1
|
Ekici O, Gul A, Keskin E, Bulut S, Suleyman B, Mammadov R, Cicek B, Demir O, Gunay M, Suleyman H. Comparative study of the protective effects of coenzyme Q10 and cinnamon extract on possible kidney damage and dysfunction of amiodarone in rats. Clin Exp Nephrol 2025; 29:414-426. [PMID: 39476229 DOI: 10.1007/s10157-024-02584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND An increase in free oxygen radicals and proinflammatory cytokines and decrease in intracellular adenosine triphosphate account for the nephrotoxic effect of amiodarone. This study investigated the protective effects of Coenzyme Q10 (CoQ10), cinnamon extract (CE) and the combination of the two (CoCE) on possible amiodarone-induced renal injury in rats. METHODS Thirty male albino Wistar rats were cetegorized into healthy (HG), amiodarone (ADG), CoQ10 + amiodarone (CoQA), CE + amiodarone (CEA), and CoCE + amiodarone (CoCEA) groups. First, CoQ10 (10 mg/kg) and CE (100 mg/kg) were orally given. After 1 h, 50 mg/kg amiodarone was orally given to all groups except for HG. Amiodarone, CoQ10, and CE administration was continued orally at the indicated doses once daily for 10 days.Then, blood samples were collected from all groups to determine creatinine, blood urea nitrogen (BUN), and kidney injury molecule (KIM-1) levels, followed by euthanasia and removal of kidney tissues. Oxidative stress and inflammatory parameters were analysed in the tissue samples. Histopathological examination was also performed on the tissues. RESULTS Amiodarone increased malondialdehyde levels and decreased total glutathione, superoxide dismutase, and catalase levels (p < 0.001). Amiodarone increased the expression and tissue levels of tissue nuclear factor kappa B, tumor necrosis factor-alpha, interleukin-1β and interleukin-6, and led to increases in serum creatinine and BUN and KIM-1 levels (p < 0.001). Amiodarone also caused histopathological damage (p < 0.001).CoQ10, CE and especially CoCE inhibited biochemical changes and tissue damage (p < 0.001). CONCLUSION Although CoQ10, CE, and CoCE effectively prevent amiodarone-induced oxidative and inflammatory nephrotoxicity, CoCE appears to be superior.
Collapse
Affiliation(s)
- Ozgur Ekici
- Department of Urology, Bursa City Hospital, University of Health Sciences, Bursa, Turkey.
| | - Abdullah Gul
- Department of Urology, Bursa Higher Specialization Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ercument Keskin
- Department of Urology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Murat Gunay
- Biochemistry Laboratory, Erzincan Mengücek Gazi Training and Research Hospital, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
2
|
Saleh SR, Agwah RG, Elblehi SS, Ghareeb AZ, Ghareeb DA, Maher AM. Combination of 10-hydroxy-decanoic acid and ZnO nanoparticles abrogates lead acetate-induced nephrotoxicity in rats: targeting oxidative stress and inflammatory signalling. BMC Pharmacol Toxicol 2025; 26:69. [PMID: 40134036 PMCID: PMC11934796 DOI: 10.1186/s40360-025-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Lead is a heavy metal contaminant that can cause significant alterations in renal structure and function, resulting in nephrotoxicity. The fatty acids of royal jelly exhibit immunoregulatory, anticancer, anti-inflammatory, and antioxidant properties, which have garnered significant interest. The most prevalent among them is 10-hydroxydecanoic acid (10-HDA). Zinc oxide nanoparticles (ZnONPs) demonstrate a renoprotective effect, likely due to their antioxidant, anti-inflammatory, and antiapoptotic properties. This study evaluated the therapeutic efficacy of 10-HDA and ZnONPs, administered either as monotherapy or in combination, against lead-induced nephrotoxicity. Male rats were orally administered lead acetate (PbAc) for three months, followed by the administration of 10-HDA and/or ZnONPs for one month. Exposure to PbAc resulted in elevated renal lead concentration, as well as increased serum levels of urea, creatinine, and cystatin C. The condition resulted in damage to the renal parenchyma, characterised by degenerative glomeruli and tubules, and exhibited the highest lesion score. Nrf2 and HO-1 exhibited reduced expression and diminished antioxidant enzyme levels subsequent to PbAc poisoning. Additionally, there was an increase in the inflammatory and apoptotic signalling through the p-IKK/NF-κB axis. The administration of 10-HDA and ZnONPs significantly decreased renal lead levels and improved antioxidant capacity. Moreover, renal inflammatory markers (TNF-α, p-IKK, IL-1β, IL-6, and IL-8) and proapoptotic indicators (Bax and Caspase-3) were significantly suppressed. The combined therapy demonstrated a synergistic effect (combination index < 1). In conclusion, the results indicated that 10-HDA and ZnONPs have the potential to be a supplement or even an effective treatment to alleviate the adverse effects of lead poisoning. This is potentially attributed to their potent ameliorative actions against oxidation, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Raheel G Agwah
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, Alexandria, 21648, Egypt.
| | - Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
3
|
Dahran N, Alobaidy MA, Owaydhah WH, Soubahi EKA, Eisa AA, Nasreldin N, Gadalla H, Refaat B, El-Boshy ME. Polydatin Mitigates Lead-Induced Nephropathy by Modulating Oxidative Stress, Inflammation, and the AMPK/AKT/Nrf2 Pathway in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04570-9. [PMID: 40085304 DOI: 10.1007/s12011-025-04570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the molecular mechanisms underlying lead (Pb)-induced nephropathy and assessed the nephroprotective potential of Polydatin (PD). Forty male Wistar rats were divided into five groups (n = 8/group): negative control (NC), normal rats treated with 200 mg/kg/day of PD (NPD200), positive control (PC) receiving Pb only (30 mg/kg/day), and two groups co-administered Pb with PD (100 or 200 mg/kg/day). Serum and urine Pb levels were determined by an atomic absorption spectrophotometer. Markers of renal tissue damage (TGF-β/iNOS/NGLA/KIM-1) and renoprotective molecules (Nrf2/AMKα/AKT1) genes and proteins were measured by quantitative RT-PCR and Immunohistochemistry, respectively. ELISA was used to quantify markers of oxidative stress (GSH/Gpx1/CAT/MDA/H2O2) and inflammation (TNFα/IL1β/IL6/IL-10/IFN-γ). The PC group exhibited significant renal damage, including abnormal histology, increased apoptosis, elevated serum creatinine and urea, proteinuria, and polyuria. The PC renal tissues also showed substantial upregulations of iNOS/TGF-β/KIM-1/NGAL, whilst Nrf2/AMPK/AKT declined compared to healthy rats. Moreover, levels of oxidative stress (MDA/H2O2) and inflammatory (TNF-α/IL1β/IL6) markers were substantially higher in the PC renal specimens, whereas the antioxidants (GSH/GPx/CAT) with IL-10 and IFN-γ decreased than the NC group. Co-administration of PD with Pb improved renal biochemical parameters, attenuated histopathological changes and apoptosis, reduced the expression of iNOS/TGF-β/KIM-1, concentrations of oxidative stress and pro-inflammatory markers, whilst enhanced antioxidants and Nrf2/AMPK/AKT/IL-10/IFN-γ levels. However, the protective effects of the PD high-dose regimen were significantly greater than the low-dose protocol. In conclusion, PD prophylactic regimens mitigated Pb-induced nephrotoxicity by targeting oxidative stress and inflammation, with the high-dose protocol demonstrating superior nephroprotective efficacy.
Collapse
Affiliation(s)
- Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, P.O. Box 7607, Makkah, Saudi Arabia
| | - Wejdan H Owaydhah
- Department of Basic Medical Sciences, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Ehdaa K A Soubahi
- Clinical Laboratory Department, Maternity and Children Hospital, Makkah, Saudi Arabia
| | - Alaa A Eisa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, P.O. Box 72511, El-Kharga, Egypt
| | - Hossam Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Prince Sultan Road, Al Abdeyah, 21955, Makkah, Saudi Arabia
| | - Mohamed E El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Mansour DF, Hashad IM, Rady M, Abd-El Razik AN, Saleh DO. Diosmin and Coenzyme q10: Synergistic histopathological and functional protection against doxorubicin-induced hepatorenal injury in rats. Toxicol Rep 2024; 13:101848. [PMID: 39703765 PMCID: PMC11655815 DOI: 10.1016/j.toxrep.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline used to treat a variety of cancers. Cardiotoxicity, hepatotoxicity, and nephrotoxicity are adverse effects of DOX, that limit prognosis. The study aims to determine if diosmin (DIOS) and coenzyme Q10 (CoQ10) alone or in combination protect rats against DOX-induced liver and kidney damage. Adult male rats were assigned randomly in five groups. An intraperitoneal injection of DOX (2.5 mg/kg) was given to the DOX group every other day for three weeks, whereas a normal control group received the vehicle. Diosmin group received oral DIOS (100 mg/kg), Co-Q10 group received oral CoQ10 (10 mg/kg) and combination group received oral DIOS and CoQ10 daily for three weeks concomitantly with DOX. Sera and tissues were obtained 24 hours after last DOX injection. Serum aspartate transaminase (AST), alanine transaminase (ALT), creatinine, urea, total bilirubin and direct bilirubin were detected with hepatic and renal reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa-B (NF-κB). Histopathology and morphometry of liver and kidney were assessed. DOX exerted significant hepatorenal toxicity via elevation of liver and kidney functions, inducing oxidative stress by reducing GSH and elevating MDA, triggering renal and hepatic TNF-α and NF-kB. DIOS and CoQ10 modulated hepatic and renal functions, oxidative stress and inflammatory biomarkers. DIOS-CoQ10 combination treatment showed significant improvement in histopathology of liver and kidney along with morphometry compared to DOX group. In conclusion, combining DIOS and CoQ10 exhibited synergistic protective activity against DOX-induced hepatic and renal insult via their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dina F. Mansour
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Galala University, Mount Ataka, Suez, Egypt
| | - Ingy M. Hashad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Amira N. Abd-El Razik
- Pathology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| | - Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Vachirarojpisan T, Srivichit B, Vaseenon S, Powcharoen W, Imerb N. Therapeutic roles of coenzyme Q10 in peripheral nerve injury-induced neurosensory disturbances: Mechanistic insights from injury to recovery. Nutr Res 2024; 129:55-67. [PMID: 39217889 DOI: 10.1016/j.nutres.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Peripheral nerve injuries (PNIs) are prevalent conditions mainly resulting from systemic causes, including autoimmune diseases and diabetes mellitus, or local causes, for example, chemical injury and perioperative nerve injury, which can cause a varying level of neurosensory disturbances (NSDs). Coenzyme Q10 (CoQ10) is an essential regulator of mitochondrial respiration and oxidative metabolism. Here, we review the pathophysiology of NSDs caused by PNIs, the current understanding of CoQ10's bioactivities, and its potential therapeutic roles in nerve regeneration, based on evidence from experimental and clinical studies involving CoQ10 supplementation. In summary, CoQ10 supplementation shows promise as a neuroprotective agent, potentially enhancing treatment efficacy for NSDs by reducing oxidative stress and inflammation. Future studies should focus on well-designed clinical trials with large sample sizes, using CoQ10 formulations with proven bioavailability and varying treatment duration, to further elucidate its neuroprotective effects and to optimize nerve regeneration in PNIs-induced NSDs.
