1
|
Wang C, Wu K, Pang N, Zhao H, Liu S, Zhang X, Xiao Y, Fang Z, Liu J. Transcriptome analysis reveals the mechanism of tolerance to copper toxicity in the white rot fungus Trametes hirsuta AH28-2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118194. [PMID: 40239546 DOI: 10.1016/j.ecoenv.2025.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Heavy metals, such as copper (Cu), are prevalent in the environment and pose a substantial threat to human health. White rot fungi, especially Trametes spp., display prominent Cu tolerance and removal capacity. However, how Trametes responds to environmental Cu stress remains poorly understood. Here, we found that Trametes hirsuta AH28-2 exhibits Cu removal efficiencies varying from 80.8 % at 1.25 mg/L to 57.6 % at 37 mg/L. Comparative transcriptome analysis identified 812, 1898, and 2110 differentially expressed genes (DEGs) at the Cu concentrations of 1.25, 12.5, and 25 mg/L, respectively. Some DEGs were associated with antioxidant defense systems, secondary metabolite biosynthesis (terpenoids and polyketides), transmembrane transport, and glutathione metabolism, potentially enhancing Cu tolerance. The activities of antioxidant enzymes such as superoxide dismutase, catalase, and laccase were increased under Cu stress. qRT-PCR confirmed the alterations in gene expression and demonstrated that glutathione S-transferases, catalases, cytochrome P450s, and laccases were involved in counteracting Cu-induced stress. Gene silencing experiments further confirmed the crucial roles of laccases in this process. Many transcription factors were enriched under Cu stress, including the Zn2Cys6 family transcription factor GME8421_g (TH8421), which was significantly upregulated at the Cu concentration of 12.5 mg/L. ChIP-seq identified five antioxidant enzyme-encoding genes as direct targets of TH8421, forming a regulatory network that protects against Cu stress. These findings offer insights into the molecular mechanisms driving Cu toxicity tolerance in Trametes fungi.
Collapse
Affiliation(s)
- Chenkai Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Kun Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Na Pang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Huifang Zhao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xinlei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Wei S, Moriuchi R, Wiyono CDAP, Inoue C, Chien MF. Unraveling tissue-specific molecular mechanisms orchestrating arsenic response processes in Pteris vittata through transcriptomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118059. [PMID: 40121942 DOI: 10.1016/j.ecoenv.2025.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Pteris vittata remediates arsenic (As)-contaminated soils; however, the molecular mechanisms underlying the As management remain largely unknown. Therefore, in this study, we investigated As - related processes by conducting transcriptomic analysis on hydroponically grown P. vittata exposed to 500 ppb arsenate (AsV). Within 24 h, As was translocated to fronds, while As concentration among fronds differed (4.08-1323.35 µg/g-DW). Transcriptomic profiling of roots and fronds with high (PHAs) and low (PLAs) As concentrations revealed distinct As transport mechanisms. In the roots, the induction of PvPht1;3 and one PHO1 genes suggested the facilitation of AsV absorption, while ACR3 and POT genes were induced in both the roots and fronds. Notably, NRT2.5, NIP6;1, BOR2, and ABC transporter genes were specifically activated in PHAs, highlighting their potential roles in As hyperaccumulation. To our knowledge, this is the first report linking PHO1, POT, NRT2.5, NIP6;1, and BOR2 to As accumulation in P. vittata. Gene ontology enrichment analysis further emphasized a tissue-specific As response system. In the roots, differentially expressed genes (DEGs) associated with the activation of glutathione metabolic process, cell wall biogenesis, antioxidant response, and signal transduction pathways enabled a prompt response to As-derived stimuli, facilitating efficient As uptake and transport. In the fronds, DEGs related to cell wall modification, oxidative stress response, signal transduction, and active transport systems may contribute to As detoxification and hyperaccumulation. This study provides novel insights into the molecular basis of As uptake, transport, accumulation, and detoxification in P. vittata, providing valuable strategies for efficient phytoextraction via regulation of As metabolism.
