1
|
Romero-Losada AB, Arvanitidou C, García-Gómez ME, Morales-Pineda M, Castro-Pérez MJ, Chew YP, van Ooijen G, García-González M, Romero-Campero FJ. Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton. THE PLANT CELL 2025; 37:koaf033. [PMID: 39932939 DOI: 10.1093/plcell/koaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Earth's tilted rotation and translation around the Sun produce pervasive rhythms on our planet, giving rise to photoperiodic changes in diel cycles. Although marine phytoplankton plays a key role in ecosystems, multiomics analysis of its responses to these periodic environmental signals remains largely unexplored. The marine picoalga Ostreococcus tauri was chosen as a model organism due to its cellular and genomic simplicity. Ostreococcus was subjected to different light regimes to investigate its responses to periodic environmental signals: long summer days, short winter days, constant light, and constant dark conditions. Although <5% of the transcriptome maintained oscillations under both constant conditions, 80% presented diel rhythmicity. A drastic reduction in diel rhythmicity was observed at the proteome level, with 39% of the detected proteins oscillating. Photoperiod-specific rhythms were identified for key physiological processes such as the cell cycle, photosynthesis, carotenoid biosynthesis, starch accumulation, and nitrate assimilation. In this study, a photoperiodic plastic global orchestration among transcriptome, proteome, and physiological dynamics was characterized to identify photoperiod-specific temporal offsets between the timing of transcripts, proteins, and physiological responses.
Collapse
Affiliation(s)
- Ana B Romero-Losada
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| | - Christina Arvanitidou
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| | - M Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - María Morales-Pineda
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - M José Castro-Pérez
- Institute for Biomedicine in Seville, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Manuel Siurot s/n, Seville 41012, Spain
| | - Yen Peng Chew
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Mercedes García-González
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Francisco J Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Av. Américo Vespucio 49, Seville 41092, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain
| |
Collapse
|
2
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Panahi B, Khalilpour Shadbad R. Navigating the microalgal maze: a comprehensive review of recent advances and future perspectives in biological networks. PLANTA 2024; 260:114. [PMID: 39367989 DOI: 10.1007/s00425-024-04543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
MAIN CONCLUSION PPI analysis deepens our knowledge in critical processes like carbon fixation and nutrient sensing. Moreover, signaling networks, including pathways like MAPK/ERK and TOR, provide valuable information in how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. This review examines recent advancements in the study of biological networks within microalgae, with a focus on the intricate interactions that define these organisms. It emphasizes how network biology, an interdisciplinary field, offers valuable insights into microalgae functions through various methodologies. Crucial approaches, such as protein-protein interaction (PPI) mapping utilizing yeast two-hybrid screening and mass spectrometry, are essential for comprehending cellular processes and optimizing functions, such as photosynthesis and fatty acid biosynthesis. The application of advanced computational methods and information mining has significantly improved PPI analysis, revealing networks involved in critical processes like carbon fixation and nutrient sensing. The review also encompasses transcriptional networks, which play a role in gene regulation and stress responses, as well as metabolic networks represented by genome-scale metabolic models (GEMs), which aid in strain optimization and the prediction of metabolic outcomes. Furthermore, signaling networks, including pathways like MAPK/ERK and TOR, are crucial for understanding how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. The integration of these network biology approaches has deepened our understanding of microalgal interactions, paving the way for more efficient cultivation and new industrial applications.
Collapse
Affiliation(s)
- Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, 5156915-598, Iran.
| | - Robab Khalilpour Shadbad
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
5
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
6
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
7
|
Da L, Li J, Zhao F, Liu H, Shi P, Shi S, Zhang X, Yang J, Zhang H. RoseAP: an analytical platform for gene function of Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2023; 14:1197119. [PMID: 37457357 PMCID: PMC10348015 DOI: 10.3389/fpls.2023.1197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Rosa rugosa, a perennial shrub belonging to family Rosaceae, is a well-known ornamental plant. Its petals contain an abundance of essential oils and anthocyanins with enormous economic and health benefits when used as edible or cosmetic ingredients. The whole genome of R. rugosa was sequenced in 2021, which provided opportunities and challenges for gene regulation. However, many gene functions remain unknown. Therefore, an analytical platform named RoseAP (http://www.gzybioinformatics.cn/RoseAP/index.php) for the functional analysis of R. rugosa genes was constructed. It improved the gene annotation rate by integrating and analyzing genomic and transcriptomic datasets. First, 38,815 genes, covering 97.76% of the coding genes, were annotated functionally and structurally using a variety of algorithms and rules. Second, a total of 33 transcriptome samples were integrated, including 23 samples from our lab and 10 samples from the SRA database. A co-expression network containing approximately 29,657 positive or negative gene pairs, covering 74.7% of the coding genes, was constructed based on PCC and MR algorithms. Network analysis revealed that the DFR function was closely related to anthocyanin metabolism. It demonstrated the reliability of the network. Several SAUR genes of R. rugosa shared similar expression patterns. RoseAP was used to determine the sequence, structure, functional annotation, expression profile, regulatory network, and functional modules at the transcriptional and protein levels by inputting gene IDs. In addition, auxiliary analytical tools, including BLAST, gene set enrichment, orthologue conversion, gene sequence extraction, gene expression value extraction, and JBrowse, were utilized. Regular updates to RoseAP are expected to facilitate mining of gene function and promote genetic improvement in R. rugosa.