Collapse
Affiliation(s)
- Thanyaphorn Vachirarojpisan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Bhumrapee Srivichit
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Warit Powcharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Imerb
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
7
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
8
|
Keyhanifard M, Javan R, Disfani RA, Bahrami M, Mirzaie MS, Taghiloo S, Mokhtari H, Nasiry D, Sadrzadeh Aghajani Z, Shooraj M. Coenzyme Q10 attenuates neurodegeneration in the cerebellum induced by chronic exposure to tramadol. J Chem Neuroanat 2024; 135:102367. [PMID: 38043916 DOI: 10.1016/j.jchemneu.2023.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic use of tramadol can cause neurotoxic effects and subsequently cause neurodegeneration in the cerebellum. The main damage mechanisms identified are oxidative stress and inflammation. Currently, we investigated the effects of coenzyme Q10 (CoQ10) in attenuates of neurodegeneration in the cerebellum induced by chronic exposure to tramadol. MATERIAL AND METHODS Seventy-two male mature albino rats were allocated into four equal groups, including; non-treated group, CoQ10 group (which received CoQ10 at 200 mg/kg/day orally for three weeks), tramadol group (which received tramadol hydrochloride at 50 mg/kg/day orally for three weeks), and tramadol+CoQ10 group (which received tramadol and CoQ10 at the same doses as the previous groups). Tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular evaluations. Also, functional tests were performed to evaluate behavioral properties. RESULTS We found a significant increase in stereological parameters, antioxidant factors (catalase, glutathione, and superoxide dismutase), and behavioral function scores in the tramadol+CoQ10 group compared to the tramadol group (p < 0.05). In addition, malondialdehyde levels, the density of apoptotic cells, as well as the expression of pro-inflammatory (tumor necrosis factor-alpha, interleukin 1 beta, and interleukin 6) and autophagy (lysosome-associated membrane protein 2, autophagy-related 5, beclin 1, and autophagy-related 12) genes were considerably reduced in the tramadol+CoQ10 group compared to the tramadol group (p < 0.05). CONCLUSION We conclude that the administration of CoQ10 has neuroprotective effects in the cerebellum of rats that have chronic exposure to tramadol.
Collapse
Affiliation(s)
- Majid Keyhanifard
- Iranian Board of Neurology, Tehran University of Medical Sciences, Tehran, Iran; Kurdistan Board of Neurology, Iraq; Fellowship of Interventional Neuroradiology, Zurich University, Switzerland
| | - Roghayeh Javan
- Non-Comunicable Disease Risearch Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Ataee Disfani
- Student Research Committee, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Sedigh Mirzaie
- Department of Physiotherapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Mokhtari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | - Mahdi Shooraj
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Ramadan SS, El Zaiat FA, Habashy EA, Montaser MM, Hassan HE, Tharwat SS, El-khadragy M, Abdel Moneim AE, Elshopakey GE, Akabawy AMA. Coenzyme Q10-Loaded Albumin Nanoparticles Protect against Redox Imbalance and Inflammatory, Apoptotic, and Histopathological Alterations in Mercuric Chloride-Induced Hepatorenal Toxicity in Rats. Biomedicines 2023; 11:3054. [PMID: 38002054 PMCID: PMC10669886 DOI: 10.3390/biomedicines11113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to mercuric chloride (HgCl2), either accidental or occupational, induces substantial liver and kidney damage. Coenzyme Q10 (CoQ10) is a natural antioxidant that also has anti-inflammatory and anti-apoptotic activities. Herein, our study aimed to investigate the possible protective effects of CoQ10 alone or loaded with albumin nanoparticles (CoQ10NPs) against HgCl2-induced hepatorenal toxicity in rats. Experimental animals received CoQ10 (10 mg/kg/oral) or CoQ10NPs (10 mg/kg/oral) and were injected intraperitoneally with HgCl2 (5 mg/kg; three times/week) for two weeks. The results indicated that CoQ10NP pretreatment caused a significant decrease in serum liver and kidney function markers. Moreover, lowered MDA and NO levels were associated with an increase in antioxidant enzyme activities (SOD, GPx, GR, and CAT), along with higher GSH contents, in both the liver and kidneys of intoxicated rats treated with CoQ10NPs. Moreover, HgCl2-intoxicated rats that received CoQ10NPs revealed a significant reduction in the hepatorenal levels of TNF-α, IL-1β, NF-κB, and TGF-β, as well as an increase in the hepatic level of the fibrotic marker (α-SMA). Notably, CoQ10NPs counteracted hepatorenal apoptosis by diminishing the levels of Bax and caspase-3 and boosting the level of Bcl-2. The hepatic and renal histopathological findings supported the abovementioned changes. In conclusion, these data suggest that CoQ10, alone or loaded with albumin nanoparticles, has great power in reversing the hepatic and renal tissue impairment induced by HgCl2 via the modulation of hepatorenal oxidative damage, inflammation, and apoptosis. Therefore, this study provides a valuable therapeutic agent (CoQ10NPs) for preventing and treating several HgCl2-induced hepatorenal disorders.
Collapse
Affiliation(s)
- Shimaa S. Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Farah A. El Zaiat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Engy A. Habashy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mostafa M. Montaser
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Habeba E. Hassan
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shahinaz S. Tharwat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
10
|
Sadek SA, Marzouk M, Mohamed HRH, El-Sallam BFA, Elfiky AA, Sayed AA. Chia seeds and coenzyme Q 10 alleviate iron overload induced hepatorenal toxicity in mice via iron chelation and oxidative stress modulation. Sci Rep 2023; 13:19773. [PMID: 37957293 PMCID: PMC10643458 DOI: 10.1038/s41598-023-47127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Iron overload (IOL) can cause hepatorenal damage due to iron-mediated oxidative and mitochondrial damage. Remarkably, combining a natural iron chelator with an antioxidant can exert greater efficacy than monotherapy. Thus, the present study aimed to evaluate the efficacy of Chia and CoQ10 to chelate excess iron and prevent hepatorenal oxidative damage in IOL mice. Male Swiss albino mice (n = 49) were randomly assigned to seven groups: control, dietary Chia, CoQ10, IOL, IOL + Chia, IOL + CoQ10, and IOL + Chia + CoQ10. Computational chemistry indicates that the phytic acid found in the Chia seeds is stable, reactive, and able to bind to up to three iron ions (both Fe2+ and Fe3+). IOL induced a significant (P < 0.05) increase in serum iron, ferritin, transferrin, TIBC, TSI, RBCs, Hb, MCV, MCH, WBCs, AST, ALT, creatinine, and MDA. IOL causes a significant (P < 0.05) decrease in UIBC, platelets, and antioxidant molecules (GSH, SOD, CAT, and GR). Also, IOL elicits mitochondrial membrane change depolarization, and DNA fragmentation and suppresses mitochondrial DNA copies. Furthermore, substantial changes in hepatic and renal tissue, including hepatocellular necrosis and apoptosis, glomerular degeneration, glomerular basement membrane thickening, and tubular degeneration, were observed in the IOL group. Dietary Chia and CoQ10 induced significant (P < 0.05) amelioration in all the mentioned parameters. They can mostly repair the abnormal architecture of hepatic and renal tissues induced by IOL, as signified by normal sinusoids, normal central veins, and neither glomerular damage nor degenerated tubules. In conclusion, the combined treatment with Chia + CoQ10 exerts more pronounced efficacy than monotherapy in hepatorenal protection via chelating excess iron and improved cellular antioxidant status and hepatorenal mitochondrial function in IOL mice.
Collapse
Affiliation(s)
- Shimaa A Sadek
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Marzouk
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Almeer R, Alyami NM. Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112745-112757. [PMID: 37837591 DOI: 10.1007/s11356-023-30280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice's renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Ahmadimoghaddam D, Talebi SS, Rahmani A, Zamanirafe M, Parvaneh E, Ranjbar A, Poorolajal J, Mehrpooya M. Prevention of contrast induced-acute kidney injury using coenzyme Q10 in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Eur J Clin Pharmacol 2023; 79:1341-1356. [PMID: 37524929 DOI: 10.1007/s00228-023-03546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE We assessed the potential effect of CoQ10 administration for the prevention of contrast induced-acute kidney injury (CI-AKI) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). METHODS One hundred fifty STEMI patients who were candidates for primary PCI, along with intravenous saline hydration, randomly received a placebo or CoQ10. CoQ10 was administrated orally, 400 mg before the procedure and 200 mg twice daily after the procedure for three consecutive days. Serum creatinine concentration and corresponding creatinine clearance (estimated by the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation) were measured at baseline and 24, 48, and 72 h after primary PCI. Furthermore, the serum level of superoxide dismutase (SOD), total antioxidant capacity (TAC), and malondialdehyde (MDA) was measured before and 72 h after primary PCI. RESULTS The mean serum creatinine concentration before contrast administration was similar in the two groups (0.98 ± 0.08 versus 0.99 ± 0.09 mg/dL). While in both study groups, compared to baseline, the mean serum creatinine concentration increased at 48 and 72 h after contrast exposure, the CoQ10 group showed a lower serum creatinine concentration than the placebo group (P-value = 0.017 and 0.004, respectively). However, comparing the mean values of creatinine clearance between the groups at the study time points did not demonstrate a statistically significant difference. CI-AKI, defined as a > 25% or 0.5 mg/dL increase in baseline serum creatinine concentration, occurred in 8.00% of the cases in the CoQ10 group versus 20.00% in the placebo group (P-value = 0.034). Furthermore, at 72 h, the CoQ10-treated group exhibited higher serum levels of SOD and TAC and a lower MDA level than the placebo-treated group. CONCLUSIONS Our research's findings proposed CoQ10 supplementation as an adjuvant to saline hydration as a preventive approach against CI-AKI. TRIAL REGISTRATION The trial was registered at Iranian Registry of Clinical Trials ( https://www.irct.ir/trial/60435 , identifier code: IRCT20120215009014N414). Registration date: 2021-12-29.
