1
|
Tawfik CA, Aly HS, Kabeel M, Yousri I, Mohamed SA. A novel mutation in CNNM4 is associated with a case of Jalili syndrome in Egypt. Doc Ophthalmol 2025:10.1007/s10633-025-10018-1. [PMID: 40232358 DOI: 10.1007/s10633-025-10018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE To report a novel homozygous mutation in CNNM4 gene associated with Jalili syndrome (JS) which is a rare, recessively inherited oculo-dental syndrome which encompasses cone-rod dystrophy (CORD) and amelogenesis imperfecta (AI). METHODS A 4-year-old male patient of consanguineous Egyptian parents, who presented with progressive visual impairment and tooth decay underwent complete ophthalmological examination, dental, and systemic examination. Additionally, color fundus photography, fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT) of the macula, full field electroretinogram (ffERG) were obtained. Orthopantomogram (OPG) were also obtained. NGS-based gene panel testing was done in a commercial laboratory from a peripheral blood sample. RESULTS Fundus examination demonstrated typical features of CORD in the form of loss of foveal reflexes with macular retinal pigment epithelial mottling and atrophy reminiscent of bull's eye maculopathy. Dental assessment revealed evidence of AI. NGS-based gene panel identified a novel mutation in CNMM4 gene c.1423 G>A consistent with a diagnosis JS, thereby confirming the rare diagnosis. CONCLUSION To the best of our knowledge, this is the first report of Jalili syndrome in Egypt. We are reporting a novel mutation in CNMM4 gene. We are also expanding the clinical spectrum of dental manifestation by reporting early eruption of the first permanent molars and suggesting that hyperopia could be a rather constant feature of JS. This case emphasizes the importance of comprehensive multidisciplinary assessment beyond visual complaints in IRD patients in order to reach an accurate diagnosis.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of Ophthalmology, Ain Shams University, Cairo, Egypt.
- Watany Eye Hospital, Cairo, Egypt.
| | | | | | - Iman Yousri
- Department of Pediatrics, Cleopatra Hospitals Group, Cairo, Egypt
| | | |
Collapse
|
2
|
Nazzal H, Rodd HD, Alrashed HN, Bonifacio CC, Choe RW, Crombie F, El Shafei J, El Shahawy O, Al Sheeb M, Foláyan MO, Arowolo O, Gambetta-Tessini K, de Vries A, Goyal A, Gupta A, Hasmun N, Hussein I, Issa AI, Jundi S, Abedalhaleem EB, Kowash M, Alshamsi A, Salami A, Manton DJ, Muñoz-Sandoval C, Narasimhan S, Omar S, Parekh S, Drysdale D, Popoola BO, Shields S, Silva MJ, Taylor G, Yang NQ. Prevalence of hypodontia and other developmental dental anomalies in children with or without molar incisor hypomineralisation. J Dent 2025; 155:105598. [PMID: 39889814 DOI: 10.1016/j.jdent.2025.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVES To investigate whether hypodontia and other developmental dental anomalies were more common in children with MIH than their unaffected peers, and to determine if sex or geographical location had any effect on hypodontia prevalence. METHODS This analytical cross-sectional study was conducted in specialist paediatric dentistry clinics across 14 countries, categorised into six geographical regions. A total of 1279 children (aged 6 - 17 years) underwent a clinical examination and were allocated to the MIH (n = 649) or comparison group (n = 630). A validated MIH index was used to record the presence/extent of any hypomineralisation and a standardised approach was used to establish the clinical and/or radiographic presence of ten developmental dental anomalies. RESULTS Four anomalies were significantly more prevalent in participants with MIH than those without this condition: hypodontia (p = 0.047), dens invaginatus (p = 0.004), dens evaginatus (p < 0.001) and microdont maxillary lateral incisors (p = 0.01). Additionally, the adjusted odds of hypodontia were 1.49 times higher in children with MIH compared to those without MIH. There was considerable disparity between geographic locations with the highest prevalence of hypodontia in participants from the Western Pacific region (11.21 %) and the lowest (2.92 %) in the Americas. No statistically significant association was found between sex (male vs. female) and hypodontia (p = 0.839). CONCLUSIONS Accepting that the study group may not be representative of the wider population, the findings still have important clinical relevance. Furthermore, they lend support to the concept of shared genetic and epigenetic influence in the aetiology of MIH and other developmental dental disorders.
Collapse
Affiliation(s)
- Hani Nazzal
- Department Clinical Oral Health Sciences, College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar; Hamad Dental Centre, Hamad, Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Helen D Rodd
- Unit of Oral Health, Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Hoor N Alrashed
- Unit of Oral Health, Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa Calil Bonifacio
- Department of Paediatric Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan, 3004, 1081LA, Amsterdam, The Netherlands
| | - Ruth Wei Choe
- National University Centre for Oral Health Singapore, Singapore 119085, Singapore
| | - Felicity Crombie
- Melbourne Dental School, University of Melbourne, Melbourne 3010, Australia
| | | | | | - Muneera Al Sheeb
- Hamad Dental Centre, Hamad, Medical Corporation, Doha P.O. Box 3050, Qatar
| | | | - Olaniyi Arowolo
- Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife 22005, Nigeria
| | - Karla Gambetta-Tessini
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
| | - Aniek de Vries
- Department of Paediatric Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan, 3004, 1081LA, Amsterdam, The Netherlands
| | - Ashima Goyal
- Oral Health Sciences Centre, PGIMER, Chandigarh 160012, India
| | - Arpit Gupta
- Oral Health Sciences Centre, PGIMER, Chandigarh 160012, India
| | - Noren Hasmun
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Iyad Hussein
- Department of Pediatric Dentistry, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad I Issa
- Ministry of National Guard Health Affairs, King Abdulaziz Hospital, Riyadh 36428, Al Ahsa, Saudi Arabia
| | - Suhad Jundi
- Preventive Dentistry Department, Faculty of Dentistry, Jordan University of Science and Technology, Ar-Ramtha P.O. Box 3030, Jordan
| | - Eman Bassam Abedalhaleem
- Preventive Dentistry Department, Faculty of Dentistry, Jordan University of Science and Technology, Ar-Ramtha P.O. Box 3030, Jordan
| | - Mawlood Kowash
- Department of Pediatric Dentistry, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Aysha Alshamsi
- Department of Pediatric Dentistry, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Anas Salami
- Department of Pediatric Dentistry, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - David J Manton
- Department of Paediatric Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan, 3004, 1081LA, Amsterdam, The Netherlands; Department of Cariology, Centre for Dentistry and Oral Health, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Cecilia Muñoz-Sandoval
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca 3460000, Maule, Chile
| | | | - Samah Omar
- Pediatric Dentistry Department, Loma Linda University School of Dentistry, Loma Linda, CA 92350, USA
| | - Susan Parekh
- UCL Eastman Dental Institute, London WC1E 6DG, UK
| | | | - Bamidele O Popoola
- Department of Child Oral Health, University of Ibadan/University College Hospital, Agodi, Ibadan 200285, Nigeria
| | - Stephanie Shields
- Melbourne Dental School, University of Melbourne, Melbourne 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, Australia
| | - Mihiri J Silva
- Melbourne Dental School, University of Melbourne, Melbourne 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, Australia
| | - Greig Taylor
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4AZ, UK
| | - Naomi Qiyue Yang
- Youth Preventive Services, Health Promotion Board, Singapore 168937, Singapore
| |
Collapse
|
3
|
Lee JM, Jung H, Tang Q, Li L, Lee SK, Lee JW, Park Y, Kwon HJE. KMT2D Regulates Tooth Enamel Development. J Dent Res 2025:220345251320922. [PMID: 40103013 DOI: 10.1177/00220345251320922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Amelogenesis, the process of enamel formation, is tightly regulated and essential for producing the tooth enamel that protects teeth from decay and wear. Disruptions in amelogenesis can result in amelogenesis imperfecta, a group of genetic conditions characterized by defective enamel, including enamel hypoplasia, marked by thin or underdeveloped enamel. Mutations in the KMT2D (MLL4) gene, which encodes histone H3 lysine 4 methyltransferase, are associated with Kabuki syndrome, a developmental disorder that can involve dental anomalies such as enamel hypoplasia. However, the specific role of KMT2D in amelogenesis remains poorly understood. To address this gap, we generated a conditional knockout (cKO) mouse model with ectoderm-specific deletion of Kmt2d (Krt14-Cre;Kmt2dfl/fl, or Kmt2d-cKO) and characterized the resulting enamel defects using gross, radiographic, histologic, cellular, and molecular analyses. Micro-computed tomography and scanning electron microscopy revealed that adult Kmt2d-cKO mice exhibited 100% penetrant amelogenesis imperfecta, characterized by hypoplastic and hypomineralized enamel, partially phenocopying human Kabuki syndrome. Additionally, Kmt2d-cKO neonates developed molar tooth germs with subtle cusp shape alterations and mild delays in ameloblast differentiation at birth. RNA sequencing analysis of the first molar tooth germ at birth revealed that 33.7% of known amelogenesis-related genes were significantly downregulated in the Kmt2d-cKO teeth. Integration with KMT2D CUT&RUN sequencing results identified 8 overlapping genes directly targeted by KMT2D. Reanalysis of a single-cell RNA sequencing data set in the developing mouse incisors revealed distinct roles for these genes in KMT2D-regulated differentiation across various cell subtypes within the dental epithelium. Among these genes, Satb1 and Sp6 are likely direct targets involved in the differentiation of preameloblasts into ameloblasts. Taken together, we propose that KMT2D plays a crucial role in amelogenesis by directly activating key genes involved in ameloblast differentiation, offering insights into the molecular basis of enamel development and related dental pathologies.
Collapse
Affiliation(s)
- J-M Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - H Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Q Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - L Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S-K Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - J W Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Y Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - H-J E Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Lopes-Fatturi A, Fonseca-Souza G, Wambier LM, Brancher JA, Küchler EC, Feltrin-Souza J. Genetic polymorphisms associated with developmental defects of enamel: A systematic review. Int J Paediatr Dent 2025; 35:298-310. [PMID: 38949474 DOI: 10.1111/ipd.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Polymorphisms in genes related to enamel formation and mineralization may increase the risk of developmental defects of enamel (DDE). AIM To evaluate the existing literature on genetic polymorphisms associated with DDE. DESIGN This systematic review was registered in the PROSPERO (CRD42018115270). The literature search was performed in PubMed, Scopus, Web of Science, LILACS, BBO, Cochrane Library, and in the gray literature. Observational studies assessing the association between DDE and genetic polymorphism were included. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS One thousand one hundred and forty-six articles were identified, and 28 met the inclusion criteria. Five studies presented a low risk of bias. Ninety-two genes related to enamel development, craniofacial patterning morphogenesis, immune response, and hormone transcription/reception were included. Molar-incisor hypomineralization (MIH) and/or hypomineralization of primary second molars (HPSM) were associated with 80 polymorphisms of genes responsible for enamel development, immune response, morphogenesis, and xenobiotic detoxication. A significant association was found between the different clinical manifestations of dental fluorosis (DF) with nine polymorphisms of genes responsible for enamel development, craniofacial development, hormonal transcription/reception, and oxidative stress. Hypoplasia was associated with polymorphisms located in intronic regions. CONCLUSION MIH, HPSM, DF, and hypoplasia reported as having a complex etiology are significantly associated with genetic polymorphisms of several genes.
