speed that is associated with genotype-specific differences in leg skeletal muscle gene expression. Disrupted adaptation of Hsp70- flies to chronic exercise training is associated with impaired gene response to a single exercise bout.
Collapse
Affiliation(s)
- Pavel A Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Inna V Kukushkina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Nadia S Kurochkina
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins of organelles, cellular signaling, bioenergetic metabolism and molecular chaperoning. Eur J Transl Myol 2024; 34:12565. [PMID: 38787292 PMCID: PMC11264233 DOI: 10.4081/ejtm.2024.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
11
|
Filice M, Caferro A, Gattuso A, Sperone E, Agnisola C, Faggio C, Cerra MC, Imbrogno S. Effects of environmental hypoxia on the goldfish skeletal muscle: Focus on oxidative status and mitochondrial dynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104299. [PMID: 38237486 DOI: 10.1016/j.jconhyd.2024.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
The skeletal muscle is a highly plastic tissue. Its ability to respond to external stimuli and challenges allows it to face the functional needs of the organism. In the goldfish Carassius auratus, a model of hypoxia resistance, exposure to reduced oxygen is accompanied by an improvement of the swimming performance, relying on a sustained contractile behavior of the skeletal muscle. At the moment, limited information is available on the mechanisms underlying these responses. We here evaluated the effects of short- (4 days) and long- (20 days) term exposure to moderate water hypoxia on the goldfish white skeletal muscle, focusing on oxidative status and mitochondrial dynamics. No differences in lipid peroxidation, measured as 2-thiobarbituric acid-reacting substances (TBARS), and oxidatively modified proteins (OMP) were detected in animals exposed to hypoxia with respect to their normoxic counterparts. Exposure to short-term hypoxia was characterized by an enhanced SOD activity and expression, paralleled by increased levels of Nrf2, a regulator of the antioxidant cell response, and HSP70, a chaperone also acting as a redox sensor. The expression of markers of mitochondrial biogenesis (TFAM) and abundance (VDAC) and of the mtDNA/nDNA ratio was similar under normoxia and under both short- and long-term hypoxia, thus excluding a rearrangement of the mitochondrial apparatus. Only an increase of PGC1α (a transcription factor involved in mitochondrial dynamics) was detected after 20 days of hypoxia. Our results revealed novel aspects of the molecular mechanisms that in the goldfish skeletal muscle may sustain the response to hypoxia, thus contributing to adequate tissue function to organism requirements.
Collapse
Affiliation(s)
- Mariacristina Filice
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Alessia Caferro
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Alfonsina Gattuso
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Emilio Sperone
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Claudio Agnisola
- Dept. of Biological Sciences, University of Naples Federico II, Napoli, Italy
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Dept. of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Maria Carmela Cerra
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Sandra Imbrogno
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
12
|
Hong L, Xu D, Li W, Wang Y, Cao N, Fu X, Tian Y, Li Y, Li B. Non-coding RNA regulation of Magang geese skeletal muscle maturation via the MAPK signaling pathway. Front Physiol 2024; 14:1331974. [PMID: 38314139 PMCID: PMC10834734 DOI: 10.3389/fphys.2023.1331974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle is a critical component of goose meat and a significant economic trait of geese. The regulatory roles of miRNAs and lncRNAs in the maturation stage of goose skeletal muscle are still unclear. Therefore, this study conducted experiments on the leg muscles of Magang geese at two stages: 3-day post-hatch (P3) and 3 months (M3). Morphological observations revealed that from P3 to M3, muscle fibers mainly underwent hypertrophy and maturation. The muscle fibers became thicker, nuclear density decreased, and nuclei moved towards the fiber edges. Additionally, this study analyzed the expression profiles of lncRNAs, miRNAs, and mRNAs during the skeletal muscle fiber maturation stage, identifying 1,949 differentially expressed mRNAs (DEMs), 21 differentially expressed miRNAs (DEMIs), and 172 differentially expressed lncRNAs (DELs). Furthermore, we performed enrichment analyses on DEMs, cis-regulatory genes of DELs, and target DEMs of DEMIs, revealing significant enrichment of signaling pathways including MAPK, PPAR, and mTOR signaling pathways. Among these, the MAPK signaling pathway was the only pathway enriched across all three types of differentially expressed RNAs, indicating its potentially more significant role in skeletal muscle maturation. Finally, this study integrated the targeting relationships between DELs, DEMs, and DEMIs from these two stages to construct a ceRNA regulatory network. These findings unveil the potential functions and mechanisms of lncRNAs and miRNAs in the growth and development of goose skeletal muscle and provide valuable references for further exploration of the mechanism underlying the maturation of Magang geese leg muscle.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifeng Wang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
13
|
Ghozali DA, Doewes M, Soetrisno S, Indarto D, Ilyas MF. Dose-response effect of L-citrulline on skeletal muscle damage after acute eccentric exercise: an in vivo study in mice. PeerJ 2023; 11:e16684. [PMID: 38130917 PMCID: PMC10734431 DOI: 10.7717/peerj.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Background Eccentric exercise may trigger mechanical stress, resulting in muscle damage that may decrease athletic performance. L-citrulline potentially prevents skeletal muscle damage after acute eccentric exercise. This study aimed to assess the dose-response effect of L-citrulline as a preventive therapy for skeletal muscle damage in mice after acute eccentric exercise. Methods This is a controlled laboratory in vivo study with a post-test-only design. Male mice (BALB/c, n = 25) were randomized into the following groups: a normal control (C1) (n = 5); a negative control (C2) with downhill running and placebo intervention (n = 5); treatment groups: T1 (n = 5), T2 (n = 5), and T3 (n = 5), were subjected to downhill running and 250, 500, and 1,000 mg/kg of L-citrulline, respectively, for seven days. Blood plasma was used to determine the levels of TNNI2 and gastrocnemius muscle tissue NOX2, IL-6, and caspase 3 using ELISA. NF-κB and HSP-70 expressions were determined by immunohistochemistry. Results Skeletal muscle damage (plasma TNNI2 levels) in mice after eccentric exercise was lower after 250 and 500 mg/kg of L-citrulline. Further, changes in oxidative stress markers, NOX2, were reduced after a 1,000 mg/kg dose. However, a lower level of change has been observed in levels of cellular response markers (NF-κB, HSP-70, IL-6, and caspase 3) after administration of L-citrulline doses of 250, 500, and 1,000 mg/kg. Conclusion L-citrulline may prevent skeletal muscle damage in mice after acute eccentric exercise through antioxidant effects as well as inflammatory and apoptotic pathways. In relation to dose-related effects, it was found that L-citrulline doses of 250, 500, and 1,000 mg/kg significantly influenced the expression of NF-κB and HSP-70, as well as the levels of IL-6 and caspase 3. Meanwhile, only doses of 250 and 500 mg/kg had an impact on TNNI2 levels, and the 1,000 mg/kg dose affected NOX2 levels.