Collapse
Affiliation(s)
- Davoud Ahmadimoghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ayesheh Rahmani
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Ave, Hamadan, 6517838678, Iran
| | - Maryam Zamanirafe
- Medical Faculty, Hamadan University of Medical Science, Hamadan, Iran
| | - Erfan Parvaneh
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Ave, Hamadan, 6517838678, Iran.
| |
Collapse
|
13
|
Şimşek H, Küçükler S, Gür C, Akaras N, Kandemir FM. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101208-101222. [PMID: 37648919 DOI: 10.1007/s11356-023-29410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Lead acetate (PbAc) is one of the top five most dangerous toxic heavy metals, particularly leading to kidney damage and posing serious health risks in both humans and animals. Sinapic acid (SNP) is a naturally occurring flavonoid found in fruits and vegetables that stands out with its antioxidant, anti-inflammatory, and anticancer properties. This is the first study to investigate the effects of SNP on oxidative stress, inflammation, apoptosis, autophagy and endoplasmic reticulum (ER) stress in PbAc-induced nephrotoxicity in rats by biochemical, molecular and histological methods. 35 Spraque dawley rats were randomly divided into five groups of 7 rats each: control, PbAc, SNP (10mg/kg), PbAc + SNP 5, PbAC + SNP 10. PbAc at a dose of 30 mg/kg body weight was administered via oral gavage alone or in combination with SNP (5 and 10 mg/kg body weight) via oral gavage for seven days. While PbAc impaired renal function by increasing serum urea and creatinine levels, SNP decreased these levels and contributed to the improvement in renal function. The administration of SNP reduced oxidative stress by increasing PbAc-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels, decreasing MDA levels, a marker of increased lipid peroxidation. SNP administration reduced NF-κB, TNF-α, IL-1β, NLRP3, and RAGE mRNA transcription levels, NF-κB, and TNF-α protein levels that are among the PbAc-induced increased inflammation parameters. Decreases in antiapoptotic Bcl-2 and increases in apoptotic Bax, APAF-1, and Caspase-3 due to PbAc exposure, SNP reversed the situation. SNP reduced ER stress caused by PbAc by increasing PERK, IRE1, ATF-6, CHOP, and GRP-78 levels and made it tend to regress. SNP reduced autophagy damage by decreasing the Beclin-1 protein level increased by PbAc. The findings of the present study suggested that SNP attenuates PbAc-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| | - Fatih Mehmet Kandemir
- Deparment of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
14
|
Batóg G, Dołoto A, Bąk E, Piątkowska-Chmiel I, Krawiec P, Pac-Kożuchowska E, Herbet M. The interplay of oxidative stress and immune dysfunction in Hashimoto's thyroiditis and polycystic ovary syndrome: a comprehensive review. Front Immunol 2023; 14:1211231. [PMID: 37588599 PMCID: PMC10426741 DOI: 10.3389/fimmu.2023.1211231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
In recent years, there has been a significant increase in the concomitant incidence of Hashimoto's thyroiditis (HT) and polycystic ovary syndrome (PCOS), both in terms of incidence, etiology, and clinical consequences. PCOS patients suffering from autoimmune thyroid diseases show insulin resistance, impaired glucose tolerance, weight gain, and metabolic and reproductive complications. Studies have shown that chronic stress and its consequence, i.e. oxidative stress, play an important role in the pathomechanism of both disorders. It has also been shown that long-term exposure to stress triggers biological mechanisms, in particular related to the regulation of the inflammatory cascade, which plays a key role in autoimmune diseases. The paper is a review of the literature on the role of chronic stress, oxidative stress, and immune processes in the pathogenesis of HT and PCOS. In addition, the review is a source of knowledge about the treatment of these diseases, and in particular the use of antioxidants in therapeutic management.
Collapse
Affiliation(s)
- Gabriela Batóg
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Dołoto
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewelina Bąk
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Paulina Krawiec
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
15
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
16
|
El-Bassouny DR, Mansour AA, Ellakkany AS, Ayuob NN, AbdElfattah AA. Can coenzyme Q10 alleviate the toxic effect of fenofibrate on skeletal muscle? Histochem Cell Biol 2023:10.1007/s00418-023-02205-5. [PMID: 37270716 PMCID: PMC10386954 DOI: 10.1007/s00418-023-02205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Fenofibrate (FEN) is an antilipidemic drug that increases the activity of the lipoprotein lipase enzyme, thus enhancing lipolysis; however, it may cause myopathy and rhabdomyolysis in humans. Coenzyme Q10 (CoQ10) is an endogenously synthesized compound that is found in most living cells and plays an important role in cellular metabolism. It acts as the electron carrier in the mitochondrial respiratory chain. This study aimed to elucidate FEN-induced skeletal muscle changes in rats and to evaluate CoQ10 efficacy in preventing or alleviating these changes. Forty adult male rats were divided equally into four groups: the negative control group that received saline, the positive control group that received CoQ10, the FEN-treated group that received FEN, and the FEN + CoQ10 group that received both FEN followed by CoQ10 daily for 4 weeks. Animals were sacrificed and blood samples were collected to assess creatine kinase (CK). Soleus muscle samples were taken and processed for light and electron microscopic studies. This study showed that FEN increased CK levels and induced inflammatory cellular infiltration and disorganization of muscular architecture with lost striations. FEN increased the percentage of degenerated collagen fibers and immune expression of caspase-3. Ultrastructurally, FEN caused degeneration of myofibrils with distorted cell organelles. Treatment with CoQ10 could markedly ameliorate these FEN-induced structural changes and mostly regain the normal architecture of muscle fibers due to its antifibrotic and antiapoptotic effects. In conclusion, treatment with CoQ10 improved muscular structure by suppressing oxidative stress, attenuating inflammation, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Dalia R El-Bassouny
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alyaa A Mansour
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany S Ellakkany
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nasra N Ayuob
- Medical Histology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
- Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A AbdElfattah
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, El-Tor, Egypt.
| |
Collapse
|
17
|
Fehaid A, Al-Ghamdi MS, Alzahrani KJ, Theyab A, Al-Amer OM, Al-Shehri SS, Algahtani M, A Oyouni AA, Alnfiai MM, Aly MH, Alsharif KF, Albrakati A, Kassab RB, Althagafi HA, Alharthi F, Abdel Moneim AE, Lokman MS. Apigenin protects from hepatorenal damage caused by lead acetate in rats. J Biochem Mol Toxicol 2023; 37:e23275. [PMID: 36550699 DOI: 10.1002/jbt.23275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Exposure to lead (Pb) is associated with serious health problems including hepatorenal toxicity. Apigenin is a natural-sourced flavonoid with promising antioxidant and anti-inflammatory effects. In this research, we investigated the potential protective role of apigenin against lead acetate (PbAc)-induced hepatorenal damage. Thus, this experiment studied the exposure of male Wistar Albino rats to apigenin and/or PbAc and their effects in comparison to the control rats. Apigenin administration decreased the levels of Pb and prevented the histopathological deformations in liver and kidney tissues following PbAc exposure. This was confirmed by the normalized levels of liver and kidney function markers. Additionally, apigenin inhibited significantly oxidative reactions through upregulating Nrf2 and HO-1, and activating their downstreamed antioxidants accompanied by a marked depletion of pro-oxidants. Moreover, apigenin decreased the elevated pro-inflammatory cytokines and inhibited cell loss in liver and kidney tissues in response to PbAc intoxication in both tissues. The obtained results demonstrated that apigenin could be used to attenuate the molecular, biochemical, and histological alterations associated with Pb exposure due to its potent antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Dakahlia, Egypt
| | - Mohammad S Al-Ghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Saad S Al-Shehri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mrim M Alnfiai
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Mohamed H Aly
- Internal Medicine Department, Security Forces Hospital, Mekkah, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
18
|
Alyami NM, Almeer R, Alyami HM. Protective effects of Asparagus officinalis (asparagus) against lead toxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18718-18730. [PMID: 36219290 DOI: 10.1007/s11356-022-23540-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
One of the most prevalent harmful heavy metals is lead (Pb). It is generally recognized to be harmful to the testicles. Asparagus officinalis has many saponins, flavonoids, and other phenolics with strong antioxidant and anti-inflammatory effects. The effects of A. officinalis (asparagus) aqueous extract (AOAE) on testicular damage caused by lead acetate (PbAc) were investigated in this study. In this way, 20 mg/kg PbAc was injected intraperitoneally 2 h after mice were administered 400 mg/kg AOAE orally for 14 days. In the biochemical analysis of testicular tissue, PbAc decreased enzymatic and nonenzymatic antioxidant molecules in testicular tissue, while increasing lipid peroxidation, nitric oxide, inflammatory markers [nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1 β), IL-6, and inducible nitric oxide synthase (iNOS)], and apoptotic-related proteins. Additionally, PbAc was discovered to reduce sperm motility and increase the percentage of dead sperm. However, due to its antioxidant qualities, AOAE has been found to reduce oxidative stress, therefore protecting against inflammation and apoptosis. It also allowed the AOAE sperm parameters to restore to their previous values in the control group. According to the findings, AOAE could be a natural substance that could be used to treat Pb-induced testicular toxicity; this protection may be attributed to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, this study warrants further works to explore in detail the underlying mechanisms of the alleviating effects of AOAE against Pb-induced toxicity and which of its active ingredients is responsible for this protection.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hanadi M Alyami
- Specialized Dentistry Department, King Fahad Medical City, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
19
|
Elhefnawei DM, Mahmoud AH, Kadry MO, AL-Mokaddem AK, Badawy MA, EL-Desouky MA. Calcium voltage-gated channel subunit alpha 1 C and glial fibrillary acidic protein signaling pathways as a selective biomarker in predicting the efficacy of liposomal loaded co-enzyme Q in the autistic rat model. Toxicol Rep 2022; 10:17-26. [PMID: 36561125 PMCID: PMC9763363 DOI: 10.1016/j.toxrep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is an extreme neuropsychotic disturbance with both environmental and genetic origins. Sodium propionate (PPA) a metabolic bioproduct of gut microbiota is well-thought-out as a successful autism animal model. Nevertheless, Liposomal drug delivery system possess the advantagous of biocompatibility, targeting organs, ability to carry large drug payloads and skipping macrophages for this purpose the current study was carried out to investigate the hypothesis that Calcium Voltage-Gated channel subunit alpha 1 C (CACNA1C) and glial fibrillary acidic protein (GFAP) signaling pathways crosstalk with the efficacy of Co-enzyme Q10 (Co-Q10) and liposomal loaded Co-enzyme Q10 (L Co-Q10) in PPA mediated autistic rat model. Autism was conducted by buffered PPA (500 mg/Kg b.wt) daily for 5 consecutive days subsequently treatment via Co-Q10 in a dose of (10 mg/kg b.wt) and L Co-Q10 (2 mg/kg b.wt) for four weeks then the autistic model was followed for signs of autism at different time intervals of (one, two and four weeks). The control, PPA intoxicated, and treated groups were subjected to behavioral tests (Y-Maze and open field), antioxidant analysis, gene expression analysis, and histological examination at different time intervals of the study. The results revealed that Co-Q10 and L Co-Q10 significantly elevated antioxidative stress biomarkers, comprising superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). In addition, they significantly ameliorated the oxidative stress biomarker malondialdehyde (MDA). Meanwhile, they significantly downregulated GFAP and CACNA1C mRNA gene expressions, Co-Q10 and LCo-Q10 showed improvement in almost brain regions post PPA histopathological alterations, even better results were manifested via LCo-Q10 groups. These results showed the superiority of LCo-Q10 over Co-Q10 in competing autism. In conclusion: The administration of anti-inflammatory and antioxidant agents such as Co-Q10 and L Co-Q10 may represent a promising strategy to counteract pathological behaviors in ASD model via targeting organs, increasing retention time, and reducing side effects.