Collapse
|
5
|
张 真, 徐 欣, 高 学, 董 艳, 田 华. [Frameshift mutation in RELT gene causes amelogenesis imperfecta]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2025; 57:13-18. [PMID: 39856501 PMCID: PMC11759784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 01/27/2025]
Abstract
OBJECTIVE To analyze RELT gene mutation found in a pedigree with clinical features and inheritable pattern consistent with amelogenesis imperfecta (AI) in China, and to study the relationship between its genotype and phenotype. METHODS Clinical and radiological features were recorded for the affected individuals. Peripheral venous blood samples of the patient and family members were collected for further study, and the genomic DNA was extracted to identify the pathogenic gene. Whole exome sequencing (WES) was performed to analyze the possible pathogenic genes, and Sanger sequencing was performed for validation. SIFT and PolyPhen-2 were used to predict and analyze the mutation effect. Comparison of RELT amino acids across different species were performed by using Uniprot website. In addition, the three-dimen-sional structures of the wild type and mutant proteins were predicted by Alphafold 2. RESULTS The proband exhibited typical hypocalcified AI, with heavy wear, soft enamel, rough and discolored surface, and partial enamel loss, while his parents didn ' t have similar manifestations. WES and Sanger sequencing results indicated that the proband carries a homozygous frameshift mutation in RELT gene, NM_032871.3: c.1169_1170del, and both of his parents were carriers. This mutation was predicted to be pathogenic by SIFT and PolyPhen-2. Up to now, there were 11 mutation sites in RELT gene were reported to be associated with AI, and all of the patients exhibited with hypocalcified AI. Compared with the wild-type RELT protein, the mutant protein p. Pro390fs35 conformation terminated prematurely, affecting the normal function of the protein. CONCLUSION Through phenotype analysis, gene sequencing, and functional prediction of a Chinese family with typical amelogenesis imperfecta, this study found that RELT gene frameshift mutation can lead to protein dysfunction in AI patients. Further research will focus on the role and mechanism of RELT in enamel development at the molecular and animal levels, providing molecular biology evidence for the genetic counseling, prenatal diagnosis, and early prevention and treatment of AI.
Collapse
Affiliation(s)
- 真伟 张
- 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- 复旦大学附属上海市口腔医院牙体牙髓二科,上海市颅颌面发育与疾病重点实验室,上海 200001Department of Conservative Dentistry and Endodontics 2, Shanghai Stomatological Hospital & School of Stomatology; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - 欣然 徐
- 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 学军 高
- 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 艳梅 董
- 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 华 田
- 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- 北京大学口腔医学院·口腔医院国际门诊部,北京 100081International Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
6
|
Zhang J, Gao J, Zeng X, Wang Z, Chen C, Rong C, Li S, Cai L, Wang L, Zhang L, Tian Z. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167570. [PMID: 39547518 DOI: 10.1016/j.bbadis.2024.167570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Enamel formation is a developmental event governed by intricate molecular signal pathways. Cdc42 is proven to regulate enamel development yet its underlying role and molecular mechanism in early amelogenesis remain elusive. The extracellular matrix of tooth germ basement membrane is critical for the regulation of ameloblast differentiation. Present study investigated whether Cdc42 influences amelogenesis by affecting ECM synthesis and how Cdc42 regulates ameloblasts differentiation. Epithelial-specific knockout of Cdc42 (Cdc42-cKO) mice model was employed to study the ECM expression including Fibronectin (Fn) and amelogenesis markers. Cdc42-cKO mice results in retarded ameloblast differentiation and enamel matrix decrease. Fn synthesis in the enamel organ and basal membrane was totally diminished along with Cdc42 knockdown. YAP acting as the Cdc42 downstream transcription factor, its distribution in ameloblasts was synchronously attenuated by Cdc42 knockdown and nuclear localization progressively decreased with tooth germ development. Cdc42 unidirectionally controls the Fn synthesis via YAP regulation. Overall, ameloblast differentiation inhibition by silencing of Cdc42 was successfully rescued by YAP activation. We demonstrated that Cdc42 as an initiator, mediated downstream pathway through transcriptional activator YAP, thereby affecting ameloblast differentiation by controlling Fn synthesis. The Cdc42-YAP-Fn signaling axis are elucidated to act critical role during the early amelogenesis.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangliang Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Rong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaowei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxuan Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luchen Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Deepthi B, Krishnasamy S, Krishnamurthy S, Khandelwal P, Sinha A, Hari P, Jaikumar R, Agrawal P, Saha A, Deepthi RV, Agarwal I, Sinha R, Venkatachari M, Shah MA, Bhatt GC, Krishnan B, Vasudevan A, Bagga A, Krishnamurthy S. Clinical characteristics and genetic profile of children with WDR72-associated distal renal tubular acidosis: a nationwide experience. Pediatr Nephrol 2025; 40:407-416. [PMID: 39150521 DOI: 10.1007/s00467-024-06478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Limited data, primarily from small case series, exist regarding the clinical profile, genetic variants, and outcomes of WDR72-associated distal renal tubular acidosis (WDR72-dRTA). METHODS Our study enrolled children diagnosed with WDR72-dRTA below 18 years of age from 9 Indian centers and analyzed their clinical characteristics, genetic profiles, and outcomes. Potential genotype-phenotype correlations were explored. RESULTS We report 22 patients (59% female) with WDR72-dRTA who were diagnosed at a median age of 5.3 (3, 8) years with polyuria (n = 17; 77.3%), poor growth (16; 72.7%), and rickets (9; 40.9%). Amelogenesis imperfecta was present in 21 (95.5%) cases. At presentation, all patients had normal anion gap metabolic acidosis; hypokalemia and nephrocalcinosis were seen in 17 (77.3%) patients each. Seven (31.8%) patients had concomitant proximal tubular dysfunction. Genetic analysis identified biallelic nonsense variants in 18 (81.8%) patients, including novel variants in 6 cases. A previously reported variant, c.88C > T, and a novel variant, c.655C > T, were the most frequent variants, accounting for 10 (45.5%) cases. Over a median follow-up of 1.3 (1, 8) years, the height velocity improved by 0.74 (0.2, 1.2) standard deviation scores, while 3 children (13.6%) progressed to chronic kidney disease (CKD) stage 2, with eGFR ranging from 67 to 76 mL/min/1.73 m2, respectively, after 11.3-16 years of follow-up. No specific genotype-phenotype correlation could be established. CONCLUSIONS WDR72-dRTA should be considered in children with typical features of amelogenesis imperfecta and dRTA. Biallelic nonsense variants are common in Asians. While most patients respond well to treatment with improved growth and preserved eGFR, on long-term follow-up, a decline in eGFR may occur.
Collapse
Affiliation(s)
- Bobbity Deepthi
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Sudarsan Krishnasamy
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | | | - Priyanka Khandelwal
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Aditi Sinha
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pankaj Hari
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rohitha Jaikumar
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Prajal Agrawal
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - Abhijeet Saha
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India
| | - R V Deepthi
- Division of Pediatric Nephrology, Department of Pediatrics, Christian Medical College, Vellore, India
| | - Indira Agarwal
- Division of Pediatric Nephrology, Department of Pediatrics, Christian Medical College, Vellore, India
| | - Rajiv Sinha
- Division of Pediatric Nephrology, Institute of Child Health, Kolkata, India
| | - Mahesh Venkatachari
- Department of Pediatrics, All India Institute of Medical Sciences, Mangalagiri, India
| | - Mehul A Shah
- Little Star Children's Hospital, Hyderabad, India
| | - Girish Chandra Bhatt
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Bhopal, India
| | - Balasubramanian Krishnan
- Department of Dentistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Anil Vasudevan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
- Department of Pediatric Nephrology, St. John's Medical College Hospital, Bangalore, India
| | - Arvind Bagga
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sriram Krishnamurthy
- Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|
8
|
Tynior W, Hudy D, Gołąbek K, Raczkowska-Siostrzonek A, Strzelczyk JK. Expression of AMELX, AMBN, ENAM, TUFT1, FAM83H and MMP20 Genes in Buccal Epithelial Cells from Patients with Molar Incisor Hypomineralization (MIH)-A Pilot Study. Int J Mol Sci 2025; 26:766. [PMID: 39859478 PMCID: PMC11766068 DOI: 10.3390/ijms26020766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Molar incisor hypomineralization (MIH) is a developmental defect that affects the enamel tissue of permanent teeth. Clinicians may observe a range of opacities in the affected teeth, varying from white to creamy, yellow, and brown. Of particular interest is an etiology of MIH that has not been rigorously elucidated. Researchers believe that there are many potential etiological factors with strong genetic and/or epigenetic influence. The primary factors contributing to the risk of MIH development include specific medical conditions and circumstances. These encompass prematurity, cesarean delivery, perinatal hypoxia, and various health issues such as measles, urinary tract infections, otitis media, gastrointestinal disorders, bronchitis, kidney diseases, pneumonia, and asthma. Although genetic research in this area has received substantial attention, the investigation of epigenetic factors remains comparatively underexplored. Special attention is given to genes and their protein products involved in amelogenesis. Examples of such genes are AMELX, AMBN, ENAM, TUFT1, FAM83H, and MMP20. The median relative FAM83H gene expression in the control group was 0.038 (0.031-0.061) and 0.045 (0.032-0.087) in the study group in buccal swabs. The median relative TUFT1 gene expression in the control group was 0.328 (0.247-0.456) and 0.704 (0.334-1.183) in the study group in buccal swabs. Furthermore, children with MIH had significantly higher TUFT1 expression levels compared to the control group (p-value = 0.0043). Alterations in the expression of the TUFT1 and FAM83H genes could be contributing factors to MIH pathogenesis. Nonetheless, further investigation is essential to comprehensively elucidate the roles of all analyzed genes in the pathogenesis of MIH.
Collapse
Affiliation(s)
- Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Agnieszka Raczkowska-Siostrzonek
- Department of Dental Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 17 Plac Akademicki, 41-902 Bytom, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
9
|
Koul R, Chengappa D, Devashish, Datana S, Chopra SS. Enamel renal gingival syndrome in Indian scenario: A systematic review. Med J Armed Forces India 2025; 81:15-24. [PMID: 39872188 PMCID: PMC11762935 DOI: 10.1016/j.mjafi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/02/2024] [Indexed: 01/29/2025] Open
Abstract
Background Enamel renal gingival syndrome (ERS) is a genetic disorder caused by mutations in the FAM20A gene located on long arm of chromosome 17. It is characterized by presence of intra-oral features like hypoplastic type of amelogenesis imperfecta, fibromatosis of gingiva and nephrocalcinosis in addition to delayed eruption. The oral phenotype is evident in childhood, whereas the renal involvement is clinically silent at this age and requires further investigation for detection at later age. Gingival hyperplasia typically accompanies other features of the syndrome but is more variable, ranging from discrete to severe. Methods The present review aimed to analyze ERS in Indian population through a comprehensive literature analysis to emphasize the main findings of the syndrome. Present study is a systematic analysis of scientific literature conducted using four databases namely PubMed, Biomed, Cochrane, DOAJ in May 2024. The systematic review was registered in PROSPERO with registration number - CRD42024511916. Result A total of 14 articles as per inclusion criteria laid down for the present review were obtained, including data from 18 patients. Gender equivalence was observed among participants, with ages ranging from 09 to 32 years old. The syndrome has shown a genetic pattern, with consanguinity present in eight patients (47%) and a positive familial history in nine patients (52%). Laboratory findings observed mainly included hypocalciuria and hypophosphaturia (16.6%), hypocitraturia (11.1%), 24-h increased fractional excretion of calcium and magnesium and altered serum creatinine (16.6%). Conclusion Many times, it could be a dentist who may be the first person to encounter and diagnose such a condition. Enhanced cooperation between medical and dental professionals will result in improved understanding of this condition and enable more efficient and effective treatment of individuals suffering from it.