Collapse
Affiliation(s)
- Dhoni Akbar Ghozali
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muchsin Doewes
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Soetrisno Soetrisno
- Departement of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Dono Indarto
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muhana Fawwazy Ilyas
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Department of Neurology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
14
|
Maiullari S, Cicirelli A, Picerno A, Giannuzzi F, Gesualdo L, Notarnicola A, Sallustio F, Moretti B. Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress. Int J Mol Sci 2023; 24:16631. [PMID: 38068954 PMCID: PMC10706358 DOI: 10.3390/ijms242316631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.
Collapse
Affiliation(s)
- Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Angela Notarnicola
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| |
Collapse
|
15
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
16
|
Kim WS, Kim J. Exploring the impact of temporal heat stress on skeletal muscle hypertrophy in bovine myocytes. J Therm Biol 2023; 117:103684. [PMID: 37625343 DOI: 10.1016/j.jtherbio.2023.103684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The primary aim of this investigation was to explore the impact of different temporal stress conditions on the regulators associated with skeletal muscle hypertrophy in bovine myocytes. Bovine satellite cells (BSCs) were extracted from three-month-old Holstein bull calves and subjected to myogenic differentiation under three thermal treatments: 38 °C (control; CON), 39.5 °C (moderate heat stress; MHS), and 41 °C (extreme heat stress; EHS) for a duration of 3 or 48 h. Exposure to EHS resulted in elevated (P < 0.01) expression levels of heat shock protein (HSP)20, HSP27, HSP70, and HSP90, along with increased (P < 0.01) protein levels. Moreover, cells exposed to MHS and EHS exhibited enhanced (P < 0.01) gene expression of myoblast determination protein 1 (MyoD), while myogenin (MyoG) was overexpressed (P < 0.01) in cells exposed to EHS. These findings suggest that heat exposure can potentially induce myogenic differentiation through the modulation of myogenic regulatory factors. Furthermore, our investigations revealed that exposure to EHS upregulated (P < 0.01) myosin heavy chain (MHC) I expression, whereas MHC IIA (P < 0.01) and IIX (P < 0.01) expression were increased; P < 0.01) under MHS conditions. These observations suggest that the temperature of the muscle may alter the proportion of muscle fiber types. Additionally, our data indicated that EHS activated (P < 0.01) the expression of insulin-like growth factor 1 (IGF-1) and triggered the activation of the Akt/mTOR/S6KB1 pathway, a known anabolic pathway associated with cellular protein synthesis. Consequently, these altered signaling pathways contributed to enhanced protein synthesis and increased myotube size. Overall, the results obtained from our current study revealed that extreme heat exposure (41 °C) may promote skeletal muscle hypertrophy by regulating myogenic regulatory factors and IGF-1-mediated mTOR pathway in bovine myocytes.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jongkyoo Kim
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
17
|
Iwai S, Kaji K, Nishimura N, Kubo T, Tomooka F, Shibamoto A, Suzuki J, Tsuji Y, Fujinaga Y, Kitagawa K, Namisaki T, Akahane T, Yoshiji H. Glucagon-like peptide-1 receptor agonist, semaglutide attenuates chronic liver disease-induced skeletal muscle atrophy in diabetic mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166770. [PMID: 37276988 DOI: 10.1016/j.bbadis.2023.166770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
A glucagon-like peptide-1 receptor agonist (GLP-1RA) has recently been established as a pharmacological option for the treatment of type 2 diabetes. Recent studies have demonstrated the molecular role of GLP-1R in skeletal muscle homeostasis; however, the therapeutic efficacy of semaglutide, a GLP-1RA, on skeletal muscle atrophy in chronic liver disease (CLD) under diabetic conditions remains unclear. In the present study, semaglutide effectively inhibited psoas muscle atrophy and suppressed declines in grip strength in a diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-fed diabetic KK-Ay mouse model. Moreover, semaglutide inhibited ubiquitin-proteosome-mediated skeletal muscle proteolysis and promoted myogenesis in palmitic acid (PA)-stimulated C2C12 murine myocytes. Mechanistically, this effect of semaglutide on skeletal muscle atrophy was mediated by multiple functional pathways. First, semaglutide protected against hepatic injury in mice accompanied by increased production of insulin-like growth factor 1 and reduced accumulation of reactive oxygen species (ROS). These effects were associated with decreased proinflammatory cytokines and ROS accumulation, leading to the suppression of ubiquitin-proteosome muscle degradation. Moreover, semaglutide inhibited the amino acid starvation-related stress signaling that was activated under chronic liver injury, resulting in the recovery of the mammalian target of rapamycin activity in the skeletal muscle of DDC-diet fed KK-Ay mice. Second, semaglutide improved skeletal muscle atrophy by directly stimulating GLP-1R in myocytes. Semaglutide induced cAMP-mediated activation of PKA and AKT, enhanced mitochondrial biogenesis, and reduced ROS accumulation, thereby resulting in inhibition of NF-κB/myostatin-mediated ubiquitin-proteosome degradation and the augmentation of heat-shock factor-1-mediated myogenesis. Collectively, semaglutide may have potential as a new therapeutic strategy for CLD-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
18
|
Ramey-Ward A, Dong Y, Yang J, Ogasawara H, Bremer-Sai EC, Brazhkina O, Franck C, Davis M, Salaita K. Optomechanically Actuated Hydrogel Platform for Cell Stimulation with Spatial and Temporal Resolution. ACS Biomater Sci Eng 2023; 9:5361-5375. [PMID: 37604774 PMCID: PMC10498418 DOI: 10.1021/acsbiomaterials.3c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Cells exist in the body in mechanically dynamic environments, yet the vast majority of in vitro cell culture is conducted on static materials such as plastic dishes and gels. To address this limitation, we report an approach to transition widely used hydrogels into mechanically active substrates by doping optomechanical actuator (OMA) nanoparticles within the polymer matrix. OMAs are composed of gold nanorods surrounded by a thermoresponsive polymer shell that rapidly collapses upon near-infrared (NIR) illumination. As a proof of concept, we crosslinked OMAs into laminin-gelatin hydrogels, generating up to 5 μm deformations triggered by NIR pulsing. This response was tunable by NIR intensity and OMA density within the gel and is generalizable to other hydrogel materials. Hydrogel mechanical stimulation enhanced myogenesis in C2C12 myoblasts as evidenced by ERK signaling, myocyte fusion, and sarcomeric myosin expression. We also demonstrate rescued differentiation in a chronic inflammation model as a result of mechanical stimulation. This work establishes OMA-actuated biomaterials as a powerful tool for in vitro mechanical manipulation with broad applications in the field of mechanobiology.
