1
|
Zhang S, Guo Y, Zhang P, Ai J, Wang Y, Wang F. Functional characterization of VrNAC15 for drought resistance in mung beans. Gene 2024; 926:148621. [PMID: 38821326 DOI: 10.1016/j.gene.2024.148621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Drought stress has become an important limiting factor in mung bean production, and NAC(NAM/ATAF/CUC) transcription factors are crucial for plant growth under stress conditions, so it is important to study the regulatory role of NAC transcription factors in mung bean under drought stress. In this investigation, VrNAC15, along with its promoter, was cloned, and its structure was meticulously analyzed. Using qPCR, we examined the tissue-specific expression patterns of VrNAC15, particularly under drought stress and ABA exposure. Additionally, We performed ectopic expression of VrNAC15 in Arabidopsis to assess its function.. Gene sequence analysis revealed that VrNAC15 has a total length of 1014 bp, encoding 337 amino acids. It contains a NAM domain, localizes within the nucleus, and exhibits transcriptional activation. Promoter analysis of VrNAC15 identified essential core promoter elements and cis-acting elements related to abscisic acid, methyl jasmonate, gibberellin, adversity stress, light, and metabolism. Expression analysis demonstrated the concentration of VrNAC15 in leaves, with significant alterations following ABA and drought treatments in mung beans. Cluster analysis revealed that VrNAC15 may enhanced drought tolerance in transgenic plants through its expression. Transgenic experiments supported these findings, showing that heterologous expression of VrNAC15 led to enhanced antioxidant and osmotic adjustment capabilities in Arabidopsis plants. This resulted in the maintenance of cell membrane structural integrity during drought stress and normal physiological and biochemical metabolic reactions within cells. This research provides valuable insights into the structural and functional characteristics of the VrNAC15, setting the stage for future endeavors in molecular breeding for improved drought resistance in mung beans.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Yaning Guo
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Panpan Zhang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Jing Ai
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Yue Wang
- School of Life Sciences, Yulin University,Yulin 719000,China
| | - Fugang Wang
- School of Life Sciences, Yulin University,Yulin 719000,China.
| |
Collapse
|
2
|
Liu T, Wang Y, Li X, Che H, Zhang Y. LpNAC5 positively regulates drought, salt and alkalinity tolerance of Lilium pumilum. Gene 2024; 924:148550. [PMID: 38777109 DOI: 10.1016/j.gene.2024.148550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
NACs (NAM、ATAF1/2、CUC1/2), as a large family of plant transcription factors, are widely involved in abiotic stress responses. This study aimed to isolate and clone a novel stress-responsive transcription factor LpNAC5 from Lilium pumilum bulbs. Drought, salt, alkali, and ABA stresses induced the expression of LpNAC5. Transgenic tobacco plants overexpressing LpNAC5 were generated using the Agrobacterium-mediated method to understand the role of this factor in stress response. These plants exhibited increased tolerance to drought, salt, and alkali stresses. The tobacco plants overexpressing LpNAC5 showed strong drought, salt, and alkaline tolerance. Under the three abiotic stresses, the activities of antioxidant enzymes were enhanced, the contents of proline and chlorophyll increased, and the contents of malondialdehyde decreased. The functional analysis revealed that LpNAC5 enabled plants to positively regulate drought and salt stresses. These findings not only provided valuable insights into stress tolerance mechanisms in L. pumilum but also offered a potential genetic resource for breedi.
Collapse
Affiliation(s)
- Tongfei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xufei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
4
|
Han K, Zhao Y, Liu J, Tian Y, El-Kassaby YA, Qi Y, Ke M, Sun Y, Li Y. Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:764-776. [PMID: 38859551 DOI: 10.1111/plb.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/20/2024] [Indexed: 06/12/2024]
Abstract
The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.
Collapse
Affiliation(s)
- K Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - J Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - M Ke
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
6
|
Shi W, Liu T, Yang H, Zhao J, Wei Z, Huang Y, Li Z, Li H, Liang L, Hou X, Chen Y, Gao Y, Bai Z, Xiao X. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117063. [PMID: 37598766 DOI: 10.1016/j.jep.2023.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dictamnus dasycarpus Turcz. (Dictamni Cortex, DC), a Chinese herbal medicine, is commonly used for treating chronic dermatosis and rheumatism, but can also cause herb-induced liver injury (HILI). Our study has demonstrated that DC can induce idiosyncratic HILI, but the mechanism remains unknown. The NLRP3 inflammasome has become a major target for addressing many diseases. The activation of NLRP3 inflammasome is responsible for many liver-related inflammatory diseases, including idiosyncratic HILI. AIM OF THE STUDY The objective of our study was to demonstrate the mechanism underlying the idiosyncratic HILI induced by DC and clarify the susceptible component in DC. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) and THP1 cells were selected to assess the effect of isomaculosidine (IMD) on NLRP3 inflammasome activation in vitro. Western blot, ELISA and Caspase-Glo® 1 Inflammasome Assay, flow cytometry and Immunofluorescence were employed to detect the mechanism of IMD on NLRP3 inflammasome activation. To assess the efficacy of IMD in vivo, mice were intravenously administrated with LPS and then IMD were injected intraperitoneally for 6 h. RESULTS The results of our in vitro studies demonstrate that IMD, the major constituent of DC, specifically promoted ATP- and nigericin-induced activation of NLRP3 inflammasome, but not NLRC4 and AIM2 inflammasomes. Additionally, IMD promoted nigericin-induced ASC oligomerization. Notably, synergistic induction of mtROS played a key role on the activation of NLRP3 inflammasome. IMD increased the mtROS production in the activation of NLRP3 inflammasome induced by nigericin. In addition, the results of our in vivo study showed that the combination of nonhepatotoxic doses of LPS and IMD can increase the levels of ALT, AST, and DBIL, leading to liver injury. CONCLUSIONS IMD specifically facilitated the activation of NLRP3 inflammasome induced by nigericin and ATP, which is responsible for DC-induced idiosyncratic HILI.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Longxin Liang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Min Y, Yu D, Yang J, Zhao W, Zhang L, Bai Y, Guo C. Bioinformatics and expression analysis of proline metabolism-related gene families in alfalfa under saline-alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108182. [PMID: 37977024 DOI: 10.1016/j.plaphy.2023.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Regulation of the proline metabolic pathway is essential for the accumulation of proline under abiotic stress and for the amelioration of plant stress resistance. Δ1-pyrroline-5-carboxylate synthase (P5CS), pyrroline-5-carboxylate reductase (P5CR), ornithine transaminase (δ-OAT), proline dehydrogenase (PDH), pyrroline-5-carboxylate dehydrogenase (P5CDH), and proline transporter (ProT) are the key enzymes in the proline metabolic pathway. However, the gene families responsible for proline metabolism have not yet been identified or reported in alfalfa. In this study, a total of 12 MsP5CSs, 4 MsP5CRs, 3 MsOATs, 6 MsPDHs, 2 MsP5CDHs, and 5 MsProTs were identified in the genome of alfalfa, and the members of the same subfamily had similar gene structures and conserved motifs. Analysis of cis-regulatory elements revealed the presence of light-responsive, hormone-regulated, and stress-responsive elements in the promoter regions of alfalfa proline metabolism-related genes. Following treatment with saline-alkali, the expression of MsP5CSs, MsP5CRs, MsOATs, and MsProTs was significantly upregulated, whereas the expression of MsPDH1.1, MsPDH1.3, and MsP5CDH was significantly downregulated. The proline content and enzyme activity of P5CS gradually increased, whereas the enzyme activity of PDH gradually decreased as the duration of stress increased. Root growth rates decreased upon MsP5CS1a suppression (MsP5CS1a-RNAi) in the hairy roots of alfalfa compared to the empty vector line under saline-alkali stress. These results show that proline metabolism-related genes play an important role in the saline-alkali stress tolerance of alfalfa and provide a theoretical basis for further research on the functions of proline metabolism-related genes in alfalfa in response to saline-alkali stress.
