1
|
Sushytskyi L, Synytsya A, Lukáč P, Rajsiglová L, Capek P, Pohl R, Bleha R, Vannucci LE, Smrz D, Čopíková J, Kaštánek P. Immunologically active cell wall polysaccharides of green microalga Dictyosphaerium chlorelloides (Chlorellacea). Carbohydr Polym 2025; 353:123242. [PMID: 39914971 DOI: 10.1016/j.carbpol.2025.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 05/07/2025]
Abstract
Dictyosphaerium chlorelloides is a green microalga from the Chlorella clade that produces highly viscous exocellular polysaccharides. The cell wall polysaccharides of this alga have not been studied in detail. In this article, water-soluble polysaccharides from D. chlorelloides biomass were extracted with hot water and purified by preparative chromatography. The composition, structural features and molecular masses of subsequently eluted fractions F1, F2, F3, F4 and F5 (minor) were determined. Three high-yield products F1, F3 and F4 consisted mainly of galactopyranosyl, 2-O-methyl-galactopyranosyl, rhamnopyranosyl and mannopyranosyl units at different proportions, while F2 was rich in glucose. Immunoactivity of these fractions was evidenced in a mixed population of immune cells derived from mice spleens after incubation with polysaccharides by flow cytometry, MTT and Immunospot assays. These fractions, except F2, demonstrated selective immunostimulant activity, and the F1 fraction induced the most potent effect, closely followed by the F3 and F4 fractions. The in vivo mechanism of their action is associated with the activation of innate immunity and shapes the immune response to the Th1 type.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic; Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic.
| | - Pavol Lukáč
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Lenka Rajsiglová
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo sq. 2, 166 28 Prague 6, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Luca E Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic.
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o., Ocelářská 9, Prague 9 Libeň 190 00, Czech Republic
| |
Collapse
|
2
|
Pękala P, Szymańska-Chargot M, Cybulska J, Zdunek A. Monosaccharide composition and degree of acetylation of non-cellulosic cell wall polysaccharides and their relationship to apple firmness. Food Chem 2025; 470:142639. [PMID: 39752747 DOI: 10.1016/j.foodchem.2024.142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
The firmness of the two apple varieties: Idared and Pinova was similar during ripening, while it decreased significantly during 3-month storage only for Idared. Pectin-rich fractions were isolated from apple flesh tissue: water-soluble pectin (WSP), imidazole-soluble pectin (ISP), and hemicellulose-rich fractions: natively acetylated hemicelluloses (LiCl-DMSO), deacetylated hemicelluloses (KOH). It was shown that the degree of acetylation (DAc) of the hemicelluloses fraction (LiCl-DMSO) increased during apple ripening and storage, with higher values for Idared. Furthermore, the DAc of the hemicellulose fraction (LiCl-DMSO) was shown to be negatively correlated with apple firmness, and thus, among other factors, the effect of the degree of acetylation of hemicelluloses on fruit softening during storage. In the WSP and ISP, galacturonic acid content increased during ripening and storage of apples, which also showed a correlation with firmness. A higher content of linear pectin was recorded for Idared, while the contribution of rhamnogalacturonans was higher for Pinova.
Collapse
Affiliation(s)
- Patrycja Pękala
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | | | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
3
|
Mokshina N, Sautkina O, Gorshkov O, Mikshina P. A Fresh Look at Celery Collenchyma and Parenchyma Cell Walls Through a Combination of Biochemical, Histochemical, and Transcriptomic Analyses. Int J Mol Sci 2025; 26:738. [PMID: 39859452 PMCID: PMC11765706 DOI: 10.3390/ijms26020738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Celery (Apium graveolens) can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis. Our results reveal that young collenchyma walls possess distinct polysaccharide compositions, including higher levels of rhamnogalacturonan I (RG-I), branched galactans, esterified homogalacturonan, and xyloglucan, compared to parenchyma cells. A significant number of genes encoding proteins involved in pectin methylesterification and acetylation were upregulated in young collenchyma. Different gene isoforms encoding glycosyltransferases involved in RG-I biosynthesis were activated in both collenchyma and parenchyma, suggesting potential variations in RG-I structure and function across different primary cell walls. We identified a set of potential glycosyltransferases involved in RG-I biosynthesis in collenchyma and proposed synthase complexes for heteromannan and heteroxylan. The transcriptome data not only confirmed known biochemical traits of celery cell walls but also provided deeper insights into the peculiarities of cell wall polysaccharide metabolism, thereby helping to narrow down candidate genes for further molecular genetic studies.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia; (O.S.); (O.G.); (P.M.)
| | | | | | | |
Collapse
|
4
|
Ban Q, Zhang J, Zhao Z, Yu X. Comprehensive analysis of the PbrTBL gene family and functional analysis of PbrTBL43 under Botryosphaeria dothidea infection in Pyrus bretschneideri. Int J Biol Macromol 2025; 287:138212. [PMID: 39617229 DOI: 10.1016/j.ijbiomac.2024.138212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The TBL (Trichome Birefringence-Like) gene family, which participates in the initiation of trichomes and the acetylation of xylan in a variety of plant species, plays a significant role in plant biology. However, there is little information regarding TBL family members in pear (Pyrus bretschneideri Rehd). Here, 65 PbrTBL genes were identified in Pyrus bretschneideri genome. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Expression profiling across different tissues and in response to Botryosphaeria dothidea (B. dothidea) infection highlighted the dynamic and coordinated response of PbrTBL genes, with PbrTBL43 showing significant upregulation. Subcellular localization of PbrTBL43 to the plasma membrane and the enhanced susceptibility to B. dothidea infection upon PbrTBL43 silencing further support its role in pathogen resistance. This study enhances our understanding of the PbrTBL gene family's multifaceted involvement in pear biology and provides a foundation for future research aimed at improving pear resistance to diseases and environmental challenges.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China.