Collapse
Affiliation(s)
- Rahul Koul
- Graded Specialist (Pedodontics & Preventive Dentistry), Army Dental Centre (Research & Referral), New Delhi, India
| | - Dempsy Chengappa
- Classified Specialist (Pedodontics & Preventive Dentistry), INDC Danteshwari, Mumbai, India
| | - Devashish
- Graded Specialist (Pedodontics & Preventive Dentistry), Army Dental Centre (Research & Referral), New Delhi, India
| | - Sanjeev Datana
- Classified Specialist (Orthodontics & Dentofacial Orthopaedics), MDC, Dehradun, India
| | - S S Chopra
- Commandant, Army Dental Centre (Research & Referral), New Delhi, India
| |
Collapse
|
10
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Lee JM, Jung H, Tang Q, Li L, Lee SK, Lee JW, Park Y, Kwon HJE. KMT2D regulates tooth enamel development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608898. [PMID: 39411159 PMCID: PMC11475867 DOI: 10.1101/2024.08.20.608898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Amelogenesis, the process of enamel formation, is tightly regulated and essential for producing the tooth enamel that protects teeth from decay and wear. Disruptions in amelogenesis can result in amelogenesis imperfecta, a group of genetic conditions characterized by defective enamel, including enamel hypoplasia, marked by thin or underdeveloped enamel. Mutations in the KMT2D (MLL4) gene, which encodes a histone H3-lysine 4-methyltransferase, are associated with Kabuki syndrome, a developmental disorder that can involve dental anomalies such as enamel hypoplasia. However, the specific role of KMT2D in amelogenesis remains poorly understood. To address this gap, we generated a conditional knockout mouse model with ectoderm-specific deletion of Kmt2d (Krt14-Cre;Kmt2d fl/fl , or Kmt2d-cKO) and characterized the resulting enamel defects using gross, radiographic, histological, cellular, and molecular analyses. Micro-computed tomography and scanning electron microscopy revealed that adult Kmt2d-cKO mice exhibited 100% penetrant amelogenesis imperfecta, characterized by hypoplastic and hypomineralized enamel, partially phenocopying human Kabuki syndrome. Additionally, Kmt2d-cKO neonates developed molar tooth germs with subtle cusp shape alterations and mild delays in ameloblast differentiation at birth. RNA-seq analysis of the first molar tooth germ at birth revealed that 33.7% of known amelogenesis-related genes were significantly downregulated in the Kmt2d-cKO teeth. Integration with KMT2D CUT&RUN-seq results identified 8 overlapping genes directly targeted by KMT2D. Re-analysis of a single-cell RNA-seq dataset in the developing mouse incisors revealed distinct roles for these genes in KMT2D-regulated differentiation across various cell subtypes within the dental epithelium. Among these genes, Satb1 and Sp6 are likely direct targets involved in the differentiation of pre-ameloblasts into ameloblasts. Taken together, we propose that KMT2D plays a crucial role in amelogenesis by directly activating key genes involved in ameloblast differentiation, offering insights into the molecular basis of enamel development and related dental pathologies.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Hunmin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Qinghuang Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Jae W. Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, U.S.A
| | - Hyuk-Jae Edward Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| |
Collapse
|
12
|
Duverger O, Lee JS. The intricacies of tooth enamel: Embryonic origin, development and human genetics. J Struct Biol 2024; 216:108135. [PMID: 39384002 PMCID: PMC11645192 DOI: 10.1016/j.jsb.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its "construction" (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.
Collapse
Affiliation(s)
- Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Mergelsberg ST, Kim H, Buchko GW, Ginovska B. SAXS of murine amelogenin identifies a persistent dimeric species from pH 5.0 to 8.0. J Struct Biol 2024; 216:108131. [PMID: 39368677 DOI: 10.1016/j.jsb.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Amelogenin is an intrinsically disordered protein essential to tooth enamel formation in mammals. Using advanced small angle X-ray scattering (SAXS) capabilities at synchrotrons and computational models, we revisited measuring the quaternary structure of murine amelogenin as a function of pH and phosphorylation at serine-16. The SAXS data shows that at the pH extremes, amelogenin exists as an extended monomer at pH 3.0 (Rg = 38.4 Å) and nanospheres at pH 8.0 (Rg = 84.0 Å), consistent with multiple previous observations. At pH 5.0 and above there was no evidence for a significant population of monomeric species. Instead, at pH 5.0, ∼80 % of the population is a heterogenous dimeric species that increases to ∼100 % at pH 5.5. The dimer population was observed at all pH > 5 conditions in dynamic equilibrium with a species in the pentamer range at pH < 6.5 and nanospheres at pH 8.0. At pH 8.0, ∼40 % of the amelogenin remained in the dimeric state. In general, serine-16 phosphorylation of amelogenin appears to modestly stabilize the population of the dimeric species.
Collapse
Affiliation(s)
| | - Hoshin Kim
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Garry W Buchko
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
14
|
Kegulian NC, Moradian-Oldak J. Deletion within ameloblastin multitargeting domain reduces its interaction with artificial cell membrane. J Struct Biol 2024; 216:108143. [PMID: 39447937 PMCID: PMC11784912 DOI: 10.1016/j.jsb.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In human, mutations in the gene encoding the enamel matrix protein ameloblastin (Ambn) have been identified in cases of amelogenesis imperfecta. In mouse models, perturbations in the Ambn gene have caused loss of enamel and dramatic disruptions in enamel-making ameloblast cell function. Critical roles for Ambn in ameloblast cell signaling and polarization as well as adhesion to the nascent enamel matrix have been supported. Recently, we have identified a multitargeting domain (MTD) in Ambn that interacts with cell membrane, with the majority enamel matrix protein amelogenin, and with itself. This domain includes an amphipathic helix (AH) motif that directly interacts with cell membrane. In this study, we analyzed the sequence of the MTD for evolutionary conservation and found high conservation among mammals within the MTD and particularly within the AH motif. We computationally predicted that the AH motif lost its hydrophobic moment upon deleting hydrophobic but not hydrophilic residues from the motif. Furthermore, we rationally designed peptides that encompassed the Ambn MTD and contained deletions of largely hydrophobic or hydrophilic stretches of residues. To assess their AH-forming and membrane-binding abilities, we combined those peptides with synthetic phospholipid membrane vesicles and performed circular dichroism, membrane leakage, and vesicle clearance measurements. Circular dichroism showed retention of α-helix formation in all peptides except the one with the largest deletion of eleven amino acids including seven that were hydrophobic. This same peptide variant failed to cause leakage or clearance of synthetic membranes, while smaller deletions yielded intermediate membrane interaction as measured by leakage and clearance assays. Our data revealed that deletion of key hydrophobic residues from the AH leads to the most dramatic loss of Ambn-membrane interaction. Pinpointing roles of residues within the MTD has important implications for the multifunctionality of Ambn.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Liu H, Yu M, Sun K, Zheng J, Wang J, Liu H, Feng H, Liu Y, Han D. KDF1 promotes ameloblast differentiation by inhibiting the IKK/IκB/NF-κB axis. J Cell Physiol 2024; 239:e31437. [PMID: 39300779 DOI: 10.1002/jcp.31437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear. This study demonstrated that KDF1 was persistently expressed in all stages of ameloblast differentiation, through RNAscope in situ hybridization. KDF1 expression in the mouse ameloblast cell line LS8 was demonstrated via immunofluorescence assay. KDF1 was knocked out in LS8 cells using the CRISPR/Cas-9 system or overexpressed in LS8 cells through lentiviral infection. In vitro ameloblast differentiation induction, quantitative reverse transcription PCR, western blot analysis, and alkaline phosphatase (ALP) assay indicated that knockout or overexpression of KDF1 in LS8 cells decreased or increased the mRNA and protein levels of several key amelogenesis markers, as well as ALP activity. Furthermore, liquid chromatography-mass spectrometry and co-immunoprecipitation analyses revealed that KDF1 can interact with the IKK complex, thereby inhibiting the NF-κB pathway. Suppressing NF-κB activity partially recovered the decreased ameloblast differentiation in LS8 cells induced by KDF1-knockout. This study demonstrated that KDF1 can promote ameloblast differentiation of LS8 cells by inhibiting the IKK/IκB/NF-κB axis, and is a potential target for functional enamel regeneration.
Collapse
Affiliation(s)
- Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
16
|
Martin M, Gowda S, Foster Page L, Thomson WM. Oral health-related quality of life in Northland Māori children and adolescents with Polynesian amelogenesis imperfecta. FRONTIERS IN DENTAL MEDICINE 2024; 5:1485419. [PMID: 39917663 PMCID: PMC11797879 DOI: 10.3389/fdmed.2024.1485419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Amelogenesis Imperfecta (AI) is a hereditary developmental disorder of tooth enamel with few known variants with differing characteristics, depending on where in the amelogenesis process an error has occurred. Polynesian AI (or Poly AI) is prevalent among people of Polynesian descent and is prevalent among New Zealand Māori. While the impact of AI on the quality of life has been reported in some studies, however, the role of Poly AI on oral health-related quality of life (OHRQoL) is not known. This study explores OHRQoL among New Zealand Māori with and without AI. Methods A cross-sectional study was undertaken, with ethical approval obtained from the New Zealand Health and Disability Ethics Committee. 30 Māori children and adolescents with Poly AI and 60 Māori children and adolescents with no Poly AI as the comparison group matched by age and sex, were randomly selected and recruited participated in the study. OHRQoL was measured using the 19-item COHIP-SF. Results Statistically significant differences were observed in the OHRQoL between those with Poly AI and the comparison group. Linear regression analyses controlling for age and deprivation showed significantly poorer OHRQoL among those with Poly AI than in those with no Poly AI. Discussion The study findings highlight poorer OHRQoL among Māori children with Poly AI, emphasizing the need for early detection and management of the condition and the importance of providing appropriate training in diagnosing Poly AI and managing hypersensitivity. Further research among Polynesian populations is needed to understand the impact OHRQoL among those with Poly AI.
Collapse
Affiliation(s)
- Michelle Martin
- Oral Health Service Te Tai Tokerau, Hospital and Specialist Services, Health New Zealand | Te Whatu Ora, Whangārei, Northland, New Zealand
| | - Sunitha Gowda
- Oral Health Service Te Tai Tokerau, Hospital and Specialist Services, Health New Zealand | Te Whatu Ora, Whangārei, Northland, New Zealand
| | - Lyndie Foster Page
- Division of Dental Public Health, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - W. Murray Thomson
- Department of Oral Sciences, Faculty of Dentistry, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Jiang Y, Katsura KA, Badt NZ, Didziokas M, Dougherty S, Goldsby DL, Bhoj EJ, Vining K. Multi-modal characterization of rodent tooth development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621612. [PMID: 39554162 PMCID: PMC11565992 DOI: 10.1101/2024.11.01.621612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Craniofacial tissues undergo hard tissue development through mineralization and changes in physicochemical properties. This study investigates the mechanical and chemical properties of developing enamel, dentin, and bone in the mouse mandible. We employ a multi-modal, multi-scale analysis of the developing incisor and first molar at postnatal day 12 by integrating micro-computed tomography (microCT), nanoindentation (NI), energy dispersive spectroscopy (EDS), and Raman spectroscopy. Our findings demonstrate distinct patterns of mechanical, elemental, and chemical changes across mineralized tissues. These results suggest that mineral composition drives mechanical properties across different craniofacial hard tissues. Integrating multi-modal characterization of mineralized tissues opens new opportunities for investigating structure-function relationships in craniofacial biology and genetics.