Collapse
Affiliation(s)
- Doaa M. Elhefnawei
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mai O. Kadry
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author.
| | - Asmaa K. AL-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mohamed A. Badawy
- Department of Biochemistry, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
20
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
21
|
Kahalerras L, Otmani I, Abdennour C. The Allium triquetrum L. Leaves Mitigated Hepatotoxicity and Nephrotoxicity Induced by Lead Acetate in Wistar Rats. Biol Trace Elem Res 2022; 200:4733-4743. [PMID: 34978041 DOI: 10.1007/s12011-021-03052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/25/2021] [Indexed: 11/02/2022]
Abstract
The aim of this study was to scrutinize the possible mitigating role of leaves' Allium triquetrum L. against the toxicity of lead acetate on liver and kidney markers of Wistar rat. Lead acetate (Pb) and leaves' aqueous extracts (L) were orally administrated for 3 weeks. Rats were divided into the control, Pb group (500 mg/kg body weight/day), positive controls L (2g, 3g, 4g/kg BW/day), along with three combined groups of the same doses (Pb-L1, Pb-L2, Pb-L3). The levels of plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total proteins (TP), albumin (ALB), urea, creatinine (Cr), and uric acid (UA), as well as the hepatic and the renal malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx), were estimated. Results exhibited a significant increase in plasma AST, ALT, ALP, urea, creatinine, uric acid, and MDA levels of the Pb group compared to the control, with the exception of TP, ALB, GSH levels, and GPx activities that were significantly diminished, though the co-administration of garlic extracts (Pb-L) revealed a significant decrease in all mentioned markers, excluding the TP, ALB, GSH, and GPx levels. Likewise, Pb caused histological injuries in the hepatic and renal tissues of rats, while the co-administration of leaves' wild garlic has reduced such effect. Thought, the Pb-L has attenuated the Pb-induced toxicity in a dose-dependent manner. In conclusion, the aqueous extracts of A. triquetrum have the potential to alleviate Pb hepatotoxicity and nephrotoxicity through the modulation of most biomarkers in Wistar rat.
Collapse
Affiliation(s)
- Labiba Kahalerras
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria.
| | - Ines Otmani
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Cherif Abdennour
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| |
Collapse
|
22
|
Saber TM, Abo-Elmaaty AMA, Said EN, Beheiry RR, Moselhy AAA, Abdelgawad FE, Arisha MH, Saber T, Arisha AH, Fahmy EM. Alhagi maurorum Ethanolic Extract Rescues Hepato-Neurotoxicity and Neurobehavioral Alterations Induced by Lead in Rats via Abrogating Oxidative Stress and the Caspase-3-Dependent Apoptotic Pathway. Antioxidants (Basel) 2022; 11:1992. [PMID: 36290715 PMCID: PMC9598489 DOI: 10.3390/antiox11101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
This work investigated the probable protective effect of an Alhagi maurorum ethanolic extract on the hepatotoxicity and neurotoxicity accompanied by neurobehavioral deficits caused by lead in rats. Rats in four groups were orally administered distilled water, ethanolic extract of A. maurorum (300 mg/kg BW daily), lead (100 mg/kg BW daily for 3 months), and lead + A. maurorum extract. The results demonstrated that lead exposure resulted in elevated locomotor activities and sensorimotor deficits associated with a decrease in brain dopamine levels. Moreover, lead exposure significantly increased liver function markers. In addition, the lead-treated rats exhibited extensive liver and brain histological changes and apoptosis. The lead treatment also triggered oxidative stress, as demonstrated by the increase in malondialdehyde (MDA) concentrations with a remarkable reduction in the activities of antioxidant enzymes, reduced glutathione (GSH) levels, and transcriptional mRNA levels of antioxidant genes in the liver and brain. Nevertheless, co-treatment with the A. maurorum extract significantly ameliorated the lead-induced toxic effects. These findings indicate that the A. maurorum extract has the ability to protect hepatic and brain tissues against lead exposure in rats through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M. A. Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N. Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Mariam H. Arisha
- Department of Psychology, Faculty of Arts, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Esraa M. Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep 2022; 10:e15468. [PMID: 36117389 PMCID: PMC9483619 DOI: 10.14814/phy2.15468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of ischemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its inactivation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The goal of this study was to determine how meprin β expression impacts IL-6 and downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time PCR, western blot, and immunostaining/microscopy approaches were used to quantify mRNA and protein levels respectively, and immunofluorescence counterstaining with proximal tubule (PT) markers to determine protein localization. The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both genotypes. Interestingly, western blot data showed increases in protein levels for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, immunohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins in select kidney tubules in both genotypes, shown to be PTs by immunofluorescence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO at a global level but immunoflourescence counterstaining demonstrated p-JAK2 and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed in leukocytes. Immunohistochemical analysis confirmed higher levels of leukocyte infiltration in WT kidneys when compared to βKO kidneys. The present data demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/JAK2/STAT3-mediated signaling.
Collapse
Affiliation(s)
- Shaymaa Abousaad
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Faihaa Ahmed
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Ayman Abouzeid
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Elimelda Moige Ongeri
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
24
|
Silva SVE, Gallia MC, da Luz JRD, de Rezende AA, Bongiovanni GA, Araujo-Silva G, Almeida MDG. Antioxidant Effect of Coenzyme Q10 in the Prevention of Oxidative Stress in Arsenic-Treated CHO-K1 Cells and Possible Participation of Zinc as a Pro-Oxidant Agent. Nutrients 2022; 14:nu14163265. [PMID: 36014770 PMCID: PMC9412518 DOI: 10.3390/nu14163265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is an imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes. Compounds with antioxidant properties, such as coenzyme Q10 (CoQ10), can reduce cellular imbalance caused by an increase in ROS. CoQ10 participates in modulating redox homeostasis due to its antioxidant activity and its preserving mitochondrial functions. Thus, the present study demonstrated the protective effects of CoQ10 against oxidative stress and cytotoxicity induced by arsenic (As). Antioxidant capacity, formation of hydroperoxides, generation of ROS, and the effect on cellular viability of CoQ10, were investigated to determine the protective effect of CoQ10 against As and pro-oxidant compounds, such as zinc. Cell viability assays showed that CoQ10 is cytoprotective under cellular stress conditions, with potent antioxidant activity, regardless of the concentration tested. Zn, when used at higher concentrations, can increase ROS and show a pro-oxidant effect causing cell damage. The cytotoxic effect observed for As, Zn, or the combination of both could be prevented by CoQ10, without any decrease in its activity at cellular levels when combined with Zn.
Collapse
Affiliation(s)
- Saulo Victor e Silva
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
| | - María Celeste Gallia
- Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), National Council for Scientific and Technical Research (CONICET), School of Agricultural Sciences, Neuquén 8300, Argentina
| | - Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900070, Brazil
| | - Adriana Augusto de Rezende
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
| | - Guillermina Azucena Bongiovanni
- Institute of Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), National Council for Scientific and Technical Research (CONICET), School of Agricultural Sciences, Neuquén 8300, Argentina
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá (UEAP), Macapá 68900070, Brazil
| | - Maria das Graças Almeida
- Post-Graduation Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, Federal University of the Rio Grande do Norte (UFRN), Natal 59012570, Brazil
- Post-Graduation Program in Health Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis (DACT), Health Sciences Center, UFRN, Natal 59012570, Brazil
- Sciences Center, UFRN, Natal 59012570, Brazil
- Correspondence:
| |
Collapse
|
25
|
Chang TM, Yang TY, Huang HC. Nicotinamide Mononucleotide and Coenzyme Q10 Protects Fibroblast Senescence Induced by Particulate Matter Preconditioned Mast Cells. Int J Mol Sci 2022; 23:7539. [PMID: 35886889 PMCID: PMC9319393 DOI: 10.3390/ijms23147539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023] Open
Abstract
Particulate matter (PM) pollutants impose a certain degree of destruction and toxicity to the skin. Mast cells in the skin dermis could be activated by PMs that diffuse across the blood vessel after being inhaled. Mast cell degranulation in the dermis provides a kind of inflammatory insult to local fibroblasts. In this study, we evaluated human dermal fibroblast responses to conditioned medium from KU812 cells primed with PM. We found that PM promoted the production of proinflammatory cytokines in mast cells and that the cell secretome induced reactive oxygen species and mitochondrial reactive oxygen species production in dermal fibroblasts. Nicotinamide mononucleotide or coenzyme Q10 alleviated the generation of excessive ROS and mitochondrial ROS induced by the conditioned medium from PM-activated KU812 cells. PM-conditioned medium treatment increased the NF-κB expression in dermal fibroblasts, whereas NMN or Q10 inhibited p65 upregulation by PM. The reduced sirtuin 1 (SIRT 1) and nuclear factor erythroid 2-related Factor 2 (Nrf2) expression induced by PM-conditioned medium was reversed by NMN or Q10 in HDFs. Moreover, NMN or Q10 attenuated the expression of senescent β-galactosidase induced by PM-conditioned KU812 cell medium. These findings suggest that NMN or Q10 ameliorates PM-induced inflammation by improving the cellular oxidative status, suppressing proinflammatory NF-κB, and promoting the levels of the antioxidant and anti-inflammatory regulators Nrf2 and SIRT1 in HDFs. The present observations help to understand the factors that affect HDFs in the dermal microenvironment and the therapeutic role of NMN and Q10 as suppressors of skin aging.
