1
|
Dondi C, Vogler G, Gupta A, Walls SM, Kervadec A, Marchant J, Romero MR, Diop S, Goode J, Thomas JB, Colas AR, Bodmer R, Montminy M, Ocorr K. The nutrient sensor CRTC and Sarcalumenin/thinman represent an alternate pathway in cardiac hypertrophy. Cell Rep 2024; 43:114549. [PMID: 39093699 PMCID: PMC11402474 DOI: 10.1016/j.celrep.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/06/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
CREB-regulated transcription co-activator (CRTC) is activated by Calcineurin (CaN) to regulate gluconeogenic genes. CaN also has roles in cardiac hypertrophy. Here, we explore a cardiac-autonomous role for CRTC in cardiac hypertrophy. In Drosophila, CRTC mutants exhibit severe cardiac restriction, myofibrillar disorganization, fibrosis, and tachycardia. Cardiac-specific CRTC knockdown (KD) phenocopies mutants, and cardiac overexpression causes hypertrophy. CaN-induced hypertrophy in Drosophila is reduced in CRTC mutants, suggesting that CRTC mediates the effects. RNA sequencing (RNA-seq) of CRTC-KD and -overexpressing hearts reveals contraregulation of metabolic genes. Genes with conserved CREB sites include the fly ortholog of Sarcalumenin, a Ca2+-binding protein. Cardiac manipulation of this gene recapitulates the CRTC-KD and -overexpression phenotypes. CRTC KD in zebrafish also causes cardiac restriction, and CRTC KD in human induced cardiomyocytes causes a reduction in Srl expression and increased action potential duration. Our data from three model systems suggest that CaN-CRTC-Sarcalumenin signaling represents an alternate, conserved pathway underlying cardiac function and hypertrophy.
Collapse
Affiliation(s)
- Cristiana Dondi
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anjali Gupta
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stanley M Walls
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Marchant
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michaela R Romero
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Soda Diop
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jason Goode
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex R Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Yuan X, Yu T, Zhang Z, Li S. Non-invasive assessment of proarrhythmic risks associated with isoprenaline and the dietary supplement ingredient synephrine using human induced pluripotent stem cell-derived cardiomyocytes. Front Cardiovasc Med 2024; 11:1407138. [PMID: 38911513 PMCID: PMC11190318 DOI: 10.3389/fcvm.2024.1407138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background There have been conflicting reports about the proarrhythmic risk of p-synephrine (SYN). To address this, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with the microelectrode array (MEA) system have been utilized to assess arrhythmia risks, particularly in the context of adrenomimetic drugs. Aim This study aims to determine whether MEA recordings from hiPSC-CMs could predict the proarrhythmic risk of adrenomimetic drugs and to investigate the cardiovascular effects and mechanisms of SYN. Materials and methods We employed MEA recordings to assess the electrophysiological properties of hiPSC-CMs and conducted concentration-response analyses to evaluate the effects of SYN and Isoprenaline (ISO) on beating rate and contractility. A risk scoring system for proarrhythmic risks was established based on hiPSC-CMs in this study. ISO, a classic beta-adrenergic drug, was also evaluated. Furthermore, the study evaluated the risk of SYN and recorded the concentration-response of beating rate, contractility and the change in the presence or absence of selective β1, β2 and β3 adrenergic blockers. Results Our results suggested that ISO carries a high risk of inducing arrhythmias, aligning with existing literature. SYN caused a 30% prolongation of the field potential duration (FPD) at a concentration of 206.326 μM, a change significantly different from baseline measurements and control treatments. The half maximal effective concentration (EC50) of SYN (3.31 μM) to affect hiPSC-CM beating rate is much higher than that of ISO (18.00 nM). The effect of SYN at an EC50 of 3.31 μM is about ten times more potent in hiPSC-CMs compared to neonatal rat cardiomyocytes (34.12 μM). SYN increased the contractility of cardiomyocytes by 29.97 ± 11.65%, compared to ISO's increase of 50.56 ± 24.15%. β1 receptor blockers almost eliminated the beating rate increase induced by both ISO and SYN, while neither β2 nor β3 blockers had a complete inhibitory effect. Conclusion The MEA and hiPSC-CM system could effectively predict the risk of adrenomimetic drugs. The study concludes that the proarrhythmia risk of SYN at conventional doses is low. SYN is more sensitive in increasing beating rate and contractility in human cardiomyocytes compared to rats, primarily activating β1 receptor.
Collapse
Affiliation(s)
| | | | | | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Monte E, Furihata T, Wang G, Perea-Gil I, Wei E, Chaib H, Nair R, Guevara JV, Mares R, Cheng X, Zhuge Y, Black K, Serrano R, Dagan-Rosenfeld O, Maguire P, Mercola M, Karakikes I, Wu JC, Snyder MP. Personalized transcriptome signatures in a cardiomyopathy stem cell biobank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593618. [PMID: 38798547 PMCID: PMC11118309 DOI: 10.1101/2024.05.10.593618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.
Collapse
Affiliation(s)
- Emma Monte
- Department of Genetics, Stanford University School of Medicine
| | | | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine
| | - Isaac Perea-Gil
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine
| | - Ramesh Nair
- Department of Genetics, Stanford University School of Medicine
| | - Julio Vicente Guevara
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Rene Mares
- Department of Genetics, Stanford University School of Medicine
| | - Xun Cheng
- Department of Genetics, Stanford University School of Medicine
| | - Yan Zhuge
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Katelyn Black
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | | - Peter Maguire
- Department of Genetics, Stanford University School of Medicine
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | |
Collapse
|
4
|
Lin AE, Bapat AC, Xiao L, Niroula A, Ye J, Wong WJ, Agrawal M, Farady CJ, Boettcher A, Hergott CB, McConkey M, Flores-Bringas P, Shkolnik V, Bick AG, Milan D, Natarajan P, Libby P, Ellinor PT, Ebert BL. Clonal Hematopoiesis of Indeterminate Potential With Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation. Circulation 2024; 149:1419-1434. [PMID: 38357791 PMCID: PMC11058018 DOI: 10.1161/circulationaha.123.065597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1β (interleukin 1β) or IL-6 (interleukin 6). RESULTS Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1β or IL-6. CONCLUSIONS We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.
Collapse
Affiliation(s)
- Amy Erica Lin
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Aneesh C. Bapat
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
| | - Ling Xiao
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Abhishek Niroula
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Department of Laboratory Medicine, Lund University, Sweden (A.N.)