Collapse
|
18
|
Zhang T, Liu J, Jin W, Nie H, Chen S, Tang X, Liu R, Wang M, Chen R, Lu J, Bao J, Jiang S, Xiao Y, Yan F. The sensory nerve regulates stem cell homeostasis through Wnt5a signaling. iScience 2024; 27:111035. [PMID: 39635121 PMCID: PMC11615182 DOI: 10.1016/j.isci.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence indicates that nerves play a significant role in regulating stem cell homeostasis and developmental processes. To explore the impact of nerves on epithelial stem cell homeostasis during tooth development, the regulation of sensory nerves on stem cell homeostasis was investigated using a rat model of incisor development. Impaired mineralization, decreased enamel thickness, and fractured enamel rods of the incisor were observed after denervation. qPCR and histological staining revealed that the expression of enamel-related factors ameloblastin (AMBN), kallikrein-4, amelogenin (Amelx), collagen type XVII (col17a), and enamelin were decreased in the incisor enamel of rats with sensory nerve injure. The decreased expression of Wnt5a in ameloblasts was coupled with the downregulation of calcium ion-related calmodulin kinase II. These results implicate that the sensory nerves are essential in stem cell homeostasis for enamel mineralization and development.
Collapse
Affiliation(s)
- Ting Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiaying Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiu Jin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sheng Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xuna Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rong Liu
- Department of Periodontology, Guiyang Hospital of Stomatology, Guiyang 550002, GuiZhou, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rixin Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jun Bao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen Clinical Research Center for Oral Diseases, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Ren Q, Yang Z, Lu Y, Pan J, Li Y, Guo Y, Bi M, Zhou Y, Yang H, Zhou L, Ji F. 3D X-ray microscope acts as an accurate and effective equipment of pathological diagnosis in craniofacial imaging. Sci Rep 2024; 14:23275. [PMID: 39375406 PMCID: PMC11458753 DOI: 10.1038/s41598-024-74139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Craniofacial structure and dental hard tissue used to be researched on by traditional imaging tools such as light microscope, electron microscope and micro-CT. Due to the limitations of imaging principle, resolution and 3D rendering reconstruction technique, traditional imaging tools are constrained for presenting fine structure and precise measurements. Here a brand-new imaging equipment-3D X-ray microscope is introduced to realize a more efficient scanning by demonstrating the comparison of the craniofacial structures and dental hard tissue of diabetes and normal DBA mouse. To explore a higher resolution, more efficient imaging measurement and 3D reconstruction method on craniofacial structure and dental hard tissue. The study included 12 DBA mice which were divided into two groups (control group and diabetes group). The heads were separated and scanned by 3D X-ray microscope, after which regions of interest were selected, followed by measurement and 3D reconstruction based on microscope attached software Dragonfly pro©. Hemi-mandibles were collected for enamel mineral density assessment supported by QRM-MicroCT-HA phantom. Data was submitted to paired t-tests at a 95% confidence level. The automatic assessed enamel thickness of diabetes mice decreased on average, whereas the rest of manual measurements and automatic assessed density showed no statistical difference. We constructed HA phantom assisted enamel density procedure in Dragonfly software. Craniofacial structure and dental hard tissue were well-presented both in 2D slide and 3D reconstruction viewport by 3D X-ray microscope which can be routinely used as craniofacial structure and dental hard tissue imaging tool.
Collapse
Affiliation(s)
- Qianhui Ren
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
- South China Center of Craniofacial Stem Cell Research Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhao Yang
- Shanghai Jing'an Dental Clinic, Shanghai, 200040, People's Republic of China
| | - Yilei Lu
- SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu, 314200, China
| | - Jing Pan
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Yangyang Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Ying Guo
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Mengning Bi
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Yucong Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Huiquan Yang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China
| | - Linjie Zhou
- SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu, 314200, China.
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Lab of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fang Ji
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
20
|
Yang S, Song D, Wang R, Liu M, Tan T, Wang Y, Xie Q, Wang L. Sodium fluoride-induced autophagy of ameloblast-like cells via the p-ULk1/ATG13/LC3B pathway in vitro. Oral Dis 2024; 30:4518-4527. [PMID: 38321366 DOI: 10.1111/odi.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE To investigate the effects of sodium fluoride on the ameloblast and reveal the mechanism of dental fluorosis. MATERIALS AND METHODS Mouse ameloblast-like cell line (ALC) cells were treated with various concentrations of NaF, and subjected to Incucyte, fluorescence immunoassay, transmission electron microscopy, reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot for autophagy examination, alkaline phosphatase and alizarin red staining for mineralization after osteogenic induction. RESULTS NaF exerts a dose-dependent inhibitory effect on ALC cell growth. TEM and fluorescence immunoassay showed that 1.5 mM or higher concentrations of NaF could induce a fusion of lysosome and mitochondria, finally increasing the number of autophagosome. RT-qPCR and western blot showed that the upregulation of autophagy related gene 13 (ATG13), downregulation of phosphorylated Unc-51-like kinase 1 (p-ULK1) were found in NaF-induced autophagy of ALC cells. The knockdown of ATG13 could rescue it as well as the expression of p-ULK1 and LC3B. Besides, alizarin red staining showed that fluoride under these concentrations could promote the mineralization of ALC. CONCLUSIONS The data show that fluoride in higher concentration can induce autophagy via the p-ULk1/ATG13/LC3B pathway of ALCs than lower ones promote mineralization in vitro, which provides insight into the function of NaF in the autophagy and mineralization of ameloblast.
Collapse
Affiliation(s)
- S Yang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - D Song
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - R Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - M Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - T Tan
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q Xie
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - L Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
21
|
Jerbaka F, Gribova V, Rey T, Elfaloussi S, Kawczynski M, Kharouf N, Herault Y, Arntz Y, Bloch-Zupan A, Bugueno IM. Organotypic 3D Cellular Models Mimicking the Epithelio-Ectomesenchymal Bilayer During Odontogenesis. Tissue Eng Part A 2024. [PMID: 39276088 DOI: 10.1089/ten.tea.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Odontogenesis, the intricate process of tooth development, involves complex interactions between oral ectoderm epithelial cells and ectomesenchymal cells derived from the cephalic neural crest, regulated by major signaling pathways. Dental developmental anomalies provide valuable insights for the clinical diagnosis of rare diseases. More than 30% of patients with rare diseases who undergo molecular analysis suffer from diagnostic errancy. In the search for up-to-date technologies and methods to study the pathophysiology of new candidate genetic variants, causing tooth mineralized tissue anomalies, we have developed an original model of tooth organoids with human or mouse cell lines of ameloblast-like cells and odontoblasts derived from the pulp. This in vitro 3D cellular model reproducing the two main compartments of the bell stage of tooth development between ameloblasts and odontoblasts, specific to enamel and dentin morphogenesis, respectively, mimics the epithelial-mesenchymal interactions during the dental bell stage of tooth morphogenesis and will facilitate the study of enamel and dentin genetic anomalies, allowing the functional validation of newly identified mutations (variants of uncertain significance or new candidate genes).
Collapse
Affiliation(s)
- Fadi Jerbaka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Varvara Gribova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Tristan Rey
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
- Institut de Génétique Médicale d'Alsace, Laboratoires de diagnostic génétique, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-dentaires, Centre de Référence des maladies rares orales et dentaires, CRMR-O-Rares, Hôpitaux Universitaires de Strasbourg (HUS), Hôpital Civil; Filière Santé Maladies rares TETE COU & European Reference Network ERN CRANIO, Strasbourg, France
| | - Soufian Elfaloussi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Marzena Kawczynski
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
- Pôle de Médecine et Chirurgie Bucco-dentaires, Centre de Référence des maladies rares orales et dentaires, CRMR-O-Rares, Hôpitaux Universitaires de Strasbourg (HUS), Hôpital Civil; Filière Santé Maladies rares TETE COU & European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Biomaterials and Bioengineering Laboratory, INSERM UMR_S 1121, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Youri Arntz
- Biomaterials and Bioengineering Laboratory, INSERM UMR_S 1121, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
- Pôle de Médecine et Chirurgie Bucco-dentaires, Centre de Référence des maladies rares orales et dentaires, CRMR-O-Rares, Hôpitaux Universitaires de Strasbourg (HUS), Hôpital Civil; Filière Santé Maladies rares TETE COU & European Reference Network ERN CRANIO, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Institut d'études avancées (USIAS), Université de Strasbourg, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS-UMR7104, INSERM U1258, Université de Strasbourg, Illkirch, France
- Pôle de Médecine et Chirurgie Bucco-dentaires, Centre de Référence des maladies rares orales et dentaires, CRMR-O-Rares, Hôpitaux Universitaires de Strasbourg (HUS), Hôpital Civil; Filière Santé Maladies rares TETE COU & European Reference Network ERN CRANIO, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Orofacial Development & Regeneration Unit, ZZM, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Chen R, Lin Y, Sun Y, Pan X, Xu Y, Kong X, Zhang L. Full-mouth rehabilitation with lithium disilicate ceramic crowns in hypoplastic amelogenesis imperfecta: a case report and review of literature. BMC Oral Health 2024; 24:1139. [PMID: 39334018 PMCID: PMC11437823 DOI: 10.1186/s12903-024-04929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Amelogenesis imperfecta (AI) is a group of genetic disorders characterized by tooth discoloration and enamel defects. Patients with AI always exhibit generalized attrition and defective tooth structure, leading to the loss of occlusal vertical dimension (OVD). Appropriate rehabilitation is challenging and essential to improve patients' aesthetics and function. CASE PRESENTATION This case report presents a comprehensive management of a 30-year-old woman with hypoplastic AI. A 52-month follow-up revealed satisfactory full-mouth rehabilitation performances of lithium disilicate ceramic crowns after clinical crown lengthening, with increased vertical dimension. CONCLUSIONS Patients with severe hypoplastic AI require proper full-mouth rehabilitation. Using full-crown lithium disilicate restorations to increase the OVD by 2‒4 mm is a safe and predictable recommendation for such cases. In addition, patients with AI require complex and comprehensive management. The long-term effects of full-mouth rehabilitation with lithium disilicate ceramic crowns still necessitate further follow-ups.
Collapse
Affiliation(s)
- Ranran Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Blomaterials and Devices of Zhejlang Province, Hangzhou, 310000, China
| | - Yi Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Blomaterials and Devices of Zhejlang Province, Hangzhou, 310000, China
| | - Xinni Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Blomaterials and Devices of Zhejlang Province, Hangzhou, 310000, China
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Blomaterials and Devices of Zhejlang Province, Hangzhou, 310000, China.