| | - Jiangdongchen Zhang
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Zaixian Zhao
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Xingyue Yu
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| |
Collapse
|
5
|
Wang Y, Zou D, Cheng CH, Zhang J, Zhang JB, Zheng Y, Li Y, Li XB. GhTBL3 is required for fiber secondary cell wall (SCW) formation via maintaining acetylation of xylan in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17167. [PMID: 39585209 DOI: 10.1111/tpj.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
TBL family proteins containing the domain of unknown function mainly act as xylan O-acetyltransferases, but the specific molecular mechanism of their functions remains unclear in plants (especially in cotton) so far. In this study, we characterized the TBL family proteins containing the conserved GDS and DxxH motifs in cotton (Gossypium hirsutum). Among them, GhTBL3 is highly expressed in fibers at the stage of secondary cell wall (SCW) formation and mainly functions as O-acetyltransferase to maintain acetylation of xylan in fiber SCW development. Overexpression of GhTBL3 in cotton promoted fiber SCW formation, resulting in increased fiber cell wall thickness. In contrast, suppression of GhTBL3 expression in cotton impaired fiber SCW synthesis, leading to the decreased fiber cell wall thickness, compared with wild type (WT). Furthermore, two fiber SCW-related transcription factors GhMYBL1 and GhKNL1 were found to directly bind to the promoter of GhTBL3 in cotton. GhMYBL1 enhanced the transcription activity of GhTBL3, whereas GhKNL1 inhibited the expression of GhTBL3 in fibers. The acetylation level of xylan was remarkably decreased in fibers of GhMYBL1 RNAi transgenic cotton, but the acetylation level of xylan was significantly increased in fibers of GhKNL1 RNAi cotton, relative to WT. Given together, the above results suggested that GhTBL3 may be under the dual control of GhMYBL1 and GhKNL1 to maintain the suitable acetylation level of xylan required for fiber SCW formation in cotton. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhTBL3 in cotton breeding.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chang-Hao Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
6
|
Ishida K, Penner M, Fukushima K, Yoshimi Y, Wilson LFL, Echevarría-Poza A, Yu L, Dupree P. Convergent Emergence of Glucomannan β-Galactosyltransferase Activity in Asterids and Rosids. PLANT & CELL PHYSIOLOGY 2024; 65:2030-2039. [PMID: 39392710 DOI: 10.1093/pcp/pcae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII and was identified in Arabidopsis. However, despite the presence of β-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Furthermore, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire β-GGM β-galactosylation and hence also suggests that the disaccharide side chains are important for β-GGM function.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Matthew Penner
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Kenji Fukushima
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Louis F L Wilson
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22903, USA
| | - Alberto Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
7
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
8
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Singh B, Nathawat S, Saxena A, Khangarot K, Sharma RA. Enhancement of production of glycoalkaloids by elicitors along with characterization of gene expression of pathways in Solanum xanthocarpum. J Biotechnol 2024; 391:81-91. [PMID: 38825191 DOI: 10.1016/j.jbiotec.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, β-hydroxy β-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, Jaipur 303002, India.
| | | | - Anuja Saxena
- AIB, Amity University Rajasthan, Jaipur 303002, India
| | - Kiran Khangarot
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
10
|
Tang J, Ling T, Li H, Fan C. Genome-wide analysis and identification of the TBL gene family in Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1401298. [PMID: 39170793 PMCID: PMC11337025 DOI: 10.3389/fpls.2024.1401298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 08/23/2024]
Abstract
The TRICHOME BIREFRINGENCE-LIKE (TBL) gene encodes a class of proteins related to xylan acetylation, which has been shown to play an important role in plant response to environmental stresses. This gene family has been meticulously investigated in Arabidopsis thaliana, whereas there have been no related reports in Eucalyptus grandis. In this study, we identified 49 TBL genes in E. grandis. A conserved amino acid motif was identified, which plays an important role in the execution of the function of TBL gene family members. The expression of TBL genes was generally upregulated in jasmonic acid-treated experiments, whereas it has been found that jasmonic acid activates the expression of genes involved in the defense functions of the plant body, suggesting that TBL genes play an important function in the response of the plant to stress. The principle of the action of TBL genes is supported by the finding that the xylan acetylation process increases the rigidity of the cell wall of the plant body and thus improves the plant's resistance to stress. The results of this study provide new information about the TBL gene family in E. grandis and will help in the study of the evolution, inheritance, and function of TBL genes in E. grandis, while confirming their functions.
Collapse
Affiliation(s)
- Jiye Tang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Tenghong Ling
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
11
|
Dauphin BG, Ropartz D, Ranocha P, Rouffle M, Carton C, Le Ru A, Martinez Y, Fourquaux I, Ollivier S, Mac-Bear J, Trezel P, Geairon A, Jamet E, Dunand C, Pelloux J, Ralet MC, Burlat V. TBL38 atypical homogalacturonan-acetylesterase activity and cell wall microdomain localization in Arabidopsis seed mucilage secretory cells. iScience 2024; 27:109666. [PMID: 38665206 PMCID: PMC11043868 DOI: 10.1016/j.isci.2024.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins. Using seed mucilage secretory cells (MSCs) from Arabidopsis thaliana, we demonstrate the atypical localization of TBL38 restricted to a cell wall microdomain. A tbl38 mutant displays an intriguing homogalacturonan immunological phenotype in this cell wall microdomain and in an MSC surface-enriched abrasion powder. Mass spectrometry oligosaccharide profiling of this fraction reveals an increased homogalacturonan acetylation phenotype. Finally, TBL38 displays pectin acetylesterase activity in vitro. These results indicate that TBL38 is an atypical cell wall-localized TBL that displays a homogalacturonan acetylesterase activity rather than a Golgi-localized acetyltransferase activity as observed in previously studied TBLs. TBL38 function during seed development is discussed.
Collapse
Affiliation(s)
- Bastien G. Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Maxime Rouffle
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Camille Carton
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Aurélie Le Ru
- Plateforme Imagerie-Microscopie, CNRS, Université de Toulouse, UT3-CNRS, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, Auzeville-Tolosane, France
| | - Yves Martinez
- Plateforme Imagerie-Microscopie, CNRS, Université de Toulouse, UT3-CNRS, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, Auzeville-Tolosane, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée la Biologie (CMEAB), Faculté de Médecine Rangueil, UT3, Toulouse, France
| | - Simon Ollivier
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Jessica Mac-Bear
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Pauline Trezel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| |
Collapse
|
12
|
Zhang J, Wang X, Wang HT, Qiao Z, Yao T, Xie M, Urbanowicz BR, Zeng W, Jawdy SS, Gunter LE, Yang X, Czarnecki O, Regan S, Seguin A, Rottmann W, Winkeler KA, Sykes R, Lipzen A, Daum C, Barry K, Lu MZ, Tuskan GA, Muchero W, Chen JG. Overexpression of REDUCED WALL ACETYLATION C increases xylan acetylation and biomass recalcitrance in Populus. PLANT PHYSIOLOGY 2023; 194:243-257. [PMID: 37399189 PMCID: PMC10762510 DOI: 10.1093/plphys/kiad377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zhenzhen Qiao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lee E Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Olaf Czarnecki
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sharon Regan
- Biology Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Armand Seguin
- Laurentian Forestry Center, Natural Resources Canada, Québec, Quebec G1V 4C7, Canada
| | | | | | - Robert Sykes
- Bioenergy Science and Technology, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
13
|
Liszka A, Wightman R, Latowski D, Bourdon M, Krogh KBRM, Pietrzykowski M, Lyczakowski JJ. Structural differences of cell walls in earlywood and latewood of Pinus sylvestris and their contribution to biomass recalcitrance. FRONTIERS IN PLANT SCIENCE 2023; 14:1283093. [PMID: 38148867 PMCID: PMC10749964 DOI: 10.3389/fpls.2023.1283093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Scots pine (Pinus sylvestris L.) is an evergreen coniferous tree with wide distribution and good growth performance in a range of habitats. Therefore, wood from P. sylvestris is produced in many managed forests and is frequently used in industry. Despite the importance of pine wood, we still do not fully understand its molecular structure what limits improvements in its processing. One of the basic features leading to variation in wood properties is the presence of earlywood and latewood which form annual growth rings. Here, we characterise biochemical traits that differentiate cell walls of earlywood and latewood in Scots pine. We discover that latewood is less recalcitrant to enzymatic digestion, with galactoglucomannan showing particularly pronounced difference in accessibility. Interestingly, characterisation of lignin reveals a higher proportion of coniferaldehydes in pine latewood and suggests the presence of a different linkage landscape in this wood type. With complementary analysis of wood polysaccharides this enabled us to propose the first detailed molecular model of earlywood and latewood and to conclude that the variation in lignin structure is likely the main determinant of differences in recalcitrance observed between the two wood types in pine. Our discoveries lay the foundation for improvements in industrial processes that use pine wood since we show clear pathways for increasing the efficiency of enzymatic processing of this renewable material. Our work will help guide future breeding of pine trees with desired timber properties and can help link molecular structure of softwood cell walls to function of the different types of xylem in conifers.