Collapse
Affiliation(s)
- Lingling Da
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiande Li
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Fan Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Huilin Liu
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Pengxia Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Shaoming Shi
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Xinxin Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
8
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
10
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
11
|
Rinsky M, Weizman E, Ben-Asher HW, Eyal G, Zhu B, Levy O. Temporal gene expression patterns in the coral Euphyllia paradivisa reveal the complexity of biological clocks in the cnidarian-algal symbiosis. SCIENCE ADVANCES 2022; 8:eabo6467. [PMID: 36112690 PMCID: PMC9481131 DOI: 10.1126/sciadv.abo6467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/02/2022] [Indexed: 05/25/2023]
Abstract
Studying chronobiology in reef-building corals is challenging due to the tightly coupled symbiosis with their photosynthetic algae, Symbiodiniaceae. Although symbiosis requires metabolic synchronization and coordination of cellular processes in the holobiont, the cross-talk between the host and symbiont's clocks is still puzzling. Here, we use the mesophotic coral Euphyllia paradivisa to examine temporal gene expression patterns in symbiotic and aposymbiotic morphs exposed to natural light/dark cycles and constant darkness. Our comparative transcriptomic analyses revealed circadian and circatidal cycles of gene expression with a predominant diel pattern in both coral morphs. We found a substantial number of transcripts consistently rhythmic under both light conditions, including genes likely involved in the cnidarians' circadian clock, thus indicating that an endogenous clock, which can oscillate independently from the Symbiodiniaceae clock, exists in E. paradivisa. The analysis further manifests the remarkable impacts of symbiosis on transcriptional rhythms and implies that the algae's presence influences the host's biorhythm.
Collapse
Affiliation(s)
- Mieka Rinsky
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eviatar Weizman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Hiba Waldman Ben-Asher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gal Eyal
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland St. Lucia, Queensland 4072, Australia
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
12
|
Bilcke G, Osuna-Cruz CM, Santana Silva M, Poulsen N, D'hondt S, Bulankova P, Vyverman W, De Veylder L, Vandepoele K. Diurnal transcript profiling of the diatom Seminavis robusta reveals adaptations to a benthic lifestyle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:315-336. [PMID: 33901335 DOI: 10.1111/tpj.15291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Coastal regions contribute an estimated 20% of annual gross primary production in the oceans, despite occupying only 0.03% of their surface area. Diatoms frequently dominate coastal sediments, where they experience large variations in light regime resulting from the interplay of diurnal and tidal cycles. Here, we report on an extensive diurnal transcript profiling experiment of the motile benthic diatom Seminavis robusta. Nearly 90% (23 328) of expressed protein-coding genes and 66.9% (1124) of expressed long intergenic non-coding RNAs showed significant expression oscillations and are predominantly phasing at night with a periodicity of 24 h. Phylostratigraphic analysis found that rhythmic genes are enriched in highly conserved genes, while diatom-specific genes are predominantly associated with midnight expression. Integration of genetic and physiological cell cycle markers with silica depletion data revealed potential new silica cell wall-associated gene families specific to diatoms. Additionally, we observed 1752 genes with a remarkable semidiurnal (12-h) periodicity, while the expansion of putative circadian transcription factors may reflect adaptations to cope with highly unpredictable external conditions. Taken together, our results provide new insights into the adaptations of diatoms to the benthic environment and serve as a valuable resource for the study of diurnal regulation in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| | - Marta Santana Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, Dresden, 01307, Germany
| | - Sofie D'hondt
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Wim Vyverman
- Department of Biology, Protistology and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
13
|
Michael TP, Ernst E, Hartwick N, Chu P, Bryant D, Gilbert S, Ortleb S, Baggs EL, Sree KS, Appenroth KJ, Fuchs J, Jupe F, Sandoval JP, Krasileva KV, Borisjuk L, Mockler TC, Ecker JR, Martienssen RA, Lam E. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Res 2021; 31:225-238. [PMID: 33361111 PMCID: PMC7849404 DOI: 10.1101/gr.266429.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Collapse
Affiliation(s)
- Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Douglas Bryant
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Erin L Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
| | | | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Florian Jupe
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Justin P Sandoval