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Sweden (A.N.)
| | - Jiangchuan Ye
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Waihay J. Wong
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
| | - Mridul Agrawal
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Christopher J. Farady
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Christopher B. Hergott
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Marie McConkey
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Patricio Flores-Bringas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Veronica Shkolnik
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (A.G.B.)
| | - David Milan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Leducq Foundation, Boston, MA (D.M.)
| | - Pradeep Natarajan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Howard Hughes Medical Institute, Boston, MA (B.L.E.)
| |
Collapse
|
5
|
Mozneb M, Jenkins A, Sances S, Pohlman S, Workman MJ, West D, Ondatje B, El-Ghazawi K, Woodbury A, Garcia VJ, Patel S, Arzt M, Dezem F, Laperle AH, Moser VA, Ho R, Yucer N, Plummer J, Barrett RJ, Svendsen CN, Sharma A. Multi-lineage heart-chip models drug cardiotoxicity and enhances maturation of human stem cell-derived cardiovascular cells. LAB ON A CHIP 2024; 24:869-881. [PMID: 38252454 PMCID: PMC12015978 DOI: 10.1039/d3lc00745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amelia Jenkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Dylan West
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Briana Ondatje
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Kareem El-Ghazawi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Amanda Woodbury
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Veronica J Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alex H Laperle
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - V Alexandra Moser
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Nur Yucer
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Jasmine Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Linn AK, Manopwisedjaroen S, Kanjanasirirat P, Borwornpinyo S, Hongeng S, Phanthong P, Thitithanyanont A. Unveiling the Antiviral Properties of Panduratin A through SARS-CoV-2 Infection Modeling in Cardiomyocytes. Int J Mol Sci 2024; 25:1427. [PMID: 38338708 PMCID: PMC10855687 DOI: 10.3390/ijms25031427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Establishing a drug-screening platform is critical for the discovery of potential antiviral agents against SARS-CoV-2. In this study, we developed a platform based on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to investigate SARS-CoV-2 infectivity, with the aim of evaluating potential antiviral agents for anti-SARS-CoV-2 activity and cardiotoxicity. Cultured myocytes of iPSC-CMs and immortalized human cardiomyocyte cell line (AC-16) were primarily characterized for the expression of cardiac markers and host receptors of SARS-CoV-2. An infectivity model for the wild-type SARS-CoV-2 strain was then established. Infection modeling involved inoculating cells with SARS-CoV-2 at varying multiplicities of infection (MOIs) and then quantifying infection using immunofluorescence and plaque assays. Only iPSC-CMs, not AC16 cells, expressed angiotensin-converting enzyme 2 (ACE-2), and quantitative assays confirmed the dose-dependent infection of iPSC-CMs by SARS-CoV-2, unlike the uninfectable AC16 cells lacking the expression of ACE2. Cytotoxicity was evaluated using MTT assays across a concentration range. An assessment of the plant-derived compound panduratin A (panA) showed cytotoxicity at higher doses (50% cytotoxic concentration (CC50) 10.09 μM) but promising antiviral activity against SARS-CoV-2 (50% inhibition concentration (IC50) 0.8-1.6 μM), suppressing infection at concentrations 10 times lower than its CC50. Plaque assays also showed decreased viral production following panA treatment. Overall, by modeling cardiac-specific infectivity, this iPSC-cardiomyocyte platform enables the reliable quantitative screening of compound cytotoxicity alongside antiviral efficacy. By combining disease pathogenesis and pharmacology, this system can facilitate the evaluation of potential novel therapeutics, such as panA, for drug discovery applications.
Collapse
Affiliation(s)
- Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.K.L.); (S.B.)
| | | | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.K.L.); (S.B.)
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
7
|
Heinson YW, Han JL, Entcheva E. OptoDyCE-plate as an affordable high throughput imager for all optical cardiac electrophysiology. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100054. [PMID: 38130942 PMCID: PMC10735237 DOI: 10.1016/j.jmccpl.2023.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We present a simple low-cost system for comprehensive functional characterization of cardiac function under spontaneous and paced conditions, in standard 96 and 384-well plates. This full-plate actuator/imager, OptoDyCE-plate, uses optogenetic stimulation and optical readouts of voltage and calcium (parallel recordings from up to 100 wells in 384-well plates are demonstrated). The system is validated with syncytia of human induced pluripotent stem cell derived cardiomyocytes, iPSC-CMs, grown as monolayers, or in quasi-3D isotropic and anisotropic constructs using electrospun matrices, in 96 and 384-well format. Genetic modifications, e.g. interference CRISPR (CRISPRi), and nine compounds of acute and chronic action were tested, including five histone deacetylase inhibitors (HDACis). Their effects on voltage and calcium were compared across growth conditions and pacing rates. We also demonstrated optogenetic point pacing via cell spheroids to study conduction in 96-well format, as well as temporal multiplexing to register voltage and calcium simultaneously on a single camera. Opto-DyCE-plate showed excellent performance even in the small samples in 384-well plates. Anisotropic structured constructs may provide some benefits in drug testing, although drug responses were consistent across tested configurations. Differential voltage vs. calcium responses were seen for some drugs, especially for non-traditional modulators of cardiac function, e.g. HDACi, and pacing rate was a powerful modulator of drug response, highlighting the need for comprehensive multiparametric assessment, as offered by OptoDyCE-plate. Increasing throughput and speed and reducing cost of screening can help stratify potential compounds early in the drug development process and accelerate the development of safer drugs.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, United States of America
| |
Collapse
|
8
|
Shi R, Reichardt M, Fiegle DJ, Küpfer LK, Czajka T, Sun Z, Salditt T, Dendorfer A, Seidel T, Bruegmann T. Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs. Cardiovasc Res 2023; 119:2469-2481. [PMID: 37934066 PMCID: PMC10651213 DOI: 10.1093/cvr/cvad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 11/08/2023] Open
Abstract
AIMS Cardiotoxicity is one major reason why drugs do not enter or are withdrawn from the market. Thus, approaches are required to predict cardiotoxicity with high specificity and sensitivity. Ideally, such methods should be performed within intact cardiac tissue with high relevance for humans and detect acute and chronic side effects on electrophysiological behaviour, contractility, and tissue structure in an unbiased manner. Herein, we evaluate healthy pig myocardial slices and biomimetic cultivation setups (BMCS) as a new cardiotoxicity screening approach. METHODS AND RESULTS Pig left ventricular samples were cut into slices and spanned into BMCS with continuous electrical pacing and online force recording. Automated stimulation protocols were established to determine the force-frequency relationship (FFR), frequency dependence of contraction duration, effective refractory period (ERP), and pacing threshold. Slices generated 1.3 ± 0.14 mN/mm2 force at 0.5 Hz electrical pacing and showed a positive FFR and a shortening of contraction duration with increasing pacing rates. Approximately 62% of slices were able to contract for at least 6 days while showing stable ERP, contraction duration-frequency relationship, and preserved cardiac structure confirmed by confocal imaging and X-ray diffraction analysis. We used specific blockers of the most important cardiac ion channels to determine which analysis parameters are influenced. To validate our approach, we tested five drug candidates selected from the Comprehensive in vitro Proarrhythmia Assay list as well as acetylsalicylic acid and DMSO as controls in a blinded manner in three independent laboratories. We were able to detect all arrhythmic drugs and their respective mode of action on cardiac tissue including inhibition of Na+, Ca2+, and hERG channels as well as Na+/Ca2+ exchanger. CONCLUSION We systematically evaluate this approach for cardiotoxicity screening, which is of high relevance for humans and can be upscaled to medium-throughput screening. Thus, our approach will improve the predictive value and efficiency of preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Runzhu Shi