Collapse
Affiliation(s)
- Aleksandra Liszka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Marcin Pietrzykowski
- Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland
| | - Jan J. Lyczakowski
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Saleh HM, Hassan AI. Use of heterogeneous catalysis in sustainable biofuel production. PHYSICAL SCIENCES REVIEWS 2023; 8:3813-3834. [DOI: 10.1515/psr-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Abstract
Biofuel is a sustainable energy source that may use to replace fossil-based carbon dioxide and mitigate the adverse effects of exhaust emissions. Nowadays, we need to replace petroleum fuels with alternatives from environmentally sustainable sources of increasing importance. Biofuels derived from biomass have gained considerable attention, and thus most of the traditional methods that harm the environment and humans have retreated. Developing an active and stable heterogeneous catalyst is a step of utmost importance in the renewable liquid fuel technology. Thus, there is a great interest in developing methods for producing liquid fuels from non-edible sources. It may also be from dry plant tissues such as agricultural waste. Lignocellulosic biomass can be a sustainable source for producing renewable fuels and chemicals, as well as the replacement of petroleum products. Hence, the researchers aspired to synthesize new catalysts using a cheap technology developed to hydrolyze cellulose and then produce bioethanol without needing expensive enzymes, which may ultimately lead to a lower fuel price. In this paper, we will focus on the recent technologies used to produce sustainable biofuels through inexpensive incentives and innocuous to the environment.
Collapse
Affiliation(s)
- Hosam M. Saleh
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Amal I. Hassan
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
15
|
Kim SJ, Bhandari DD, Sokoloski R, Brandizzi F. Immune activation during Pseudomonas infection causes local cell wall remodeling and alters AGP accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:541-557. [PMID: 37496362 DOI: 10.1111/tpj.16393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deepak D Bhandari
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Monti MM, Mancini I, Gualtieri L, Domingo G, Beccaccioli M, Bossa R, Bracale M, Loreto F, Ruocco M. Volatilome and proteome responses to Colletotrichum lindemuthianum infection in a moderately resistant and a susceptible bean genotype. PHYSIOLOGIA PLANTARUM 2023; 175:e14044. [PMID: 37882283 DOI: 10.1111/ppl.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
We analyzed the changes in the volatilome, proteome, stomatal conductance, salicylic and jasmonic acid contents of a susceptible and a moderately resistant genotype of common bean, Phaseoulus vulgaris L., challenged with Colletotrichum lindemuthianum, the causal agent of fungal anthracnose. Our results indicate differences at both proteome and volatilome levels between the two genotypes, before and after the infection, and different defense strategies. The moderately resistant genotype hindered pathogen infection, invasion, and replication mainly by maintaining epidermal and cell wall structure. The susceptible genotype was not able to limit the early stages of pathogen infection. Rather, stomatal conductance increased in the infected susceptible genotype, and enhanced synthesis of Green Leaf Volatiles and salicylic acid was observed, together with a strong hypersensitive response. Proteomic investigation provided a general framework for physiological changes, whereas observed variations in the volatilome suggested that volatile organic compounds may principally represent stress markers rather than defensive compounds per se.
Collapse
Affiliation(s)
- Maurilia M Monti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Ilaria Mancini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Università Sapienza Roma, Roma, Italy
| | - Rosanna Bossa
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesco Loreto
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| |
Collapse
|
17
|
Lassfolk R, Leino R. Mechanism of Acyl Group Migration in Carbohydrates. Chemistry 2023; 29:e202301489. [PMID: 37265378 DOI: 10.1002/chem.202301489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
Acyl group migration has been the subject of several studies. Such migration processes may cause problems during synthesis, isolation, and purification of different acyl-bearing compounds, and have biological relevance, for example, in the metabolism of pharmaceuticals. Considering the recent evidence of acyl group migration being possible even over glycosidic bonds, it could be hypothesized to be involved also in the regulation of biological activity of natural polysaccharides in the host cells. Migrations are mostly observed in carbohydrates, typically having several hydroxyl groups near each other. Several studies have investigated the migration in a single or only a few different carbohydrate molecules, providing different suggestions for the mechanisms of migration, seldom supported by comprehensive computational investigations. In this concept article we discuss the recent progress on the mechanistic aspects of acyl group migration, with carbohydrates in particular focus.
Collapse
Affiliation(s)
- Robert Lassfolk
- Turku Centre for Chemical and Molecular Analytics, Åbo Akademi University, 20500, Turku, Finland
| | - Reko Leino
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| |
Collapse
|
18
|
Mutyala S, Li S, Khandelwal H, Kong DS, Kim JR. Citrate Synthase Overexpression of Pseudomonas putida Increases Succinate Production from Acetate in Microaerobic Cultivation. ACS OMEGA 2023; 8:26231-26242. [PMID: 37521642 PMCID: PMC10373214 DOI: 10.1021/acsomega.3c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Acetate is an end-product of anaerobic biodegradation and one of the major metabolites of microbial fermentation and lingo-cellulosic hydrolysate. Recently, acetate has been highlighted as a feedstock to produce value-added chemicals. This study examined acetate conversion to succinate by citrate synthase (gltA)-overexpressed Pseudomonas putida under microaerobic conditions. The acetate metabolism is initiated with the gltA enzyme, which converts acetyl-CoA to citrate. gltA-overexpressing P. putida (gltA-KT) showed an ∼50% improvement in succinate production compared to the wild type. Under the optimal pH of 7.5, the accumulation of succinate (4.73 ± 0.6 mM in 36 h) was ∼400% higher than that of the wild type. Overall, gltA overexpression alone resulted in 9.5% of the maximum theoretical yield in a minimal medium with acetate as the sole carbon source. This result shows that citrate synthase is important in acetate conversion to succinate by P. putida under microaerobic conditions.