Collapse
Affiliation(s)
- Yuanfeng Min
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Dian Yu
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Jinghua Yang
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Weidi Zhao
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Lishuang Zhang
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Yan Bai
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
8
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
9
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
10
|
Wang J, Hu K, Wang J, Gong Z, Li S, Deng X, Li Y. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Indica and Japonica Rice at the Seedling Stage. Int J Mol Sci 2023; 24:12387. [PMID: 37569762 PMCID: PMC10418499 DOI: 10.3390/ijms241512387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.
Collapse
Affiliation(s)
- Jianyong Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Keke Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Jien Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Ziyun Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Shuangmiao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| |
Collapse
|
11
|
Zhang X, Liu K, Tang Q, Zeng L, Wu Z. Light Intensity Regulates Low-Temperature Adaptability of Tea Plant through ROS Stress and Developmental Programs. Int J Mol Sci 2023; 24:9852. [PMID: 37373002 DOI: 10.3390/ijms24129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 μmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 μmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 μmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Li G, Yao X, Chen Z, Tian X, Lu L. The Overexpression of Oryza sativa L. CYP85A1 Promotes Growth and Biomass Production in Transgenic Trees. Int J Mol Sci 2023; 24:ijms24076480. [PMID: 37047459 PMCID: PMC10095185 DOI: 10.3390/ijms24076480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Brassinosteroids (BRs) are important hormones that play crucial roles in plant growth, reproduction, and responses to abiotic and biotic stresses. CYP85A1 is a castasterone (CS) synthase that catalyzes C-6 oxidation of 6-deoxocastasterone (6-deoxoCS) to CS, after which CS is converted into brassinolide (BL) in a reaction catalyzed by CYP85A2. Here, we report the functional characteristics of rice (Oryza sativa L.) OsCYP85A1. Constitutive expression of OsCYP85A1 driven by the cauliflower mosaic virus 35S promoter increased endogenous BR levels and significantly promoted growth and biomass production in three groups of transgenic Populus tomentosa lines. The plant height and stem diameter of the transgenic poplar plants were increased by 17.6% and 33.6%, respectively, in comparison with control plants. Simultaneously, we showed that expression of OsCYP85A1 enhanced xylem formation in transgenic poplar without affecting cell wall thickness or the composition of cellulose. Our findings suggest that OsCYP85A1 represents a potential target candidate gene for engineering fast-growing trees with improved wood production.
Collapse
Affiliation(s)
- Guodong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Zhouzhuoer Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xingyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Song S, Ma D, Xu C, Guo Z, Li J, Song L, Wei M, Zhang L, Zhong YH, Zhang YC, Liu JW, Chi B, Wang J, Tang H, Zhu X, Zheng HL. In silico analysis of NAC gene family in the mangrove plant Avicennia marina provides clues for adaptation to intertidal habitats. PLANT MOLECULAR BIOLOGY 2023; 111:393-413. [PMID: 36645624 DOI: 10.1007/s11103-023-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.
Collapse
Affiliation(s)
- Shiwei Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lingyu Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Bingjie Chi
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jicheng Wang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hanchen Tang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
14
|
Li Y, Sun Z, Lu J, Jin Z, Li J. Integrated transcriptomics and metabolomics analysis provide insight into anthocyanin biosynthesis for sepal color formation in Heptacodium miconioides. FRONTIERS IN PLANT SCIENCE 2023; 14:1044581. [PMID: 36890897 PMCID: PMC9987713 DOI: 10.3389/fpls.2023.1044581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Heptacodium miconioides Rehd., commonly known as "seven-son flower," is an ornamental species with a beautiful flower pattern and persistent sepals. Its sepals are of horticultural value, turning bright red and elongating in the autumn; however, the molecular mechanisms that cause sepal color change remain unclear. We analyzed the dynamic changes in anthocyanin composition in the sepal of H. miconioides at four developmental stages (S1-S4). A total of 41 anthocyanins were detected and classified into 7 major anthocyanin aglycones. High levels of the pigments cyanidin-3,5-O-diglucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for sepal reddening. Transcriptome analysis revealed 15 differentially expressed genes involved in anthocyanin biosynthesis that were detected between 2 developmental stages. Of these, the high expression of HmANS was considered critical structural gene related to anthocyanin biosynthesis pathway in the sepal through co-expression analysis with anthocyanin content. In addition, a transcription factor (TF)-metabolite correlation analysis revealed that three HmMYB, two HmbHLH, two HmWRKY, and two HmNAC TFs exhibited a strong positive role in the regulation of the anthocyanin structural genes (Pearson's correlation coefficient > 0.90). Luciferase activity assay showed that HmMYB114, HmbHLH130, HmWRKY6, and HmNAC1 could activate the promoters of HmCHS4 and HmDFR1 genes in vitro. These findings increase our understanding of anthocyanin metabolism in the sepal of H. miconioides and provide a guide for studies involving sepal color conversion and regulation.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zhongshuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Jieyang Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| |
Collapse
|
15
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
16
|
The Establishment of a Genetic Transformation System and the Acquisition of Transgenic Plants of Oriental Hybrid Lily ( Lilium L.). Int J Mol Sci 2023; 24:ijms24010782. [PMID: 36614225 PMCID: PMC9821642 DOI: 10.3390/ijms24010782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Lily (Lilium spp.) has elegant flowers and beautiful colors, which makes it popular among people. However, the poor stress resistance and self-propagation ability of lily limit its application in landscaping to a great extent. In addition, transgenic technology is an important means to improve plant characteristics, but the lack of a stable and efficient genetic transformation system is still an important factor restricting the development of lily transgenic technology. Therefore, this study established a good lily regeneration system by screening different explants and plant growth regulators of different concentrations. Then, the genetic transformation system of lily was optimized by screening the critical concentration of antibiotics, the concentration of bacterial solution, and the infection time. Finally, the homologous lily cold resistance gene LlNAC2 and bulblet generation gene LaKNOX1 were successfully transferred to 'Siberia' and 'Sorbonne' to obtain lily transgenic lines. The results showed that when the stem axis was used as explant in 'Siberia', the induction rate was as high as 87%. The induction rate of 'Sorbonne' was as high as 91.7% when the filaments were used as explants. At the same time, in the optimized genetic transformation system, the transformation rate of 'Siberia' and 'Sorbonne' was up to 60%. In conclusion, this study provides the theoretical basis and technical support for improving the resistance and reproductive ability of Oriental lily and the molecular breeding of lily.
Collapse
|
17
|
Mijiti M, Wang Y, Wang L, Habuding X. Tamarix hispida NAC Transcription Factor ThNAC4 Confers Salt and Drought Stress Tolerance to Transgenic Tamarix and Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192647. [PMID: 36235512 PMCID: PMC9570625 DOI: 10.3390/plants11192647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 06/12/2023]
Abstract
Salt and drought are considered two major abiotic stresses that have a significant impact on plants. Plant NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have been shown to play vital roles in plant development and responses to various abiotic stresses. ThNAC4, a NAC gene from Tamarix hispida involved in salt and osmotic stress tolerance, was identified and characterized in this study. According to a phylogenetic study, ThNAC4 is a member of NAC subfamily II. Subcellular localization analysis showed that ThNAC4 is located in the nucleus, and transcriptional activation experiments demonstrated that ThNAC4 is a transcriptional activator. Transgenic Arabidopsis plants overexpressing ThNAC4 exhibited improved salt and osmotic tolerance, as demonstrated by improved physiological traits. ThNAC4-overexpressing and ThNAC4-silenced T. hispida plants were generated using the transient transformation method and selected for gain- and loss-of-function analysis. The results showed that overexpression of ThNAC4 in transgenic Tamarix and Arabidopsis plants increased the activities of antioxidant enzymes (SOD, POD, and GST) and osmoprotectant (proline and trehalose) contents under stress conditions. These findings suggest that ThNAC4 plays an important physiological role in plant abiotic stress tolerance by increasing ROS scavenging ability and improving osmotic potential.