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- International Research Training Group 1816, University Medical Center Göttingen, Göttingen, Germany
| | - Marius Reichardt
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Linda K Küpfer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Titus Czajka
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Dondi C, Vogler G, Gupta A, Walls SM, Kervadec A, Romero MR, Diop SB, Goode J, Thomas JB, Colas AR, Bodmer R, Montminy M, Ocorr K. The nutrient sensor CRTC & Sarcalumenin / Thinman represent a new pathway in cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560407. [PMID: 37873259 PMCID: PMC10592890 DOI: 10.1101/2023.10.02.560407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Obesity and type 2 diabetes are at epidemic levels and a significant proportion of these patients are diagnosed with left ventricular hypertrophy. CREB R egulated T ranscription C o-activator ( CRTC ) is a key regulator of metabolism in mammalian hepatocytes, where it is activated by calcineurin (CaN) to increase expression of gluconeogenic genes. CaN is known its role in pathological cardiac hypertrophy, however, a role for CRTC in the heart has not been identified. In Drosophila , CRTC null mutants have little body fat and exhibit severe cardiac restriction, myofibrillar disorganization, cardiac fibrosis and tachycardia, all hallmarks of heart disease. Cardiac-specific knockdown of CRTC , or its coactivator CREBb , mimicked the reduced body fat and heart defects of CRTC null mutants. Comparative gene expression in CRTC loss- or gain-of-function fly hearts revealed contra-regulation of genes involved in glucose, fatty acid, and amino acid metabolism, suggesting that CRTC also acts as a metabolic switch in the heart. Among the contra-regulated genes with conserved CREB binding sites, we identified the fly ortholog of Sarcalumenin, which is a Ca 2+ -binding protein in the sarcoplasmic reticulum. Cardiac knockdown recapitulated the loss of CRTC cardiac restriction and fibrotic phenotypes, suggesting it is a downstream effector of CRTC we named thinman ( tmn ). Importantly, cardiac overexpression of either CaN or CRTC in flies caused hypertrophy that was reversed in a CRTC mutant background, suggesting CRTC mediates hypertrophy downstream of CaN, perhaps as an alternative to NFAT. CRTC novel role in the heart is likely conserved in vertebrates as knockdown in zebrafish also caused cardiac restriction, as in fl ies. These data suggest that CRTC is involved in myocardial cell maintenance and that CaN-CRTC- Sarcalumenin/ tmn signaling represents a novel and conserved pathway underlying cardiac hypertrophy.
Collapse
|
10
|
Heinson YW, Han JL, Entcheva E. OptoDyCE-plate as an affordable high throughput imager for all optical cardiac electrophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555447. [PMID: 37693544 PMCID: PMC10491208 DOI: 10.1101/2023.08.29.555447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present a simple low-cost system for comprehensive functional characterization of cardiac function under spontaneous and paced conditions, in standard 96 and 384-well plates. This full-plate actuator/imager, OptoDyCE-plate, uses optogenetic stimulation and optical readouts of voltage and calcium from all wells in parallel. The system is validated with syncytia of human induced pluripotent stem cell derived cardiomyocytes, iPSC-CMs, grown as monolayers, or in quasi-3D isotropic and anisotropic constructs using electrospun matrices, in 96 and 394-well format. Genetic modifications, e.g. interference CRISPR (CRISPRi), and nine compounds of acute and chronic action were tested, including five histone deacetylase inhibitors (HDACis). Their effects on voltage and calcium were compared across growth conditions and pacing rates. We also demonstrated deployment of optogenetic cell spheroids for point pacing to study conduction in 96-well format, and the use of temporal multiplexing to register voltage and calcium simultaneously on a single camera in this stand-alone platform. Opto-DyCE-plate showed excellent performance even in the small samples in 384-well plates, in the various configurations. Anisotropic structured constructs may provide some benefits in drug testing, although drug responses were consistent across tested configurations. Differential voltage vs. calcium responses were seen for some drugs, especially for non-traditional modulators of cardiac function, e.g. HDACi, and pacing rate was a powerful modulator of drug response, highlighting the need for comprehensive multiparametric assessment, as offered by OptoDyCE-plate. Increasing throughput and speed and reducing cost of screening can help stratify potential compounds early in the drug development process and accelerate the development of safer drugs.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20037
| |
Collapse
|
11
|
Kervadec A, Kezos J, Ni H, Yu M, Marchant J, Spiering S, Kannan S, Kwon C, Andersen P, Bodmer R, Grandi E, Ocorr K, Colas AR. Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm. Dis Model Mech 2023; 16:dmm049962. [PMID: 37293707 PMCID: PMC10387351 DOI: 10.1242/dmm.049962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Collapse
Affiliation(s)
- Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Haibo Ni
- Department of Pharmacology, UC Davis, Davis, CA 95616, USA
| | - Michael Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Marchant
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Suraj Kannan
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rolf Bodmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Parker LE, Kurzlechner LM, Landstrom AP. Induced Pluripotent Stem Cell-Based Modeling of Single-Ventricle Congenital Heart Diseases. Curr Cardiol Rep 2023; 25:295-305. [PMID: 36930454 PMCID: PMC10726018 DOI: 10.1007/s11886-023-01852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Leonie M Kurzlechner
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke University Medical Center, Box 2652, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
iPSC-Derived Cardiomyocytes in Inherited Cardiac Arrhythmias: Pathomechanistic Discovery and Drug Development. Biomedicines 2023; 11:biomedicines11020334. [PMID: 36830871 PMCID: PMC9953535 DOI: 10.3390/biomedicines11020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
With the discovery of induced pluripotent stem cell (iPSCs) a wide range of cell types, including iPSC-derived cardiomyocytes (iPSC-CM), can now be generated from an unlimited source of somatic cells. These iPSC-CM are used for different purposes such as disease modelling, drug discovery, cardiotoxicity testing and personalised medicine. The 2D iPSC-CM models have shown promising results, but they are known to be more immature compared to in vivo adult cardiomyocytes. Novel approaches to create 3D models with the possible addition of other (cardiac) cell types are being developed. This will not only improve the maturity of the cells, but also leads to more physiologically relevant models that more closely resemble the human heart. In this review, we focus on the progress in the modelling of inherited cardiac arrhythmias in both 2D and 3D and on the use of these models in therapy development and drug testing.
Collapse
|
14
|
Serrano R, Feyen DAM, Bruyneel AAN, Hnatiuk AP, Vu MM, Amatya PL, Perea-Gil I, Prado M, Seeger T, Wu JC, Karakikes I, Mercola M. A deep learning platform to assess drug proarrhythmia risk. Cell Stem Cell 2023; 30:86-95.e4. [PMID: 36563695 PMCID: PMC9924077 DOI: 10.1016/j.stem.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.