Collapse
|
19
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
20
|
Palliprath S, Poolakkalody NJ, Ramesh K, Mangalan SM, Kabekkodu SP, Santiago R, Manisseri C. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116571. [DOI: 10.1016/j.indcrop.2023.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
21
|
Liakh I, Harshkova D, Hrouzek P, Bišová K, Aksmann A, Wielgomas B. Green alga Chlamydomonas reinhardtii can effectively remove diclofenac from the water environment - A new perspective on biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131570. [PMID: 37163898 DOI: 10.1016/j.jhazmat.2023.131570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The use of unicellular algae to remove xenobiotics (including drugs) from wastewaters is one of the rapidly developing areas of environmental protection. Numerous data indicate that for efficient phycoremediation three processes are important, i.e. biosorption, bioaccumulation, and biotransformation. Although biosorption and bioaccumulation do not raise any serious doubts, biotransformation is more problematic since its products can be potentially more toxic than the parent compounds posing a threat to organisms living in a given environment, including organisms that made this transformation. Thus, two questions need to be answered before the proper algae strain is chosen for phycoremediation, namely what metabolites are produced during biotransformation, and how resistant is the analyzed strain to a mixture of parent compound and metabolites that appear over the course of culture? In this work, we evaluated the remediation potential of the model green alga Chlamydomonas reinhardtii in relation to non-steroidal anti-inflammatory drugs (NSAIDs), as exemplified by diclofenac. To achieve this, we analysed the susceptibility of C. reinhardtii to diclofenac as well as its capability to biosorption, bioaccumulation, and biotransformation of the drug. We have found that even at a relatively high concentration of diclofenac the algae maintained their vitality and were able to remove (37.7%) DCF from the environment. A wide range of phase I and II metabolites of diclofenac (38 transformation products) was discovered, with many of them characteristic rather for animal and bacterial biochemical pathways than for plant metabolism. Due to such a large number of detected products, 18 of which were not previously reported, the proposed scheme of diclofenac transformation by C. reinhardtii not only significantly contributes to broadening the knowledge in this field, but also allows to suggest possible pathways of degradation of xenobiotics with a similar structure. It is worth pointing out that a decrease in the level of diclofenac in the media observed in this study cannot be fully explained by biotransformation (8.4%). The mass balance analysis indicates that other processes (total 22%), such as biosorption, a non-extractable residue formation, or complete decomposition in metabolic cycles can be involved in the diclofenac disappearance, and those findings open the prospects of further research.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Darya Harshkova
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
22
|
Borchert AJ, Bleem A, Beckham GT. RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion. Metab Eng 2023; 77:208-218. [PMID: 37059293 DOI: 10.1016/j.ymben.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Lignin-derived mixtures intended for bioconversion commonly contain high concentrations of aromatic acids, aliphatic acids, and salts. The inherent toxicity of these chemicals places a significant bottleneck upon the effective use of microbial systems for the valorization of these mixtures. Pseudomonas putida KT2440 can tolerate stressful quantities of several lignin-related compounds, making this bacterium a promising host for converting these chemicals to valuable bioproducts. Nonetheless, further increasing P. putida tolerance to chemicals in lignin-rich substrates has the potential to improve bioprocess performance. Accordingly, we employed random barcoded transposon insertion sequencing (RB-TnSeq) to reveal genetic determinants in P. putida KT2440 that influence stress outcomes during exposure to representative constituents found in lignin-rich process streams. The fitness information obtained from the RB-TnSeq experiments informed engineering of strains via deletion or constitutive expression of several genes. Namely, ΔgacAS, ΔfleQ, ΔlapAB, ΔttgR::Ptac:ttgABC, Ptac:PP_1150:PP_1152, ΔrelA, and ΔPP_1430 mutants showed growth improvement in the presence of single compounds, and some also exhibited greater tolerance when grown using a complex chemical mixture representative of a lignin-rich chemical stream. Overall, this work demonstrates the successful implementation of a genome-scale screening tool for the identification of genes influencing stress tolerance against notable compounds within lignin-enriched chemical streams, and the genetic targets identified herein offer promising engineering targets for improving feedstock tolerance in lignin valorization strains of P. putida KT2440.
Collapse
Affiliation(s)
- Andrew J Borchert
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
23
|
Chakraborty K, Thambi A, Dhara S. Sulfated polygalactofucan from triangular sea bell Turbinaria decurrens attenuates inflammatory cytokines on THP-1 human monocytic macrophages. Int J Biol Macromol 2023; 231:123220. [PMID: 36634794 DOI: 10.1016/j.ijbiomac.2023.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Inflammation is one of the most significant causes of several chronic diseases, which includes the expression of cytokines activating immune cells to up-regulate the inflammatory cascade. Polysaccharides from marine macroalgae are promising anti-inflammatory agents because of their potential to attenuate inflammatory cytokines. The triangular sea bell Turbinaria decurrens (Sargassaceae) among marine macroalgae is ubiquitous in oceanic waters, and a sulfated polygalactofucan SPTd-2 [→3-(α-L-fucp-(2-OSO3-)-(1 → 4)-α-L-fucp-(3-OAc)-(1 → 4)-β-D-galp-(1→] was purified from the species. The studied polygalactofucan SPTd-2 exhibited anti-inflammatory activities against cyclooxygenase-2 (IC50 10.56 μM) and 5-lipoxygenase (IC50 3.36 μM) with a greater selectivity index (2.35) than ibuprofen (0.44), besides attenuating pro-inflammatory cytokine production, including tumor necrosis factor-α, transforming growth factor-β, interleukin-2, 1β, and interferon-γ. Quantitative real-time polymerase chain reaction displayed that SPTd-2 blocked the mRNA of interferon-γ and interleukin-2, in the human monocytic cell line THP-1. The results showed the potential of SPTd-2 to attenuate inflammation-associated disorders.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Anjaly Thambi
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Department of Applied Chemistry, Cochin University of Science and Technology, South Kalamassery, Kochi 682022, Kerala State, India
| | - Shubhajit Dhara
- Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| |
Collapse
|
24
|
Lv P, Wan J, Zhang C, Hina A, Al Amin GM, Begum N, Zhao T. Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective. Int J Mol Sci 2023; 24:ijms24044187. [PMID: 36835600 PMCID: PMC9966272 DOI: 10.3390/ijms24044187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Domain of unknown function (DUF) is a general term for many uncharacterized domains with two distinct features: relatively conservative amino acid sequence and unknown function of the domain. In the Pfam 35.0 database, 4795 (24%) gene families belong to the DUF type, yet, their functions remain to be explored. This review summarizes the characteristics of the DUF protein families and their functions in regulating plant growth and development, generating responses to biotic and abiotic stress, and other regulatory roles in plant life. Though very limited information is available about these proteins yet, by taking advantage of emerging omics and bioinformatic tools, functional studies of DUF proteins could be utilized in future molecular studies.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Wan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - G M Al Amin
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
25
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
26
|
Shahin L, Zhang L, Mohnen D, Urbanowicz BR. Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2023; 9:100099. [PMID: 36793376 PMCID: PMC9922974 DOI: 10.1016/j.tcsw.2023.100099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
O-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin O-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the O-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of O-acetylation. Several mutant studies suggest the critical role of pectin O-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin O-acetylation.