Collapse
Affiliation(s)
- Meiheriguli Mijiti
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xugela Habuding
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|
18
|
Recent Progress on the Salt Tolerance Mechanisms and Application of Tamarisk. Int J Mol Sci 2022; 23:ijms23063325. [PMID: 35328745 PMCID: PMC8950588 DOI: 10.3390/ijms23063325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Salinized soil is a major environmental stress affecting plant growth and development. Excessive salt in the soil inhibits the growth of most plants and even threatens their survival. Halophytes are plants that can grow and develop normally on saline-alkali soil due to salt tolerance mechanisms that emerged during evolution. For this reason, halophytes are used as pioneer plants for improving and utilizing saline land. Tamarisk, a family of woody halophytes, is highly salt tolerant and has high economic value. Understanding the mechanisms of salt tolerance in tamarisk and identifying the key genes involved are important for improving saline land and increasing the salt tolerance of crops. Here, we review recent advances in our understanding of the salt tolerance mechanisms of tamarisk and the economic and medicinal value of this halophyte.
Collapse
|
19
|
Hu P, Zhang K, Yang C. Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111131. [PMID: 35067301 DOI: 10.1016/j.plantsci.2021.111131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
RAV (Related to ABI3/VP1) transcription factors play vital roles in regulating plant response to abiotic stresses; however, the regulatory mechanisms underlying stress response are still poorly understood for most of the RAVgenes. In this study, a novel gene BpRAV1 was cloned from white birch (Betula platyphylla). BpRAV1 protein is localized in the nucleus and serves as a transcriptional activator. The expression of BpRAV1 was induced by salt and osmotic stress treatments. BpRAV1-overexpression birch seedlings exhibited dramatically less ROS accumulation and reduced cell death in response to salt and osmotic stresses. BpRAV1 can specifically bind to the known RAV1A element. In addition, a novel cis-acting element (termed RBS1) bound by BpRAV1 was identified by transcription factor (TF)- centered Y1H assay. BpRAV1 activated the RAV1A and RBS1 elements to induce the expression of SOD and POD genes, resulting in increased SOD and POD activities to enhance ROS scavenging ability, thus improving salt and osmotic stress tolerance. These results indicate that BpRAV1 is a positive regulator governing abiotic stress response.
Collapse
Affiliation(s)
- Ping Hu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
20
|
Wang YM, Zhang YM, Zhang X, Zhao X, Zhang Y, Wang C, Wang YC, Wang LQ. Poplar PsnICE1 enhances cold tolerance by binding to different cis-acting elements to improve reactive oxygen species-scavenging capability. TREE PHYSIOLOGY 2021; 41:2424-2437. [PMID: 34185092 DOI: 10.1093/treephys/tpab084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Low temperature is a major stress that severely affects plant growth and development. Inducer of CBF expression 1 (ICE1) plays a key role in plant cold tolerance by regulating the expression of cold stress-responsive genes. In the present study, we characterized the function and underlying regulatory mechanism of PsnICE1 from Xiaohei poplar (Populus simonii × Populus nigra). PsnICE1 was significantly induced in response to cold stress in the roots, stems and leaves. PsnICE1 proteins were found to localize to the nucleus and exert transactivation activity via their N-terminal transactivation domain. Compared with non-transgenic poplar, transgenic poplar overexpressing PsnICE1 showed substantially enhanced tolerance to cold stress, with higher survival rates and antioxidant enzyme activity levels and reduced reactive oxygen species (ROS) accumulation. In contrast, plants with RNA inhibition-mediated silencing of PsnICE1 showed the opposite phenotype. PsnICE1 can bind to H-box element and abscisic acid-responsive element (ABRE), and more importantly, it mainly binds to IBS1 (a newly discovered cis-acting element) and E-box elements to regulate stress-related genes involved in ROS scavenging. Overall, these results indicated that PsnICE1 functions as a positive regulator of cold tolerance and serves as a potential candidate gene for plant cold tolerance improvement via molecular breeding.
Collapse
Affiliation(s)
- Yan-Min Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
- Key Laboratory of Fast-Growing Tree Cultivating of Heilongjiang Province, Forestry Science Research Institute of Heilongjiang Province, 134 haping Road, Harbin 150081, China
| | - Yi-Ming Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Yu-Cheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 Beijingnan Road, Urumqi 830011, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu 1, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
21
|
Li M, Wu Z, Gu H, Cheng D, Guo X, Li L, Shi C, Xu G, Gu S, Abid M, Zhong Y, Qi X, Chen J. AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit. Int J Mol Sci 2021; 22:ijms222111897. [PMID: 34769325 PMCID: PMC8585034 DOI: 10.3390/ijms222111897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
- Correspondence: (M.L.); (M.A.)
| | - Zhiyong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Hong Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Dawei Cheng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Xizhi Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Lan Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Caiyun Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Guoyi Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Shichao Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Muhammad Abid
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- Correspondence: (M.L.); (M.A.)
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| |
Collapse
|
22
|
Li Q, Wang M, Fang L. BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:373-380. [PMID: 34710757 DOI: 10.1016/j.plaphy.2021.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 05/28/2023]
Abstract
Osmotic stress substantially affects plant growth and development. Study of plant transcription factors involved in osmotic stress can enhance our understanding of the mechanisms of plant osmotic stress tolerance and how the tolerance of plants to osmotic stress can be improved. Here, we identified the specific function of Arabidopsis thaliana BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factor, BPC2, in the osmotic stress response. Phenotypic analysis showed that loss-of-function of BPC2 led to an increase in osmotic stress tolerance in the seedling growth stage. Physiological analysis showed that mutation of BPC2 in Arabidopsis alleviated osmotic-induced increases in H2O2 accumulation, the malondialdehyde (MDA) content, and percent electrolyte leakage. BPC2 was localized in the nucleus. RNA-seq and qRT-PCR analysis showed that BPC2 could negatively regulate the expression of late embryogenesis abundant (LEA) genes (LEA3, LEA4-2, and LEA4-5). Further analysis showed that BPC2 could directly bind to the promoter of LEA4-5 in vitro and in vivo. Overexpression of BPC2 enhanced hypersensitivity to osmotic stress in the seedling growth stage. Overexpression of BPC2 led to decreases in LEA4-5 expression and aggravated osmotic-induced increases in H2O2 accumulation, the MDA content, and percent electrolyte leakage. Overall, our results indicate that BPC2 negatively regulates LEA4-5 expression to modulate osmotic-induced H2O2 accumulation, the MDA content, and percent electrolyte leakage, all of which affect the osmotic stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qiaolu Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
23
|
Wang R, Zhang Y, Wang C, Wang YC, Wang LQ. ThNAC12 from Tamarix hispida directly regulates ThPIP2;5 to enhance salt tolerance by modulating reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:27-35. [PMID: 33812224 DOI: 10.1016/j.plaphy.2021.03.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant development and abiotic stress responses, and aquaporins have diverse functions in environmental stress responses. In this study, we described the salt-induced transcriptional responses of ThNAC12 and ThPIP2;5 in Tamarix hispida, and their regulatory mechanisms in response to salt stress. Using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays, we identified that ThNAC12 directly binds to the NAC recognition sequence (NACRS) of the ThPIP2;5 promoter and then activates the ThPIP2;5 expression. Subcellular localization and transcriptional activation assays demonstrated that ThNAC12 was a nuclear protein with a C-terminal transactivation domain. Compared with the corresponding control plants, transgenic plants overexpressing ThNAC12 exhibited enhanced salt tolerance and displayed increased reactive oxygen species (ROS) scavenging capability and antioxidant enzyme activity levels under salt stress. All results suggested that overexpression of ThNAC12 in plants enhanced salt tolerance through modulation of ROS scavenging via direct regulation of ThPIP2;5 expression in T. hispida.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yu-Cheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Sun TT, Wang C, Liu R, Zhang Y, Wang YC, Wang LQ. ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4. Int J Mol Sci 2021; 22:ijms22095048. [PMID: 34068763 PMCID: PMC8126225 DOI: 10.3390/ijms22095048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 01/03/2023] Open
Abstract
Heat shock transcription factors (HSFs) play critical roles in several types of environmental stresses. However, the detailed regulatory mechanisms in response to salt stress are still largely unknown. In this study, we examined the salt-induced transcriptional responses of ThHSFA1-ThWRKY4 in Tamarix hispida and their functions and regulatory mechanisms in salt tolerance. ThHSFA1 protein acts as an upstream regulator that can directly activate ThWRKY4 expression by binding to the heat shock element (HSE) of the ThWRKY4 promoter using yeast one-hybrid (Y1H), chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays. ThHSFA1 and ThWRKY4 expression was significantly induced by salt stress and abscisic acid (ABA) treatment in the roots and leaves of T. hispida. ThHSFA1 is a nuclear-localized protein with transactivation activity at the C-terminus. Compared to nontransgenic plants, transgenic plants overexpressing ThHSFA1 displayed enhanced salt tolerance and exhibited reduced reactive oxygen species (ROS) levels and increased antioxidant enzyme activity levels under salt stress. Therefore, we further concluded that ThHSFA1 mediated the regulation of ThWRKY4 in response to salt stress in T. hispida.