Collapse
Affiliation(s)
- Ricardo Serrano
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dries A M Feyen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arne A N Bruyneel
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anna P Hnatiuk
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle M Vu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prashila L Amatya
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Isaac Perea-Gil
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Maricela Prado
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Timon Seeger
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
16
|
Oguntuyo K, Schuftan D, Guo J, Simmons D, Bhagavan D, Moreno JD, Kang PW, Miller E, Silva JR, Huebsch N. Robust, Automated Analysis of Electrophysiology in Induced Pluripotent Stem Cell-Derived Micro-Heart Muscle for Drug Toxicity. Tissue Eng Part C Methods 2022; 28:457-468. [PMID: 35925789 PMCID: PMC9527045 DOI: 10.1089/ten.tec.2022.0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
Drugs are often removed from clinical trials or market progression owing to their unforeseen effects on cardiac action potential and calcium handling. Induced pluripotent stem cell-derived cardiomyocytes and tissues fabricated from these cells are promising as screening tools for early identification of these potential cardiac liabilities. In this study, we describe an automated, open-source MATLAB-based analysis software for calculating cardiac action potentials and calcium transients from fluorescent reporters. We first identified the most robust manner in which to automatically identify the initiation point for action potentials and calcium transients in a user-independent manner, and used this approach to quantify the duration and morphology of these signals. We then demonstrate the software by assessing changes to action potentials and calcium transients in our micro-heart muscles after exposure to hydroxychloroquine, an antimalarial drug with known cardiac liability. Consistent with clinical observations, our system predicted mild action potential prolongation. However, we also observed marked calcium transient suppression, highlighting the advantage of testing multiple physiologic readouts in cardiomyocytes rather than relying on heterologous overexpression of single channels such as the human ether-a-go-go-related gene channel. This open-source software can serve as a useful, high-throughput tool for analyzing cardiomyocyte physiology from fluorescence imaging.
Collapse
Affiliation(s)
- Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Simmons
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Druv Bhagavan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jonathan D. Moreno
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Evan Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Pandrala M, Bruyneel AAN, Hnatiuk AP, Mercola M, Malhotra SV. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. J Med Chem 2022; 65:10898-10919. [PMID: 35944901 PMCID: PMC9421657 DOI: 10.1021/acs.jmedchem.1c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogene constitutes an effective approach for the treatment of chronic myeloid leukemia (CML) and/or acute lymphoblastic leukemia. However, currently available inhibitors are limited by drug resistance and toxicity. Ponatinib, a third-generation inhibitor, has demonstrated excellent efficacy against both wild type and mutant BCR-ABL kinase, including the "gatekeeper" T315I mutation that is resistant to all other currently available TKIs. However, it is one of the most cardiotoxic of the FDA-approved TKIs. Herein, we report the structure-guided design of a novel series of potent BCR-ABL inhibitors, particularly for the T315I mutation. Our drug design paradigm was coupled to iPSC-cardiomyocyte models. Systematic structure-activity relationship studies identified two compounds, 33a and 36a, that significantly inhibit the kinase activity of both native BCR-ABL and the T315I mutant. We have identified the most cardiac-safe TKIs reported to date, and they may be used to effectively treat CML patients with the T315I mutation.
Collapse
Affiliation(s)
- Mallesh Pandrala
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States
| | - Arne Antoon N. Bruyneel
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Anna P. Hnatiuk
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Mark Mercola
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States,
| | - Sanjay V. Malhotra
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States,
| |
Collapse
|
18
|
Functional human cell-based vascularised cardiac tissue model for biomedical research and testing. Sci Rep 2022; 12:13459. [PMID: 35931748 PMCID: PMC9355975 DOI: 10.1038/s41598-022-17498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) are widely used in in vitro biomedical research and testing. However, fully matured, adult cardiomyocyte characteristics have not been achieved. To improve the maturity and physiological relevance of hiPSC-derived cardiomyocytes, we co-cultured them with preconstructed vascular-like networks to form a functional, human cell-based cardiac tissue model. The morphology and gene expression profiles indicated advanced maturation in the cardiac tissue model compared to those of a cardiomyocyte monoculture. The cardiac tissue model’s functionality was confirmed by measuring the effects of 32 compounds with multielectrode array and comparing results to human data. Our model predicted the cardiac effects with a predictive accuracy of 91%, sensitivity of 90% and specificity of 100%. The correlation between the effective concentration (EC50) and the reported clinical plasma concentrations was 0.952 (R2 = 0.905). The developed advanced human cell-based cardiac tissue model showed characteristics and functionality of human cardiac tissue enabling accurate transferability of gained in vitro data to human settings. The model is standardized and thus, it would be highly useful in biomedical research and cardiotoxicity testing.
Collapse
|
19
|
Cho J, Lee H, Rah W, Chang HJ, Yoon YS. From engineered heart tissue to cardiac organoid. Theranostics 2022; 12:2758-2772. [PMID: 35401829 PMCID: PMC8965483 DOI: 10.7150/thno.67661] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of human pluripotent stem cells (hPSCs) presented a new paradigm to employ hPSC-derived cardiomyocytes (hPSC-CMs) in drug screening and disease modeling. However, hPSC-CMs differentiated in conventional two-dimensional systems are structurally and functionally immature. Moreover, these differentiation systems generate predominantly one type of cell. Since the heart includes not only CMs but other cell types, such monolayer cultures have limitations in simulating the native heart. Accordingly, three-dimensional (3D) cardiac tissues have been developed as a better platform by including various cardiac cell types and extracellular matrices. Two advances were made for 3D cardiac tissue generation. One type is engineered heart tissues (EHTs), which are constructed by 3D cell culture of cardiac cells using an engineering technology. This system provides a convenient real-time analysis of cardiac function, as well as a precise control of the input/output flow and mechanical/electrical stimulation. The other type is cardiac organoids, which are formed through self-organization of differentiating cardiac lineage cells from hPSCs. While mature cardiac organoids are more desirable, at present only primitive forms of organoids are available. In this review, we discuss various models of hEHTs and cardiac organoids emulating the human heart, focusing on their unique features, utility, and limitations.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyein Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woongchan Rah
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Jae Chang
- Division of Cardiology, Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Karis Bio Inc., Seoul, Republic of Korea
| |
Collapse
|
20
|
Floy ME, Shabnam F, Simmons AD, Bhute VJ, Jin G, Friedrich WA, Steinberg AB, Palecek SP. Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells. Annu Rev Chem Biomol Eng 2022; 13:255-278. [PMID: 35320695 DOI: 10.1146/annurev-chembioeng-092120-033922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA; , .,Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Gyuhyung Jin
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Will A Friedrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Alexandra B Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| |
Collapse
|
21
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
22
|
Li W, Han JL, Entcheva E. Protein and mRNA Quantification in Small Samples of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in 96-Well Microplates. Methods Mol Biol 2022; 2485:15-37. [PMID: 35618896 PMCID: PMC9565115 DOI: 10.1007/978-1-0716-2261-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a method for protein quantification and for mRNA quantification in small sample quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Demonstrated here is how the capillary-based protein detection system Wes™ by ProteinSimple and the Power SYBR™ Green Cells-to-CT™ Kit by Invitrogen can be applied to individual samples in a 96-well microplate format and thus made compatible with high-throughput (HT) cardiomyocyte assays. As an example of the usage, we illustrate that Cx43 protein and GJA1 mRNA levels in hiPSC-CMs are enhanced when the optogenetic actuator, channelrodopsin-2 (ChR2), is genetically expressed in them. Instructions are presented for cell culture and lysate preparations from hiPSC-CMs, along with optimized parameter settings and experimental protocol steps. Strategies to optimize primary antibody concentrations as well as ways for signal normalization are discussed, i.e., antibody multiplexing and total protein assay. The sensitivity of both the Wes and Cells-to-CT kit enables protein and mRNA quantification in a HT format, which is important when dealing with precious small samples. In addition to being able to handle small cardiomyocyte samples, these streamlined and semi-automated processes enable quick mechanistic analysis.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Julie L Han
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA.