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Blomaterials and Devices of Zhejlang Province, Hangzhou, 310000, China.
| |
Collapse
|
23
|
Erkapers M, Frykholm C, Furuland H, Segerström S, Thor A. A case of enamel renal syndrome from a novel genetic mutation, multidisciplinary management and long-term prognosis. Ups J Med Sci 2024; 129:10228. [PMID: 39376587 PMCID: PMC11457907 DOI: 10.48101/ujms.v129.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 10/09/2024] Open
Abstract
Background The heterogeneous features of enamel renal syndrome (ERS) make diagnosis and treatment challenging. The main symptoms are disturbed amelogenesis and nephrocalcinosis. Bi-allelic likely pathogenic (LP) or pathogenic (P) variants in FAM20A have been associated with the syndrome since 2012. Affected patients often receive extensive dental treatment because of deviant orofacial morphology. However, knowledge about long-term prognosis and treatment guidelines are still lacking. The complex nature of ERS might endanger both dental and general health. The purpose of this article is to highlight the risks of overlooking the symptoms of the syndrome, and to discuss management strategies, surveillance and prognosis. Case presentation We report the management of a case with suspected ERS after initial dental treatment elsewhere with no adjustment for the syndrome. Dental treatment was revised and followed for 8 years. Complementary medical examinations were conducted, and ERS was genetically confirmed, revealing homozygosity for a LP c.755_757del, p.(Phe252del) variant in FAM20A. The nephrological investigation revealed medullary calcium deposits, normal renal function and hypophosphatemia. Urine analysis revealed hypocitraturia and hypocalciuria. Accordingly, the patient now medicates with potassium citrate to decrease the risk of progressive renal stone formation. Conclusion We herein describe a patient with confirmed ERS with an 8-year follow-up. Diagnostic delay until adulthood led to complicated dental treatment. The results of nephrological investigations are presented. The importance of dental and medical multidisciplinary management in syndromic disorders affecting the formation of the enamel is also exemplified. The dental prognosis after rehabilitation is likely affected by anatomical variations and patient cooperation. The prognosis for renal function seems to be good. However, lifelong surveillance of renal function is recommended. Registration The ethics committee in Uppsala, Sweden, determined that ethical approval was not necessary in this case (2019-04835). Informed consent was obtained from the participant in writing and is documented in the medical records.
Collapse
Affiliation(s)
- Maria Erkapers
- Department of Prosthetic Dentistry, Specialist Clinic Kaniken, Public Dental Health Service, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, Uppsala, Sweden
| | - Hans Furuland
- Department of Nephrology, Uppsala University and Uppsala University Hospital, Uppsala, Sweden
| | - Susanna Segerström
- Department of Prosthetic Dentistry, Specialist Clinic Kaniken, Public Dental Health Service, Uppsala, Sweden
| | - Andreas Thor
- Institute of Surgical Sciences, Department of Plastic and Oral & Maxillofacial Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Zheng Y, Lu T, Zhang L, Gan Z, Li A, He C, He F, He S, Zhang J, Xiong F. Single-cell RNA-seq analysis of rat molars reveals cell identity and driver genes associated with dental mesenchymal cell differentiation. BMC Biol 2024; 22:198. [PMID: 39256700 PMCID: PMC11389520 DOI: 10.1186/s12915-024-01996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. RESULTS Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. CONCLUSIONS Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.
Collapse
Affiliation(s)
- Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aoxi Li
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuandong He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jian Zhang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
25
|
Wu K, Li X, Bai Y, Heng BC, Zhang X, Deng X. The circadian clock in enamel development. Int J Oral Sci 2024; 16:56. [PMID: 39242565 PMCID: PMC11379899 DOI: 10.1038/s41368-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/09/2024] Open
Abstract
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Collapse
Affiliation(s)
- Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- 4th Division, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
- Oral Translational Medicine Research Center Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration The First People's Hospital of Jinzhong, Jinzhong, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
26
|
Avelar FM, Lanza CRM, Bernardino SS, Garcia-Junior MA, Martins MM, Carneiro MG, de Azevedo VAC, Sabino-Silva R. Salivary Molecular Spectroscopy with Machine Learning Algorithms for a Diagnostic Triage for Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:9464. [PMID: 39273410 PMCID: PMC11395251 DOI: 10.3390/ijms25179464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm-1, 1013 cm-1, 1002 cm-1, 1004 cm-1, and 1011 cm-1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool.
Collapse
Affiliation(s)
- Felipe Morando Avelar
- Department of Genetics, Ecology, and Evolution, ICB, Federal University of Minas Gerais, Belo Horizonte 312-901, MG, Brazil
| | - Célia Regina Moreira Lanza
- Department of Clinical Pathology and Dental Surgery, Dental School, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sttephany Silva Bernardino
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | - Marcelo Augusto Garcia-Junior
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | | | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| |
Collapse
|
27
|
Yu S, Liu D, Yan C, Yuan C, Zhang C, Zheng S. A novel mutation in GPR68 causes hypomaturation amelogenesis imperfecta. Arch Oral Biol 2024; 164:105991. [PMID: 38761453 DOI: 10.1016/j.archoralbio.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVES To identify the genetic cause of a Chinese family with hypomaturation amelogenesis imperfecta (AI) and to characterize the structure of GPR68 mutated enamel in order to develop a deeper understanding of the role of the GPR68 protein during the intricate process of amelogenesis. DESIGN One Chinese family with generalized hypomaturation AI was recruited. Two of the third molars from the proband were subjected to scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Whole exome sequencing (WES) was performed, and the identified mutation was confirmed by Sanger sequencing. Bioinformatics studies were further conducted to analyze the potential deleterious effects of the mutation. RESULTS The proband presented with a hypomaturation AI phenotype, characterized by fragile and discolored enamel surface. The AI enamel showed prismatic structure, which was sporadically obscured by areas of amorphous material and porous structure. EDX analysis showed the proband's enamel demonstrated a significant decrease in calcium and phosphorus content and a significant increase in oxygen compared with normal enamel. A novel homozygous mutation of G protein-coupled receptor 68 (GPR68) (c .149 T > A, p.Ile50Asn) was identified in the proband. Bioinformatics analysis indicated that the mutation site displayed a high level of evolutionary conservation among species, and the mutation might impact the stability and conformation of the protein. CONCLUSION The novel homozygous GPR68 mutation resulted in hypomaturation AI. We first described the effect of GPR68 mutation on enamel structure. Our results provide new genetic evidence that mutations involved in GPR68 contribute to hypomaturation AI.
Collapse
Affiliation(s)
- Shunlan Yu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Changqing Yan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China.
| |
Collapse
|
28
|
Gabe CM, Bui AT, Lukashova L, Verdelis K, Vasquez B, Beniash E, Margolis HC. Role of amelogenin phosphorylation in regulating dental enamel formation. Matrix Biol 2024; 131:17-29. [PMID: 38759902 PMCID: PMC11363587 DOI: 10.1016/j.matbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.
Collapse
Affiliation(s)
- Claire M Gabe
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Ai Thu Bui
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | | | - Kostas Verdelis
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Endodontics, UPSDM, Pittsburgh, PA, USA
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Henry C Margolis
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, UPSDM, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Pousette Lundgren G, Dahllöf G. Advances in clinical diagnosis and management of amelogenesis imperfecta in children and adolescents. J Dent 2024; 147:105149. [PMID: 38909645 DOI: 10.1016/j.jdent.2024.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
OBJECTIVE To summarize studies published between 2017 and 2023 examining the clinical diagnosis and restorative management of amelogenesis imperfecta (AI) in children and adolescents. DATA The review incorporated publications on clinical diagnosis, patient-reported outcomes, clinical trials, cohort studies, and case reports that included individuals below 19 years of age with non-syndromic AI. SOURCES A literature search was conducted across electronic databases, PubMed, Web of Science, and CINAHL, including papers published between 2017 and 2023. The search yielded 335 unique results, of which 38 were eligible for inclusion. RESULTS New evidence on the genetic background of AI makes it now advisable to recommend genetic testing to supplement a clinical AI diagnosis. The discussions of the dental profession and the public on social media do not always incorporate recent scientific evidence. Interview studies are finding that the impact of AI on quality of life is more severe than previously appreciated. New evidence suggests that single-tooth ceramic crowns should be the first choice of treatment. Due to incomplete reporting, case reports have been of limited value. CONCLUSION In young patients with AI symptoms of pain and hypersensitivity decreased, and aesthetics were improved following all types of restorative therapy. Resin composite restorations were mainly performed in cases with hypoplastic AI and mild symptoms. Single tooth ceramic crown restorations have a high success rate in all types of AI and can be used in young individuals with AI. CLINICAL SIGNIFICANCE Prosthetic rehabilitation in adolescents with severe AI is cost effective, improves esthetics, reduces tooth sensitivity, and improves oral health-related quality of life.
Collapse
Affiliation(s)
- Gunilla Pousette Lundgren
- Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, POB 4064 SE-141 04 Huddinge, Sweden
| | - Göran Dahllöf
- Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, POB 4064 SE-141 04 Huddinge, Sweden; Center for Oral Health Services and Research, Mid-Norway, TkMidt, Professor Brochs gt. 2 7030 Trondheim, Norway.
| |
Collapse
|
30
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
31
|
Smith CEL, Laugel-Haushalter V, Hany U, Best S, Taylor RL, Poulter JA, Wortmann SB, Feichtinger RG, Mayr JA, Al Bahlani S, Nikolopoulos G, Rigby A, Black GC, Watson CM, Mansour S, Inglehearn CF, Mighell AJ, Bloch-Zupan A. Biallelic variants in Plexin B2 ( PLXNB2) cause amelogenesis imperfecta, hearing loss and intellectual disability. J Med Genet 2024; 61:689-698. [PMID: 38458752 PMCID: PMC11228227 DOI: 10.1136/jmg-2023-109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.
Collapse
Affiliation(s)
- Claire E L Smith
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Virginie Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
| | - Ummey Hany
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Sunayna Best
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rachel L Taylor
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- EMQN CIC, Manchester, UK
| | - James A Poulter
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Rene G Feichtinger
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
| | - Suhaila Al Bahlani
- Dental & OMFS Clinic, Al Nahdha Hospital, Government of Oman Ministry of Health, Muscat, Oman
| | | | - Alice Rigby
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christopher M Watson
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sahar Mansour
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, St George's Hospital, University of London, London, UK
- SW Thames Regional Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Chris F Inglehearn
- Institute of Medical Research, St James's University Hospital, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, University of Leeds Faculty of Medicine and Health, Leeds, UK
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Centre de référence des maladies rares orales et dentaires O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network CRANIO, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| |
Collapse
|
32
|
Chow AK, Low R, Yuan J, Yee KK, Dhaliwal JK, Govia S, Sharmin N. Bioinformatics for Dentistry: A secondary database for the genetics of tooth development. PLoS One 2024; 19:e0303628. [PMID: 38843230 PMCID: PMC11156362 DOI: 10.1371/journal.pone.0303628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Genes strictly regulate the development of teeth and their surrounding oral structures. Alteration of gene regulation leads to tooth disorders and developmental anomalies in tooth, oral, and facial regions. With the advancement of gene sequencing technology, genomic data is rapidly increasing. However, the large sets of genomic and proteomic data related to tooth development and dental disorders are currently dispersed in many primary databases and literature, making it difficult for users to navigate, extract, study, or analyze. We have curated the scattered genetic data on tooth development and created a knowledgebase called 'Bioinformatics for Dentistry' (https://dentalbioinformatics.com/). This database compiles genomic and proteomic data on human tooth development and developmental anomalies and organizes them according to their roles in different stages of tooth development. The database is built by systemically curating relevant data from the National Library of Medicine (NCBI) GenBank, OMIM: Online Mendelian Inheritance in Man, AlphaFold Protein Structure Database, Reactome pathway knowledgebase, Wiki Pathways, and PubMed. The accuracy of the included data was verified from supporting primary literature. Upon data curation and validation, a simple, easy-to-navigate browser interface was created on WordPress version 6.3.2, with PHP version 8.0. The website is hosted in a cloud hosting service to provide fast and reliable data transfer rate. Plugins are used to ensure the browser's compatibility across different devices. Bioinformatics for Dentistry contains four embedded filters for complex and specific searches and free-text search options for quick and simple searching through the datasets. Bioinformatics for Dentistry is made freely available worldwide, with the hope that this knowledgebase will improve our understanding of the complex genetic regulation of tooth development and will open doors to research initiatives and discoveries. This database will be expanded in the future by incorporating resources and built-in sequence analysis tools, and it will be maintained and updated annually.