Collapse
Affiliation(s)
- Ting-Ting Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (T.-T.S.); (R.L.); (Y.Z.)
- Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (C.W.); (Y.-C.W.)
| | - Rui Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (T.-T.S.); (R.L.); (Y.Z.)
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (T.-T.S.); (R.L.); (Y.Z.)
| | - Yu-Cheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (C.W.); (Y.-C.W.)
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (T.-T.S.); (R.L.); (Y.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-10-62889687
| |
Collapse
|
25
|
van Beek CR, Guzha T, Kopana N, van der Westhuizen CS, Panda SK, van der Vyver C. The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:907-921. [PMID: 34092944 PMCID: PMC8140038 DOI: 10.1007/s12298-021-00996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Drought is a key environmental factor that restricts crop growth and productivity. Plant responses to water-deficit stress at the whole plant level are mediated by stress-response gene expression through the action of transcription factors (TF). The NAC (NAM/ATAF/CUC) transcription factor family has been well documented in its role in improving plant abiotic stress tolerance. In the present study we evaluated the effects of overexpression of SlNAC2 TF on the photosynthetic machinery, relative water content (RWC), reactive oxygen species, antioxidants and proline levels in tobacco plants exposed to a water-deficit treatment. Shoot growth and seed formation were also evaluated before, during and following water-deficit to determine any morphological consequences of transgene expression. The transgenic plants maintained higher RWC and chlorophyll levels over 21 days after withholding water and stomatal conductance until the 16th day of water-deficit. Overexpression of SlNAC2 in tobacco increased proline levels, improved seed setting and delayed leaf senescence of the transgenic plants. Reactive oxygen species accumulated at lower levels in the dehydrated transgenic plants but no significant difference in superoxide dismutase and catalase content were seen between the genotypes. The conversion of glutathione to oxidized glutathione was significantly higher in the transgenic plants, supported by increased glutathione reductase transcript levels. Our results indicate that overexpression of SlNAC2 in tobacco improved survival during and recovery from water-deficit stress, without an associated biomass penalty under irrigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00996-2.
Collapse
Affiliation(s)
- Coenraad R. van Beek
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Tapiwa Guzha
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Nolusindiso Kopana
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | | | - Sanjib K. Panda
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, 305817 India
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| |
Collapse
|
26
|
Zhang X, Cheng Z, Yao W, Zhao K, Wang X, Jiang T. Functional Characterization of PsnNAC036 under Salinity and High Temperature Stresses. Int J Mol Sci 2021; 22:2656. [PMID: 33800795 PMCID: PMC7961394 DOI: 10.3390/ijms22052656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Xueyi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| |
Collapse
|
27
|
Fang S, Hou X, Liang X. Response Mechanisms of Plants Under Saline-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:667458. [PMID: 34149764 PMCID: PMC8213028 DOI: 10.3389/fpls.2021.667458] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
As two coexisting abiotic stresses, salt stress and alkali stress have severely restricted the development of global agriculture. Clarifying the plant resistance mechanism and determining how to improve plant tolerance to salt stress and alkali stress have been popular research topics. At present, most related studies have focused mainly on salt stress, and salt-alkali mixed stress studies are relatively scarce. However, in nature, high concentrations of salt and high pH often occur simultaneously, and their synergistic effects can be more harmful to plant growth and development than the effects of either stress alone. Therefore, it is of great practical importance for the sustainable development of agriculture to study plant resistance mechanisms under saline-alkali mixed stress, screen new saline-alkali stress tolerance genes, and explore new plant salt-alkali tolerance strategies. Herein, we summarized how plants actively respond to saline-alkali stress through morphological adaptation, physiological adaptation and molecular regulation.
Collapse
Affiliation(s)
- Shumei Fang
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Shumei Fang,
| | - Xue Hou
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Department of Environmental Science, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing, China
- Xilong Liang,
| |
Collapse
|
28
|
Wang S, Huang J, Wang X, Fan Y, Liu Q, Han Y. PagERF16 of Populus Promotes Lateral Root Proliferation and Sensitizes to Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:669143. [PMID: 34149765 PMCID: PMC8213033 DOI: 10.3389/fpls.2021.669143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 05/17/2023]
Abstract
The aggravation of soil salinization limits the growth and development of plants. The AP2/ERF transcription factors (TFs) have been identified and play essential roles in plant development and stress response processes. In this study, the function of PagERF16 was detected using the overexpressing (OX) and RNAi transgenic poplar 84K hybrids. Plant growth, stomatal conductance, antioxidant enzymes activity, and PagERF16 co-expressed TFs were analyzed using morphological, physiological, and molecular methods. OX showed a more robust lateral root system with a bigger diameter and volume compared to the wild-type plants (WT). Physiological parameters indicated the bigger stomatal aperture and lower stomatal density of OX along with the lower Catalase (CAT) activity and higher malondialdehyde (MDA) content contributed to the salt sensitivity. The plant height and rooting rate of OX and RNAi were significantly worse compared to WT. Other than that, the morphology and physiology of RNAi plants were similar to WTs, suggesting that the function of PagERF16 may be redundant with other TFs. Our results indicate that when PagERF16 expression is either too high or too low, poplar growth and rooting is negatively affected. In addition, a downstream target TF, NAC45, involved in Auxin biosynthesis, was identified and PagERF16 could directly bind to its promoter to negatively regulate its expression. These results shed new light on the function of ERF TFs in plant root growth and salt stress tolerance.
Collapse
Affiliation(s)
- Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Juanjuan Huang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Xingdou Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Qiang Liu
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Youzhi Han
| |
Collapse
|
29
|
Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, Zhuo J, Zeng W, Wu A, Lin X. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. TREE PHYSIOLOGY 2020; 40:1792-1806. [PMID: 32761243 DOI: 10.1093/treephys/tpaa099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 05/16/2023]
Abstract
NAC (NAM, AFAT and CUC) proteins play necessary roles in plant response to environmental stresses. However, the functional roles of NAC genes in moso bamboo (Phyllostachys edulis), an essential economic perennial woody bamboo species, are not well documented. In this study, we retrieved 152 PeNAC genes from the moso bamboo V2 genome, and PeSNAC-1 was isolated and functionally characterized. PeSNAC-1 was localized in the nucleus and had no transactivation activity in yeast. PeSNAC-1 extremely expressed in rhizome and young roots (0.1 and 0.5 cm) and was significantly induced by drought and salt treatments but repressed by abscisic acid (ABA), methyl jasmonate and high temperature (42 °C) in moso bamboo. Under water shortage and salinity conditions, survival ratios, Fv/Fm values, physiological indexes such as activities of superoxide dismutase, peroxidase and catalase and contents of malondialdehyde, H2O2 and proline were significantly higher in transgenic rice than the wild type, which suggests enhanced tolerance to drought and salt stress in PeSANC-1 overexpressed plants. Transcript levels of Na+/H+ antiporter and Na+ transporter genes (OsSOS1, OsNHX1 and OsHKT1;5), ABA signaling and biosynthesis genes (OsABI2, OsRAB16, OsPP2C68, OsLEA3-1, OsLEA3, OsNCED3, OsNCED4 and OsNCED5) and ABA-independent genes (OsDREB1A, OsDREB1B and OsDREB2A) were substantially higher in transgenic as compared with the wild type. Moreover, protein interaction analysis revealed that PeSNAC-1 could interact with stress responsive PeSNAC-2/4 and PeNAP-1/4/5 in both yeast and plant cells, which indicates a synergistic effect of those proteins in regulating the moso bamboo stress response. Our data demonstrate that PeSNAC-1 likely improved salt and drought stress tolerance via modulating gene regulation in both ABA-dependent and independent signaling pathways in transgenic rice. In addition, PeSNAC-1 functions as an important positive stress regulator in moso bamboo, participating in PeSNAC-1 and PeSNAC-2/4 or PeSNAC-1 and PeNAP-1/4/5 interaction networks.