Collapse
Key Words
- AXY9, ALTERED XYLOGLUCAN 9
- DA, degree of acetyl-esterification
- DE, degree of esterification
- DM, degree of methyl-esterification
- GalA, galacturonic acid
- HG, homogalacturonan
- NMR, nuclear magnetic resonance
- O-acetylation
- O-acetyltransferase
- PAEs, pectin acetylesterases
- Pectin
- Pectin acetylesterase
- Plant cell wall
- RG-I, rhamnogalacturonan-I
- RWA, REDUCED WALL O-ACETYLATION
- TBL, TRICHOME BIREFRINGENCE-LIKE
- XGA, xylogalacturonan
Collapse
Affiliation(s)
- Lubana Shahin
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Hsiung SY, Li J, Imre B, Kao MR, Liao HC, Wang D, Chen CH, Liang PH, Harris PJ, Hsieh YSY. Structures of the xyloglucans in the monocotyledon family Araceae (aroids). PLANTA 2023; 257:39. [PMID: 36650257 PMCID: PMC9845173 DOI: 10.1007/s00425-023-04071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The xyloglucans of all aquatic Araceae species examined had unusual structures compared with those of other non-commelinid monocotyledon families previously examined. The aquatic Araceae species Lemna minor was earlier shown to have xyloglucans with a different structure from the fucogalactoxyloglucans of other non-commelinid monocotyledons. We investigated 26 Araceae species (including L. minor), from five of the seven subfamilies. All seven aquatic species examined had xyloglucans that were unusual in having one or two of three features: < 77% XXXG core motif [L. minor (Lemnoideae) and Orontium aquaticum (Orontioideae)]; no fucosylation [L. minor (Lemnoideae), Cryptocoryne aponogetonifolia, and Lagenandra ovata (Aroideae, Rheophytes clade)]; and > 14% oligosaccharide units with S or D side chains [Spirodela polyrhiza and Landoltia punctata (Lemnoideae) and Pistia stratiotes (Aroideae, Dracunculus clade)]. Orontioideae and Lemnoideae are the two most basal subfamilies, with all species being aquatic, and Aroideae is the most derived. Two terrestrial species [Dieffenbachia seguine and Spathicarpa hastifolia (Aroideae, Zantedeschia clade)] also had xyloglucans without fucose indicating this feature was not unique to aquatic species.
Collapse
Affiliation(s)
- Shih-Yi Hsiung
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Li
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Balazs Imre
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chun Liao
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Damao Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Food Science, Southwest University, Chongqing, China
| | - Chih-Hui Chen
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Effect of Loblolly Pine ( Pinus taeda L.) Hemicellulose Structure on the Properties of Hemicellulose-Polyvinyl Alcohol Composite Film. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010046. [PMID: 36615241 PMCID: PMC9822227 DOI: 10.3390/molecules28010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by film casting from water. Results showed that hemicellulose with a low degree of substitution is prone to self-aggregation during film formation, while hemicellulose with high branching has better compatibility with PVA and is easier to form a homogeneous composite film. In addition, the higher molecular weight of hemicellulose facilitates the preparation of hemicellulose-PVA composite film with better mechanical properties. More residual lignin in hemicellulose results in the better UV shielding ability of the composite film. This study provides essential support for the efficient and rational utilization of hemicellulose.
Collapse
|
29
|
Mokshina N, Panina A, Galinousky D, Sautkina O, Mikshina P. Transcriptome profiling of celery petiole tissues reveals peculiarities of the collenchyma cell wall formation. PLANTA 2022; 257:18. [PMID: 36538078 DOI: 10.1007/s00425-022-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Transcriptome and biochemical analyses are applied to individual plant cell types to reveal potential players involved in the molecular machinery of cell wall formation in specialized cells such as collenchyma. Plant collenchyma is a mechanical tissue characterized by an irregular, thickened cell wall and the ability to support cell elongation. The composition of the collenchyma cell wall resembles that of the primary cell wall and includes cellulose, xyloglucan, and pectin; lignin is absent. Thus, the processes associated with the formation of the primary cell wall in the collenchyma can be more pronounced compared to other tissues due to its thickening. Primary cell walls intrinsic to different tissues may differ in structure and composition, which should be reflected at the transcriptomic level. For the first time, we conducted transcriptome profiling of collenchyma strands isolated from young celery petioles and compared them with other tissues, such as parenchyma and vascular bundles. Genes encoding proteins involved in the primary cell wall formation during cell elongation, such as xyloglucan endotransglucosylase/hydrolases, expansins, and leucine-rich repeat proteins, were significantly activated in the collenchyma. As the key players in the transcriptome orchestra of collenchyma, xyloglucan endotransglucosylase/hydrolase transcripts were characterized in more detail, including phylogeny and expression patterns. The comprehensive approach that included transcriptome and biochemical analyses allowed us to reveal peculiarities of collenchyma cell wall formation and modification, matching the abundance of upregulated transcripts and their potential substrates for revealed gene products. As a result, specific isoforms of multigene families were determined for further functional investigation.
Collapse
Affiliation(s)
- Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia.
| | - Anastasia Panina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Olga Sautkina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| |
Collapse
|
30
|
Swaminathan S, Lionetti V, Zabotina OA. Plant Cell Wall Integrity Perturbations and Priming for Defense. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243539. [PMID: 36559656 PMCID: PMC9781063 DOI: 10.3390/plants11243539] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/13/2023]
Abstract
A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances caused by biotic and abiotic stresses. Plants have well-established surveillance mechanisms to detect any cell wall perturbations. Specific immune signaling pathways are triggered to contrast biotic or abiotic forces, including cascades dedicated to reinforcing the cell wall structure. This review summarizes the recent developments in molecular mechanisms underlying maintenance of cell wall integrity in plant-pathogen and parasitic interactions. Subjects such as the effect of altered expression of endogenous plant cell-wall-related genes or apoplastic expression of microbial cell-wall-modifying enzymes on cell wall integrity are covered. Targeted genetic modifications as a tool to study the potential of cell wall elicitors, priming of signaling pathways, and the outcome of disease resistance phenotypes are also discussed. The prime importance of understanding the intricate details and complete picture of plant immunity emerges, ultimately to engineer new strategies to improve crop productivity and sustainability.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
31
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
32
|
Jardine KJ, Dewhirst RA, Som S, Lei J, Tucker E, Young RP, Portillo‐Estrada M, Gao Y, Su L, Fares S, Castanha C, Scheller HV, Mortimer JC. Cell wall ester modifications and volatile emission signatures of plant response to abiotic stress. PLANT, CELL & ENVIRONMENT 2022; 45:3429-3444. [PMID: 36222152 PMCID: PMC9828120 DOI: 10.1111/pce.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.
Collapse
Affiliation(s)
- Kolby J. Jardine
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Rebecca A. Dewhirst
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Suman Som
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Joseph Lei
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Eliana Tucker
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Robert P. Young
- Environmental Molecular Sciences LaboratoryPacific Northwest National LabRichlandWashingtonUSA
| | - Miguel Portillo‐Estrada
- Department of Biology, Research group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Yu Gao
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
| | | | - Silvano Fares
- Institute of BioEconomyNational Research CouncilRomeItaly
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cristina Castanha
- Lawrence Berkeley National LabClimate and Ecosystem Science DivisionBerkeleyCaliforniaUSA
| | - Henrik V. Scheller
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jenny C. Mortimer
- Lawrence Berkeley National LabJoint BioEnergy InstituteEmeryvilleCaliforniaUSA
- School of Agriculture, Food, and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| |
Collapse
|
33
|
Lassfolk R, Pedrón M, Tejero T, Merino P, Wärnå J, Leino R. Acetyl Group Migration in Xylan and Glucan Model Compounds as Studied by Experimental and Computational Methods. J Org Chem 2022; 87:14544-14554. [PMID: 36251002 PMCID: PMC9639004 DOI: 10.1021/acs.joc.2c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It was recently demonstrated by us that acetyl groups in oligosaccharides can migrate not only within one saccharide unit but also between two different saccharide units. Kinetics of this phenomenon were previously investigated in both mannan model compounds and a naturally occurring polysaccharide. In addition to mannans, there are also several other naturally acetylated polysaccharides, such as xyloglucans and xylans. Both xyloglucans and xylans are some of the most common acetylated polysaccharides in nature, displaying important roles in the plant cells. Considering the various biological roles of natural polysaccharides, it could be hypothesized that the intramolecular migration of acetyl groups might also be associated with regulation of the biological activity of polysaccharides in nature. Consequently, a better understanding of the overall migration phenomenon across the glycosidic bonds could help to understand the potential role of such migrations in the context of the biological activity of polysaccharides. Here, we present a detailed investigation on acetyl group migration in the synthesized xylan and glucan trisaccharide model compounds by a combination of experimental and computational methods, showing that the migration between the saccharide units proceeds from a secondary hydroxyl group of one saccharide unit toward a primary hydroxyl group of the other unit.