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ljudmylla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
14
|
Torres S, Lama C, Mantecón L, Flemetakis E, Infante C. Selection and validation of reference genes for quantitative real-time PCR in the green microalgae Tetraselmis chui. PLoS One 2021; 16:e0245495. [PMID: 33444403 PMCID: PMC7808622 DOI: 10.1371/journal.pone.0245495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Quantitative real-time reverse transcription PCR (RT-qPCR) is a highly sensitive technique that can be applied to analyze how genes are modulated by culture conditions, but identification of appropriate reference genes for normalization is a critical factor to be considered. For this reason, the expression stability of 18 candidate reference genes was evaluated for the green microalgae Tetraselmis chui using the widely employed algorithms geNorm, NormFinder, BestKeeper, the comparative ΔCT method, and RefFinder. Microalgae samples were collected from large scale outdoor photobioreactors during the growing phase (OUT_GP), and during the semi-continuous phase at different times of the day (OUT_DC). Samples from standard indoor cultures under highly controlled conditions (IND) were also collected to complement the other data. Different rankings for the candidate reference genes were obtained depending on the culture conditions and the algorithm employed. After comparison of the achieved ranks with the different methods, the references genes selected for samples from specific culture conditions were ALD and EFL in OUT_GP, RPL32 and UBCE in OUT_DC, and cdkA and UBCE in IND. Moreover, the genes EFL and cdkA or EFL and UBCE appeared as appropriate combinations for pools generated from all samples (ALL). Examination in the OUT_DC cultures of genes encoding the large and small subunits of ADP-glucose pyrophosphorylase (AGPL and AGPS, respectively) confirmed the reliability of the identified reference genes, RPL32 and UBCE. The present study represents a useful contribution for studies of gene expression in T. chui, and also represents the first step to set-up an RT-qPCR platform for quality control of T. chui biomass production in industrial facilities.
Collapse
Affiliation(s)
- Sonia Torres
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Carmen Lama
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
15
|
Farré EM. The brown clock: circadian rhythms in stramenopiles. PHYSIOLOGIA PLANTARUM 2020; 169:430-441. [PMID: 32274814 DOI: 10.1111/ppl.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Circadian clocks allow organisms to anticipate environmental changes associated with the diurnal light/dark cycle. Circadian oscillators have been described in plants and green algae, cyanobacteria, animals and fungi, however, little is known about the circadian clocks of photosynthetic eukaryotes outside the green lineage. Stramenopiles are a diverse group of secondary endosymbionts whose plastid originated from a red alga. Photosynthetic stramenopiles, which include diatoms and brown algae, play key roles in biogeochemical cycles and are important components of marine ecosystems. Genome annotation efforts indicated the presence of a novel type of oscillator in these organisms and the first circadian clock component in a stramenopile has been recently discovered. This review summarizes the phenotypic characterization of circadian rhythms in stramenopiles and current efforts to determine the mechanisms of this 'brown clock'. The elucidation of this brown clock will enable a deeper understanding of the role of self-sustained oscillations in the adaptation to life in marine environments.
Collapse
Affiliation(s)
- Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Regulation of Multiple Fission and Cell-Cycle-Dependent Gene Expression by CDKA1 and the Rb-E2F Pathway in Chlamydomonas. Curr Biol 2020; 30:1855-1865.e4. [PMID: 32243861 DOI: 10.1016/j.cub.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
The green alga Chlamydomonas proliferates by "multiple fission": a long G1 with >10-fold cell growth followed by multiple rapid divisions. Cells above a critical size threshold are "committed" and will divide independent of light and further cell growth. The number of divisions carried out depends on the initial size of the committed mother cell. Here, I show that CDKA1, the ortholog of the yeast and animal mitotic inducer CDK1, regulates the critical size for commitment. The Rb/E2F/Dp1 pathway regulates division number as well as commitment size. Epistasis analysis indicated that CDKA1 and Rb/E2F/Dp1 regulate multiple fission by distinct mechanisms. Rb-E2F/Dp1 regulates G1/S gene expression in animals and land plants. Transcriptome analysis showed that mat3 or dp1 disruption altered regulation of a large group of cell-division-associated genes with respect to cell size, but not with respect to synchronization timing. In contrast, cdka1 inactivation disturbed both temporal and cell-size regulation of expression. These defects were enhanced by double inactivation of cdka1 and dp1, suggesting interaction between CDKA1 and the Rb-E2F/Dp1 pathways in regulating cell-cycle-specific gene expression and cell-cycle initiation. In the context of a theoretical model for regulation of Chlamydomonas multiple fission, these results suggest that CDKA1 may promote a switch into a division-competent state, and E2F/Dp1 may promote maintenance of this state.