Collapse
Affiliation(s)
- Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Zhongyu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Qiutao Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Ling Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| |
Collapse
|
30
|
Hernandez Y, Goswami K, Sanan‐Mishra N. Stress induced dynamic adjustment of conserved miR164:NAC module. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:134-151. [PMID: 37283725 PMCID: PMC10168063 DOI: 10.1002/pei3.10027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 06/08/2023]
Abstract
Aims including the rationale Salinity and drought are the two major stresses limiting the productivity of economically important crops such as Glycine max (soybean). The incidence of these stresses during the pod development stages affects the quality and quantity of seeds, which compromise the yield of soybean. The miR164:NAC module has been shown to play a critical role in regulating the response to salt and drought stress in several plant species. However, biological role of miR164:NAC module in salt stress in soybean is not fully understood. Methods In this study, we identified 215 salt responsive miRNAs, using miScript miRNA array with a sensitive and a tolerant soybean genotype, William82 and INCASoy36, respectively. The targets of these salt regulated miRNAs were searched in the degradome datasets. Key results It was found that four salt stress deregulated miRNAs targeted the NAC transcription factor and among these miR164k and miR408d showed antagonistic expression in the two soybean genotypes. The expression of miR164k was higher in salt tolerant INCASoy36 as compared to salt sensitive William82, under unstressed conditions. However under salt stress, miR164k was downregulated in INCASoy36 (-2.65 fold), whereas it was upregulated in William82 (4.68 fold). A transient co-expression assay validated that gma-miR164k directs the cleavage of GmNAC1 transcript. Bioinformatics analysis revealed that the regulation of NAC transcription factor family by members of miR164 family is conserved across many species. The dynamic expression profiles of miR164 and NAC-TFs were captured in different tissues of rice, tobacco, and two soybean genotypes under drought and salt stress conditions. Main conclusion Collectively, our results suggest that genetically determined dynamic modulation of the conserved miR164:NAC-TF module may play an important role in determining the adaptive response of plants to stress.
Collapse
Affiliation(s)
- Yuniet Hernandez
- Plant RNAi Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Kavita Goswami
- Plant RNAi Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Neeti Sanan‐Mishra
- Plant RNAi Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
31
|
Diao P, Chen C, Zhang Y, Meng Q, Lv W, Ma N. The role of NAC transcription factor in plant cold response. PLANT SIGNALING & BEHAVIOR 2020; 15:1785668. [PMID: 32662739 PMCID: PMC8550289 DOI: 10.1080/15592324.2020.1785668] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The NAC transcription factor (TF) is one of the largest families of TFs in plants and plays an important role in plant growth, development, and response to environmental stress. The structural and functional characteristics of NAC TFs have been uncovered in the past years, including sequence binding features of the DNA-binding domain located in the N-terminus and dynamic interplay between the domain located at the C-terminus and other proteins. Studies on NAC TF are increasing in number; these studies distinctly contribute to our understanding of the regulatory networks of NAC-mediated complex signaling and transcriptional reprogramming. Previous studies have indicated that NAC TFs are key regulators of the plant stress response. However, these studies have been for six years so far and mainly focused on drought and salt stress. There are relatively few reports about NAC TFs in plant cold signal pathway and no related reviews have been published. In this review article, we summarize the structural features of NAC TFs, the target genes, upstream regulators and interaction proteins of stress-responsive NAC TFs, and the roles NAC TFs play in plant cold stress signal pathway.
Collapse
Affiliation(s)
- Pengfei Diao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| | - Yuzhen Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- CONTACT Wei Lv
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, China
- Nana Ma State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, Shandong, 271018, China
| |
Collapse
|
32
|
Chen C, Liu C, Jiang A, Zhao Q, Zhang Y, Hu W. miRNA and Degradome Sequencing Identify miRNAs and Their Target Genes Involved in the Browning Inhibition of Fresh-Cut Apples by Hydrogen Sulfide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8462-8470. [PMID: 32697084 DOI: 10.1021/acs.jafc.0c02473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Surface browning is the major limit for the shelf life of fresh-cut apples, and hydrogen sulfide (H2S) treatment can effectively inhibit the browning. However, the molecular mechanism on how fresh-cut apples respond to H2S was poorly understood. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate multiple crucial biological processes in almost all aspects of the life cycle. Herein, 12 small RNA libraries and one mixed degradome library were constructed from control and H2S-treated fresh-cut apples immediately after treatment (C0 and S0) and 6 d of storage (C6 and S6) at 4 °C. The results identified nine (three upregulated and six downregulated) and 10 (two upregulated and eight downregulated) differentially expressed miRNAs (DEmiRNAs) in S0 versus C0 and S6 versus C6, respectively. The target genes of DEmiRNAs were transcription factors and functional proteins. The miR156 targeting SPL, miR164 targeting NAC, miR319 targeting TCP4, GAMYB, and acyl-CoA-binding protein 4, and miR6478 targeting patatin-like protein 2 might play important roles in the browning inhibition of fresh-cut apples by H2S via regulating the ROS, phenylpropanoid, and lipid metabolism. The results give valuable information for further studying the role of miRNA in regulating browning processes and the underlying molecular mechanism of H2S treatment on browning inhibition.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Chenghui Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Qiqi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yanhui Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
33
|
Zhang Y, Gong H, Li D, Zhou R, Zhao F, Zhang X, You J. Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.). BMC Genomics 2020; 21:494. [PMID: 32682396 PMCID: PMC7368703 DOI: 10.1186/s12864-020-06913-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) exhibit important regulatory roles in the response to abiotic stresses by post-transcriptionally regulating the target gene expression in plants. However, their functions in sesame response to salt stress are poorly known. To dissect the complex mechanisms underlying salt stress response in sesame, miRNAs and their targets were identified from two contrasting sesame genotypes by a combined analysis of small RNAs and degradome sequencing. RESULTS A total of 351 previously known and 91 novel miRNAs were identified from 18 sesame libraries. Comparison of miRNA expressions between salt-treated and control groups revealed that 116 miRNAs were involved in salt stress response. Using degradome sequencing, potential target genes for some miRNAs were also identified. The combined analysis of all the differentially expressed miRNAs and their targets identified miRNA-mRNA regulatory networks and 21 miRNA-mRNA interaction pairs that exhibited contrasting expressions in sesame under salt stress. CONCLUSIONS This comprehensive integrated analysis may provide new insights into the genetic regulation mechanism of miRNAs underlying the adaptation of sesame to salt stress.