Collapse
Affiliation(s)
- Tsong-Min Chang
- Department of Applied Cosmetology, Hungkuang University, Taichung 43302, Taiwan;
| | - Ting-Ya Yang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| |
Collapse
|
26
|
Jiang YJ, Jin J, Nan QY, Ding J, Cui S, Xuan MY, Piao MH, Piao SG, Zheng HL, Jin JZ, Chung BH, Yang CW, Li C. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. Int Immunopharmacol 2022; 108:108868. [PMID: 35636077 DOI: 10.1016/j.intimp.2022.108868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Coenzyme Q10 (CoQ10) protects against various types of injury, but its role in preventing renal scarring in chronic kidney disease remains an open question. Herein, we evaluated whether CoQ10 attenuates renal fibrosis by interfering with necroinflammation in a rat model of unilateral ureteral obstruction (UUO) and in vitro. METHODS Rats with UUO were treated daily with CoQ10 or an RIP inhibitor (necrostatin-1 or GSK872) for 7 days. The influence of CoQ10 on renal injury caused by UUO was evaluated by histopathology and analysis of gene expression, oxidative stress, intracellular organelles, apoptosis, and Wnt3α/β-catenin/GSK-3β signaling·H2O2-exposed human kidney (HK-2) cells were also examined after treatment with CoQ10 or an RIP inhibitor. RESULTS UUO induced marked renal tubular necrosis, upregulation of RIP1-RIP3-MLKL axis proteins, activation of the NLRP3 inflammasome, and evolution of renal fibrosis. UUO-induced oxidative stress evoked excessive endoplasmic reticulum stress and mitochondrial dysfunction, which triggered apoptotic cell death through Wnt3α/β-catenin/GSK-3β signaling. All of these effects were mitigated by CoQ10 or an RIP inhibitor. In H2O2-treated HK-2 cells, CoQ10 or an RIP inhibitor suppressed the expression of RIP1-RIP3-MLKL proteins and pyroptosis-related cytokines, and hindered the production of intracellular reactive oxygen species as shown by MitoSOX Red staining and apoptotic cell death but increased cell viability. The CoQ10 or Wnt/β-catenin inhibitor ICG-001 deactivated H2O2-stimulated activation of Wnt3α/β-catenin/GSK-3β signaling. CONCLUSION These findings suggest that CoQ10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in UUO.
Collapse
Affiliation(s)
- Yu Ji Jiang
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Jian Jin
- Department of General Practice, Yanbian University Hospital, Yanji, China
| | - Qi Yan Nan
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Jun Ding
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Sheng Cui
- Department of Nephrology, Yanbian University Hospital, Yanji, China; Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mei Ying Xuan
- Department of Health Examination Central, Yanbian University, Yanji, China
| | - Mei Hua Piao
- Department of Clinical Laboratory Medicine, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Hai Lan Zheng
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China.
| |
Collapse
|
27
|
Mohamed HRH. Acute Oral Administration of Cerium Oxide Nanoparticles Suppresses Lead Acetate-Induced Genotoxicity, Inflammation, and ROS Generation in Mice Renal and Cardiac Tissues. Biol Trace Elem Res 2022; 200:3284-3293. [PMID: 34515915 DOI: 10.1007/s12011-021-02914-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Lead, a highly toxic pollutant, causes numerous health problems and affects nearly all biological systems thus arousing interest in using antioxidants to reduce its toxic effects. Therefore, the undertaken study estimated the influence of cerium oxide nanoparticles (CeO2-NPs) on the lead acetate-induced genotoxicity and inflammation in the kidney and heart tissues of mice. Twenty male mice were randomly divided into negative control and lead acetate and/or CeO2-NPs administrated groups. Comet and diphenylamine assays were conducted to assess the DNA damage and the expression of apoptosis-related genes and inflammatory cytokines were also measured in addition to the estimation of reactive oxygen species (ROS) level. Co-administration of CeO2-NPs significantly reduced the DNA damage and ROS generation caused by lead acetate in the kidney and heart tissues. The co-administration of CeO2-NPs also ameliorated the lead acetate-induced dysregulation in the expression levels of p53, K-ras, interleukin-6, and cyclooxygenase-2 in the kidney and heart. Conclusion: the co-administration of CeO2-NPs suppresses the genotoxicity, inflammation, and ROS generation resulting from lead acetate administration and restoring the genomic DNA integrity; thus, administration of CeO2-NPs is recommended to minimize the lead acetate-induced hazards.
Collapse
Affiliation(s)
- Hanan Ramadan Hamad Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
- General Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, 6th of October, Giza, Egypt.
| |
Collapse
|
28
|
Bidanchi RM, Lalrindika L, Khushboo M, Bhanushree B, Dinata R, Das M, Nisa N, Lalrinzuali S, Manikandan B, Saeed-Ahmed L, Sanjeev S, Murthy MK, Roy VK, Gurusubramanian G. Antioxidative, anti-inflammatory and anti-apoptotic action of ellagic acid against lead acetate induced testicular and hepato-renal oxidative damages and pathophysiological changes in male Long Evans rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119048. [PMID: 35219795 DOI: 10.1016/j.envpol.2022.119048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb), is an environmental toxicant, causes multi-organ dysfunction including reproductive impairments. This study designed to investigate the prospective antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid (EA) on Pb-mediated testicular and hepato-renal toxicity. Four experimental groups of five male Long-Evans rats each were used: control, Pb (60 mg/kg), EA (30 mg/kg), and Pb + EA groups. All groups were given their respective treatment orally for 30 days. Pb exposure altered body and organs weight, food and water consumption, rectal temperature, Pb residue levels in tissues, liver and kidney function, sperm quality parameters, serum metabolic and hematology profiles, and impaired the oxidative/antioxidative balance in the testicular and hepato-renal tissue, as shown by the decreased antioxidant proteins (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and increased the oxidative (MDA, lipid hydroperoxides, conjugated dienes, protein carbonyl, fragmented DNA and GSH:GSSG ratio) stress and inflammatory (IL-1, IL-6, TNF-α, prostaglandin, LTB4, NO, myeloperoxidase, LDH) markers. Moreover, a dysregulation in the stress response (HSP-70) and apoptotic-regulating proteins (BAX, BCL-2, and active Caspase-3) were recorded upon Pb exposure. Remarkably, EA oral administration reduced the Pb residue levels in tissues, improved the liver and kidney function, revived the spermatogenesis and sperm quality, restored redox homeostasis, suppressed the oxidative stress, inflammatory and apoptotic responses in the liver, kidney and testis tissue. Our findings point out that EA can be used as a phyto-chelator to overcome the adverse effects of Pb exposure due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
| | | | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Milirani Das
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Laskar Saeed-Ahmed
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Sanasam Sanjeev
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | |
Collapse
|
29
|
Analysis of the Mechanisms of Impairment of Functional Parameters of Internal Organs in Saturnism in an Experiment in Rats. Bull Exp Biol Med 2022; 173:205-209. [DOI: 10.1007/s10517-022-05519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 10/17/2022]
|
30
|
Dzugkoev SG, Dzugkoeva FS, Margieva OI. Mechanisms of Lead Toxicity and Their Pathogenetic Correction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abed Al-Kareem Z, Aziz ND, Ali Zghair M. Hepatoprotective Effect of Coenzyme Q10 in Rats with Diclofenac Toxicity. ARCHIVES OF RAZI INSTITUTE 2022; 77:599-605. [PMID: 36284948 PMCID: PMC9548278 DOI: 10.22092/ari.2022.357210.1998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/16/2023]
Abstract
The liver and kidney are the most important organs in the body, and they both act as target structures for drug-induced injury as a consequence of their functions in metabolisms, detoxifications, storage, elimination of medications, and their metabolites. The present study aimed to examine the role of the natural and free radical scavenger "CoQ10" against diclofenac-induced hepatic and renal tissue injury. In total, 36 adult Wistar rats were randomly divided into three equal groups (n=12). The animals in the control group did not receive any medication or treatments, and the second group included animals that received intramuscular (IM) injection of Diclofenac (DF) (at a dose of 10 mg/kg once daily for 14 days). Moreover, the third group was given the IM injection of DF (at a dose of 10 mg/kg once daily for 14 days) +CoQ10. After 14 days, DF prompted signified hepatic and renal injury indicated by elevated biochemical parameters, such as total serum bilirubin, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, creatinine, and uric acid, compared to the control and the third group. However, the group that received Diclofenac+CoQ10 had significantly lower hepatic and renal dysfunctions, compared to the second treated group. DF toxic effects could be the consequences of mitochondrial dysfunction and free radical effects. Remarkably, therapeutic supplementation of CoQ10 diminished the DF-induced toxic oxidative injury and apoptotic cell death. The protective effects of CoQ10 were attributed to its antioxidants and free radical scavenger activity.
Collapse
Affiliation(s)
- Z Abed Al-Kareem
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - N D Aziz
- Department of Clinical Pharmacy, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| | - M Ali Zghair
- Department of Pharmaceutics, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
32
|
Almeer RS, Alkahtani S, Alarifi S, Moneim AEA, Abdi S, Albasher G. Ziziphus spina-christi Leaf Extract Mitigates Mercuric Chloride-induced Cortical Damage in Rats. Comb Chem High Throughput Screen 2022; 25:103-113. [PMID: 33280592 DOI: 10.2174/1386207323666201204124412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. AIMS We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. METHODS Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. RESULTS Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. CONCLUSION Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo,Egypt
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh,Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh,Saudi Arabia
| |
Collapse
|
33
|
Wu L, Li S, Li C, He B, Lv L, Wang J, Wang J, Wang W, Zhang Y. The role of regulatory T cells on the activation of astrocytes in the brain of high-fat diet mice following lead exposure. Chem Biol Interact 2022; 351:109740. [PMID: 34742682 DOI: 10.1016/j.cbi.2021.109740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023]
Abstract
Lead (Pb) exposure can cause damage to the central nervous system (CNS)*. Pb can accumulate in the hippocampus, leading to learning and memory impairments. Recent studies have shown that high-fat diet (HFD) is also associated with cognitive impairment. However, there are few reports on CNS damage due to HFD and Pb exposure. We aimed to investigate the effect of Pb on cognitive functions of HFD-fed mice, focusing on the role of regulatory T (Treg) cells in astrocyte activation. C57BL/6J mice were randomly divided into control, HFD, Pb, and HFD + Pb groups. TGF-β and IL-10 secreted by Treg cells and the intracellular transcription factor Foxp3 were evaluated as a measure of Treg cell function; astrocyte activation was assessed by evaluating glial fibrillary acidic protein (GFAP) expression. The learning and memory ability was significantly lower in the HFD + Pb group than in other groups. The brain Treg cell ratio was significantly decreased and the protein levels of TGF-β, IL-10, and Foxp3 were significantly lower, whereas the protein level of GFAP was higher in the HFD + Pb group. The hippocampus of the HFD + Pb group mice showed significantly higher levels of neurotoxic reactive astrocyte markers and astrogliosis was also much higher compared to HFD and Pb groups. Furthermore, all-trans retinoic acid treatment increased the brain Treg cell ratio, reversed cognitive decline, and suppressed astrocyte activation in the HFD + Pb group mice. We concluded that HFD along with Pb exposure could aggravate the activation of astrocytes in the brain, and the brain Treg cells may be involved in inhibiting astrocyte activation in HFD-fed mice exposed to Pb.
Collapse
Affiliation(s)
- Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuang Li
- Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Chao Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Bin He
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Linyi Lv
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jia Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jierui Wang
- Rheumatology Department, Kailuan General Hospital, Tangshan, 063000, Hebei, China
| | - Weixuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
34
|
Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021; 26:4886. [PMID: 34443474 PMCID: PMC8398118 DOI: 10.3390/molecules26164886] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.