Collapse
Affiliation(s)
- Ava K. Chow
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Rachel Low
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Jerald Yuan
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Karen K. Yee
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Jaskaranjit Kaur Dhaliwal
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Shanice Govia
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nazlee Sharmin
- School of Dentistry, College of Health Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
Sharma A, Muthu MS, V V, Nuvvula S, T G. Genetic variations in exon 10 of ENAM and their association with early childhood caries. J Oral Biosci 2024; 66:349-357. [PMID: 38642606 DOI: 10.1016/j.job.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Enamelin is the largest enamel matrix protein encoded by the ENAM gene. The primary purpose of this study was to identify genetic variants in ENAM exon 10 that can alter susceptibility to early childhood caries (ECC). METHODS This case-control study included 248 children aged 3-6 years, with 124 children diagnosed with ECC in the case group and 124 children without caries in the control group. Questionnaires were used to record demographic data, socioeconomic status, hygienic practices, and feeding practices, and a 24-h diet diary was kept. Seven polymorphisms (rs7671281, rs1738668322, rs3796703, rs3796704, rs759376039, rs775159311, and rs1738678483) in ENAM exon 10 were sequenced. RESULTS The heterozygous CT genotype of rs7671281 was significantly more common in the case group compared to the control group (odds ratio [OR], 6.1765; 95% confidence interval [CI], 2.05-18.58; P = 0.0006). Under the dominant model, the TT genotype of rs7671281 was significantly more common in the control group (OR, 6.47; 95% CI, 2.15-19.39; P < 0.001). The AG genotype of rs3796704 was significantly more common in the case group than in the control group (OR, 5.705; 95% CI, 1.60-20.25; P = 0.006). Under the dominant model, the GG genotype of rs3796704 was significantly more common in children without caries than in children with caries (OR, 6.84; 95% CI, 1.96-23.90; P < 0.001). CONCLUSIONS The C allele of rs7671281 and the A allele of rs3796704 can increase susceptibility to ECC.
Collapse
Affiliation(s)
- Aruna Sharma
- Centre for Early Childhood Caries Research (CECCRe), Department of Pediatric and Preventive Dentistry, Sri Ramachandra Institute of Higher Education and Research, No.1 Mount Poonamalle Road, Sri Ramachandra Nagar, Porur, Chennai, India; Department of Pediatric and Preventive Dentistry, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth, Pondy-Cuddalore Main Road, Pillayarkuppam, Puducherry, India.
| | - M S Muthu
- Centre for Early Childhood Caries Research (CECCRe), Department of Pediatric and Preventive Dentistry, Sri Ramachandra Institute of Higher Education and Research, No.1 Mount Poonamalle Road, Sri Ramachandra Nagar, Porur, Chennai, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Vettriselvi V
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, No.1, Mount Poonamalle Road, Sri Ramachandra Nagar, Porur, Chennai, India.
| | - Sivakumar Nuvvula
- Department of Pediatric and Preventive Dentistry. Narayana Dental College and Hospital, Chintareddy Palem, Nellore, Andhra Pradesh, India.
| | - Gayathri T
- Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research, No.1, Mount Poomamalle Road, Sri RamachandraNagar, Porur, Chennai, India.
| |
Collapse
|
34
|
Wang YL, Lin HC, Liang T, Lin JY, Simmer J, Hu JC, Wang SK. ENAM Mutations Can Cause Hypomaturation Amelogenesis Imperfecta. J Dent Res 2024; 103:662-671. [PMID: 38716742 PMCID: PMC11122092 DOI: 10.1177/00220345241236695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Amelogenesis imperfecta (AI) is a diverse group of inherited diseases featured by various presentations of enamel malformations that are caused by disturbances at different stages of enamel formation. While hypoplastic AI suggests a thickness defect of enamel resulting from aberrations during the secretory stage of amelogenesis, hypomaturation AI indicates a deficiency of enamel mineralization and hardness established at the maturation stage. Mutations in ENAM, which encodes the largest enamel matrix protein, enamelin, have been demonstrated to cause generalized or local hypoplastic AI. Here, we characterized 2 AI families with disparate hypoplastic and hypomaturation enamel defects and identified 2 distinct indel mutations at the same location of ENAM, c588+1del and c.588+1dup. Minigene splicing assays demonstrated that they caused frameshifts and truncation of ENAM proteins, p.Asn197Ilefs*81 and p.Asn197Glufs*25, respectively. In situ hybridization of Enam on mouse mandibular incisors confirmed its restricted expression in secretory stage ameloblasts and suggested an indirect pathogenic mechanism underlying hypomaturation AI. In silico analyses indicated that these 2 truncated ENAMs might form amyloid structures and cause protein aggregation with themselves and with wild-type protein through the added aberrant region at their C-termini. Consistently, protein secretion assays demonstrated that the truncated proteins cannot be properly secreted and impede secretion of wild-type ENAM. Moreover, compared to the wild-type, overexpression of the mutant proteins significantly increased endoplasmic reticulum stress and upregulated the expression of unfolded protein response (UPR)-related genes and TNFRSF10B, a UPR-controlled proapoptotic gene. Caspase, terminal deoxynucleotidyl transferase UTP nick-end labeling (TUNEL), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays further revealed that both truncated proteins, especially p.Asn197Ilefs*81, induced cell apoptosis and decreased cell survival, suggesting that the 2 ENAM mutations cause AI through ameloblast cell pathology and death rather than through a simple loss of function. This study demonstrates that an ENAM mutation can lead to generalized hypomaturation enamel defects and suggests proteinopathy as a potential pathogenesis for ENAM-associated AI.
Collapse
Affiliation(s)
- Y.-L. Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City, Taiwan
| | - H.-C. Lin
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
| | - T. Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J.C.-Y. Lin
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, National Defense Medical University, Taipei City, Taiwan
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - S.-K. Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, Taipei City, Taiwan
| |
Collapse
|
35
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
36
|
Hany U, Watson CM, Liu L, Smith CEL, Harfoush A, Poulter JA, Nikolopoulos G, Balmer R, Brown CJ, Patel A, Simmonds J, Charlton R, Acosta de Camargo MG, Rodd HD, Jafri H, Antanaviciute A, Moffat M, Al-Jawad M, Inglehearn CF, Mighell AJ. Heterozygous COL17A1 variants are a frequent cause of amelogenesis imperfecta. J Med Genet 2024; 61:347-355. [PMID: 37979963 PMCID: PMC10982616 DOI: 10.1136/jmg-2023-109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.
Collapse
Affiliation(s)
- Ummey Hany
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Christopher M Watson
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Lu Liu
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Claire E L Smith
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Asmaa Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Georgios Nikolopoulos
- Institute for Fundamental Biomedical Research, B.S.R.C. 'Alexander Fleming', Vari, Attica, Greece
| | - Richard Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Catriona J Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - Anesha Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Vincent Drive, Edgbaston, Birmingham, UK
| | - Jenny Simmonds
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Ruth Charlton
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | | | - Helen D Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Hussain Jafri
- Fatima Jinnah Medical University, Punjab Thalassaemia and Other Genetic Disorders Prevention and Research Institute, Lahore, Pakistan
| | | | - Michelle Moffat
- Paediatric Dentistry, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Maisoon Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
37
|
Winkler JR, Dixon BL, Singh I, Soto R, Qiu Y, Zhang Y, Porucznik CA, Stanford JB. Prenatal exposure to environmental toxins and comprehensive dental findings in a population cohort of children. BMC Oral Health 2024; 24:326. [PMID: 38468230 PMCID: PMC10929125 DOI: 10.1186/s12903-023-03786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2023] [Indexed: 03/13/2024] Open
Abstract
Environmental toxins are known to have many impacts on growth and development in humans, starting in utero. Alterations in amelogenesis, caused by chemical and physical trauma that occur during the antenatal, perinatal and postnatal time periods, may result in developmental defects in deciduous and permanent tooth enamel, as demonstrated in animal studies. These defects can be clinically visible and result in a variety of morphological and functional problems in the dentition. Since enamel does not remodel after formation, it may serve as a permanent record of insults during organ development.Our primary purpose was to investigate any possible relationship between intrauterine exposure to endocrine disrupting chemicals (phenols and phthalates) and developmental defects in enamel in children, while also accounting for fluoride exposure. Our secondary purpose was to report descriptively on findings from comprehensive dental examinations performed on 356 children that were drawn from the general paediatric population. A cohort of children from the Utah Children's Project (N = 356) that had full medical exams, comprehensive medical and family histories and available biospecimens were given extraoral and intraoral examinations. They also completed an oral health questionnaire. Standardized intraoral photographs were taken of the teeth and viewed by standardised examiners and the dental observations were recorded for a full inventory of findings, including: tooth morphology, caries, restorations, colorations, attrition, erosion, fractures and hypomineralization. Perinatal maternal urine samples were assessed for the concentration of fluoride, phenols and phthalates, including bisphenol A (BPA).Pairwise statistical analyses were done to correlate the dental findings with one another and with the presence of environment chemicals found in the urine samples. Hypomineralization was the most common finding (96% of children; 37% of deciduous teeth, 42% of permanent teeth), consistent with molar incisor hypomineralization (MIH) described in other human populations. No consistent correlations were seen between dental findings and the presence of phenols and phthalates in prenatal urine, but the number of samples available for the assessment was limited (n = 35).In conclusion, we found a high proportion of dental hypomineralization in a population based paediatric cohort, but did not find an association with prenatal exposure to phenols and phthalates.
Collapse
Affiliation(s)
- James R Winkler
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Barbara L Dixon
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - Ishita Singh
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ray Soto
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Yuqing Qiu
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yue Zhang
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina A Porucznik
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA
| | - Joseph B Stanford
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, 375 Chipeta Way, Suite A, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
38
|
Randall JG, Gatesy J, McGowen MR, Springer MS. Molecular Evidence for Relaxed Selection on the Enamel Genes of Toothed Whales (Odontoceti) with Degenerative Enamel Phenotypes. Genes (Basel) 2024; 15:228. [PMID: 38397217 PMCID: PMC10888366 DOI: 10.3390/genes15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman's rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development.
Collapse
Affiliation(s)
- Jason G. Randall
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, MRC 108, P.O. Box 37012, Washington, DC 20013, USA;
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
39
|
Monteiro J, Balmer R, Lafferty F, Lyne A, Mighell A, O'Donnell K, Parekh S. Establishment of a clinical network for children with amelogenesis imperfecta and dentinogenesis imperfecta in the UK: 4-year experience. Eur Arch Paediatr Dent 2024; 25:85-91. [PMID: 38308725 PMCID: PMC10943134 DOI: 10.1007/s40368-023-00859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are two groups of genetically inherited conditions resulting in abnormal enamel and dentin formation, respectively. Children and young people may be adversely affected by these conditions, with significant reduction in oral health related quality of life. Dental management of children with AI and DI is often complex, which is exacerbated by the absence of clear referral pathways and scarce evidence-based guidelines. METHOD The need for increased knowledge and peer support led to the development of a group of UK paediatric dentists with a special clinical interest in the management of children with AI and DI. PURPOSE The aims of this paper are to describe the establishment of an AI/DI Clinical Excellence Network (AI/DI CEN) in paediatric dentistry including outputs and future plans, and to share our collective learning to help support others anywhere in the world advance the care of people with AI or DI.