Collapse
Affiliation(s)
- Allison
N. Ramey-Ward
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jin Yang
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth C. Bremer-Sai
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Olga Brazhkina
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Christian Franck
- Department
of Mechanical Engineering, University of
Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Michael Davis
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Mnuskina S, Bauer J, Wirth-Hücking A, Schneidereit D, Nübler S, Ritter P, Cacciani N, Li M, Larsson L, Friedrich O. Single fibre cytoarchitecture in ventilator-induced diaphragm dysfunction (VIDD) assessed by quantitative morphometry second harmonic generation imaging: Positive effects of BGP-15 chaperone co-inducer and VBP-15 dissociative corticosteroid treatment. Front Physiol 2023; 14:1207802. [PMID: 37440999 PMCID: PMC10333583 DOI: 10.3389/fphys.2023.1207802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.
Collapse
Affiliation(s)
- Sofia Mnuskina
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Bauer
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anette Wirth-Hücking
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA, United States
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
20
|
Santos AR, Koike TE, Santana AM, Miranda NC, Dell Aquila RA, Silva TC, Aoki MS, Miyabara EH. Glutamine supplementation accelerates functional recovery of EDL muscles after injury by modulating the expression of S100 calcium-binding proteins. Histochem Cell Biol 2023:10.1007/s00418-023-02194-5. [PMID: 37179509 DOI: 10.1007/s00418-023-02194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1β and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.
Collapse
Affiliation(s)
- Audrei R Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Alana M Santana
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Natalya C Miranda
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Rodrigo A Dell Aquila
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Thiago C Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil
| | - Marcelo S Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, SP, 03828-000, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
21
|
Park J, Lee J, Shim K. Effects of heat stress exposure on porcine muscle satellite cells. J Therm Biol 2023; 114:103569. [PMID: 37344027 DOI: 10.1016/j.jtherbio.2023.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 06/23/2023]
Abstract
Heat stress (HS) affects cell culture as well as animal production. Although there have been many reports on the disparate effects of heat stress, its effects on mammalian muscle stem cells are still unclear. In this study, we isolated porcine muscle satellite cells (PMSCs) from the femurs of 1-day-old piglets, and cultured them under three temperature conditions: 37 °C, 39 °C, and 41 °C. Exposure to HS not only decreased the viability and proliferation rates of PMSCs, but also regulated the cell cycle and induced apoptosis. High-temperature culture conditions decreased both protein and gene expression of Pax7, a proliferation and maintenance marker of muscle satellite cells, whereas it increased both protein and gene expression of MyoG, a differentiation marker, and promoted myotube formation in the early stage of differentiation induction. In addition, the protein and gene expression of several heat shock proteins (HSPs) in PMSCs increased due to heat treatment. In conclusion, HS induced the cell cycle arrest of PMSCs, thereby reducing the proliferation rate. In addition, high-temperature culture conditions promoted the formation of myotubes at the early stage of differentiation of PMSCs without additives.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea; 3D Tissue Culture Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea; Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
22
|
Lubkowska A, Dudzińska W, Pluta W. Antioxidant Enzyme Activity and Serum HSP70 Concentrations in Relation to Insulin Resistance and Lipid Profile in Lean and Overweight Young Men. Antioxidants (Basel) 2023; 12:antiox12030655. [PMID: 36978903 PMCID: PMC10044875 DOI: 10.3390/antiox12030655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Oxidants are generated by all cells during normal oxidative respiration, and as long as they are under the control of appropriate mechanisms, they act as intracellular signaling molecules participating in complex functions. Oxidative stress can also affect insulin levels in the body. The production of reactive oxygen species by-products can lead to insulin resistance. Heat shock proteins (70 kDa) protect cells from the damaging effects of heat shock but also oxidative stress. The aim of the study was to investigate the serum concentration of HSP70 in young, non-obese but overweight men (BMI ≤ 30 kg/m2) and to assess its association with the insulin resistance, lipid profile and antioxidant system of red blood cells. Fifty-seven young men were examined and divided into two groups: lean men (n = 30) and men overweight (n = 27). A statistically significant difference was observed in the BMI (p < 0.007), HSP70 concentration (p < 0.000), serum insulin concentration (p < 0.000), HOMA-IR (p < 0.0001), superoxide dismutase (p < 0.02) and glutathione peroxidase (p < 0.05) between the studied groups. There was a negative correlation between the concentration of HSP70 with the insulin level (r = −0.50; p < 0.0004) and with the HOMA-IR (r = −0.50; p < 0.0004). These changes were associated with an increase in the activity of antioxidant enzymes. Our findings suggest that measuring the extracellular concentration of HSP70 can be an important indicator in disorders of glucose homeostasis.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Correspondence:
| | - Wioleta Dudzińska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
| |
Collapse
|
23
|
Pilch W, Szarek M, Olga CL, Anna P, Żychowska M, Ewa SK, Andraščíková Š, Pałka T. The effects of a single and a series of Finnish sauna sessions on the immune response and HSP-70 levels in trained and untrained men. Int J Hyperthermia 2023; 40:2179672. [PMID: 36813265 DOI: 10.1080/02656736.2023.2179672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The aim of the study was to investigate the effect of a Finnish sauna on the immune status parameters. The hypothesis was that hyperthermia would improve immune system's functioning by changing the proportion of lymphocyte subpopulations and would activate heat shock proteins. We assumed that the responses of trained and untrained subjects would be different. MATERIAL AND METHODS Healthy men (20-25 years old) were divided into groups: the trained (T; n = 10), and the untrained group (U; n = 10). All participants were subjected to 10 baths (each one consisted of: 3 × 15-minute exposure with cooled down for 2 min. Body composition, anthropometric measurements, VO2 peak were measured before 1st sauna bath. Blood was collected before the 1st and 10th sauna bath, and 10 min after their completion to asses an acute and a chronic effect. Body mass, rectal temperature and heart rate (HR) were assessed in the same time points. The serum levels of cortisol, Il-6, HSP70 were measured with use of ELISA method, IgA, IgG and IgM by turbidimetry. White blood cells (WBC), leukocyte populations counts: neutrophils, lymphocytes, eosinophils, monocytes, and basophils were determined with use of flow cytometry as well as T-cell subpopulations. RESULTS No differences were found in the increase in rectal temperature, cortisol and immunoglobulins between groups. In response to the 1st sauna bath, a greater increase in HR was observed in the U group. After the last one, the HR value was lower in the T group. The impact of sauna baths on WBC, CD56+, CD3+, CD8+, IgA, IgG and IgM was different in trained and untrained subjects' responses. A positive correlation between the increase in cortisol concentrations and increase in internal temperatures after the 1st sauna was found in the T (r = 0.72) and U group (r = 0.77), between the increase in IL-6 and cortisol concentrations in the T group after the 1st treatment (r = 0.64), between the increase in IL-10 concentration and internal temperature (r = 0.75) and between the increase in IL-6 and IL-10 (r = 0.69) concentrations, also. CONCLUSIONS Sauna bathing can be a way to improve the immune response, but only when it is undertaken as a series of treatments.