Collapse
Affiliation(s)
- Robert Lassfolk
- Laboratory
of Molecular Science and Engineering, Åbo
Akademi University, 20500Turku, Finland
| | - Manuel Pedrón
- Institute
of Biocomputation & Physics of Complex Systems (BIFI), University of Zaragoza, 50009Zaragoza, Spain
| | - Tomás Tejero
- Institute
of Chemical Synthesis & Homogeneous Catalysis (ISQCH), University of Zaragoza, 50009Zaragoza, Spain
| | - Pedro Merino
- Institute
of Biocomputation & Physics of Complex Systems (BIFI), University of Zaragoza, 50009Zaragoza, Spain,
| | - Johan Wärnå
- Laboratory
of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, 20500Turku, Finland
| | - Reko Leino
- Laboratory
of Molecular Science and Engineering, Åbo
Akademi University, 20500Turku, Finland,
| |
Collapse
|
34
|
Man M, Zhu Y, Liu L, Luo L, Han X, Qiu L, Li F, Ren M, Xing Y. Defense Mechanisms of Cotton Fusarium and Verticillium Wilt and Comparison of Pathogenic Response in Cotton and Humans. Int J Mol Sci 2022; 23:12217. [PMID: 36293072 PMCID: PMC9602609 DOI: 10.3390/ijms232012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.
Collapse
Affiliation(s)
- Mingwu Man
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinpei Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
35
|
Chen W, Hou X, Mao X, Jiao S, Wei L, Wang Y, Liu J, Jiang G. Biotic and Abiotic Transformation Pathways of a Short-Chain Chlorinated Paraffin Congener, 1,2,5,6,9,10-C 10H 16Cl 6, in a Rice Seedling Hydroponic Exposure System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9486-9496. [PMID: 35622943 DOI: 10.1021/acs.est.2c01119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a typical congener of short-chain chlorinated paraffins (SCCPs) with six chlorine atoms (CP-4, 1,2,5,6,9,10-C10H16Cl6, 250 ng/mL) was selected to elaborate the comprehensive environmental transformation of SCCPs in rice seedling exposure system. CP-4 was quickly absorbed, translocated, and phytovolatilized by seedlings with a small quality of CP-4 (5.81-36.5 ng) being detected in the gas phase. Only 21.4 ± 1.6% of an initial amount (10,000 ng) of CP-4 remained in the exposure system at the end of exposure. Among the transformed CP-4, some were attributed to the degradation of the rhizosphere microorganism (9.1 ± 5.8%), root exudates (2.2 ± 4.2%), and abiotic transformation (3.0 ± 2.8%) that were proved by several transformation products found in the root exudate exposure groups and unplanted controls, and a majority was phytotransformed by rice seedlings. Here, 61 products were determined through complex transformation pathways, including multihydroxylation, -HCl elimination, dechlorination, acetylation, sulfation, glycosylation, and amide acid conjugation. The acetylated and amide acid conjugates of CPs were first observed. Phase I and Phase II phytometabolic reactions of CPs were found intertwining. These findings demonstrate that multiactive transformation reactions contribute to the overlook of CPs accumulated in plants and are helpful for the environmental and health risk assessments of SCCPs in agricultural plants.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Mao
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
36
|
Spatial correlation of water distribution and fine structure of arabinoxylans in the developing wheat grain. Carbohydr Polym 2022; 294:119738. [DOI: 10.1016/j.carbpol.2022.119738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022]
|
37
|
Transcriptome-Guided Identification of Pectin Methyl-Esterase-Related Enzymes and Novel Molecular Processes Effectuating the Hard-to-Cook Defect in Common Bean ( Phaseolus vulgaris L.). Foods 2022; 11:foods11121692. [PMID: 35741889 PMCID: PMC9222787 DOI: 10.3390/foods11121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
The hard-to-cook defect in common beans is dictated by the ability to achieve cell separation during cooking. Hydrolysis of pectin methyl-esters by the pectin methyl-esterase (PME) enzyme influences cell separation. However, the contributions of the PME enzyme and the cell wall to the hard-to-cook defect have not been studied using molecular tools. We compared relevant molecular processes in fast- and slow-cooking bean varieties to understand the mechanisms underpinning the hard-to-cook defect. A PME spectrophotometric assay showed minor differences in enzyme activity between varieties. Meanwhile, a PME HMMER search in the P. vulgaris genome unveiled 113 genes encoding PMEs and PME inhibitors (PMEIs). Through RNA sequencing, we compared the gene expression of the PME-related genes in both varieties during seed development. A PME (Phvul010g080300) and PMEI gene (Phvul005g007600) showed the highest expression in the fast- and slow-cooking beans, respectively. We further identified 2132 differentially expressed genes (DEGs). Genes encoding cell-wall-related enzymes, mainly glycosylphosphatidylinositol mannosyltransferase, xyloglucan O-acetyltransferase, pectinesterase, and callose synthase, ranked among the top DEGs, indicating novel relations to the hard-to-cook defect. Gene ontology mapping revealed hydrolase activity and protein phosphorylation as functional categories with the most abundant upregulated DEGs in the slow-cooking bean. Additionally, the cell periphery contained 8% of the DEGs upregulated in the slow-cooking bean. This study provides new insights into the role of pectin methyl-esterase-related genes and novel cell wall processes in the occurrence of the hard-to-cook defect.
Collapse
|
38
|
Zhang Z, Yang P, Zhao J. Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. ANIMAL NUTRITION 2022; 9:31-38. [PMID: 35949987 PMCID: PMC9344318 DOI: 10.1016/j.aninu.2021.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/25/2022]
|
39
|
Gajek K, Janiak A, Korotko U, Chmielewska B, Marzec M, Szarejko I. Whole Exome Sequencing-Based Identification of a Novel Gene Involved in Root Hair Development in Barley ( Hordeum vulgare L.). Int J Mol Sci 2021; 22:ijms222413411. [PMID: 34948205 PMCID: PMC8709170 DOI: 10.3390/ijms222413411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Root hairs play a crucial role in anchoring plants in soil, interaction with microorganisms and nutrient uptake from the rhizosphere. In contrast to Arabidopsis, there is a limited knowledge of root hair morphogenesis in monocots, including barley (Hordeum vulgare L.). We have isolated barley mutant rhp1.e with an abnormal root hair phenotype after chemical mutagenesis of spring cultivar ‘Sebastian’. The development of root hairs was initiated in the mutant but inhibited at the very early stage of tip growth. The length of root hairs reached only 3% of the length of parent cultivar. Using a whole exome sequencing (WES) approach, we identified G1674A mutation in the HORVU1Hr1G077230 gene, located on chromosome 1HL and encoding a cellulose synthase-like C1 protein (HvCSLC1) that might be involved in the xyloglucan (XyG) synthesis in root hairs. The identified mutation led to the retention of the second intron and premature termination of the HvCSLC1 protein. The mutation co-segregated with the abnormal root hair phenotype in the F2 progeny of rhp1.e mutant and its wild-type parent. Additionally, different substitutions in HORVU1Hr1G077230 were found in four other allelic mutants with the same root hair phenotype. Here, we discuss the putative role of HvCSLC1 protein in root hair tube elongation in barley.