Collapse
Affiliation(s)
- J Monteiro
- Sheffield Teaching Hospitals, University of Sheffield, Sheffield, UK.
| | - R Balmer
- School of Dentistry, The University of Leeds, Leeds, UK
| | | | - A Lyne
- RNENTEDH, University College London Hospitals, London, UK
| | - A Mighell
- School of Dentistry, The University of Leeds, Leeds, UK
| | | | - S Parekh
- UCL Eastman Dental Institute, London, UK
| |
Collapse
|
40
|
Jimenez-Armijo A, Morkmued S, Ahumada JT, Kharouf N, de Feraudy Y, Gogl G, Riet F, Niederreither K, Laporte J, Birling MC, Selloum M, Herault Y, Hernandez M, Bloch-Zupan A. The Rogdi knockout mouse is a model for Kohlschütter-Tönz syndrome. Sci Rep 2024; 14:445. [PMID: 38172607 PMCID: PMC10764811 DOI: 10.1038/s41598-023-50870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.
Collapse
Affiliation(s)
- Alexandra Jimenez-Armijo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Supawich Morkmued
- Pediatrics Division, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - José Tomás Ahumada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Naji Kharouf
- Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Université de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Gergo Gogl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Marie Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Mohammed Selloum
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Competence Center for Rare Oral and Dental Diseases, Université de Lorraine, Nancy, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Institut d'études Avancées (USIAS), Université de Strasbourg, Strasbourg, France.
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
41
|
Wang SK, Lee ZH, Aref P, Chu KY. A novel ODAPH mutation causing amelogenesis imperfecta and its expression in human dental tissues. J Dent Sci 2024; 19:524-531. [PMID: 38303846 PMCID: PMC10829723 DOI: 10.1016/j.jds.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Amelogenesis imperfecta (AI), an assemblage of genetic diseases with dental enamel malformations, is generally grouped into hypoplastic, hypomaturation, and hypocalcified types. This study aimed to identify the genetic etiology for a consanguineous Iranian family with autosomal recessive hypocalcified AI. Materials and methods Dental defects were characterized, and whole exome analysis conducted to search for disease-causing mutations. Minigene assay and RT-PCR were performed to evaluate molecular consequences of the identified mutation and expression of the causative gene in human dental tissues. Results The defective enamel of erupted teeth showed extensive post-eruptive failure and discoloration. Partial enamel hypoplasia and indistinct dentino-enamel junction were evident on unerupted teeth, resembling hypocalcified AI. A novel homozygous ODAPH (previously designated C4orf26) mutation of single-nucleotide deletion (NG_032974.1:g.5103del, NM_178497.5:c.67+1del) was identified to be disease-causing. The mutation would cause a frameshift to different ODAPH transcript variant (TV) products: p.(Ala23Hisfs∗29) for TV1 and p.(Gly23Aspfs∗140) for TV2. Both dental pulps of developing and exfoliating primary teeth expressed ODAPH TV2. Conclusion Loss-of-function ODAPH mutations can cause AI type IIIB (the hypocalcified, autosomal recessive type), rather than type IIA4 (the hypomaturation, pigmented autosomal recessive type). This study supports a hypothesis that the product of ODAPH TV2 is the single dominant ODAPH protein isoform critical for dental enamel formation and may also play an unappreciated role in development and homeostasis of dentin-pulp complex. Due to genetic heterogeneity and a nonideal genotype-phenotype correlation of AI, it is essential to perform genetic testing for patients with inherited enamel defects to make a definitive diagnosis.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Zhe-Hao Lee
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Parissa Aref
- Department of Pediatric Dentistry, Islamic Azad University Dental Branch of Tehran, Tehran, Iran
| | - Kuan-Yu Chu
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Hany U, Watson C, Liu L, Nikolopoulos G, Smith C, Poulter J, Brown C, Patel A, Rodd H, Balmer R, Harfoush A, Al-Jawad M, Inglehearn C, Mighell A. Novel Ameloblastin Variants, Contrasting Amelogenesis Imperfecta Phenotypes. J Dent Res 2024; 103:22-30. [PMID: 38058155 PMCID: PMC10734210 DOI: 10.1177/00220345231203694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Amelogenesis imperfecta (AI) comprises a group of rare, inherited disorders with abnormal enamel formation. Ameloblastin (AMBN), the second most abundant enamel matrix protein (EMP), plays a critical role in amelogenesis. Pathogenic biallelic loss-of-function AMBN variants are known to cause recessive hypoplastic AI. A report of a family with dominant hypoplastic AI attributed to AMBN missense change p.Pro357Ser, together with data from animal models, suggests that the consequences of AMBN variants in human AI remain incompletely characterized. Here we describe 5 new pathogenic AMBN variants in 11 individuals with AI. These fall within 3 groups by phenotype. Group 1, consisting of 6 families biallelic for combinations of 4 different variants, have yellow hypoplastic AI with poor-quality enamel, consistent with previous reports. Group 2, with 2 families, appears monoallelic for a variant shared with group 1 and has hypomaturation AI of near-normal enamel volume with pitting. Group 3 includes 3 families, all monoallelic for a fifth variant, which are affected by white hypoplastic AI with a thin intact enamel layer. Three variants, c.209C>G; p.(Ser70*) (groups 1 and 2), c.295T>C; p.(Tyr99His) (group 1), and c.76G>A; p.(Ala26Thr) (group 3) were identified in multiple families. Long-read AMBN locus sequencing revealed these variants are on the same conserved haplotype, implying they originate from a common ancestor. Data presented therefore provide further support for possible dominant as well as recessive inheritance for AMBN-related AI and for multiple contrasting phenotypes. In conclusion, our findings suggest pathogenic AMBN variants have a more complex impact on human AI than previously reported.
Collapse
Affiliation(s)
- U. Hany
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.M. Watson
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds, UK
| | - L. Liu
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - G. Nikolopoulos
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.E.L. Smith
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - J.A. Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.J. Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - A. Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Edgbaston, Birmingham, UK
| | - H.D. Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S Yorks, UK
| | - R. Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - A. Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - M. Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - C.F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - A.J. Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
de La Dure-Molla M, Gaucher C, Dupré N, Bloch Zupan A, Berdal A, Chaussain C. [The tooth: A marker of developmental abnormalities]. Med Sci (Paris) 2024; 40:16-23. [PMID: 38299898 DOI: 10.1051/medsci/2023190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Tooth formation results from specific epithelial-mesenchymal interactions, which summarize a number of developmental processes. Tooth anomalies may thus reflect subclinical diseases of the kidney, bone and more broadly of the mineral metabolism, skin or nervous system. Odontogenesis starts from the 3rd week of intrauterine life by the odontogenic orientation of epithelial cells by a first PITX2 signal. The second phase is the acquisition of the number, shape, and position of teeth. It depends on multiple transcription and growth factors (BMP, FGF, SHH, WNT). These ecto-mesenchymal interactions guide cell migration, proliferation, apoptosis and differentiation ending in the formation of the specific dental mineralized tissues. Thus, any alteration will have consequences on the tooth structure or shape. Resulting manifestations will have to be considered in the patient phenotype and the multidisciplinary care, but also may contribute to identify the altered genetic circuity.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- Centre de référence maladies rares orales et dentaires, O-Rares, hôpital Rothschild, AP-HP, Paris ; université Paris Cité, UFR d'odontologie, Inserm, UMR1163, bases moléculaires et physiopathologiques des ostéochondrodysplasies, institut imagine, Paris ; FHU DDS Paris-Net, filière TETECOU, European Reference Network CRANIO
| | - Céline Gaucher
- FHU DDS Paris-Net, université Paris Cité, Inserm, AP-HP ; laboratoire BRIO URP2496, UFR d'odontologie, université Paris Cité, France ; Service de médecine bucco-dentaire, hôpital Henri Mondor, AP-HP ; Service de médecine génomique des maladies rares de système et d'organe, hôpital Cochin, AP-HP, Centre-Université Paris Cité, Montrouge, France
| | - Nicolas Dupré
- FHU DDS Paris-Net, université Paris Cité, Inserm, APHP ; équipe « Physiopathologie orale moléculaire », Centre de recherche des Cordeliers, Inserm U1138, université Paris Cité, Sorbonne université. UFR d'odontologie université Paris Cité. Centre de référence maladies rares O-Rares, hôpital Rothschild, AP-HP, Paris ; filière TETECOU, European Reference Network CRANIO, Paris
| | - Agnès Bloch Zupan
- Université de Strasbourg, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), Inserm U1258, CNRS- UMR7104, Illkirch ; faculté de chirurgie dentaire Robert Frank ; institut d'études avancées (USIAS) ; Hôpitaux universitaires de Strasbourg (HUS), pôle de médecine et chirurgie bucco-dentaires, hôpital civil, centre de référence des maladies rares orales et dentaires O-Rares, filière santé maladies rares TETE COU, European Reference Network CRANIO, Strasbourg
| | - Ariane Berdal
- FHU DDS Paris-Net, université Paris Cité, Inserm AP-HP, équipe « Physiopathologie orale moléculaire », centre de recherche des Cordeliers, Inserm U1138, université Paris Cité, Sorbonne université. UFR d'odontologie, université Paris Cité. centre de référence maladies Rares O-Rares, hôpital Rothschild, AP-HP, Paris, filière TETECOU, European Reference Network CRANIO, Paris
| | - Catherine Chaussain
- FHU DDS Paris-Net, université Paris Cité, Inserm, AP-HP ; laboratoire BRIO URP2496, UFR d'odontologie ; AP-HP, hôpital Bretonneau ; centre de référence maladies Rares du métabolisme du calcium, phosphate et magnésium, filière OSCAR, European Reference Network BOND, Paris
| |
Collapse
|
44
|
Zhu X, Ma Z, Xie F, Wang J. ASH2L, Core Subunit of H3K4 Methylation Complex, Regulates Amelogenesis. J Dent Res 2024; 103:81-90. [PMID: 37990471 DOI: 10.1177/00220345231207309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Histone methylation assumes a crucial role in the intricate process of enamel development. Our study has illuminated the substantial prevalence of H3K4me3 distribution, spanning from the cap stage to the late bell stage of dental germs. In order to delve into the role of H3K4me3 modification in amelogenesis and unravel the underlying mechanisms, we performed a conditional knockout of Ash2l, a core subunit essential for the establishment of H3K4me3 within the dental epithelium of mice. The absence of Ash2l resulted in reduced H3K4me3 modification, subsequently leading to abnormal morphology of dental germ at the late bell stage. Notably, knockout of Ash2l resulted in a loss of polarity in ameloblasts and odontoblasts. The proliferation and apoptosis of the inner enamel epithelium cells underwent dysregulation. Moreover, there was a notable reduction in the expression of matrix-related genes, Amelx and Dspp, accompanied with impaired enamel and dentin formation. Cut&Tag-seq (cleavage under targets and tagmentation sequencing) analysis substantiated a reduction of H3K4me3 modification on Shh, Trp63, Sp6, and others in the dental epithelium of Ash2l knockout mice. Validation through real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence consistently affirmed the observed downregulation of Shh and Sp6 in the dental epithelium following Ash2l knockout. Intriguingly, the expression of Trp63 isomers, DNp63 and TAp63, was perturbed in Ash2l defect dental epithelium. Furthermore, the downstream target of TAp63, P21, exhibited aberrant expression within the cervical loop of mandibular first molars and incisors. Collectively, our findings suggest that ASH2L orchestrates the regulation of crucial amelogenesis-associated genes, such as Shh, Trp63, and others, by modulating H3K4me3 modification. Loss of ASH2L and H3K4me3 can lead to aberrant differentiation, proliferation, and apoptosis of the dental epithelium by affecting the expression of Shh, Trp63, and others genes, thereby contributing to the defects of amelogenesis.