Collapse
Affiliation(s)
- Wanda Pilch
- Institute for Basics Sciences, University of Physical Education, Krakow, Poland
| | - Marta Szarek
- Hospital of the Ministry of Affairs Interior and Administration, Diagnostyka Limited Liability Company, Krakow, Poland
| | | | - Piotrowska Anna
- Institute for Basics Sciences, University of Physical Education, Krakow, Poland
| | | | - Sadowska-Krepa Ewa
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | - Tomasz Pałka
- Institute for Biomedical Sciences, University of Physical Education, Krakow, Poland
| |
Collapse
|
24
|
Picard B, Cougoul A, Couvreur S, Bonnet M. Relationships between the abundance of 29 proteins and several meat or carcass quality traits in two bovine muscles revealed by a combination of univariate and multivariate analyses. J Proteomics 2023; 273:104792. [PMID: 36535620 DOI: 10.1016/j.jprot.2022.104792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We aimed to evaluate the relationships between meat or carcass properties and the abundance of 29 proteins quantified in two muscles, Longissimus thoracis and Rectus abdominis, of Rouge des Prés cows. The relative abundance of the proteins was evaluated using a high throughput immunological method: the Reverse Phase Protein array. A combination of univariate and multivariate analyses has shown that small HSPs (CRYAB, HSPB6), fast glycolytic metabolic and structural proteins (MYH1, ENO3, ENO1, TPI1) when assayed both in RA and LT, were related to meat tenderness, marbling, ultimate pH, as well as carcass fat-to-lean ratio or conformation score. In addition to some small HSP, ALDH1A1 and TRIM72 contributed to the molecular signature of muscular and carcass adiposity. MYH1 and HSPA1A were among the top proteins related to carcass traits. We thus shortened the list to 10 putative biomarkers to be considered in future tools to manage both meat and carcass properties. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is the first proteomics study that aims to evaluate putative biomarkers of both meat and carcass qualities that are of economic importance for the beef industry. Second, the relationship between the abundance of proteins and the carcass or meat traits were evaluated by a combination of univariate and multivariate analyses on 48 cows that are representative of the biological variability of the traits. Third, we provide a short list of ten proteins to be tested in a larger population to feed the pipeline of biomarker discovery.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Arnaud Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sébastien Couvreur
- École Supérieure d'Agricultures, USC ESA-INRAE 1481 Systèmes d'Elevage, 55 rue Rabelais - BP 30748 - 49007 Angers Cedex 01, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
25
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
26
|
Zhang D, Hao W, Niu Q, Xu D, Duan X. Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction. Skelet Muscle 2022; 12:21. [PMID: 36085166 PMCID: PMC9461262 DOI: 10.1186/s13395-022-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. METHODS Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. CONCLUSION The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China.
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Dongdong Xu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Xuejiao Duan
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| |
Collapse
|
27
|
Yadav R, Devi SS, Oswalia J, Ramalingam S, Arya R. Role of HSP70 chaperone in protein aggregate phenomenon of GNE mutant cells: Therapeutic lead for GNE Myopathy. Int J Biochem Cell Biol 2022; 149:106258. [PMID: 35777599 DOI: 10.1016/j.biocel.2022.106258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Limited treatment options and research in understanding the pathomechanisms of rare diseases has raised concerns about their therapeutic development. One such poorly understood ultra-rare neuromuscular disorder is GNE Myopathy (GNEM) which is caused due to mutation in key sialic acid biosynthetic enzyme, GNE. Treatment with sialic acid or its derivatives/precursors slows the disease progression, but curative strategies need to be explored further. Pathologically, muscle biopsy samples of GNEM patients reveal rimmed vacuole formation due to aggregation of β-amyloid, Tau, presenilin proteins with unknown mechanism. The present study aims to understand the mechanism of protein aggregate formation in GNE mutant cells to decipher role of chaperones in disease phenotype. The pathologically relevant GNE mutations expressed as recombinant proteins in HEK cells was used as a model system for GNEM to estimate extent of protein aggregation. We identified HSP70, a chaperone, as binding partner of GNE. Downregulation of HSP70 with altered BAG3, JNK, BAX expression levels was observed in GNE mutant cells. The cell apoptosis was observed in GNE mutation specific manner. An activator of HSP70 chaperone, BGP-15, rescued the phenotypic defects due to GNE mutation, thereby, reducing protein aggregation significantly. The results were further validated in rat skeletal muscle cell lines carrying single Gne allele. Our study suggests that HSP70 activators can be a promising therapeutic target in the treatment of ultra-rare GNE Myopathy disease.
Collapse
Affiliation(s)
- Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
28
|
Chen J, Li Z, Zhang Y, Zhang X, Zhang S, Liu Z, Yuan H, Pang X, Liu Y, Tao W, Chen X, Zhang P, Chen GQ. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci 2022; 12:94. [PMID: 35725651 PMCID: PMC9208164 DOI: 10.1186/s13578-022-00826-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle atrophy is an increasingly global health problem affecting millions, there is a lack of clinical drugs or effective therapy. Excessive loss of muscle mass is the typical characteristic of muscle atrophy, manifesting as muscle weakness accompanied by impaired metabolism of protein and nucleotide. (D)-3-hydroxybutyrate (3HB), one of the main components of the ketone body, has been reported to be effective for the obvious hemodynamic effects in atrophic cardiomyocytes and exerts beneficial metabolic reprogramming effects in healthy muscle. This study aims to exploit how the 3HB exerts therapeutic effects for treating muscle atrophy induced by hindlimb unloaded mice. RESULTS Anabolism/catabolism balance of muscle protein was maintained with 3HB via the Akt/FoxO3a and the mTOR/4E-BP1 pathways; protein homeostasis of 3HB regulation includes pathways of ubiquitin-proteasomal, autophagic-lysosomal, responses of unfolded-proteins, heat shock and anti-oxidation. Metabolomic analysis revealed the effect of 3HB decreased purine degradation and reduced the uric acid in atrophied muscles; enhanced utilization from glutamine to glutamate also provides evidence for the promotion of 3HB during the synthesis of proteins and nucleotides. CONCLUSIONS 3HB significantly inhibits the loss of muscle weights, myofiber sizes and myofiber diameters in hindlimb unloaded mouse model; it facilitates positive balance of proteins and nucleotides with enhanced accumulation of glutamate and decreased uric acid in wasting muscles, revealing effectiveness for treating muscle atrophy.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zihua Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yudian Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shujie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zonghan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Huimei Yuan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiangsheng Pang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yaxuan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wuchen Tao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China.