Collapse
Affiliation(s)
- Paulina Mucha
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Anna Skoczyńska
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 41-200 Sosnowiec, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland;
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
35
|
Histopathological nephrotoxic features of high oral doses of ubiquinone in rats. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Co-enzyme Q10 (Co-Q10) plays a key role in the cellular respiration for the production of ATP. The toxicity of quinones to the kidney appears to depend on variety of factors, including genetic polymorphisms and the individual’s comorbidites. The aim of the present study was to assess histologically the nephrotoxic effects of 6 weeks daily oral intake of Co-Q10 in experimental animals.
Twenty-five Wistar rats weighing between 220-270 g were randomly divided into two groups: experimental “treated” and control “untreated” groups (n=15, n=10, respectively). The animals of the experimental group received 300 mg/kg daily dose of gelatinous capsules of Co-Q10 by oral gavage for six weeks. At the end of the study, all animals were sacrificed under general anesthesia and samples of the kidneys were excised for microscopic histopathological assessment of renal tissue using stain. The experimental group showed a range of mild to severe dilatation of Bowman’s space, with a mean corpuscular diameter of 294±38 µm that was significantly higher (p <0.05) than that of the untreated control group 208±31 µm. Shrinkage to complete destruction of the glomeruli was observed in the experimental group only. The long-term use of high doses of Co-Q10 had revealed a selective nephrotoxicity towards podocytes. This might be a risk factor leading to renal proximal tubular necrosis in rats and the subsequent renal function deterioration.
Collapse
|
36
|
Almeer RS, Muhammad NAE, Othman MS, Aref AM, Elgamal B, Moneim AEA. The Potential Protective Effect of Orange Peel and Selenium against 17β-Estradiol- Induced Chronic Non-Bacterial Prostatitis in Rats. Anticancer Agents Med Chem 2021; 20:1061-1071. [PMID: 32228431 DOI: 10.2174/1871520620666200331102609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prostate Cancer (PCa) is defined as a major health problem faced by the male population. AIM We aimed to investigate the protective effects of Orange Peel Extract (OPE) and/or Selenium (Se) on chronic non-bacterial prostatitis in a rat model. METHODS Fifty-six adult male Wistar albino rats were castrated; after 5 days, they were divided randomly into eight groups (n= 7). The control group received saline treatment; while 17β-estradiol (E2) (0.25mg/kg) was injected subcutaneously in rats from Groups V, VI, VII, and VIII to induce chronic non-bacterial prostatitis. They were then treated with OPE (400mg/kg body weight; Groups II, IV, VI, and VIII) and/or sodium selenite (0.5mg/kg body weight; Groups III, IV, VII, and VIII) for 30 days. Interleukin-2 (IL2) and Prostate Cancer Antigen 3 (PCA3) mRNA expressions were determined using qPCR; Prostate-Specific Antigen (PSA) protein expression was determined immunohistochemically. Prostate tissue histology was examined by hematoxylin and eosin staining, and the levels of oxidative stress markers and antioxidant enzymes were measured. RESULTS E2 administration significantly increased IL2 and PCA3 mRNA expressions, and PSA protein expression. It also increased the prostate wet weight and body weight, and lipid peroxidation, nitric oxide, TNF-α, and IL-1β levels, decreased the glutathione and antioxidant enzyme levels and caused distinct histological alterations in the prostate gland. OPE and/or Se markedly improved all the studied parameters due to their antioxidant properties and anti-inflammatory effects. CONCLUSION OPE and Se showed protective effects against 17β-estradiol-induced chronic non-bacterial prostatitis. These results suggest that protection of chronic non-bacterial prostatitis by OPE+Se combination involves anti-oxidation and anti-inflammation. Moreover, their synergistic mechanism was mostly achieved via the regulation of oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nada A E Muhammad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed S Othman
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Ahmed M Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Basma Elgamal
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
37
|
Pulmonary Exposure to Copper Oxide Nanoparticles Leads to Neurotoxicity via Oxidative Damage and Mitochondrial Dysfunction. Neurotox Res 2021; 39:1160-1170. [PMID: 33826131 DOI: 10.1007/s12640-021-00358-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are widely used in pharmaceutical, food, and textile industries. They have been shown to cause lung, liver, and kidney damage. However, whether an intratracheal instillation of CuONPs would affect the brain and its underlying mechanisms remain poorly studied. In this study, healthy C57BL/6J male mice were equally subdivided into control group, low-dose (30 μg/animal), medium-dose (50 μg/animal), and high-dose (100 μg/animal) CuONPs-treated groups. Mice were subjected to acute exposure of CuONPs via intratracheal instillation. Brain histopathology, inflammatory factors, oxidative stress markers, and mitochondrial function-related protein expression were determined. Our results demonstrated that CuONPs caused a dose-dependent brain damage in mice. Histopathological changes in the brain, elevation of inflammatory factors (Tnf, Il-6), and significant alterations in oxidative stress markers were also observed after treatment with CuONPs. Intriguingly, we did not observe infiltration of macrophage cell. Moreover, Tim23, TFAM, and MFN2 protein expression levels showed the decreasing trend after treatment with CuONPs. Taken together, these results indicate that pulmonary exposure to CuONPs induces pathological damage, inflammation, oxidative stress, and mitochondrial dysfunction in the cerebral cortex, suggesting that neurotoxicity caused by pulmonary exposure of CuONPs needs more attention from the public and relevant departments.
Collapse
|
38
|
Mwaeni VK, Nyariki JN, Jillani N, Omwenga G, Ngugi M, Isaac AO. Coenzyme Q 10 protected against arsenite and enhanced the capacity of 2,3-dimercaptosuccinic acid to ameliorate arsenite-induced toxicity in mice. BMC Pharmacol Toxicol 2021; 22:19. [PMID: 33827703 PMCID: PMC8028750 DOI: 10.1186/s40360-021-00484-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/16/2021] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Arsenic poisoning affects millions of people. The inorganic forms of arsenic are more toxic. Treatment for arsenic poisoning relies on chelation of extracellularly circulating arsenic molecules by 2,3-dimecaptosuccinic acid (DMSA). As a pharmacological intervention, DMSA is unable to chelate arsenic molecules from intracellular spaces. The consequence is continued toxicity and cell damage in the presence of DMSA. A two-pronged approach that removes extracellular arsenic, while protecting from the intracellular arsenic would provide a better pharmacotherapeutic outcome. In this study, Coenzyme Q10 (CoQ10), which has been shown to protect from intracellular organic arsenic, was administered separately or with DMSA; following oral exposure to sodium meta-arsenite (NaAsO2) - a very toxic trivalent form of inorganic arsenic. The aim was to determine if CoQ10 alone or when co-administered with DMSA would nullify arsenite-induced toxicity in mice. METHODS Group one represented the control; the second group was treated with NaAsO2 (15 mg/kg) daily for 30 days, the third, fourth and fifth groups of mice were given NaAsO2 and treated with 200 mg/kg CoQ10 (30 days) and 50 mg/kg DMSA (5 days) either alone or in combination. RESULTS Administration of CoQ10 and DMSA resulted in protection from arsenic-induced suppression of RBCs, haematocrit and hemoglobin levels. CoQ10 and DMSA protected from arsenic-induced alteration of WBCs, basophils, neutrophils, monocytes, eosinophils and platelets. Arsenite-induced dyslipidemia was nullified by administration of CoQ10 alone or in combination with DMSA. Arsenite induced a drastic depletion of the liver and brain GSH; that was significantly blocked by CoQ10 and DMSA alone or in combination. Exposure to arsenite resulted in significant elevation of liver and kidney damage markers. The histological analysis of respective organs confirmed arsenic-induced organ damage, which was ameliorated by CoQ10 alone or when co-administered with DMSA. When administered alone, DMSA did not prevent arsenic-driven tissue damage. CONCLUSIONS Findings from this study demonstrate that CoQ10 and DMSA separately or in a combination, significantly protect against arsenic-driven toxicity in mice. It is evident that with further pre-clinical and clinical studies, an adjunct therapy that incorporates CoQ10 alongside DMSA may find applications in nullifying arsenic-driven toxicity.
Collapse
Affiliation(s)
- Victoria K Mwaeni
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi, 00200, Kenya
| | - James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi, 00200, Kenya
| | - Ngalla Jillani
- Institute of Primate Research, P.O. Box 24481, Karen, Nairobi, 00502, Kenya
| | - George Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, Nairobi, 00200, Kenya.
| |
Collapse
|
39
|
Oyovwi MO, Nwangwa EK, Ben-Azu B, Edesiri TP, Emojevwe V, Igweh JC. Taurine and coenzyme Q10 synergistically prevent and reverse chlorpromazine-induced psycho-neuroendocrine changes and cataleptic behavior in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:717-734. [PMID: 33146779 DOI: 10.1007/s00210-020-02003-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Over the years, mounting evidences have suggested a strong association between chronic chlorpromazine therapy, a popular first-generation antipsychotic drug, and psycho-neuroendocrine changes. In this study, we aim to examine whether treatment with taurine and coenzyme Q10 (COQ-10), compounds with steroidogenic-gonadotropin hormone-enhancing properties, can attenuate the negative impacts of chlorpromazine on steroidogenic, gonadotropin, thyroid and HPA-axis hormones, dopamine levels, catalepsy behavior and neuronal cells of the hypothalamus and pituitary gland in the preventive and reversal treatments in male Wister rats. In the drug treatment alone or preventive protocol, rats received oral administration of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day), or both (taurine + COQ-10/day) alone for 56 consecutive days, or in combination with oral chlorpromazine (30 mg/kg/day) treatment from days 29 to 56. In the reversal protocol, the animals received chlorpromazine or saline for 56 days prior to taurine, COQ-10, or the combination from days 29 to 56. Thereafter, serum prolactin, steroidogenic (testosterone, estrogen, progesterone), gonadotropin (luteinizing hormone, LH, follicle-stimulating hormone, FSH), thyroid (thyrotropin-stimulating hormone, tetraiodothyronine, triiodothyronine) hormones, corticosterone, brain dopamine levels and cataleptic behavior were investigated. The histopathological features of the hypothalamus and pituitary gland were also evaluated. Taurine, COQ-10, or their combination prevented and reversed chlorpromazine-induced hyperprolactinemia, decrease in FSH, LH, testosterone, progesterone and dopamine concentrations, as well as the increase in estrogen levels. Taurine and COQ-10 reduced the changes in thyroid hormones, corticosterone release, histological distortions of the hypothalamus and the pituitary gland of chlorpromazine-treated rats. Taurine and COQ-10 attenuated chlorpromazine-induced catalepsy. The study showed that taurine and COQ-10 prevented and reversed chlorpromazine-induced changes in reproductive, thyroid hormones, dopamine level, corticosterone release, neurodegenerations, and cataleptic behavior in rats.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Eze K Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Science, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria.