Collapse
Affiliation(s)
- X Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Z Ma
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - F Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - J Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
45
|
Kim HY, Cooley V, Kim EJ, Li S, Lee JM, Sheyfer D, Liu W, Klein OD, Joester D, Jung HS. Adult dental epithelial stem cell-derived organoids deposit hydroxylapatite biomineral. Int J Oral Sci 2023; 15:55. [PMID: 38062012 PMCID: PMC10703793 DOI: 10.1038/s41368-023-00257-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Ameloblasts are specialized cells derived from the dental epithelium that produce enamel, a hierarchically structured tissue comprised of highly elongated hydroxylapatite (OHAp) crystallites. The unique function of the epithelial cells synthesizing crystallites and assembling them in a mechanically robust structure is not fully elucidated yet, partly due to limitations with in vitro experimental models. Herein, we demonstrate the ability to generate mineralizing dental epithelial organoids (DEOs) from adult dental epithelial stem cells (aDESCs) isolated from mouse incisor tissues. DEOs expressed ameloblast markers, could be maintained for more than five months (11 passages) in vitro in media containing modulators of Wnt, Egf, Bmp, Fgf and Notch signaling pathways, and were amenable to cryostorage. When transplanted underneath murine kidney capsules, organoids produced OHAp crystallites similar in composition, size, and shape to mineralized dental tissues, including some enamel-like elongated crystals. DEOs are thus a powerful in vitro model to study mineralization process by dental epithelium, which can pave the way to understanding amelogenesis and developing regenerative therapy of enamel.
Collapse
Affiliation(s)
| | - Victoria Cooley
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Dina Sheyfer
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Wenjun Liu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
46
|
Bin Saleh SS. Etiology, Classification, and Restorative Management of Amelogenesis Imperfecta Among Children and Young Adults: A Scoping Review. Cureus 2023; 15:e49968. [PMID: 38179349 PMCID: PMC10765965 DOI: 10.7759/cureus.49968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Amelogenesis imperfecta (AI) is a rare genetic disorder affecting children and adults. Knowledge about AI is limited to clinical representation and radiographical findings. Various treatments are provided to children with AI, yet no definitive treatment guideline has been suggested in the literature. This scoping review highlights the knowledge of the etiology and classification of AI and synthesizes these findings in a comprehensive review, focusing mainly on the various forms of AI in children and management with a restorative conservative approach. Five electronic databases, namely, PubMed, Google Scholar, Embase, Web of Science, and Scopus, were searched for the relevant articles. The search was performed in two phases: first for title and abstract, and second for full-text articles. The studies included in this scoping review were published from 2013 to August 2023. The data extraction was done on a customized sheet. A total of 33 studies were included in this review, of which 19 were reports and series, seven were observational, and seven were reviews. Most patients included in this review suffered from the hypoplastic type of AI (54%), followed by hypomatured (36%), and hypocalcified (10%). The treatment modalities explained were divided into the following three phases: temporary, transient, and permanent. Almost all included reports suggested the requirement for guidelines for treating AI among young children. This scoping review suggests the need for guidelines for treating AI in children. Moreover, pediatric dentists should prioritize early diagnosis and treatment and long-term follow-up for AI in children to effectively enhance the patient's psychological well-being and overall quality of life.
Collapse
Affiliation(s)
- Saad S Bin Saleh
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
47
|
Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, Herzig Y, Goldfarb Y, Aranaz-Novaliches G, Dobeš J, Kadouri N, Ben-Nun O, Binyamin A, Lavi B, Givony T, Khalaila R, Gome T, Wald T, Mrazkova B, Sochen C, Besnard M, Ben-Dor S, Feldmesser E, Orlova EM, Hegedűs C, Lampé I, Papp T, Felszeghy S, Sedlacek R, Davidovich E, Tal N, Shouval DS, Shamir R, Guillonneau C, Szondy Z, Lundin KEA, Osicka R, Prochazka J, Husebye ES, Abramson J. Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nature 2023; 624:653-662. [PMID: 37993717 DOI: 10.1038/s41586-023-06776-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Collapse
Affiliation(s)
- Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anette S B Wolff
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Liad Glanz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yonatan Herzig
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Goretti Aranaz-Novaliches
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lavi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomáš Wald
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Mrazkova
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Carmel Sochen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marine Besnard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elisaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow, Russian Federation
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - István Lampé
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Papp
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Esti Davidovich
- Department of Pediatric Dentistry, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Noa Tal
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Shamir
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Hautier L, Gomes Rodrigues H, Ferreira-Cardoso S, Emerling CA, Porcher ML, Asher RJ, Portela Miguez R, Delsuc F. From teeth to pad: tooth loss and development of keratinous structures in sirenians. Proc Biol Sci 2023; 290:20231932. [PMID: 38018114 PMCID: PMC10685118 DOI: 10.1098/rspb.2023.1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used μ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.
Collapse
Affiliation(s)
- Lionel Hautier
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Helder Gomes Rodrigues
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR CNRS 7207, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Sérgio Ferreira-Cardoso
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | | | - Marie-Lou Porcher
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Robert J. Asher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Roberto Portela Miguez
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| |
Collapse
|
49
|
Zhang Z, Zou X, Feng L, Huang Y, Chen F, Sun K, Song Y, Lv P, Gao X, Dong Y, Tian H. Splicing mutations in AMELX and ENAM cause amelogenesis imperfecta. BMC Oral Health 2023; 23:893. [PMID: 37985977 PMCID: PMC10662561 DOI: 10.1186/s12903-023-03508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Amelogenesis imperfecta (AI) is a developmental enamel defect affecting the structure of enamel, esthetic appearance, and the tooth masticatory function. Gene mutations are reported to be relevant to AI. However, the mechanism underlying AI caused by different mutations is still unclear. This study aimed to reveal the molecular pathogenesis in AI families with 2 novel pre-mRNA splicing mutations. METHODS Two Chinese families with AI were recruited. Whole-exome sequencing and Sanger sequencing were performed to identify mutations in candidate genes. Minigene splicing assays were performed to analyze the mutation effects on mRNA splicing alteration. Furthermore, three-dimensional structures of mutant proteins were predicted by AlphaFold2 to evaluate the detrimental effect. RESULTS The affected enamel in family 1 was thin, rough, and stained, which was diagnosed as hypoplastic-hypomature AI. Genomic analysis revealed a novel splicing mutation (NM_001142.2: c.570 + 1G > A) in the intron 6 of amelogenin (AMELX) gene in family 1, resulting in a partial intron 6 retention effect. The proband in family 2 exhibited a typical hypoplastic AI, and the splicing mutation (NM_031889.2: c.123 + 4 A > G) in the intron 4 of enamelin (ENAM) gene was observed in the proband and her father. This mutation led to exon 4 skipping. The predicted structures showed that there were obvious differences in the mutation proteins compared with wild type, leading to impaired function of mutant proteins. CONCLUSIONS In this study, we identified two new splicing mutations in AMELX and ENAM genes, which cause hypoplastic-hypomature and hypoplastic AI, respectively. These results expand the spectrum of genes causing AI and broaden our understanding of molecular genetic pathology of enamel formation.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Xiaoying Zou
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Lin Feng
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Feng Chen
- Central Laboratory, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Kai Sun
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yilin Song
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Ping Lv
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
50
|
Resende KKM, Riou MC, Yamaguti PM, Fournier B, Rondeau S, Pacot L, Berdal A, Felizardo R, Mazzeu JF, Cormier-Daire V, Gaucher C, Acevedo AC, de La Dure-Molla M. Oro-dental phenotyping and report of three families with RELT-associated amelogenesis imperfecta. Eur J Hum Genet 2023; 31:1337-1341. [PMID: 37670079 PMCID: PMC10620165 DOI: 10.1038/s41431-023-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a group of rare genetic conditions characterized by quantitative and/or qualitative tooth enamel alterations. AI can manifest as an isolated trait or as part of a syndrome. Recently, five biallelic disease-causing variants in the RELT gene were identified in 7 families with autosomal recessive amelogenesis imperfecta (ARAI). RELT encodes an orphan receptor in the tumor necrosis factor (TNFR) superfamily expressed during tooth development, with unknown function. Here, we report one Brazilian and two French families with ARAI and a distinctive hypomineralized phenotype with hypoplastic enamel, post-eruptive enamel loss, and occlusal attrition. Using Next Generation Sequencing (NGS), four novel RELT variants were identified (c.120+1G>A, p.(?); c.120+1G>T, p.(?); c.193T>C, p.(Cys65Arg) and c.1260_1263dup, p.(Arg422Glyfs*5)). Our findings extend the knowledge of ARAI dental phenotypes and expand the disease-causing variants spectrum of the RELT gene.
Collapse
Affiliation(s)
- Kemelly Karolliny Moreira Resende
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
| | - Margot Charlotte Riou
- Reference Center of Oral and Dental Rare Diseases (O-Rares), Rothschild Hospital, Public Assistance- Paris Hospitals, Paris, France
- Paris Cité University, Dental Faculty, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne University, UMRS 1138 Inserm, Molecular Oral Physiopathology, Paris, France
| | - Paulo Marcio Yamaguti
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
| | - Benjamin Fournier
- Reference Center of Oral and Dental Rare Diseases (O-Rares), Rothschild Hospital, Public Assistance- Paris Hospitals, Paris, France
- Paris Cité University, Dental Faculty, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne University, UMRS 1138 Inserm, Molecular Oral Physiopathology, Paris, France
| | - Sophie Rondeau
- Reference Center for Skeletal Dysplasia, Service de Médecine Génomique des Maladies Rares, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris Cité University, INSERM UMR 1163 IMAGINE Institute, Paris, France
| | - Laurence Pacot
- Service de Médecine Génomique des Maladies de Système et d'Organe, Fédération de Génétique et de Médecine Génomique, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ariane Berdal
- Reference Center of Oral and Dental Rare Diseases (O-Rares), Rothschild Hospital, Public Assistance- Paris Hospitals, Paris, France
- Paris Cité University, Dental Faculty, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne University, UMRS 1138 Inserm, Molecular Oral Physiopathology, Paris, France
| | - Rufino Felizardo
- Reference Center of Oral and Dental Rare Diseases (O-Rares), Rothschild Hospital, Public Assistance- Paris Hospitals, Paris, France
- Paris Cité University, Dental Faculty, Paris, France
| | - Juliana Forte Mazzeu
- Laboratory of Clinical Genetics, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Valérie Cormier-Daire
- Reference Center for Skeletal Dysplasia, Service de Médecine Génomique des Maladies Rares, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paris Cité University, INSERM UMR 1163 IMAGINE Institute, Paris, France
| | - Céline Gaucher
- Service de Médecine Génomique des Maladies de Système et d'Organe, Fédération de Génétique et de Médecine Génomique, APHP.Centre - Université Paris Cité, Hôpital Cochin, Paris, France
- Université Paris Cité, URP2496, F-92120, Montrouge, France
- Department of Odontology, AP-HP, Hôpitaux Universitaire Henri Mondor, Paris, F-94000, France
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
- Paris Cité University, Dental Faculty, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne University, UMRS 1138 Inserm, Molecular Oral Physiopathology, Paris, France
| | - Muriel de La Dure-Molla
- Reference Center of Oral and Dental Rare Diseases (O-Rares), Rothschild Hospital, Public Assistance- Paris Hospitals, Paris, France.
- Paris Cité University, Dental Faculty, Paris, France.
- Paris Cité University, INSERM UMR 1163 IMAGINE Institute, Paris, France.
| |
Collapse
|