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab of Industrial Biocatalysis, Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Experimental Investigation on the Bioprotective Role of Trehalose on Glutamine Solutions by Infrared Spectroscopy. MATERIALS 2022; 15:ma15124329. [PMID: 35744387 PMCID: PMC9231094 DOI: 10.3390/ma15124329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Glutamine plays a significant role in several basic metabolic processes and is an important regulator of heat shock protein response. The present work is focused on the analysis of the thermal response of aqueous solutions of Glutamine and aqueous solutions of Glutamine in the presence of Trehalose by means of infrared absorption technique. The performed study shows how in the case of a multicomponent system, characterized by a huge number of spectral contributions whose assignment are questionable, the Spectral Distance (SD) and the Cross Wavelet Correlation (XWT) approaches are able to furnish explanatory parameters that can characterize the variations in the spectra behaviour, which is an efficient tool for quantitative comparisons. With this purpose, the analysis has been performed by evaluating the SD and the XWT parameters for the whole investigated spectral range, i.e., 4000–400 cm−1, for scans collected as a function of temperature in the range 20 °C ÷ 60 °C both for Glutamine/Water compounds and for Glutamine /Water/Trehalose mixtures. By means of these analyses, it is found that in aqueous solutions of Glutamine, with respect to aqueous solutions of Glutamine in the presence of Trehalose, the SD and XWT temperature trends follow a linear behaviour where the angular coefficient for Glutamine /Water/Trehalose compounds are lower than that of the Glutamine-Water system in both cases. The obtained findings suggest that Trehalose stabilizes Glutamine against heat treatment.
Collapse
|
30
|
Ziemkiewicz N, Hilliard GM, Dunn AJ, Madsen J, Haas G, Au J, Genovese PC, Chauvin HM, West C, Paoli A, Garg K. Laminin-111-Enriched Fibrin Hydrogels Enhance Functional Muscle Regeneration Following Trauma. Tissue Eng Part A 2022; 28:297-311. [PMID: 34409846 DOI: 10.1089/ten.tea.2021.0096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Volumetric muscle loss (VML) is the surgical or traumatic loss of skeletal muscle, which can cause loss of limb function or permanent disability. VML injuries overwhelms the endogenous regenerative capacity of skeletal muscle and results in poor functional healing outcomes. Currently, there are no approved tissue engineering treatments for VML injuries. In this study, fibrin hydrogels enriched with laminin-111 (LM-111; 50-450 μg/mL) were used for the treatment of VML of the tibialis anterior in a rat model. Treatment with fibrin hydrogel containing 450 μg/mL of LM-111 (FBN450) improved muscle regeneration following VML injury. FBN450 hydrogel treatment increased the relative proportion of contractile to fibrotic tissue as indicated by the myosin: collagen ratio on day 28 post-VML injury. FBN450 hydrogels also enhanced myogenic protein expression and increased the quantity of small to medium size myofibers (500-2000 μm2) as well as innervated myofibers. Improved contractile tissue deposition due to FBN450 hydrogel treatment resulted in a significant improvement (∼60%) in torque production at day 28 postinjury. Taken together, these results suggest that the acellular FBN450 hydrogels provide a promising therapeutic strategy for VML that is worthy of further investigation.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Genevieve M Hilliard
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Andrew J Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Peter C Genovese
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Hannah M Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Charles West
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Allison Paoli
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
32
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
33
|
Dalle S, Hiroux C, Poffé C, Ramaekers M, Deldicque L, Koppo K. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition. J Muscle Res Cell Motil 2020; 41:375-387. [PMID: 32621158 DOI: 10.1007/s10974-020-09584-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium.
| |
Collapse
|
34
|
Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020; 11:820-837. [PMID: 32039571 PMCID: PMC7296265 DOI: 10.1002/jcsm.12550] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease so that effective therapies can be developed. The majority of pre-clinical studies evaluating skeletal muscle's response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. METHODS To create four cohorts of PDX mice evaluated in this study, tumours resected from four pancreatic ductal adenocarcinoma patients were portioned and attached to the pancreas of immunodeficient NSG mice. RESULTS Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumour burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA also revealed key differences between their transcriptomes in response to cancer. Genes up-regulated in the DIA were enriched for extracellular matrix protein-encoding genes and genes related to the inflammatory response, while down-regulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed up-regulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis, and down-regulation of genes encoding extracellular matrix proteins. CONCLUSIONS These data suggest that distinct biological processes may account for wasting in different skeletal muscles in response to the same tumour burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.