Collapse
Affiliation(s)
- Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Huihui Gong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengtao Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
34
|
Zhou Y, Zhai H, He S, Zhu H, Gao S, Xing S, Wei Z, Zhao N, Liu Q. The Sweetpotato BTB-TAZ Protein Gene, IbBT4, Enhances Drought Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:877. [PMID: 32655604 PMCID: PMC7324939 DOI: 10.3389/fpls.2020.00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BTB-TAZ (BT)-domain proteins regulate plant development and pathogen defense. However, their roles in resistance to abiotic stresses remain largely unknown. In this study, we found that the sweetpotato BT protein-encoding gene IbBT4 significantly enhanced the drought tolerance of Arabidopsis. IbBT4 expression was induced by PEG6000, H2O2 and brassinosteroids (BRs). The IbBT4-overexpressing Arabidopsis seeds presented higher germination rates and longer roots in comparison with those of WT under 200 mM mannitol stress. Under drought stress the transgenic Arabidopsis plants exhibited significantly increased survival rates and BR and proline contents and decreased water loss rates, MDA content and reactive oxygen species (ROS) levels. IbBT4 overexpression upregulated the BR signaling pathway and proline biosynthesis genes and activated the ROS-scavenging system under drought stress. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that the IbBT4 protein interacts with BR-ENHANCED EXPRESSION 2 (BEE2). Taken together, these results indicate that the IbBT4 gene provides drought tolerance by enhancing both the BR signaling pathway and proline biosynthesis and further activating the ROS-scavenging system in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Ye Y, Wang J, Wang W, Xu LA. ARF family identification in Tamarix chinensis reveals the salt responsive expression of TcARF6 targeted by miR167. PeerJ 2020; 8:e8829. [PMID: 32219037 PMCID: PMC7085291 DOI: 10.7717/peerj.8829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Auxin response factors (ARFs) are important transcription factors (TFs) that are differentially expressed in response to various abiotic stresses. The important roles of ARFs and small RNA-ARF pathways in mediating plant growth and stress responses have emerged in several recent studies. However, no studies on the involvement of ARFs in tamarisk trees, which are resistant to salinity, have been conducted. In this study, systematic analysis revealed 12 TcARF genes belonging to five different groups in Tamarix chinensis. The microRNA response elements of miR160, which belongs to group I and miR167, which belongs to group III, were conserved in terms of their location and sequence. Moreover, digital gene expression profiles suggested that a potential miR167 target gene, TcARF6, was rapidly expressed in response to salt stress. Cloning of TcARF6 revealed that TcARF6 could be an activation TF with a glutamine-rich region and expression pattern analysis revealed that the expression of TcARF6 was significantly downregulated specifically in the roots. A significant negative correlation in the expression pattern of tch-miR167/TcARF6 indicated that this module may play a key role in the response to salt stress. Overall, these results provide basic information on the posttranscriptional regulation of TcARF6 for future investigations of the T. chinensis salt-stress response.
Collapse
Affiliation(s)
- Youju Ye
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jianwen Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China.,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China.,College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li-An Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Liu Z, Xie Q, Tang F, Wu J, Dong W, Wang C, Gao C. The ThSOS3 Gene Improves the Salt Tolerance of Transgenic Tamarix hispida and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:597480. [PMID: 33537039 PMCID: PMC7848111 DOI: 10.3389/fpls.2020.597480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/09/2020] [Indexed: 05/08/2023]
Abstract
The salt overly sensitive (SOS) signal transduction pathway is one of the most highly studied salt tolerance pathways in plants. However, the molecular mechanism of the salt stress response in Tamarix hispida has remained largely unclear. In this study, five SOS genes (ThSOS1-ThSOS5) from T. hispida were cloned and characterized. The expression levels of most ThSOS genes significantly changed after NaCl, PEG6000, and abscisic acid (ABA) treatment in at least one organ. Notably, the expression of ThSOS3 was significantly downregulated after 6 h under salt stress. To further analyze ThSOS3 function, ThSOS3 overexpression and RNAi-mediated silencing were performed using a transient transformation system. Compared with controls, ThSOS3-overexpressing transgenic T. hispida plants exhibited greater reactive oxygen species (ROS)-scavenging capability and antioxidant enzyme activity, lower malondialdehyde (MDA) and H2O2 levels, and lower electrolyte leakage rates under salt stress. Similar results were obtained for physiological parameters in transgenic Arabidopsis, including H2O2 and MDA accumulation, superoxide dismutase (SOD) and peroxidase (POD) activity, and electrolyte leakage. In addition, transgenic Arabidopsis plants overexpressing ThSOS3 displayed increased root growth and fresh weight gain under salt stress. Together, these data suggest that overexpression of ThSOS3 confers salt stress tolerance on plants by enhancing antioxidant enzyme activity, improving ROS-scavenging capability, and decreasing the MDA content and lipid peroxidation of cell membranes. These results suggest that ThSOS3 might play an important physiological role in salt tolerance in transgenic T. hispida plants. This study provides a foundation for further elucidation of salt tolerance mechanisms involving ThSOSs in T. hispida.
Collapse
|
37
|
Meng X, Liu S, Dong T, Xu T, Ma D, Pan S, Li Z, Zhu M. Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of IbNAC7 Confers Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:572540. [PMID: 32973858 PMCID: PMC7481572 DOI: 10.3389/fpls.2020.572540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/14/2020] [Indexed: 05/04/2023]
Abstract
Salt stress is one of the major devastating factors affecting the growth and yield of almost all crops, including the crucial staple food crop sweet potato. To understand their molecular responses to salt stress, comparative transcriptome and proteome analysis of salt-tolerant cultivar Xushu 22 and salt-sensitive cultivar Xushu 32 were investigated. The results showed the two genotypes had distinct differences at the transcription level and translation level even without salt stress, while inconsistent expression between the transcriptome and proteome data was observed. A total of 16,396 differentially expressed genes (DEGs) and 727 differentially expressed proteins (DEPs) were identified. Wherein, 1,764 DEGs and 93 DEPs were specifically expressed in the tolerant genotype. Furthermore, the results revealed that the significantly upregulated genes were mainly related to the regulation of ion accumulation, stress signaling, transcriptional regulation, redox reactions, plant hormone signal transduction, and secondary metabolite accumulation, which may be involved in the response of sweet potato to salt stress and/or may determine the salt tolerance difference between the two genotypes. In addition, 1,618 differentially expressed regulatory genes were identified, including bZIP, bHLH, ERF, MYB, NAC, and WRKY. Strikingly, transgenic Arabidopsis overexpressing IbNAC7 displayed enhanced salt tolerance compared to WT plants, and higher catalase (CAT) activity, chlorophyll and proline contents, and lower malondialdehyde (MDA) content and reactive oxygen species (ROS) accumulation were detected in transgenic plants compared with that of WT under salt stress. Furthermore, RNA-seq and qRT-PCR analysis displayed that the expression of many stress-related genes was upregulated in transgenic plants. Collectively, these findings provide revealing insights into sweet potato molecular response to salt stress and underlie the complex salt tolerance mechanisms between genotypes, and IbNAC7 was shown as a promising candidate gene to enhance salt tolerance of sweet potato.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Tao Xu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Xuzhou Sweet Potato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, China
| | - Shenyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Zongyun Li, ; Mingku Zhu,
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Zongyun Li, ; Mingku Zhu,
| |
Collapse
|
38
|
Sun D, Zhang X, Zhang Q, Ji X, Jia Y, Wang H, Niu L, Zhang Y. Comparative transcriptome profiling uncovers a Lilium regale NAC transcription factor, LrNAC35, contributing to defence response against cucumber mosaic virus and tobacco mosaic virus. MOLECULAR PLANT PATHOLOGY 2019; 20:1662-1681. [PMID: 31560826 PMCID: PMC6859495 DOI: 10.1111/mpp.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cucumber mosaic virus (CMV) is a highly prevalent viral pathogen causing substantial damage to the bulb and cut-flower production of Lilium spp. Here, we performed an Illumina RNA sequencing (RNA-Seq) study on the leaf tissues of a virus-resistant species Lilium regale inoculated with mock control and CMV. A total of 1346 differentially expressed genes (DEGs) were identified in the leaves of L. regale upon CMV inoculation, which contained 34 up-regulated and 40 down-regulated DEGs that encode putative transcription factors (TFs). One up-regulated TF, LrNAC35, belonging to the NAM/ATAF/CUC (NAC) superfamily, was selected for further functional characterization. Aside from CMV, lily mottle virus and lily symptomless virus infections provoked a striking increase in LrNAC35 transcripts in both resistant and susceptible Lilium species. The treatments with low temperature and several stress-related hormones activated LrNAC35 expression, contrary to its reduced expression under salt stress. Ectopic overexpression of LrNAC35 in petunia (Petunia hybrida) resulted in reduced susceptibility to CMV and Tobacco mosaic virus infections, and enhanced accumulation of lignin in the cell walls. Four lignin biosynthetic genes, including PhC4H, Ph4CL, PhHCT and PhCCR, were found to be up-regulated in CMV-infected petunia lines overexpressing LrNAC35. In vivo promoter-binding tests showed that LrNAC35 specifically regulated the expression of Ph4CL. Taken together, our results suggest a positive role of transcriptome-derived LrNAC35 in transcriptional modulation of host defence against viral attack.