| |
Collapse
|
23
|
Jæger KH, Edwards AG, Giles WR, Tveito A. A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 2021; 17:e1009233. [PMID: 34383746 PMCID: PMC8360568 DOI: 10.1371/journal.pcbi.1009233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug. Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improving cardiac anti-arrhythmic therapy for at least two decades. However, the specific arrhythmia contexts in which polytherapy is likely to be both safe and effective have remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium channel. Functionally, these mutations are remarkably consistent in that they permit the channel to open earlier during each heart beat. While hundreds of compounds are known to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early channel opening also limits the ability of most of those compounds to correct SQT1 dysfunction. Here, we have applied a suite of ventricular cardiomyocyte computational models to ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if so, what the likely characteristics of that strategy are. Our analyses suggest that simultaneous induction of late sodium current and partial hERG blockade offers a promising strategy. While no activators of late sodium current have been clinically approved, several experimental compounds are available and may provide a basis for interrogating this strategy. The method presented here can be used to compute optimal drug combinations provided that the effect of each drug on every relevant ion channel is known.
Collapse
MESH Headings
- Action Potentials/drug effects
- Amino Acid Substitution
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Computational Biology
- Drug Combinations
- Drug Design
- Drug Therapy, Combination/methods
- ERG1 Potassium Channel/drug effects
- ERG1 Potassium Channel/genetics
- ERG1 Potassium Channel/physiology
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Models, Cardiovascular
- Mutation, Missense
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Rabbits
Collapse
Affiliation(s)
| | - Andrew G. Edwards
- Simula Research Laboratory, Oslo, Norway
- Department of Pharmacology, University of California, Davis, California United States of America
| | - Wayne R. Giles
- Simula Research Laboratory, Oslo, Norway
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
24
|
Application of FluoVolt Membrane Potential Dye for Induced Pluripotent Stem Cell-Derived Cardiac Single Cells and Monolayers Differentiated via Embryoid Bodies. Methods Mol Biol 2021. [PMID: 34302652 DOI: 10.1007/978-1-0716-1484-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
FluoVolt, a membrane potential dye, has been used to depict the action potentials of cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) in order to classify the cardiac cell subtype, evaluate long QT syndrome, and conduct cardiotoxic drug-responsive tests. To apply FluoVolt, users must prepare the hiPSC-CMs, assess the dye loadings, and apply the excitation light. Here we describe the steps to measure action potentials from single hiPSC-CMs and hiPSC-CM monolayers using this dye.
Collapse
|
25
|
Gomez‐Galeno J, Okolotowicz K, Johnson M, McKeithan WL, Mercola M, Cashman JR. Human-induced pluripotent stem cell-derived cardiomyocytes: Cardiovascular properties and metabolism and pharmacokinetics of deuterated mexiletine analogs. Pharmacol Res Perspect 2021; 9:e00828. [PMID: 34327875 PMCID: PMC8322572 DOI: 10.1002/prp2.828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Prolongation of the cardiac action potential (AP) and early after depolarizations (EADs) are electrical anomalies of cardiomyocytes that can lead to lethal arrhythmias and are potential liabilities for existing drugs and drug candidates in development. For example, long QT syndrome-3 (LQTS3) is caused by mutations in the Nav 1.5 sodium channel that debilitate channel inactivation and cause arrhythmias. We tested the hypothesis that a useful drug (i.e., mexiletine) with potential liabilities (i.e., potassium channel inhibition and adverse reactions) could be re-engineered by dynamic medicinal chemistry to afford a new drug candidate with greater efficacy and less toxicity. Human cardiomyocytes were generated from LQTS3 patient-derived induced pluripotent stem cells (hIPSCs) and normal hIPSCs to determine beneficial (on-target) and detrimental effects (off-target) of mexiletine and synthetic analogs, respectively. The approach combined "drug discovery" and "hit to lead" refinement and showed that iterations of medicinal chemistry and physiological testing afforded optimized compound 22. Compared to mexiletine, compound 22 showed a 1.85-fold greater AUC and no detectable CNS toxicity at 100 mg/kg. In vitro hepatic metabolism studies showed that 22 was metabolized via cytochrome P-450, as previously shown, and by the flavin-containing monooxygenase (FMO). Deuterated-22 showed decreased metabolism and showed acceptable cardiovascular and physicochemical properties.
Collapse
Affiliation(s)
| | - Karl Okolotowicz
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Johnson
- Human BioMolecular Research InstituteSan DiegoCAUSA
| | - Wesley L. McKeithan
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Mercola
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | | |
Collapse
|
26
|
Psaras Y, Margara F, Cicconet M, Sparrow AJ, Repetti GG, Schmid M, Steeples V, Wilcox JA, Bueno-Orovio A, Redwood CS, Watkins HC, Robinson P, Rodriguez B, Seidman JG, Seidman CE, Toepfer CN. CalTrack: High-Throughput Automated Calcium Transient Analysis in Cardiomyocytes. Circ Res 2021; 129:326-341. [PMID: 34018815 PMCID: PMC8260473 DOI: 10.1161/circresaha.121.318868] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Francesca Margara
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Marcelo Cicconet
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Alexander J. Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Giuliana G. Repetti
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Jonathan A.L. Wilcox
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | | | - Charles S. Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Hugh C. Watkins
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Blanca Rodriguez
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Jonathan G. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Christopher N. Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals (Basel) 2021; 14:ph14060525. [PMID: 34070895 PMCID: PMC8230131 DOI: 10.3390/ph14060525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), have the potential to accelerate the drug discovery and development process. In this review, by analyzing each stage of the drug discovery and development process, we identified the active role of hPSC-derived in vitro models in phenotypic screening, target-based screening, target validation, toxicology evaluation, precision medicine, clinical trial in a dish, and post-clinical studies. Patient-derived or genome-edited PSCs can generate valid in vitro models for dissecting disease mechanisms, discovering novel drug targets, screening drug candidates, and preclinically and post-clinically evaluating drug safety and efficacy. With the advances in modern biotechnologies and developmental biology, hPSC-derived in vitro models will hopefully improve the cost-effectiveness and the success rate of drug discovery and development.