Collapse
Affiliation(s)
- Katarzyna Gajek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Agnieszka Janiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Urszula Korotko
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Beata Chmielewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
- Correspondence:
| |
Collapse
|
40
|
Coexpression of Fungal Cell Wall-Modifying Enzymes Reveals Their Additive Impact on Arabidopsis Resistance to the Fungal Pathogen, Botrytis cinerea. BIOLOGY 2021; 10:biology10101070. [PMID: 34681168 PMCID: PMC8533531 DOI: 10.3390/biology10101070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary In the present study, we created transgenic Arabidopsis plants overexpressing two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides and studied their possible complementary additive effects on host defense reactions against the fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison with single protein expression. Conversely, coexpression of either of the acetyl esterases together with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying enzymes might exert an additive effect on plant immune response by constitutively priming plant defense pathways even before pathogen invasion. These findings have potential uses in protecting valuable crops against pathogens. Abstract The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.
Collapse
|
41
|
Lassfolk R, Bertuzzi S, Ardá A, Wärnå J, Jiménez‐Barbero J, Leino R. Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide. Chembiochem 2021; 22:2986-2995. [PMID: 34405515 PMCID: PMC8597014 DOI: 10.1002/cbic.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Acyl group migration is a fundamental phenomenon in carbohydrate chemistry, recently shown to take place also between two non-adjacent hydroxyl groups, across the glycosidic bond, in a β-(1→4)-linked mannan trisaccharide model compound. With the central mannoside unit containing acetyl groups at the O2 and O3 positions, the O2-acetyl was in the earlier study shown to migrate to O6 of the reducing end. Potential implications of the general acyl migration process on cell signaling events and plant growth in nature are intriguing open questions. In the present work, migration kinetics in this original trisaccharide model system were studied in more detail together with potential interactions of the model compound and the migration products with DC-SIGN lectin. Furthermore, we demonstrate here for the first time that similar migration may also take place in native polysaccharides, here represented by galactoglucomannan from Norway spruce.
Collapse
Affiliation(s)
- Robert Lassfolk
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| | - Sara Bertuzzi
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Ana Ardá
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi University20500TurkuFinland
| | - Jesús Jiménez‐Barbero
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
- Department of Organic & Inorganic ChemistryUniversity of the Basque Country, UPV/EHU48940LeioaBizkaiaSpain
| | - Reko Leino
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| |
Collapse
|
42
|
Zhao Y, Jing H, Zhao P, Chen W, Li X, Sang X, Lu J, Wang H. GhTBL34 Is Associated with Verticillium Wilt Resistance in Cotton. Int J Mol Sci 2021; 22:9115. [PMID: 34502024 PMCID: PMC8431740 DOI: 10.3390/ijms22179115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium wilt (VW) is a typical fungal disease affecting the yield and quality of cotton. The Trichome Birefringence-Like protein (TBL) is an acetyltransferase involved in the acetylation process of cell wall polysaccharides. Up to now, there are no reports on whether the TBL gene is related to disease resistance in cotton. In this study, we cloned a cotton TBL34 gene located in the confidence interval of a major VW resistance quantitative trait loci and demonstrated its relationship with VW resistance in cotton. Analyzing the sequence variations in resistant and susceptible accessions detected two elite alleles GhTBL34-2 and GhTBL34-3, mainly presented in resistant cotton lines whose disease index was significantly lower than that of susceptible lines carrying the allele GhTBL34-1. Comparing the TBL34 protein sequences showed that two amino acid differences in the TBL (PMR5N) domain changed the susceptible allele GhTBL34-1 into the resistant allele GhTBL34-2 (GhTBL34-3). Expression analysis showed that the TBL34 was obviously up-regulated by infection of Verticillium dahliae and exogenous treatment of ethylene (ET), and salicylic acid (SA) and jasmonate (JA) in cotton. VIGS experiments demonstrated that silencing of TBL34 reduced VW resistance in cotton. We deduced that the TBL34 gene mediating acetylation of cell wall polysaccharides might be involved in the regulation of resistance to VW in cotton.
Collapse
Affiliation(s)
- Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Huijuan Jing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Xuelin Li
- Agricultural College, Henan University of Science and Technology, Luoyang 471000, China;
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
43
|
Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. Cell wall associated immunity in plants. STRESS BIOLOGY 2021; 1:3. [PMID: 37676546 PMCID: PMC10429498 DOI: 10.1007/s44154-021-00003-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 09/08/2023]
Abstract
The plant cell wall is the first physical and defensive barrier against pathogens. The plant cell wall usually undergoes dynamic remodeling as an immune response to prevent infection by pathogens. In this review, we summarize advances on relationship between cell wall and immunity in plants. In particular, we outline current progresses regarding the regulation of the cell wall components, including cellulose, hemicellulose, pectin and lignin, on plant disease resistance. We also discuss the impacts of cell wall-derived cellodextrin, oligogalacturonic acid and xyloglucan/xylan oligosaccharides as potent elicitors or signal molecules to trigger plant immune response. We further propose future studies on dissecting the molecular regulation of cell wall on plant immunity, which have potentials in practical application of crop breeding aiming at improvement of plant disease resistance.
Collapse
Affiliation(s)
- Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yan Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
44
|
Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 2021; 12:4975. [PMID: 34404791 PMCID: PMC8371099 DOI: 10.1038/s41467-021-25241-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass. Cellulosic hydrolysates contain substantial amounts of acetate, which is toxic to fermenting microorganisms. Here, the authors engineer Baker’s yeast to co-consume xylose and acetate for triacetic acid lactone production from a hemicellulose hydrolysate of switchgrass.
Collapse
|
45
|
A tomato LATERAL ORGAN BOUNDARIES transcription factor, SlLOB1, predominantly regulates cell wall and softening components of ripening. Proc Natl Acad Sci U S A 2021; 118:2102486118. [PMID: 34380735 PMCID: PMC8379924 DOI: 10.1073/pnas.2102486118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A tomato fruit ripening–specific transcription factor, SlLOB1 predominantly influences fruit cell wall–related gene regulation and textural changes during fruit maturation and thus is distinct from broadly acting ripening transcription factors described to date that influence many ripening processes. As such, SlLOB1 is an intermediate regulator primarily influencing a physiological subdomain of the overall ripening transition. Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening–specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall–associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.