Collapse
Affiliation(s)
- Rachel L Nosacka
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Andrea E Delitto
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Dan Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Rohan Patel
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| |
Collapse
|
35
|
Deane CS, Ames RM, Phillips BE, Weedon MN, Willis CRG, Boereboom C, Abdulla H, Bukhari SSI, Lund JN, Williams JP, Wilkinson DJ, Smith K, Gallagher IJ, Kadi F, Szewczyk NJ, Atherton PJ, Etheridge T. The acute transcriptional response to resistance exercise: impact of age and contraction mode. Aging (Albany NY) 2020; 11:2111-2126. [PMID: 30996129 PMCID: PMC6503873 DOI: 10.18632/aging.101904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Ryan M Ames
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bethan E Phillips
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Catherine Boereboom
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Haitham Abdulla
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Syed S I Bukhari
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Jonathan N Lund
- Department of Surgery, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - John P Williams
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Kenneth Smith
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro 70182, Sweden
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Philip J Atherton
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
36
|
Díaz F, Díaz-Luis A, Sierra V, Diñeiro Y, González P, García-Torres S, Tejerina D, Romero-Fernández M, Cabeza de Vaca M, Coto-Montes A, Oliván M. What functional proteomic and biochemical analysis tell us about animal stress in beef? J Proteomics 2020; 218:103722. [DOI: 10.1016/j.jprot.2020.103722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
|
37
|
Sex-specific differences in rat soleus muscle signaling pathway responses to a bout of horizontal and downhill running. J Physiol Biochem 2019; 75:585-595. [PMID: 31758515 DOI: 10.1007/s13105-019-00712-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
Abstract
Males and females of many species, including humans, exhibit different muscle responses and adaptations to exercise stress; however, the molecular mechanisms that underlie these changes are poorly understood. Therefore, the present study assessed sex-related differences in intracellular signaling pathway responses to bouts of horizontal or downhill running in rat soleus muscles. Age-matched male and female Wistar rats (10 weeks old, n = 18/group) were either rested (control group) or subjected to an either a bout of horizontal (22 m/min, 20 min, 0° incline) or downhill (16 m/min, 10 min, - 16% incline) treadmill running. Soleus muscle samples were collected both prior to and immediately after exercise (n = 6/group). Intramuscular signaling responses to each type of exercise were determined via real-time (RT) PCR and western blot analyses. Although mTOR signaling (mTOR/S6K1/S6) responses to both horizontal and downhill exercise were found to be similar in both sexes, ERK phosphorylation levels were found to be significantly higher in male than in female rats after downhill exercise. Similarly, heat shock protein (Hsp) 72 and myostatin protein expression levels were both found to be significantly altered after downhill exercise: Hsp levels increased in male and decreased in female rats, whereas myostatin increased in female but decreased in male rats. Thus, the results of the present study suggest that downhill exercise may elicit sex-specific differential changes to Hsp72 expression, ERK phosphorylation, and myostatin-signaling activation in female compared with those in male rat soleus muscles. Further study is required to confirm these findings and to determine the way in which they impact sex-specific differences in exercise-induced muscle adaptations.
Collapse
|
38
|
Ubaida-Mohien C, Lyashkov A, Gonzalez-Freire M, Tharakan R, Shardell M, Moaddel R, Semba RD, Chia CW, Gorospe M, Sen R, Ferrucci L. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. eLife 2019; 8:49874. [PMID: 31642809 PMCID: PMC6810669 DOI: 10.7554/elife.49874] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
A decline of skeletal muscle strength with aging is a primary cause of mobility loss and frailty in older persons, but the molecular mechanisms of such decline are not understood. Here, we performed quantitative proteomic analysis from skeletal muscle collected from 58 healthy persons aged 20 to 87 years. In muscle from older persons, ribosomal proteins and proteins related to energetic metabolism, including those related to the TCA cycle, mitochondria respiration, and glycolysis, were underrepresented, while proteins implicated in innate and adaptive immunity, proteostasis, and alternative splicing were overrepresented. Consistent with reports in animal models, older human muscle was characterized by deranged energetic metabolism, a pro-inflammatory environment and increased proteolysis. Changes in alternative splicing with aging were confirmed by RNA-seq analysis. We propose that changes in the splicing machinery enables muscle cells to respond to a rise in damage with aging. As humans age, their muscles become weaker, making it increasingly harder for them to move, a condition known as sarcopenia. Analyzing old muscles in other animals revealed that they produce energy inefficiently, they destroy more proteins than younger muscles, and they have high levels of molecules that cause inflammation. These characteristics may be involved in causing muscle weakness. Proteomics is the study of proteins, the molecules that play many roles in keeping the body working: for example, they accelerate chemical reactions, participate in copying DNA and help cells respond to stimuli. Using proteomics, it is possible to examine a large number of the different proteins in a tissue, which can provide information about the state of that tissue. Ubaida-Mohien et al. used this approach to answer the question of why muscles become weaker with age. First, they analyzed the levels of all the proteins found in skeletal muscle collected from 58 healthy volunteers between 20 and 87 years of age. This revealed that the muscles of older people have fewer copies of the proteins that make up ribosomes – the cellular machines that produce new proteins – and fewer proteins involved in providing the cell with chemical energy. In contrast, proteins implicated in the immune system, in the maintenance of existing proteins, and in processing other molecules called RNAs were more abundant in older muscles. Ubaida-Mohien et al. then looked more closely at changes involving RNA processing. Cells make proteins by copying DNA sequences into an RNA template and using this template to instruct the ribosomes on how to make the specific protein. Before the RNA can be ‘read’ by a ribosome, however, some parts must be cut out and others added, which can lead to different versions of the final RNA, also known as alternative transcripts. In order to check whether the difference in the levels of proteins that process RNAs was affecting the RNAs being produced, Ubaida-Mohien et al. extracted the RNAs from older and younger muscles and compared them. This showed that the RNA in older people had more alternative transcripts, confirming that the change in protein levels was having downstream effects. Currently, it is not possible to prevent or delay the loss of muscle strength associated with aging. Understanding how the protein make-up of muscles changes as humans grow older may help find new ways to prevent and perhaps even reverse this decline.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ravi Tharakan
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Michelle Shardell
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | | | - Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Myriam Gorospe
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| |
Collapse
|
39
|
Smuder AJ. Exercise stimulates beneficial adaptations to diminish doxorubicin-induced cellular toxicity. Am J Physiol Regul Integr Comp Physiol 2019; 317:R662-R672. [PMID: 31461307 DOI: 10.1152/ajpregu.00161.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is a highly effective antitumor agent used for the treatment of a wide range of cancers. Unfortunately, DOX treatment results in cytotoxic side effects due to its accumulation within off-target tissues. DOX-induced cellular toxicity occurs as a result of increased oxidative damage, resulting in apoptosis and cell death. While there is no standard-of-care practice to prevent DOX-induced toxicity to healthy organs, exercise has been shown to prevent cellular dysfunction when combined with DOX chemotherapy. Endurance exercise stimulates numerous biochemical adaptations that promote a healthy phenotype in several vulnerable tissues without affecting the antineoplastic properties of DOX. Therefore, for the development of an effective strategy to combat the pathological effects of DOX, it is important to determine the appropriate exercise regimen to prescribe to cancer patients receiving DOX therapy and to understand the mechanisms responsible for exercise-induced protection against DOX toxicity to noncancer cells. This review summarizes the cytotoxic effects of DOX on the heart, skeletal muscle, liver, and kidneys and discusses the current understanding of the clinical benefits of regular physical activity and the potential mechanisms mediating the positive effects of exercise on each organ system.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Aas SN, Hamarsland H, Cumming KT, Rognlien SH, Aase OJ, Nordseth M, Karsrud S, Godager S, Tømmerbakke D, Handegard V, Raastad T. The impact of age and frailty on skeletal muscle autophagy markers and specific strength: A cross-sectional comparison. Exp Gerontol 2019; 125:110687. [PMID: 31404624 DOI: 10.1016/j.exger.2019.110687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