Collapse
|
28
|
Johnson M, Gomez-Galeno J, Ryan D, Okolotowicz K, McKeithan WL, Sampson KJ, Kass RS, Mercola M, Cashman JR. Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorg Med Chem Lett 2021; 46:128162. [PMID: 34062251 DOI: 10.1016/j.bmcl.2021.128162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.
Collapse
Affiliation(s)
- Mark Johnson
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Daniel Ryan
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - John R Cashman
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA.
| |
Collapse
|
29
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
30
|
Cashman JR, Ryan D, McKeithan WL, Okolotowicz K, Gomez-Galeno J, Johnson M, Sampson KJ, Kass RS, Pezhouman A, Karagueuzian HS, Mercola M. Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. J Med Chem 2021; 64:5384-5403. [PMID: 33942619 DOI: 10.1021/acs.jmedchem.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Daniel Ryan
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Mark Johnson
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Arash Pezhouman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| |
Collapse
|
31
|
Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, Liao Z, Pölönen RP, Ginsburg KS, Lam CK, Serrano R, Wahlquist C, Kreymerman A, Vu M, Amatya PL, Behrens CS, Ranjbarvaziri S, Maas RGC, Greenhaw M, Bernstein D, Wu JC, Bers DM, Eschenhagen T, Metallo CM, Mercola M. Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Rep 2021; 32:107925. [PMID: 32697997 PMCID: PMC7437654 DOI: 10.1016/j.celrep.2020.107925] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models. Physiological immaturity of iPSC-derived cardiomyocytes limits their fidelity as disease models. Feyen et al. developed a low glucose, high oxidative substrate media that increase maturation of ventricular-like hiPSC-CMs in 2D and 3D cultures relative to standard protocols. Improved characteristics include a low resting Vm, rapid depolarization, and increased Ca2+ dependence and force generation.
Collapse
Affiliation(s)
- Dries A M Feyen
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sean Spiering
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Larissa Hörmann
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bärbel Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hui Zhang
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Francesca Briganti
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | - Zhandi Liao
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | | | - Kenneth S Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | - Chi Keung Lam
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Serrano
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Christine Wahlquist
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Alexander Kreymerman
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle Vu
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prashila L Amatya
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Charlotta S Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Ranjbarvaziri
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Renee G C Maas
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthew Greenhaw
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel Bernstein
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
32
|
Chan AHP, Huang NF. Engineering Cardiovascular Tissue Chips for Disease Modeling and Drug Screening Applications. Front Bioeng Biotechnol 2021; 9:673212. [PMID: 33959600 PMCID: PMC8093512 DOI: 10.3389/fbioe.2021.673212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, the cost of drug discovery and development have been progressively increasing, but the number of drugs approved for treatment of cardiovascular diseases (CVDs) has been limited. Current in vitro models for drug development do not sufficiently ensure safety and efficacy, owing to their lack of physiological relevance. On the other hand, preclinical animal models are extremely costly and present problems of inaccuracy due to species differences. To address these limitations, tissue chips offer the opportunity to emulate physiological and pathological tissue processes in a biomimetic in vitro platform. Tissue chips enable in vitro modeling of CVDs to give mechanistic insights, and they can also be a powerful approach for drug screening applications. Here, we review recent advances in CVD modeling using tissue chips and their applications in drug screening.
Collapse
Affiliation(s)
- Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
33
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Murphy SA, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S, Lin BL, Paek S, Andersen P, Lee DI, Zhu R, An SS, Kass DA, Uosaki H, Colas AR, Kwon C. PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun 2021; 12:1648. [PMID: 33712605 PMCID: PMC7955035 DOI: 10.1038/s41467-021-21957-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes undergo significant structural and functional changes after birth, and these fundamental processes are essential for the heart to pump blood to the growing body. However, due to the challenges of isolating single postnatal/adult myocytes, how individual newborn cardiomyocytes acquire multiple aspects of the mature phenotype remains poorly understood. Here we implement large-particle sorting and analyze single myocytes from neonatal to adult hearts. Early myocytes exhibit wide-ranging transcriptomic and size heterogeneity that is maintained until adulthood with a continuous transcriptomic shift. Gene regulatory network analysis followed by mosaic gene deletion reveals that peroxisome proliferator-activated receptor coactivator-1 signaling, which is active in vivo but inactive in pluripotent stem cell-derived cardiomyocytes, mediates the shift. This signaling simultaneously regulates key aspects of cardiomyocyte maturation through previously unrecognized proteins, including YAP1 and SF3B2. Our study provides a single-cell roadmap of heterogeneous transitions coupled to cellular features and identifies a multifaceted regulator controlling cardiomyocyte maturation.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeep Kambhampati
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sam Paek
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong-Ik Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Uosaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
36
|
Chirikian O, Goodyer WR, Dzilic E, Serpooshan V, Buikema JW, McKeithan W, Wu H, Li G, Lee S, Merk M, Galdos F, Beck A, Ribeiro AJS, Paige S, Mercola M, Wu JC, Pruitt BL, Wu SM. CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Sci Rep 2021; 11:3026. [PMID: 33542270 PMCID: PMC7862643 DOI: 10.1038/s41598-021-81860-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Generating cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) has represented a significant advance in our ability to model cardiac disease. Current differentiation protocols, however, have limited use due to their production of heterogenous cell populations, primarily consisting of ventricular-like CMs. Here we describe the creation of two chamber-specific reporter hiPSC lines by site-directed genomic integration using CRISPR-Cas9 technology. In the MYL2-tdTomato reporter, the red fluorescent tdTomato was inserted upstream of the 3′ untranslated region of the Myosin Light Chain 2 (MYL2) gene in order faithfully label hiPSC-derived ventricular-like CMs while avoiding disruption of endogenous gene expression. Similarly, in the SLN-CFP reporter, Cyan Fluorescent Protein (CFP) was integrated downstream of the coding region of the atrial-specific gene, Sarcolipin (SLN). Purification of tdTomato+ and CFP+ CMs using flow cytometry coupled with transcriptional and functional characterization validated these genetic tools for their use in the isolation of bona fide ventricular-like and atrial-like CMs, respectively. Finally, we successfully generated a double reporter system allowing for the isolation of both ventricular and atrial CM subtypes within a single hiPSC line. These tools provide a platform for chamber-specific hiPSC-derived CM purification and analysis in the context of atrial- or ventricular-specific disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA.,Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - William R Goodyer
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Elda Dzilic
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Lazarettstraße 36, 80636, Munich, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, Lothstraße 11, 80636, Munich, Germany
| | - Vahid Serpooshan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - Wesley McKeithan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - HaoDi Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Guang Li
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Soah Lee
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Markus Merk
- Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - Francisco Galdos
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Aimee Beck
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA
| | - Alexandre J S Ribeiro
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA
| | - Sharon Paige
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Mark Mercola
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Joseph C Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Beth L Pruitt
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA.,Department of Mechanical Engineering, University California, Santa Barbara, CA, USA
| | - Sean M Wu
- Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford, CA, USA. .,Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Heart failure is among the most prevalent disease complexes overall and is associated with high morbidity and mortality. The underlying aetiology is manifold including coronary artery disease, genetic alterations and mutations, viral infections, adverse immune responses, and cardiac toxicity. To date, no specific therapies have been developed despite notable efforts. This can especially be attributed to hurdles in translational research, mainly due to the lack of proficient models of heart failure limited translation of therapeutic approaches from bench to bedside. RECENT FINDINGS Human induced pluripotent stem cells (hiPSCs) are rising in popularity, granting the ability to divide infinitely, to hold human, patient-specific genome, and to differentiate into any human cell, including cardiomyocytes (hiPSC-CMs). This brings magnificent promise to cardiological research, providing the possibility to recapitulate cardiac diseases in a dish. Advances in yield, maturity, and in vivo resemblance due to straightforward, low-cost protocols, high-throughput approaches, and complex 3D cultures have made this tool widely applicable. In recent years, hiPSC-CMs have been used to model a wide variety of cardiac diseases, bringing along the possibility to not only elucidate molecular mechanisms but also to test novel therapeutic approaches in the dish. Within the last decade, hiPSC-CMs have been exponentially employed to model heart failure. Constant advancements are aiming at improvements of differentiation protocols, hiPSC-CM maturity, and assays to elucidate molecular mechanisms and cellular functions. However, hiPSC-CMs are remaining relatively immature, and in vitro models can only partially recapitulate the complex interactions in vivo. Nevertheless, hiPSC-CMs have evolved as an essential model system in cardiovascular research.