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, Faculty of Baic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - John C Igweh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
40
|
Tian ZK, Zhang YJ, Feng ZJ, Jiang H, Cheng C, Sun JM, Liu CM. Nephroprotective effect of gastrodin against lead-induced oxidative stress and inflammation in mice by the GSH, Trx, Nrf2 antioxidant system, and the HMGB1 pathway. Toxicol Res (Camb) 2021; 10:249-263. [PMID: 33884175 DOI: 10.1093/toxres/tfab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 01/07/2023] Open
Abstract
Gastrodin (GAS), the main phenolic glycoside derivative from Gastrodiaelata Blume, has several bio-activities. However, the molecular mechanisms of these protective actions currently remain unclear. This study aimed to investigate the mechanisms of GAS on lead (Pb)-induced oxidative stress and inflammation in the kidneys and primary kidney mesangial cells. Results indicated that GAS improved Pb-induced renal dysfunction and morphological changes in mice. GAS ameliorated Pb-induced inflammation in kidneys by reducing the TNF-α and IL-6 levels. GAS inhibited Pb-induced oxidative stress by regulating the glutathione, thioredoxin (Trx), and Nrf2 antioxidant systems. Furthermore, GAS supplementation increased the activation of SOD, GPx, HO-1, and NQO1 in the kidneys. GAS decreased the expression levels of HMGB1, TLR4, RAGE, MyD88, and NF-κB. These results were further confirmed in primary kidney mesangial cells. Collectively, this study demonstrated that GAS alleviated Pb-induced kidney oxidative stress and inflammation by regulating the antioxidant systems and the Nrf2 signaling pathway. Highlights Gastrodin ameliorated Pb-induced kidney injury in mice.Gastrodin inhibited oxidative stress and inflammation in kidneys.Gastrodin activated the GSH, Trx and Nrf2 antioxidant system in kidneys.Gastrodin inhibited the activities of HMGB1. RAGE, TLR4, and MyD88.
Collapse
Affiliation(s)
- Zhi-Kai Tian
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Yu-Jia Zhang
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Zhao-Jun Feng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Hong Jiang
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Jian-Mei Sun
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
41
|
Oyovwi MO, Nwangwa EK, Ben-Azu B, Rotue RA, Edesiri TP, Emojevwe V, Igweh JC, Uruaka CI. Prevention and reversal of chlorpromazine induced testicular dysfunction in rats by synergistic testicle-active flavonoids, taurine and coenzyme-10. Reprod Toxicol 2021; 101:50-62. [PMID: 33548410 DOI: 10.1016/j.reprotox.2021.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
Evidences have shown that alterations in testicular dehydrogenase and ionic-ATPase activities have important implications in spermatogenesis and sperm capacitation, a penultimate biochemical change required for fertilization. Previous studies have revealed that taurine and coenzyme-Q10 (COQ-10), which are synergistic testicle-active bioflavonoids, with proven gonadotropin-enhancing properties reduce testicular damage in rats. Hence, this study investigated the effects of taurine and COQ-10 or their combination alone, and in the preventive and reversal of chlorpromazine-induced inhibition of testicular dehydrogenase enzymes, electrogenic pumps, sperm capacitation and acrosomal-reaction in male Wister rats. In the drug-treatment alone or preventive-protocol, rats received oral treatment of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day) or both alone repeatedly for 56 days, or in combination with chlorpromazine (30 mg/kg/p.o./day) from days 29-56. In the reversal-protocol, the animals received chlorpromazine for 56 days prior to saline, taurine, COQ-10 or the combination from days 29-56. Thereafter, spermatogenesis (sperm count, viability, motility and morphology), testicular dehydrogenase [3beta-hydroxysteroid dehydrogenase (3ß-HSD), 17beta-hydroxysteroid dehydrogenase (17ß-HSD), glucose-6-phosphate dehydrogenase (G6PDH), lactate dehydrogenase-X (LDH-X)], ATPase (Na+/K+, Ca2+, Mg2+, H+) activities, sperm capacitation and acrosomal reaction were evaluated. Taurine and COQ-10 or their combination increased spermatogenesis, testicular 3ß-HSD, 17ß-HSD, G6PDH and LDH-X enzymes of naïve and chlorpromazine-treated rats. Both taurine and COQ-10 increased Na+/K+, Ca2+, Mg2+ and H+-ATPase activities. Also, taurine and COQ-10 or their combination prevented and reversed chlorpromazine-induced inhibition of sperm capacitation and acrosomal-reaction. The study showed that taurine and COQ-10 prevent and reverse chlorpromazine-induced inhibition of spermatogenesis, epididymal sperm capacitation and acrosomal reaction in rats through increased testicular dehydrogenases and electrogenic pump activities.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria; Department of Basic Medical Sciences, Achievers University, Owo, Ondo State, Nigeria
| | - Eze K Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria.
| | - Rume A Rotue
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - John C Igweh
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria
| | - Christian I Uruaka
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Rivers State University, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
42
|
Protective Effects of Shenfuyixin Granule on H 2O 2-Induced Apoptosis in Neonatal Rat Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6654457. [PMID: 33564318 PMCID: PMC7867454 DOI: 10.1155/2021/6654457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
Shenfuyixin granule (SFYXG, i.e., Xinshuaikang granule) is a prescription, commonly used in the clinical experience, which plays a significant role in the treatment of heart failure. The purpose of this present research was to investigate the protective effect of SFYXG, and the mechanism about anti-H2O2-induced oxidative stress and apoptosis in the neonatal rat cardiomyocytes. Myocardial cells, as is well known, were divided into 4 groups: normal, model, SFYXG, and coenzyme Q10 group, respectively. Cells viability was determined by MTT assay. Flow cytometry and AO/EB staining were implemented to test the apoptosis rate and intracellular reactive oxygen species (ROS) level. Mitochondrion membrane potential (MMP) was evaluated by JC-1 fluorescence probe method. The myocardial ultrastructure of mitochondrion was measured by electron microscope. The related mRNA expression levels of Bax, Bcl-2, Caspase-3, caspase-8, and caspase-9 were detected by real-time polymerase chain reaction (PCR). Also, the expression levels of Bax and Bcl-2 protein were detected by Western blot, and the expression levels of caspase-3, caspase-8, and caspase-9 protein were tested by caspase-Glo®3 Assay, caspase-Glo®8 Assay, and caspase-Glo®9 Assay, respectively. GAPDH was used as the internal reference gene/protein. The results revealed that SFYXG (0.5 mg/ml) raised the viability of myocardial cell, weakened the apoptosis rate and ROS level, corrected the mitochondrion membrane potential stability, and improved cell morphology and ultrastructure of myocardial mitochondrion. Furthermore, SFYXG upregulated the antiapoptosis gene of Bcl-2, but downregulated the proapoptosis genes of Bax, caspase-3, and caspase-9. In conclusion, SFYXG could appear to attenuate myocardial injury by its antioxidative and antiapoptosis effect.
Collapse
|
43
|
Wang M, Xia W, Zeng Q, Zhang W, Qian X, Bao S, Zhou A, Li Y, Xu S. Associations between prenatal and postnatal lead exposure and preschool children humoral and cellular immune responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111536. [PMID: 33254398 DOI: 10.1016/j.ecoenv.2020.111536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Studies have shown that lead exposure affected the immune function, but few studies have examined the relationships between in utero lead exposure, a sensitive period that is important for immune development, and later immune responses. To investigate the effects of prenatal and childhood lead exposure on the preschool-aged children's immune responses, a prospective birth cohort study was established in Wuhan, China, in which lead concentrations were analyzed in maternal urine during the third trimester and in plasma samples from children aged about 3 years. We assessed immune responses by measuring immune cytokines in the children's plasma (n = 326) and peripheral blood T lymphocyte subsets (n = 394) at 3 years of age. Each unit increase in maternal urinary lead concentration (μg/g creatinine) was associated with reduced IL-10 (β = -5.93%, 95%CI: -11.82%, -0.03%) and reduced IL-4 levels (β = -5.62%, 95%CI: -10.44%, -0.80%). Lead in children's plasma (μg/L) was associated with significant increase in TNF-α (β = 10.78%, 95%CI: 3.97%, 17.59%). No statistically significant relationship of childhood lead exposure with T lymphocyte subsets was observed. The study suggested prenatal and childhood lead exposure was associated with changes in preschool children's plasma cytokine levels.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shuangshuang Bao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Aifen Zhou
- Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
44
|
Alqahtani WS, Albasher G. Moringa oleifera Lam. extract rescues lead-induced oxidative stress, inflammation, and apoptosis in the rat cerebral cortex. J Food Biochem 2020; 45:e13579. [PMID: 33300136 DOI: 10.1111/jfbc.13579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
In this study, we investigate the potential protective effect of Moringa oleifera Lam. extract (MOE) against lead-induced neurotoxicity. Wistar rats were allocated equally into (a) a control group, (b) a lead acetate (PbAc) group intraperitoneally injected with 20 mg/kg PbAc, (c) a MOE group orally gavaged with MOE (250 mg/kg), and (d) a MOE + PbAc group orally gavaged with MOE 3 hr before receiving intraperitoneal injections of PbAc. All rats were treated for 14 days. Our results revealed that PbAc-induced brain injury, accompanied by increased levels of oxidative stress markers. Moreover, Pb enhanced the inflammatory response and triggered neuronal apoptosis, as well as significantly depleted glutathione content and inhibited antioxidant enzyme activity. Interestingly, concurrent treatment with MOE ameliorated oxidative stress, inflammation, and apoptosis in the brain cortex. The current study provides evidence that MOE has the potential to protect neuronal tissues in PbAc-exposed rats via attenuation of nuclear factor-kappa B (NF-κB) signaling. PRACTICAL APPLICATIONS: This study reports the potential neuroprotective effect of Moringa oleifera Lam. (MOE) against lead-induced cortical brain toxicity. Our data reveal that PbAc-induced oxidative stress, neuroinflammation, and apoptosis in cortical tissues. However, simultaneous treatment of rats with MOE abrogated cortical brain inflammatory biomarkers, mitigated cortical tissue damage, and restrained oxidative stress, programmed cell death, and nuclear factor-kappa B (NF-κB) translocation. In addition, MOE stimulated detoxifying enzymes in PbAc-treated rats. These findings provide evidence that simultaneous treatment with MOE has the potential to attenuate PbAc-induced brain damage in rats by restraining oxidative stress, neuroinflammation, and apoptosis via attenuation of NF-κB signaling.