Aging is associated with reduced specific strength, defined as strength normalized to the cross-sectional area of a given muscle or muscle group. Dysregulated autophagy, impairing removal of dysfunctional proteins and organelles, is suggested as one of the underlying mechanisms. The aim of this study was to investigate levels of autophagic markers in skeletal muscle in groups known to differ in specific strength. Sixty-two volunteers were assigned to the following study groups: young, old non-frail, old pre-frail, and old frail individuals. Leg lean mass was assessed with dual-energy X-ray absorptiometry and quadriceps femoris muscle strength by isometric maximal voluntary contraction. The abundance of autophagic proteins within skeletal muscle cytosolic and membrane sub-fractions were determined by western blotting. In addition, the level of heat shock proteins and proteins involved in the regulation of protein synthesis were measured. The abundance of LC3-I was higher in old frail compared to young individuals. If the three elderly groups were pooled, the level of LC3-II was higher in old compared to young subjects. Pre-frail and frail elderly also displayed higher levels of certain heat shock proteins. No between-group differences were observed for p62, LC3-II/LC3-I ratio, or any of the anabolic signaling molecules. A negative correlation was observed between cytosolic LC3-I and specific strength. Higher levels of LC3-I in the frail elderly might represent attenuated autophagosome formation. However, higher LC3-II levels indicate an increased abundance of autophagosomes. These findings may therefore imply that both the process of autophagosome formation and autophagosome-lysosome fusion are affected in frail elderly. Higher levels of heat shock proteins might represent an auto-protective mechanism against increased levels of misfolded proteins, possibly due to inefficient degradation. In conclusion, the reduction in specific strength with aging and frailty may partly be caused by alterations in muscle protein quality control.
Collapse
Affiliation(s)
- Sigve Nyvik Aas
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Simen Helset Rognlien
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ole Jølle Aase
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Martin Nordseth
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Stian Karsrud
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sindre Godager
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel Tømmerbakke
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Vilde Handegard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
41
|
Smuder AJ, Morton AB, Hall SE, Wiggs MP, Ahn B, Wawrzyniak NR, Sollanek KJ, Min K, Kwon OS, Nelson WB, Powers SK. Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. J Cachexia Sarcopenia Muscle 2019; 10:767-781. [PMID: 30972953 PMCID: PMC6711411 DOI: 10.1002/jcsm.12427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, prolonged MV results in significant diaphragm atrophy and contractile dysfunction, a condition referred to as ventilator-induced diaphragm dysfunction (VIDD). While there are currently no clinically approved countermeasures to prevent VIDD, increased expression of heat shock protein 72 (HSP72) has been demonstrated to attenuate inactivity-induced muscle wasting. HSP72 elicits cytoprotection via inhibition of NF-κB and FoxO transcriptional activity, which contribute to VIDD. In addition, exercise-induced prevention of VIDD is characterized by an increase in the concentration of HSP72 in the diaphragm. Therefore, we tested the hypothesis that increased HSP72 expression is required for the exercise-induced prevention of VIDD. We also determined whether increasing the abundance of HSP72 in the diaphragm, independent of exercise, is sufficient to prevent VIDD. METHODS Cause and effect was determined by inhibiting the endurance exercise-induced increase in HSP72 in the diaphragm of exercise trained animals exposed to prolonged MV via administration of an antisense oligonucleotide targeting HSP72. Additional experiments were performed to determine if increasing HSP72 in the diaphragm via genetic (rAAV-HSP72) or pharmacological (BGP-15) overexpression is sufficient to prevent VIDD. RESULTS Our results demonstrate that the exercise-induced increase in HSP72 protein abundance is required for the protective effects of exercise against VIDD. Moreover, both rAAV-HSP72 and BGP-15-induced overexpression of HSP72 were sufficient to prevent VIDD. In addition, modification of HSP72 in the diaphragm is inversely related to the expression of NF-κB and FoxO target genes. CONCLUSIONS HSP72 overexpression in the diaphragm is an effective intervention to prevent MV-induced oxidative stress and the transcriptional activity of NF-κB and FoxO. Therefore, overexpression of HSP72 in the diaphragm is a potential therapeutic target to protect against VIDD.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Exercise Science, University of South Carolina, Columbia, USA
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Stephanie E Hall
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Nicholas R Wawrzyniak
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Kisuk Min
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| | - W Bradley Nelson
- Department of Natural Sciences, Ohio Dominican University, Columbus, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, USA
| |
Collapse
|
42
|
de Lemos Muller CH, de Matos JR, Grigolo GB, Schroeder HT, Rodrigues-Krause J, Krause M. Exercise Training for the Elderly: Inflammaging and the Central Role for HSP70. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-0015-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K. The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Eng Part A 2019; 25:1001-1012. [PMID: 30426851 PMCID: PMC9839345 DOI: 10.1089/ten.tea.2018.0200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IMPACT STATEMENT Extremity injuries make up the most common survivable injuries in vehicular accidents and modern military conflicts. A majority of these injuries involve volumetric muscle loss (VML). The potential for donor site morbidity may limit the clinical use of autologous muscle grafts for VML injuries. Treatments that can improve the regeneration of functional muscle tissue are critically needed to improve limb salvage and reduce the rate of delayed amputations. The development of a laminin-111-enriched fibrin hydrogel will offer a potentially transformative and "off-the-shelf" clinically relevant therapy for functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Robert Scheidt
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri.,Address correspondence to: Koyal Garg, PhD, Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, 3507 Lindell Boulevard, St. Louis, MO 63103
| |
Collapse
|
44
|
Allen KN, Vázquez-Medina JP, Lawler JM, Mellish JAE, Horning M, Hindle AG. Muscular apoptosis but not oxidative stress increases with old age in a long-lived diver, the Weddell seal. ACTA ACUST UNITED AC 2019; 222:jeb.200246. [PMID: 31171605 DOI: 10.1242/jeb.200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - John M Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77840, USA
| | - Jo-Ann E Mellish
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Markus Horning
- Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664, USA.,Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, 2030 Marine Science Drive, Newport, OR 97365, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
45
|
Li Q, Luo Z. Identification of Candidate Genes for Skeletal Muscle Injury Prevention in Two Different Types. J Comput Biol 2019; 26:1080-1089. [PMID: 31120330 DOI: 10.1089/cmb.2019.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study aims to uncover mechanisms on repair process of two different types of skeletal muscle injuries, freezing injury (FI) and contraction-induced injury (CI). GSE5413 was utilized, including 11 eccentric CI, 11 FI, and 3 control samples at 4 time points (6 hours, 1 day, 3 days, and 7 days after injury). Differentially expressed genes (DEGs) separately were selected in FI and CI. Correlation analysis of samples at different time points was performed. Clustering analysis was conducted for DEGs in FI and CI, respectively. Moreover, enrichment analysis and protein/protein interaction network analysis were performed for the specific DEGs. There were 616 and 465 DEGs separately in FI and CI samples. For both FI and CI, samples between 6 hours and 1 day, and between 3 and 7 days, had a close distance. DEGs in FI and CI separately were enriched in leukocyte transendothelial migration (e.g., ICAM1 [intercellular adhesion molecule 1], ITGAM, MMP9) and protein processing in endoplasmic reticulum pathway (e.g., HSPH1, HSP90AA1). In addition, MMP9 (matrix metallopeptidase 9) and ITGAM, and MYC, HSPA1B, and HSPA1A were hub nodes in the networks in FI and CI, respectively. ICAM1, ITGAM, and MMP9 in FI, and MYC and HSP70 family members in CI were biomarkers for injury prevention.