Collapse
Affiliation(s)
- Anton Deicher
- Department of Internal Medicine III, University Hospital Heidelberg, INF 410, 69126, Heidelberg, Germany
| | - Timon Seeger
- Department of Internal Medicine III, University Hospital Heidelberg, INF 410, 69126, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
38
|
Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020; 77:300-316. [PMID: 33323698 DOI: 10.1097/fjc.0000000000000972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
ABSTRACT Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.
Collapse
|
39
|
Obal D, Wu JC. Induced pluripotent stem cells as a platform to understand patient-specific responses to opioids and anaesthetics. Br J Pharmacol 2020; 177:4581-4594. [PMID: 32767563 PMCID: PMC7520445 DOI: 10.1111/bph.15228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in human induced pluripotent stem cell (iPSC) technology may provide unprecedented opportunities to study patient-specific responses to anaesthetics and opioids. In this review, we will (1) examine the advantages and limitations of iPSC technology, (2) summarize studies using iPSCs that have contributed to our current understanding of anaesthetics and opioid action on the cardiovascular system and central nervous system (CNS), and (3) describe how iPSC technology can be used to further develop personalized analgesic and sedative pharmacotherapies with reduced or minimal detrimental cardiovascular effects.
Collapse
Affiliation(s)
- Detlef Obal
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of Anesthesiology, Pain, and Perioperative MedicineStanford UniversityStanfordCaliforniaUSA
- Outcomes Research ConsortiumClevelandOhioUSA
| | - Joseph C. Wu
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
- Department of Medicine, Division of Cardiovascular MedicineStanford UniversityStanfordCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
40
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
41
|
McKeithan WL, Feyen DAM, Bruyneel AAN, Okolotowicz KJ, Ryan DA, Sampson KJ, Potet F, Savchenko A, Gómez-Galeno J, Vu M, Serrano R, George AL, Kass RS, Cashman JR, Mercola M. Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell 2020; 27:813-821.e6. [PMID: 32931730 DOI: 10.1016/j.stem.2020.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023]
Abstract
Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Dries A M Feyen
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Franck Potet
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Savchenko
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Michelle Vu
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Serrano
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA.
| |
Collapse
|
42
|
Cashman JR. Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Curr Top Med Chem 2020; 20:2344-2361. [PMID: 32819246 DOI: 10.2174/1568026620666200820143912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, United States
| |
Collapse
|
43
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
44
|
Elmén L, Volpato CB, Kervadec A, Pineda S, Kalvakuri S, Alayari NN, Foco L, Pramstaller PP, Ocorr K, Rossini A, Cammarato A, Colas AR, Hicks AA, Bodmer R. Silencing of CCR4-NOT complex subunits affects heart structure and function. Dis Model Mech 2020; 13:dmm044727. [PMID: 32471864 PMCID: PMC7390626 DOI: 10.1242/dmm.044727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferative capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we have demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo heart models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Elmén
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Claudia B Volpato
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anaïs Kervadec
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Santiago Pineda
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sreehari Kalvakuri
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Nakissa N Alayari
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Karen Ocorr
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anthony Cammarato
- Johns Hopkins University, Division of Cardiology, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Alexandre R Colas
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Rolf Bodmer
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Schroeder AM, Allahyari M, Vogler G, Missinato MA, Nielsen T, Yu MS, Theis JL, Larsen LA, Goyal P, Rosenfeld JA, Nelson TJ, Olson TM, Colas AR, Grossfeld P, Bodmer R. Model system identification of novel congenital heart disease gene candidates: focus on RPL13. Hum Mol Genet 2020; 28:3954-3969. [PMID: 31625562 DOI: 10.1093/hmg/ddz213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genetics is a significant factor contributing to congenital heart disease (CHD), but our understanding of the genetic players and networks involved in CHD pathogenesis is limited. Here, we searched for de novo copy number variations (CNVs) in a cohort of 167 CHD patients to identify DNA segments containing potential pathogenic genes. Our search focused on new candidate disease genes within 19 deleted de novo CNVs, which did not cover known CHD genes. For this study, we developed an integrated high-throughput phenotypical platform to probe for defects in cardiogenesis and cardiac output in human induced pluripotent stem cell (iPSC)-derived multipotent cardiac progenitor (MCPs) cells and, in parallel, in the Drosophila in vivo heart model. Notably, knockdown (KD) in MCPs of RPL13, a ribosomal gene and SON, an RNA splicing cofactor, reduced proliferation and differentiation of cardiomyocytes, while increasing fibroblasts. In the fly, heart-specific RpL13 KD, predominantly at embryonic stages, resulted in a striking 'no heart' phenotype. KD of Son and Pdss2, among others, caused structural and functional defects, including reduced or abolished contractility, respectively. In summary, using a combination of human genetics and cardiac model systems, we identified new genes as candidates for causing human CHD, with particular emphasis on ribosomal genes, such as RPL13. This powerful, novel approach of combining cardiac phenotyping in human MCPs and in the in vivo Drosophila heart at high throughput will allow for testing large numbers of CHD candidates, based on patient genomic data, and for building upon existing genetic networks involved in heart development and disease.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Massoud Allahyari
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maria A Missinato
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jeanne L Theis
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Preeya Goyal
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Timothy J Nelson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paul Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
46
|
Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, Heller Brown J, Molkentin JD, Bossuyt J, Bers DM. Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circ Res 2020; 126:e80-e96. [PMID: 32134364 DOI: 10.1161/circresaha.119.316288] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.
Collapse
Affiliation(s)
- Shan Lu
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Zhandi Liao
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital School of Medicine, Jiaotong University, Shanghai, China (X.L.)
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Centre Göttingen, Germany (D.M.K.)