Collapse
|
17
|
Ng JWX, Tan QW, Ferrari C, Mutwil M. Diurnal.plant.tools: Comparative Transcriptomic and Co-expression Analyses of Diurnal Gene Expression of the Archaeplastida Kingdom. PLANT & CELL PHYSIOLOGY 2020; 61:212-220. [PMID: 31501868 DOI: 10.1093/pcp/pcz176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Almost all organisms coordinate some aspects of their biology through the diurnal cycle. Photosynthetic organisms, and plants especially, have established complex programs that coordinate physiological, metabolic and developmental processes with the changing light. The diurnal regulation of the underlying transcriptional processes is observed when groups of functionally related genes (gene modules) are expressed at a specific time of the day. However, studying the diurnal regulation of these gene modules in the plant kingdom was hampered by the large amount of data required for the analyses. To meet this need, we used gene expression data from 17 diurnal studies spanning the whole Archaeplastida kingdom (Plantae kingdom in the broad sense) to make an online diurnal database. We have equipped the database with tools that allow user-friendly cross-species comparisons of gene expression profiles, entire co-expression networks, co-expressed clusters (involved in specific biological processes), time-specific gene expression and others. We exemplify how these tools can be used by studying three important biological questions: (i) the evolution of cell division, (ii) the diurnal control of gene modules in algae and (iii) the conservation of diurnally controlled modules across species. The database is freely available at http://diurnal.plant.tools.
Collapse
Affiliation(s)
- Jonathan Wei Xiong Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
18
|
Rao X, Dixon RA. Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai) 2019; 51:981-988. [PMID: 31436787 DOI: 10.1093/abbs/gmz080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022] Open
Abstract
Co-expression network analysis is one of the most powerful approaches for interpretation of large transcriptomic datasets. It enables characterization of modules of co-expressed genes that may share biological functional linkages. Such networks provide an initial way to explore functional associations from gene expression profiling and can be applied to various aspects of plant biology. This review presents the applications of co-expression network analysis in plant biology and addresses optimized strategies from the recent literature for performing co-expression analysis on plant biological systems. Additionally, we describe the combined interpretation of co-expression analysis with other genomic data to enhance the generation of biologically relevant information.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
19
|
Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME JOURNAL 2019; 13:2817-2833. [PMID: 31320727 PMCID: PMC6794264 DOI: 10.1038/s41396-019-0472-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 01/06/2023]
Abstract
Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.
Collapse
|
20
|
Åsman AKM, Curtis BA, Archibald JM. Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Genome Biol Evol 2019; 11:1117-1134. [PMID: 30949682 PMCID: PMC6461891 DOI: 10.1093/gbe/evz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
The regulation of gene expression and RNA maturation underlies fundamental processes such as cell homeostasis, development, and stress acclimation. The biogenesis and modification of RNA is tightly controlled by an array of regulatory RNAs and nucleic acid-binding proteins. While the role of small RNAs (sRNAs) in gene expression has been studied in-depth in select model organisms, little is known about sRNA biology across the eukaryotic tree of life. We used deep sequencing to explore the repertoires of sRNAs encoded by the miniaturized, endosymbiotically derived “nucleomorph” genomes of two single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. A total of 32.3 and 35.3 million reads were generated from G. theta and B. natans, respectively. In G. theta, we identified nucleomorph U1, U2, and U4 spliceosomal small nuclear RNAs (snRNAs) as well as 11 C/D box small nucleolar RNAs (snoRNAs), five of which have potential plant and animal homologs. The snoRNAs are predicted to perform 2′-O methylation of rRNA (but not snRNA). In B. natans, we found the previously undetected 5S rRNA as well as six orphan sRNAs. Analysis of chlorarachniophyte snRNAs shed light on the removal of the miniature 18–21 nt introns found in B. natans nucleomorph genes. Neither of the nucleomorph genomes appears to encode RNA pseudouridylation machinery, and U5 snRNA cannot be found in the cryptophyte G. theta. Considering the central roles of U5 snRNA and RNA modifications in other organisms, cytoplasm-to-nucleomorph RNA shuttling in cryptophyte algae is a distinct possibility.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada.,Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
21
|
Ferrari C, Proost S, Janowski M, Becker J, Nikoloski Z, Bhattacharya D, Price D, Tohge T, Bar-Even A, Fernie A, Stitt M, Mutwil M. Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nat Commun 2019; 10:737. [PMID: 30760717 PMCID: PMC6374488 DOI: 10.1038/s41467-019-08703-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marcin Janowski
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
| | - Zoran Nikoloski
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Dana Price
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Takayuki Tohge
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Arren Bar-Even
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Alisdair Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mark Stitt
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|