Collapse
Affiliation(s)
- Qi Li
- 32nd Ward, Emergency Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Zhengqiang Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skelet Muscle 2019; 9:9. [PMID: 30992050 PMCID: PMC6466682 DOI: 10.1186/s13395-019-0194-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function. Methods RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days. Results In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes). Conclusions RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM. Electronic supplementary material The online version of this article (10.1186/s13395-019-0194-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Lassiter K, Kong BC, Piekarski-Welsher A, Dridi S, Bottje WG. Gene Expression Essential for Myostatin Signaling and Skeletal Muscle Development Is Associated With Divergent Feed Efficiency in Pedigree Male Broilers. Front Physiol 2019; 10:126. [PMID: 30873041 PMCID: PMC6401619 DOI: 10.3389/fphys.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Feed efficiency (FE, gain to feed) is an important genetic trait as 70% of the cost of raising animals is due to feed costs. The objective of this study was to determine mRNA expression of genes involved in muscle development and hypertrophy, and the insulin receptor-signaling pathway in breast muscle associated with the phenotypic expression of FE. Methods: Breast muscle samples were obtained from Pedigree Male (PedM) broilers (8 to 10 week old) that had been individually phenotyped for FE between 6 and 7 week of age. The high FE group gained more weight but consumed the same amount of feed compared to the low FE group. Total RNA was extracted from breast muscle (n = 6 per group) and mRNA expression of target genes was determined by real-time quantitative PCR. Results: Targeted gene expression analysis in breast muscle of the high FE phenotype revealed that muscle development may be fostered in the high FE PedM phenotype by down-regulation several components of the myostatin signaling pathway genes combined with upregulation of genes that enhance muscle formation and growth. There was also evidence of genetic architecture that would foster muscle protein synthesis in the high FE phenotype. A clear indication of differences in insulin signaling between high and low FE phenotypes was not apparent in this study. Conclusion: These findings indicate that a gene expression architecture is present in breast muscle of PedM broilers exhibiting high FE that would support enhanced muscle development-differentiation as well as protein synthesis compared to PedM broilers exhibiting low FE.
Collapse
Affiliation(s)
- Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Caleb Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Gay Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
48
|
Kramerova I, Torres JA, Eskin A, Nelson SF, Spencer MJ. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy. Hum Mol Genet 2019. [PMID: 29528394 PMCID: PMC5905633 DOI: 10.1093/hmg/ddy071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Jorge A Torres
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol 2019; 119:333-349. [PMID: 30612167 DOI: 10.1007/s00421-018-04061-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
The plasticity of skeletal muscle, whether an increase in size, change in metabolism, or alteration in structural properties, is in a continuous state of flux largely dependent upon physical activity. Much of the past research has expounded upon these ever-changing aspects of the muscle fiber following exercise. Specifically, endocrine and paracrine signaling have been heavily investigated lending to much of the past literature comprised of such endocrinological dynamics following muscle activity. Mechanotransduction, the ability of a cell to convert a mechanical stimulus into an intracellular biochemical response, has garnered much less attention. Recent work, however, has demonstrated the physical continuity of the muscle fiber, specifically demonstrating a continuous physical link between the extracellular matrix (ECM), cytoskeleton, and nuclear matrix as a means to rapidly regulate gene expression following a mechanical stimulus. Similarly, research has shown mechanical stimuli to directly influence cytoplasmic signaling whether through oxidative adaptations, increased muscle size, or enhanced muscle integrity. Regrettably, minimal research has investigated the role that exercise may play within the mechanotransducing signaling cascades. This proposed line of study may prove paramount as muscle-related diseases greatly impact one's ability to lead an independent lifestyle along with contributing a substantial burden upon the economy. Thus, this review explores both biophysical and biochemical mechanotransduction, and how these signaling pathways may be influenced following exercise.
Collapse
Affiliation(s)
- Luke A Olsen
- Biomedical Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Justin X Nicoll
- Department of Kinesiology, California State University, Northridge, CA, 91330-8287, USA
| | - Andrew C Fry
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
50
|
Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch 2018; 471:441-453. [PMID: 30426248 DOI: 10.1007/s00424-018-2227-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Repeated bouts of endurance exercise promotes numerous biochemical adaptations in skeletal muscle fibers resulting in a muscle phenotype that is protected against a variety of homeostatic challenges; these exercise-induced changes in muscle phenotype are often referred to as "exercise preconditioning." Importantly, exercise preconditioning provides protection against several threats to skeletal muscle health including cancer chemotherapy (e.g., doxorubicin) and prolonged muscle inactivity. This review summarizes our current understanding of the mechanisms responsible for exercise-induced protection of skeletal muscle fibers against both doxorubicin-induced muscle wasting and a unique form of inactivity-induced muscle atrophy (i.e., ventilator-induced diaphragm atrophy). Specifically, the first section of this article will highlight the potential mechanisms responsible for exercise-induced protection of skeletal muscle fibers against doxorubicin-induced fiber atrophy. The second segment will discuss the biochemical changes that are responsible for endurance exercise-mediated protection of diaphragm muscle against ventilator-induced diaphragm wasting. In each section, we highlight gaps in our knowledge in hopes of stimulating future research in this evolving field of investigation.
Collapse
|