Collapse
Affiliation(s)
- Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Jhun J, Moon J, Ryu J, Shin Y, Lee S, Cho KH, Kang T, Cho ML, Park SH. Liposome/gold hybrid nanoparticle encoded with CoQ10 (LGNP-CoQ10) suppressed rheumatoid arthritis via STAT3/Th17 targeting. PLoS One 2020; 15:e0241080. [PMID: 33156836 PMCID: PMC7647073 DOI: 10.1371/journal.pone.0241080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone, is a fat-soluble antioxidant. Although CoQ10 has not been approved as medication by the Food and Drug Administration, it is widely used in dietary supplements. Some studies have shown that CoQ10 has anti-inflammatory effects on various autoimmune disorders. In this study, we investigated the anti-inflammatory effects of liposome/gold hybrid nanoparticles encoded with CoQ10 (LGNP-CoQ10). Both CoQ10 and LGNP-CoQ10 were administered orally to mice with collagen-induced arthritis (CIA) for 10 weeks. The inflammation pathology of joint tissues of CIA mice was then analyzed using hematoxylin and eosin and Safranin O staining, as well as immunohistochemistry analysis. We obtained immunofluorescence staining images of spleen tissues using confocal microscopy. We found that pro-inflammatory cytokines were significantly decreased in LGNP-CoQ10 injected mice. Th17 cell and phosphorylated STAT3-expressed cell populations were also decreased in LGNP-CoQ10 injected mice. When human peripheral blood mononuclear cells (PBMCs) were treated with CoQ10 and LGNP-CoQ10, the IL-17 expression of PBMCs in the LGNP-CoQ10-treated group was significantly reduced. Together, these results suggest that LGNP-CoQ10 has therapeutic potential for the treatment of rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Antioxidants/metabolism
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/metabolism
- Cell Line
- Cytokines/metabolism
- Disease Models, Animal
- Gold/administration & dosage
- Humans
- Inflammation/drug therapy
- Inflammation/metabolism
- Interleukin-17/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Liposomes/administration & dosage
- Male
- Metal Nanoparticles/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Ubiquinone/administration & dosage
- Ubiquinone/analogs & derivatives
Collapse
Affiliation(s)
- Jooyeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeonghyeon Moon
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeyoon Ryu
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Seangyoun Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
- * E-mail: (TK); (MLC); (SHP)
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (TK); (MLC); (SHP)
| | - Sung-Hwan Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail: (TK); (MLC); (SHP)
| |
Collapse
|
46
|
Albrahim T. Silver nanoparticles-induced nephrotoxicity in rats: the protective role of red beetroot (Beta vulgaris) juice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38871-38880. [PMID: 32638302 DOI: 10.1007/s11356-020-09671-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The present study was designed to investigate the nephrotoxicity of silver nanoparticles (AgNPs; 80 mg/kg; > 100 nm) and to evaluate the protective effect exercised by Beta vulgaris (beetroot) juice (RBR; 200 mg/kg) on male rats' kidney. Serum-specific parameters (urea, creatinine, electrolytes and histopathology of kidney tissue) were examined to assess the AgNPs nephrotoxicity effect. Moreover, this study analysed oxidative stress (lipid peroxidation, glutathione, superoxide dismutase and catalase) and anti-apoptotic markers (Bcl-2). AgNPs intoxication increased kidney function marker levels and lipid peroxidation and decreased the glutathione, superoxide dismutase and catalase activities in kidney tissue. Additionally, Bcl-2 expression was downregulated following AgNPs intoxication. Moreover, AgNPs induced a significant increase in renal DNA damage displayed as an elevation in tail length, tail DNA percentage and tail moment. Interestingly, RBR post-treatment restored the biochemical and histological alterations induced by AgNPs exposure, reflecting its nephroprotective effect. Collectively, the present data suggest that RBR could be used as a potential therapeutic intervention to prevent AgNPs-induced nephrotoxicity.
Collapse
Affiliation(s)
- Tarfa Albrahim
- College of Health and Rehabilitation Sciences, Department of Health Sciences, Clinical Nutrition, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
47
|
Abdel-Daim MM, Alkahtani S, Almeer R, Albasher G. Alleviation of lead acetate-induced nephrotoxicity by Moringa oleifera extract in rats: highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33723-33731. [PMID: 32529628 DOI: 10.1007/s11356-020-09643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an environmental toxicant; its consumption can induce renal deficits. In this study, we explored the possible protective efficiency of Moringa oleifera extract (MOE) against lead acetate (PbAc)-mediated reprotoxicity. Four experimental groups of seven rats each were used: control, PbAc, MOE, and MOE+PbAc groups. All groups were given their respective treatment for 4 weeks. PbAc impaired the oxidative/antioxidative balance in the renal tissue, as shown by the decreased antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) and increased oxidants (lipid peroxidation and nitric oxide). Additionally, PbAc enhanced the progression of kidney inflammation by increasing tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B associated with upregulation of inducible nitric oxide synthase. Moreover, a dysregulation in the apoptotic-regulating proteins (Bax, caspase-3, and Bcl2) were recorded upon PbAc exposure. Remarkably, MOE oral administration restored redox homeostasis, suppressed the inflammatory and apoptotic responses in the kidney tissue. Our findings point out that MOE could be used as an alternative remedy to overcome the adverse effects of Pb exposure, which may be due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
48
|
Alblihed MA. Astragalin attenuates oxidative stress and acute inflammatory responses in carrageenan-induced paw edema in mice. Mol Biol Rep 2020; 47:6611-6620. [PMID: 32770524 DOI: 10.1007/s11033-020-05712-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Astragalin is a flavonoid existed in several edible and medicinal plants and was recorded to have multiple biological and pharmacological significances. This work aimed to assess the possible protective effect of astragalin administration against oxidative tension, acute inflammation and histopathological deformations in a mouse paw edema model induced following intra sub-plantar injection of carrageenan. Thirty-six male Swiss mice were divided into four groups: control, carrageenan, astragalin (75 mg/kg) + carrageenan, and indomethacin (10 mg/kg) + carrageenan. Astragalin administration for five consecutive days to carrageenan injected mice showed a significant reduction in the development of paw in a time dependent effect, inhibited lipoperoxidation by-product, malondialdehyde and increased superoxide dismutase and catalase activities. Astragalin was found also to suppress the inflammatory signaling in the inflamed tissue as exhibited by the decreased myeloperoxidase activity along with the decreased protein and transcriptional level of pro-inflammatory cytokines including tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6. Moreover, inducible nitric oxide synthase and cyclooxygenase-2 expressions and their products (nitric oxide and prostaglandin E2) were downregulated. Additionally, astragalin decreased monocyte chemoattractant protein-1 and nuclear factor kappa B expression in the inflamed paw tissue. The recorded findings provide evidences for the potential application of astragalin as a plant-derived remedy for the treatment of acute inflammation due to its promising antioxidant and anti-inflammatory activities along with its ameliorative impact against the histopathological changes in the paw tissue.
Collapse
Affiliation(s)
- Mohamed A Alblihed
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
49
|
Delkhosh A, Shoorei H, Niazi V, Delashoub M, Gharamaleki MN, Ahani-Nahayati M, Dehaghi YK, Raza S, Taheri MH, Mohaqiq M, Abbasgholizadeh F. Coenzyme Q10 ameliorates inflammation, oxidative stress, and testicular histopathology in rats exposed to heat stress. Hum Exp Toxicol 2020; 40:3-15. [PMID: 32700556 DOI: 10.1177/0960327120940366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Our work was aimed at investigating the impact and regulatory mechanism of coenzyme Q10 (CoQ10) on exogenous scrotal heat stress (HS)-induced testicular injuries in rats. METHODS The rats (n = 32) were assigned into four groups: control, HS control, HS+CoQ10, and CoQ10. To induce HS, rats' testicles were immersed in a water bath at 43°C for 20 min, every other day for 8 weeks. Moreover, treatment with CoQ10 (10 mg/kg) immediately started before inducing HS and continued for 8 weeks. KEY FINDINGS HS decreased the activity of the testicular antioxidant system, superoxide dismutase, glutathione peroxidase, and catalase, while the amount of lipid peroxidation (malondialdehyde) was increased. The index of apoptosis and mRNA expression of caspase 3 and Bax were increased, while the mRNA expression levels of Bcl-2, 3β-HSD, and 17β-HSD3 decreased after HS. Exposure to HS decreased the serum testosterone level but increased the activation of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor-alpha). Deleterious effects of HS on the mentioned parameters were reduced when the rats were treated with CoQ10. CONCLUSIONS CoQ10 could suppress the degenerative effects following testicular hyperthermia via its antiapoptotic, anti-inflammation, antioxidative, and androgen synthesis effects.
Collapse
Affiliation(s)
- A Delkhosh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - H Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, 125609Birjand University of Medical Sciences, South Khorasan Province, Birjand, Iran
| | - V Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Delashoub
- Department of Veterinary Basic Sciences, 201583Islamic Azad University, Tabriz Branch, Tabriz, Iran.,Biotechnology Research Center, 201583Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - M Neshat Gharamaleki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, 201583Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - M Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Y Koohestani Dehaghi
- Department of Anatomical Sciences, Faculty of Medicine, 37554Guilan University of Medical Sciences, Gilan Province, Rasht, Iran
| | - Sha Raza
- College of Animal Science and Technology, 12469Northwest A&F University, Yangling, Xianyang, China
| | - Mm Hassanzadeh Taheri
- Department of Anatomical Sciences, Faculty of Medicine, 125609Birjand University of Medical Sciences, South Khorasan Province, Birjand, Iran
| | - M Mohaqiq
- 199675Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - F Abbasgholizadeh
- Department of Pharmacology, 48432Tabriz University of Medical Sciences, East Azerbaijan Province, Tabriz, Iran
| |
Collapse
|
50
|
Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB, Abdel Moneim AE. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep 2020; 47:2591-2603. [PMID: 32144527 DOI: 10.1007/s11033-020-05346-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants affecting living organisms. It induces nephrotoxicity with significant alterations in renal structure and function. Luteolin (LUT) a flavonoid present in various plant products is well known for exhibiting numerous pharmacological properties. We evaluated the protective efficacy of LUT against Pb-induced renal injury in male Wistar rats. Four experimental groups: control, LUT (50 mg/kg, orally), PbAc (20 mg/kg, i.p.), LUT + PbAc (at the aforementioned doses) were maintained for 7 days. PbAc administration significantly increased renal Pb accumulation, urea, and creatinine levels in serum, and induced renal histological alterations. Additionally, compared to the control rats, PbAc-treated rats exhibited significantly low levels of antioxidant enzyme activity and expression (SOD, CAT, GPx and GR), as well as high MDA levels. Moreover, PbAc exposure downregulated Nfe212 and Homx1 mRNA expression and significantly increased inflammatory marker (TNF-α, IL-1β and NO) levels in renal tissue. PbAc significantly upregulated the synthesis of apoptotic related proteins and downregulated antiapoptotic protein expression. Notably, LUT pretreatment of PbAc-treated rats provided significant nephroprotection and reversed the alterations in the abovementioned parameters. In conclusion, LUT provided significant protection against PbAc intoxication via antioxidant, anti-inflammatory, and anti-apoptotic activities by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|