Collapse
Affiliation(s)
- Daoyang Sun
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xinguo Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Qingyu Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Xiaotong Ji
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yong Jia
- State Agricultural Biotechnology Centre, School of Veterinary and Life SciencesMurdoch UniversityPerth6150Australia
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Lixin Niu
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| | - Yanlong Zhang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYangling712100China
| |
Collapse
|
39
|
Liu W, Zhao BG, Chao Q, Wang B, Zhang Q, Zhang C, Li S, Jin F, Yang D, Li X. Function analysis of ZmNAC33, a positive regulator in drought stress response in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:174-183. [PMID: 31704591 DOI: 10.1016/j.plaphy.2019.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/27/2023]
Abstract
Drought significantly affects plant growth and has devastating effects on crop production, NAC transcription factors respond to abiotic stresses by activating gene expression. In this study, a maize NAC transcription factor, ZmNAC33, was cloned and characterized its function in Arabidopsis. Transient transformation in Arabidopsis leaves mesophyll protoplasts and trans-activation assays in yeast showed that ZmNAC33 was localized in the nucleus and had transactivation activity. qRT-PCR analysis showed that ZmNAC33 in maize was induced by drought, high salinity and abscisic acid (ABA) stress. Promoter analysis identified multiple stress-related cis-acting elements in the promoter region of ZmNAC33. In ZmNAC33 transgenic Arabidopsis, germination rates were higher than in wild type plants under ABA and osmotic stress at the germination stage, and overexpression lines exhibited higher survival rates and higher antioxidant enzyme activities compared with wild type under drought stress. These results indicate that ZmNAC33 actes as a positive regulator in drought tolerance in plants.
Collapse
Affiliation(s)
- Wenping Liu
- Agronomy College of Northeast Agricultural University, Harbin, 150030, Heilongjiang, China; Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Biligen-Gaowa Zhao
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Baichen Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qian Zhang
- Agronomy College of Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chunxiao Zhang
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Shufang Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Fengxue Jin
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Deguang Yang
- Agronomy College of Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiaohui Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China.
| |
Collapse
|
40
|
Wang J, Ye Y, Xu M, Feng L, Xu LA. Roles of the SPL gene family and miR156 in the salt stress responses of tamarisk (Tamarix chinensis). BMC PLANT BIOLOGY 2019; 19:370. [PMID: 31438851 PMCID: PMC6704519 DOI: 10.1186/s12870-019-1977-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Accumulating evidences show that SPLs are crucial regulators of plant abiotic stress tolerance and the highly conserved module miR156/SPL appears to balance plant growth and stress responses. The halophyte Tamarix chinensis is highly resistant to salt tress. SPLs of T. chinensis (TcSPLs) and theirs roles in salt stress responses remain elusive. RESULTS In this study, we conducted a systematic analysis of the TcSPLs gene family including 12 members belonging to 7 groups. The physicochemical properties and conserved motifs showed divergence among groups and similarity in each group. The microRNA response elements (MREs) are conserved in location and sequence, with the exception of first MRE within TcSPL5. The miR156-targeted SPLs are identified by dual-luciferase reporter assay of MRE-miR156 interaction. The digital expression gene profiles cluster suggested potential different functions of miR156-targeted SPLs vs non-targeted SPLs in response to salt stress. The expression patterns analysis of miR156-targeted SPLs with a reverse expression trend to TcmiR156 suggested 1 h (salt stress time) could be a critical time point of post-transcription regulation in salt stress responses. CONCLUSIONS Our work demonstrated the post-transcription regulation of miR156-targeted TcSPLs and transcription regulation of non-targeted TcSPLs in salt stress responses, and would be helpful to expound the miR156/SPL-mediated molecular mechanisms underlying T. chinensis salt stress tolerance.
Collapse
Affiliation(s)
- Jianwen Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Youju Ye
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Meng Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Liguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Li-an Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
41
|
Expression Analysis of the NAC Transcription Factor Family of Populus in Response to Salt Stress. FORESTS 2019. [DOI: 10.3390/f10080688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Sequence phylogeny, genome organisation, gene structure, conserved motifs, promoter cis-element and expression profiling of poplar NACs related to salt stress were detected. In addition, expression of two salt-induced NACs was analysed. Background and Objectives: NAC transcription factor (TF) proteins are involved in a wide range of functions during plant development and stress-related endurance processes. To understand the function of Populus NAC TFs in salt stress tolerance, we characterised the structure and expression profile of a total of 289 NAC members. Materials and Methods: Sequence phylogeny, genome organisation, gene structure, motif composition and promoter cis-element were detected using bioinformatics. The expression pattern of Populus NAC TFs under salt stress was also detected using RNA-Seq and RT-qPCR. Results: Synteny analysis showed that 46 and 37 Populus NAC genes were involved in whole-genome duplication and tandem duplication events, respectively. The expression pattern of Populus NAC TFs under salt stress showed the expression of the 289 PtNACs of 84K poplar was induced. Similar expression trends of NACs were found in Populus simonii × P. nigra T. S. Hwang et Liang and Arabidopsis thaliana (L.) Heynh. Conclusions: The correlation analysis showed that the expression of two differentially expressed NAC genes PtNAC024 and PtNAC182 was significantly associated with most of the 63 differentially expressed genes tested. The expression of PtNAC024 and PtNAC182 in different tissues was also analysed in silico and different expression patterns were found. Together, this study provides a solid basis to explore stress-related NAC TF functions in Populus salt tolerance and development.
Collapse
|
42
|
He Z, Li Z, Lu H, Huo L, Wang Z, Wang Y, Ji X. The NAC Protein from Tamarix hispida, ThNAC7, Confers Salt and Osmotic Stress Tolerance by Increasing Reactive Oxygen Species Scavenging Capability. PLANTS 2019; 8:plants8070221. [PMID: 31336966 PMCID: PMC6681344 DOI: 10.3390/plants8070221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/02/2023]
Abstract
Plant specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) play important roles in response to abiotic stress. In this study, we identified and characterized a NAC protein, ThNAC7, from Tamarix hispida. ThNAC7 is a nuclear localized protein and has transcriptional activation activity. ThNAC7 expression was markedly induced by salt and osmotic stresses. Transiently transformed T. hispida seedlings overexpressing ThNAC7 (OE) or with RNA interference (RNAi) silenced ThNAC7 were generated to investigate abiotic stress tolerance via the gain- and loss- of function. Overexpressing ThNAC7 showed an increased reactive oxygen species (ROS) scavenging capabilities and proline content, which was accomplished by enhancing the activities of superoxide dismutase (SOD) and peroxidase (POD) in transiently transformed T. hispida and stably transformed Arabidopsis plants. Additionally, ThNAC7 activated these physiological changes by regulating the transcription level of P5CS, SOD and PODgenes. RNA-sequencing (RNA-seq) comparison between wild-type and ThNAC7-transformed Arabidopsis showed that more than 40 known salt tolerance genes might regulated by ThNAC7, including stress tolerance-related genes and TF genes. The results indicated that ThNAC7 induces the transcription level of genes associated with stress tolerance to enhance salt and osmotic stress tolerance via an increase in osmotic potential and enhanced ROS scavenging.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Ziyi Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Huijun Lu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Lin Huo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Xiaoyu Ji
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China.