Collapse
|
46
|
Deralia PK, Jensen A, Felby C, Thygesen LG. Chemistry of lignin and hemicellulose structures interacts with hydrothermal pretreatment severity and affects cellulose conversion. Biotechnol Prog 2021; 37:e3189. [PMID: 34176230 DOI: 10.1002/btpr.3189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022]
Abstract
Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra. β─5 structures appeared at medium and high severities for wheat straw while only β─β structures were observed at all pretreatment severities for poplar. These structural differences accounted for the differences in cellulose conversion for these biomasses at different severities. Changes in the hemicellulose component include a complete removal of arabinosyl and 4-O-methyl glucuronosyl substituents at low and medium pretreatment severities while acetyl groups were found to be relatively resistant toward hydrothermal pretreatment. This illustrates the importance of these groups, rather than xylan content, in the detrimental role of xylan in cellulose saccharification and helps explain the higher poplar recalcitrance compared to wheat straw. The results point toward the need for both enzyme preparation development and pretreatment technologies to target specific plant species.
Collapse
Affiliation(s)
- Parveen Kumar Deralia
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Jensen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
47
|
Arabidopsis cell wall composition determines disease resistance specificity and fitness. Proc Natl Acad Sci U S A 2021; 118:2010243118. [PMID: 33509925 PMCID: PMC7865177 DOI: 10.1073/pnas.2010243118] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant cells are surrounded by an extracellular matrix known as the cell wall. We have analyzed the contribution of the Arabidopsis cell wall to disease resistance to pathogens with different parasitic styles. Here, we demonstrate that plant cell walls are determinants of immune responses since modification of their composition in a set of Arabidopsis cell wall mutants has an impact on their disease resistance and fitness phenotypes. In these genotypes, we identified specific correlations between the amounts of specific wall carbohydrate epitopes and disease resistance/fitness phenotypes through mathematical analyses. These data support the relevant and specific function of plant cell wall composition in plant immune responses and provide the basis for using wall traits in crop breeding programs. Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Collapse
|
48
|
Csarman F, Obermann T, Zanjko MC, Man P, Halada P, Seiboth B, Ludwig R. Functional expression and characterization of two laccases from the brown rot Fomitopsis pinicola. Enzyme Microb Technol 2021; 148:109801. [PMID: 34116754 DOI: 10.1016/j.enzmictec.2021.109801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Laccase is predominantly found in lignin degrading filamentous white rot fungi, where it is involved in the oxidative degradation of this recalcitrant heteropolymer. In brown rot fungi it is much less prevalent: laccases from only a few brown rots have been detected and only two have been characterized. This study tries to understand the role of this ligninolytic enzyme in brown rots by investigating the catalytic properties of laccases secreted by Fomitopsis pinicola FP58527 SS1. When grown on either poplar or spruce wood blocks, several laccases were detected in the secretome. Two of them (FpLcc1 and FpLcc2) were heterologously produced using Trichoderma reesei QM9414 Δxyr1 as expression host and purified to homogeneity by consecutive steps of hydrophobic interaction, anion exchange and size exclusion chromatography. With the substrates 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol both laccases showed similar, low pH-optima below 3 for ABTS and 2,6-DMP and at pH 3.5 for guaiacol which is at the acidic end of laccases isolated from white rot fungi. The determined KM values were low while kcat values measured at acidic conditions were comparable to those reported for other laccases from white rot fungi. While both enzymes showed a moderate decrease in activity in the presence of oxalic and citric acid FpLcc2 was activated by acetic acid up to 3.7 times. This activation effect is much more pronounced at pH 5.0 compared to pH 3.0 and could already be observed at a concentration of 1 mM acetic acid.
Collapse
Affiliation(s)
- Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Tobias Obermann
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Mihael Colar Zanjko
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Petr Man
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Petr Halada
- BioCeV - Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
49
|
Cai Y, Zhang B, Liang L, Wang S, Zhang L, Wang L, Cui HL, Zhou Y, Wang D. A solid-state nanopore-based single-molecule approach for label-free characterization of plant polysaccharides. PLANT COMMUNICATIONS 2021; 2:100106. [PMID: 33898974 PMCID: PMC8060702 DOI: 10.1016/j.xplc.2020.100106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
Polysaccharides are important biomacromolecules existing in all plants, most of which are integrated into a fibrillar structure called the cell wall. In the absence of an effective methodology for polysaccharide analysis that arises from compositional heterogeneity and structural flexibility, our knowledge of cell wall architecture and function is greatly constrained. Here, we develop a single-molecule approach for identifying plant polysaccharides with acetylated modification levels. We designed a solid-state nanopore sensor supported by a free-standing SiN x membrane in fluidic cells. This device was able to detect cell wall polysaccharide xylans at concentrations as low as 5 ng/μL and discriminate xylans with hyperacetylated and unacetylated modifications. We further demonstrated the capability of this method in distinguishing arabinoxylan and glucuronoxylan in monocot and dicot plants. Combining the data for categorizing polysaccharide mixtures, our study establishes a single-molecule platform for polysaccharide analysis, opening a new avenue for understanding cell wall structures, and expanding polysaccharide applications.
Collapse
Affiliation(s)
- Yao Cai
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130016, China
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Liang Cui
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130016, China
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Kmezik C, Mazurkewich S, Meents T, McKee LS, Idström A, Armeni M, Savolainen O, Brändén G, Larsbrink J. A polysaccharide utilization locus from the gut bacterium Dysgonomonas mossii encodes functionally distinct carbohydrate esterases. J Biol Chem 2021; 296:100500. [PMID: 33667545 PMCID: PMC8040265 DOI: 10.1016/j.jbc.2021.100500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays a central role in human health by enzymatically degrading dietary fiber and concomitantly excreting short chain fatty acids that are associated with manifold health benefits. The polysaccharide xylan is abundant in dietary fiber but noncarbohydrate decorations hinder efficient cleavage by glycoside hydrolases (GHs) and need to be addressed by carbohydrate esterases (CEs). Enzymes from carbohydrate esterase families 1 and 6 (CE1 and 6) perform key roles in xylan degradation by removing feruloyl and acetate decorations, yet little is known about these enzyme families especially with regard to their diversity in activity. Bacteroidetes bacteria are dominant members of the microbiota and often encode their carbohydrate-active enzymes in multigene polysaccharide utilization loci (PULs). Here we present the characterization of three CEs found in a PUL encoded by the gut Bacteroidete Dysgonomonas mossii. We demonstrate that the CEs are functionally distinct, with one highly efficient CE6 acetyl esterase and two CE1 enzymes with feruloyl esterase activities. One multidomain CE1 enzyme contains two CE1 domains: an N-terminal domain feruloyl esterase, and a C-terminal domain with minimal activity on model substrates. We present the structure of the C-terminal CE1 domain with the carbohydrate-binding module that bridges the two CE1 domains, as well as a complex of the same protein fragment with methyl ferulate. The investment of D. mossii in producing multiple CEs suggests that improved accessibility of xylan for GHs and cleavage of covalent polysaccharide-polysaccharide and lignin-polysaccharide bonds are important enzyme activities in the gut environment.
Collapse
Affiliation(s)
- Cathleen Kmezik
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tomke Meents
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauren Sara McKee
- Division of Glycoscience, Department of Chemistry, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden; Wallenberg Wood Science Center, Stockholm, Sweden
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Marina Armeni
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Stockholm, Sweden.
| |
Collapse
|