- German Center for Cardiovascular Research, Partner Site, Göttingen (D.M.K.)
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, CA (M.M.)
| | - Ju Chen
- Department of Medicine (J.C.), University of California San Diego, La Jolla
| | - Joan Heller Brown
- Department of Pharmacology (J.H.B.), University of California San Diego, La Jolla
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M.)
| | - Julie Bossuyt
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Donald M Bers
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| |
Collapse
|
47
|
Zhu W, Mazzanti A, Voelker TL, Hou P, Moreno JD, Angsutararux P, Naegle KM, Priori SG, Silva JR. Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Circ Res 2019; 124:539-552. [PMID: 30566038 DOI: 10.1161/circresaha.118.314050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in the SCN5A gene, encoding the α subunit of the Nav1.5 channel, cause a life-threatening form of cardiac arrhythmia, long QT syndrome type 3 (LQT3). Mexiletine, which is structurally related to the Na+ channel-blocking anesthetic lidocaine, is used to treat LQT3 patients. However, the patient response is variable, depending on the genetic mutation in SCN5A. OBJECTIVE The goal of this study is to understand the molecular basis of patients' variable responses and build a predictive statistical model that can be used to personalize mexiletine treatment based on patient's genetic variant. METHODS AND RESULTS We monitored the cardiac Na+ channel voltage-sensing domain (VSD) conformational dynamics simultaneously with other gating properties for the LQT3 variants. To systematically identify the relationship between mexiletine block and channel biophysical properties, we used a system-based statistical modeling approach to connect the multivariate properties to patient phenotype. We found that mexiletine altered the conformation of the Domain III VSD, which is the same VSD that many tested LQT3 mutations affect. Analysis of 15 LQT3 variants showed a strong correlation between the activation of the Domain III-VSD and the strength of the inhibition of the channel by mexiletine. Based on this improved molecular-level understanding, we generated a systems-based model based on a dataset of 32 LQT3 patients, which then successfully predicted the response of 7 out of 8 patients to mexiletine in a blinded, retrospective trial. CONCLUSIONS Our results imply that the modulated receptor theory of local anesthetic action, which confines local anesthetic binding effects to the channel pore, should be revised to include drug interaction with the Domain III-VSD. Using an algorithm that incorporates this mode of action, we can predict patient-specific responses to mexiletine, improving therapeutic decision making.
Collapse
Affiliation(s)
- Wandi Zhu
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Andrea Mazzanti
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy (A.M., S.G.P.)
| | - Taylor L Voelker
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Panpan Hou
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Jonathan D Moreno
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO.,Division of Cardiology, Department of Medicine (J.D.M.), Washington University in St Louis, MO
| | - Paweorn Angsutararux
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Kristen M Naegle
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| | - Silvia G Priori
- Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy (A.M., S.G.P.).,Department of Molecular Medicine, University of Pavia, Italy (S.G.P.)
| | - Jonathan R Silva
- From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO
| |
Collapse
|
48
|
Lazzari-Dean JR, Gest AM, Miller EW. Optical estimation of absolute membrane potential using fluorescence lifetime imaging. eLife 2019; 8:44522. [PMID: 31545164 PMCID: PMC6814365 DOI: 10.7554/elife.44522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
All cells maintain ionic gradients across their plasma membranes, producing transmembrane potentials (Vmem). Mounting evidence suggests a relationship between resting Vmem and the physiology of non-excitable cells with implications in diverse areas, including cancer, cellular differentiation, and body patterning. A lack of non-invasive methods to record absolute Vmem limits our understanding of this fundamental signal. To address this need, we developed a fluorescence lifetime-based approach (VF-FLIM) to visualize and optically quantify Vmem with single-cell resolution in mammalian cell culture. Using VF-FLIM, we report Vmem distributions over thousands of cells, a 100-fold improvement relative to electrophysiological approaches. In human carcinoma cells, we visualize the voltage response to growth factor stimulation, stably recording a 10-15 mV hyperpolarization over minutes. Using pharmacological inhibitors, we identify the source of the hyperpolarization as the Ca2+-activated K+ channel KCa3.1. The ability to optically quantify absolute Vmem with cellular resolution will allow a re-examination of its signaling roles.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Anneliese Mm Gest
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
49
|
Boggess SC, Gandhi SS, Siemons BA, Huebsch N, Healy KE, Miller EW. New Molecular Scaffolds for Fluorescent Voltage Indicators. ACS Chem Biol 2019; 14:390-396. [PMID: 30735344 PMCID: PMC6499379 DOI: 10.1021/acschembio.8b00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicators that make use of a fluorene-based molecular wire as a voltage-sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2), readily reports on action potentials in mammalian neurons, detects perturbations to the cardiac action potential waveform in human induced pluripotent stem cell-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlight the utility of fVF 2 for interrogating membrane potential dynamics.
Collapse
Affiliation(s)
- Steven C. Boggess
- Departments of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shivaani S. Gandhi
- Departments of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brian A. Siemons
- Departments of Bioengineering, University of California, Berkeley, California 94720, United States
- Departments of Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Nathaniel Huebsch
- Departments of Bioengineering, University of California, Berkeley, California 94720, United States
- Departments of Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Kevin E. Healy
- Departments of Bioengineering, University of California, Berkeley, California 94720, United States
- Departments of Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Departments of Chemistry, University of California, Berkeley, California 94720, United States
- Departments of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Departments of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Optical Recording of Action Potentials in Human Induced Pluripotent Stem Cell-Derived Cardiac Single Cells and Monolayers Generated from Long QT Syndrome Type 1 Patients. Stem Cells Int 2019; 2019:7532657. [PMID: 30956674 PMCID: PMC6431403 DOI: 10.1155/2019/7532657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) from type 1 long QT (LQT1) patients can differentiate into cardiomyocytes (CMs) including ventricular cells to recapitulate the disease phenotype. Although optical recordings using membrane potential dyes to monitor action potentials (APs) were reported, no study has investigated the disease phenotypes of cardiac channelopathy in association with the cardiac subtype at the single-cell level. We induced iPSC-CMs from three control and three LQT1 patients. Single-cell analysis using a fast-responding dye confirmed that ventricular cells were the dominant subtype (control-iPSC-CMs: 98%, 88%, 91%; LQT1-iPSC-CMs: 95%, 79%, 92%). In addition, LQT1-iPSC-ventricular cells displayed an increased frequency of early afterdepolarizations (pvalue = 0.031). Cardiomyocyte monolayers constituted mostly of ventricular cells derived from LQT1-iPSCs showed prolonged AP duration (APD) (pvalue = 0.000096). High-throughput assays using cardiomyocyte monolayers in 96-well plates demonstrated that IKr inhibitors prolonged APDs in both control- and LQT1-iPSC-CM monolayers. We confirmed that the optical recordings of APs in single cells and monolayers derived from control- and LQT1-iPSC-CMs can be used to assess arrhythmogenicity, supporting the feasibility of membrane potential dye-based high-throughput screening to study ventricular arrhythmias caused by genetic channelopathy or cardiotoxic drugs.
Collapse
|