| |
Collapse
|
43
|
Guan H, Liu X, Niu F, Zhao Q, Fan N, Cao D, Meng D, He W, Guo B, Wei Y, Fu Y. OoNAC72, a NAC-Type Oxytropis ochrocephala Transcription Factor, Conferring Enhanced Drought and Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:890. [PMID: 31354764 PMCID: PMC6637385 DOI: 10.3389/fpls.2019.00890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/21/2019] [Indexed: 05/23/2023]
Abstract
The NAC proteins form one of the largest families of plant-specific transcription factors (TFs) and play essential roles in developmental processes and stress responses. In this study, we characterized a NAC domain transcription factor, OoNAC72, from a legume Oxytropis ochrocephala. OoNAC72 was proved to be localized in the nuclei in tobacco lower epidermal cells and had transcriptional activation activity in yeast, confirming its transcription activity. OoNAC72 expression could be induced by drought, salinity and exogenous abscisic acid (ABA) in O. ochrocephala seedlings. Furthermore, over-expression of OoNAC72 driven by CaMV35S promoter in Arabidopsis resulted in ABA hypersensitivity and enhanced tolerance to drought and salt stresses during seed germination and post-germinative growth periods. In addition, over-expression of OoNAC72 enhanced the expression of stress-responsive genes such as RD29A, RD29B, RD26, LEA14, ANACOR19, ZAT10, PP2CA, and NCED3. These results highlight the important regulatory role of OoNAC72 in multiple abiotic stress tolerance, and may provide an underlying reason for the spread of O. ochrocephala.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yahui Wei
- Department of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Yanping Fu
- Department of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| |
Collapse
|
44
|
Yong Y, Zhang Y, Lyu Y. A Stress-Responsive NAC Transcription Factor from Tiger Lily (LlNAC2) Interacts with LlDREB1 and LlZHFD4 and Enhances Various Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2019; 20:ijms20133225. [PMID: 31262062 PMCID: PMC6651202 DOI: 10.3390/ijms20133225] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
Our previous studies have indicated that a partial NAC domain protein gene is strongly up-regulated by cold stress (4 °C) in tiger lily (Lilium lancifolium). In this study, we cloned the full-length of this NAC gene, LlNAC2, to further investigate the function of LlNAC2 in response to various abiotic stresses and the possible involvement in stress tolerance of the tiger lily plant. LlNAC2 was noticeably induced by cold, drought, salt stresses, and abscisic acid (ABA) treatment. Promoter analysis showed that various stress-related cis-acting regulatory elements were located in the promoter of LlNAC2; and the promoter was sufficient to enhance activity of GUS protein under cold, salt stresses and ABA treatment. DREB1 (dehydration-responsive binding protein1) from tiger lily (LlDREB1) was proved to be able to bind to the promoter of LlNAC2 by yeast one-hybrid (Y1H) assay. LlNAC2 was shown to physically interact with LlDREB1 and zinc finger-homeodomain ZFHD4 from the tiger lily (LlZFHD4) by bimolecular fluorescence complementation (BiFC) assay. Overexpressing LlNAC2 in Arabidopsis thaliana showed ABA hypersensitivity and enhanced tolerance to cold, drought, and salt stresses. These findings indicated LlNAC2 is involved in both DREB/CBF-COR and ABA signaling pathways to regulate stress tolerance of the tiger lily.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
45
|
Chai WW, Wang WY, Ma Q, Yin HJ, Hepworth SR, Wang SM. Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:670-683. [PMID: 31064640 DOI: 10.1071/fp18295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Most studies on salt tolerance in plants have been conducted using glycophytes like Arabidopsis thaliana (L.) Heynh., with limited resistance to salinity. The xerohalophyte Zygophyllum xanthoxylum (Bunge) Engl. is a salt-accumulating desert plant that efficiently transports Na+ into vacuoles to manage salt and exhibits increased growth under salinity conditions, suggesting a unique transcriptional response compared with glycophytes. We used transcriptome profiling by RNA-seq to compare gene expression in roots of Z. xanthoxylum and A. thaliana under 50 mM NaCl treatments. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis suggested that 50 mM NaCl was perceived as a stimulus for Z. xanthoxylum whereas a stress for A. thaliana. Exposure to 50 mM NaCl caused metabolic shifts towards gluconeogenesis to stimulate growth of Z. xanthoxylum, but triggered defensive systems in A. thaliana. Compared with A. thaliana, a vast array of ion transporter genes was induced in Z. xanthoxylum, revealing an active strategy to uptake Na+ and nutrients from the environment. An ascorbate-glutathione scavenging system for reactive oxygen species was also crucial in Z. xanthoxylum, based on high expression of key enzyme genes. Finally, key regulatory genes for the biosynthesis pathways of abscisic acid and gibberellin showed distinct expression patterns between the two species and auxin response genes were more active in Z. xanthoxylum compared with A. thaliana. Our results provide an important framework for understanding unique patterns of gene expression conferring salt resistance in Z. xanthoxylum.
Collapse
Affiliation(s)
- Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Corresponding author.
| |
Collapse
|
46
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
47
|
Gong X, Zhao L, Song X, Lin Z, Gu B, Yan J, Zhang S, Tao S, Huang X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2019; 19:161. [PMID: 31023218 PMCID: PMC6485137 DOI: 10.1186/s12870-019-1760-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Although the genome of Chinese white pear ('Dangshansuli') has been released, little is known about the functions, evolutionary history and expression patterns of NAC families in this species to date. RESULTS In this study, we identified a total of 183 NAC transcription factors (TFs) in the pear genome, among which 146 pear NAC (PbNAC) members were mapped onto 16 chromosomes, and 37 PbNAC genes were located on scaffold contigs. No PbNAC genes were mapped to chromosome 2. Based on gene structure, protein motif analysis, and topology of the phylogenetic tree, the pear PbNAC family was classified into 33 groups. By comparing and analyzing the unique NAC subgroups in Rosaceae, we identified 19 NAC subgroups specific to pear. We also found that whole-genome duplication (WGD)/segmental duplication played critical roles in the expansion of the NAC family in pear, such as the 83 PbNAC duplicated gene pairs dated back to the two WGD events. Further, we found that purifying selection was the primary force driving the evolution of PbNAC family genes. Next, we used transcriptomic data to study responses to drought and cold stresses in pear, and we found that genes in groups C2f, C72b, and C100a were related to drought and cold stress response. CONCLUSIONS Through the phylogenetic, evolutionary, and expression analyses of the NAC gene family in Chinese white pear, we indentified 11 PbNAC TFs associated with abiotic stress in pear.
Collapse
Affiliation(s)
- Xin Gong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liangyi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaofei Song
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zekun Lin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bingjie Gu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinxuan Yan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
48
|
Feasible production of biomass and natural antioxidants through callus cultures in response to varying light intensities in olive (Olea europaea. L) cult. Arbosana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:140-147. [DOI: 10.1016/j.jphotobiol.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 03/02/2019] [Indexed: 01/06/2023]
|
49
|
Wu J, Jin Y, Liu C, Vonapartis E, Liang J, Wu W, Gazzarrini S, He J, Yi M. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1221-1237. [PMID: 30517656 PMCID: PMC6382327 DOI: 10.1093/jxb/ery428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Yujie Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Chen Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Eliana Vonapartis
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Wenjing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
- Correspondence: or
| |
Collapse
|
50
|
Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:546-553. [PMID: 30447941 DOI: 10.1016/j.plaphy.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 05/07/2023]
Abstract
Pearl millet (Pennisetum glaucum) is the sixth-leading cereal crop and a staple food crop. It is known for its high tolerance to abiotic stress and good nutrient profile. NAC (NAM, ATAF1/2 and CUC) transcription factors (TFs) play an important role in abiotic stress tolerance. In our study, the pearl millet stress-responsive NAC TF gene PgNAC21 was characterized. Gene expression analysis revealed that PgNAC21 expression is induced by salinity stress and abscisic acid (ABA) treatment. In silico promoter analysis showed the presence of ABA response elements (ABREs) and MYB TF binding sites. A yeast one-hybrid assay indicated that a putative MYB TF in pearl millet, PgMYB1, binds to the promoter of PgNAC21. A transactivation assay in yeast cells revealed that PgNAC21 functions as a transcription activator and that its activation domain is located in its C-terminus. Relative to control plants, Arabidopsis plants overexpressing PgNAC21 exhibited better seed germination, heavier fresh weight and greater root length under salinity stress. Overexpression of PgNAC21 in Arabidopsis plants also enhanced the expression of stress-responsive genes such as GSTF6 (GLUTATHIONE S-TRANSFERASE 6), COR47 (COLD-REGULATED 47) and RD20 (RESPONSIVE TO DEHYDRATION 20). Our data demonstrate that PgNAC21 functions as a stress-responsive NAC TF and can be utilized in transgenic approaches for developing salinity stress tolerance in crop plants.
Collapse
Affiliation(s)
- Harshraj Shinde
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Ambika Dudhate
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan.
| | - Shashi K Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana State, India.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin'an, Hangzhou, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|