Collapse
Affiliation(s)
- Shujun Wei
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; CAS Center for Excellence in Molecular Plant Sciences, 300 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Ryota Moriuchi
- Functional Genomics Section, Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Christine Dwi A P Wiyono
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino City, Tokyo 180-8633, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
3
|
Hussain MA, Huang Y, Luo D, Mehmood SS, Raza A, Zhang X, Cheng Y, Cheng H, Zou X, Ding X, Zeng L, Duan L, Wu B, Hu K, Lv Y. Integrative analyses reveal Bna-miR397a-BnaLAC2 as a potential modulator of low-temperature adaptability in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40035175 DOI: 10.1111/pbi.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Brassica napus L. (B. napus) is a major edible oil crop grown around the southern part of China, which often faces cold stress, posing potential damage to vegetative tissues. To sustain growth and reproduction, a detailed understanding of fundamental regulatory processes in B. napus against long-term low temperature (LT) stress is necessary for breeders to adjust the level of LT adaption in a given region and is therefore of great economic importance. Till now, studies on microRNAs (miRNAs) in coping with LT adaption in B. napus are limited. Here, we performed an in-depth analysis on two B. napus varieties with distinct adaptability to LT stress. Through integration of RNA sequencing (RNA-seq) and small RNA-sequencing (sRNA-seq), we identified 106 modules comprising differentially expressed miRNAs and corresponding potential targets based on strong negative correlations between their dynamic expression patterns. Specifically, we demonstrated that Bna-miR397a post-transcriptionally regulates a LACCASE (LAC) gene, BnaLAC2, to enhance the adaption to LT stresses in B. napus by reducing the total lignin remodelling and ROS homeostasis. In addition, the miR397-LAC2 module was also proved to improve freezing tolerance of Arabidopsis, indicating a conserved role of miR397-LAC2 in Cruciferae plants. Overall, this work provides the first description of a miRNA-mediated-module signature for LT adaption and highlights the prominent role of laccase in future breeding programme of LT tolerant B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Hongtao Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bian Wu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keming Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
4
|
Bahrami F, Arzani A, Rahimmalek M, Araniti F. Transcriptome alterations related to heat stress responses of wild and cultivated barle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109699. [PMID: 40037173 DOI: 10.1016/j.plaphy.2025.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Heat stress, exacerbated by global warming, threatens food security by disrupting plant growth and productivity across many regions. The present study compared the transcriptome changes of heat-tolerant wild (Hordeum vulgare ssp. spontaneum L.) genotype and heat-sensitive cultivated Hordeum ('Mona' cultivar) barley subjected to control (24 ± 2 °C) and heat stress (40 ± 2 °C, 3 h) conditions via RNA sequencing with the Illumina Hiseq2500 platform. The wild barley genotype exhibited less impact from heat stress on growth and physiology than the 'Mona' cultivar. Heat stress led to 2141 differentially expressed genes (DEGs) in the heat-tolerant wild genotype and 1456 in the 'Mona' cultivar. Gene ontology enrichment analysis of the DEGs revealed that biological processes such as defense response to heat stress, proline and polyamine biosynthesis, and oxidative stress scavenging were predominantly involved in the thermo-tolerance of wild barley. Moreover, heat shock proteins, osmoprotectants, and catalytic activity were identified as the most critical molecular functions in response to high temperatures in wild barley. The significant alterations in the expression levels of candidate genes in response to heat stress highlight these genes' pivotal role in the thermo-tolerance of wild barley compared to the heat-sensitive 'Mona' cultivar. Comparing the evolved mechanisms in response to high temperatures between wild and cultivated barley helps identify the effective heat tolerance mechanisms in the thermo-tolerant wild genotype.
Collapse
Affiliation(s)
- Forouzan Bahrami
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
5
|
Coates SER, Comeault AA, Wood DP, Fay MF, Creer S, Osborne OG, Dunning LT, Papadopulos AST. Plastic responses to past environments shape adaptation to novel selection pressures. Proc Natl Acad Sci U S A 2025; 122:e2409541122. [PMID: 39883835 PMCID: PMC11804578 DOI: 10.1073/pnas.2409541122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues. Conceivably, this could occur if plastic responses are coincidentally optimal to both past and novel cues (i.e., are preadaptive) or if they are transferred to novel cues during adaptation. Past plastic phenotype values could also become fixed during adaptation to the new environment. To uncover the role of past-cue plasticity in adaptation, we tested gene expression plasticity responses of two parallel mine-waste-adapted Silene uniflora populations and their closest coastal relatives. Plants were exposed to the past and novel cues of salt and zinc, which revealed that during adaptation to mine waste, plasticity to salt diminishes. Despite this, our results show that ancestral plasticity to salt has a substantial impact on subsequent adaptation to zinc. For a third of genes that have evolved zinc plasticity in mine populations, salt plasticity has been transferred to the zinc response. Furthermore, a quarter of fixed expression differences between mine and coastal populations were similar to ancestral salt responses. Alongside evidence that ancestral plasticity to novel cues can facilitate adaptation, our results provide a clear indication that ancestral past-cue plasticity can also play a key role in rapid, parallel adaptation to novel habitats.
Collapse
Affiliation(s)
- Sarah E. R. Coates
- Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, BangorLL57 2UW, United Kingdom
- Royal Botanic Gardens Kew, RichmondTW9 3AE, United Kingdom
| | - Aaron A. Comeault
- Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, BangorLL57 2UW, United Kingdom
| | - Daniel P. Wood
- Royal Botanic Gardens Kew, RichmondTW9 3AE, United Kingdom
| | - Michael F. Fay
- Royal Botanic Gardens Kew, RichmondTW9 3AE, United Kingdom
- School of Plant Biology, University of Western Australia, Crawley, WA6009, Australia
| | - Simon Creer
- Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, BangorLL57 2UW, United Kingdom
| | - Owen G. Osborne
- Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, BangorLL57 2UW, United Kingdom
| | - Luke T. Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Alexander S. T. Papadopulos
- Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, BangorLL57 2UW, United Kingdom
| |
Collapse
|
6
|
Oates NC, Nay ER, Cary TJ, Rylott EL, Bruce NC. New weapons explosive exhibits persistent toxicity in plants. NATURE PLANTS 2025; 11:16-22. [PMID: 39609535 PMCID: PMC11757145 DOI: 10.1038/s41477-024-01863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Explosives are widespread, toxic and persistent environmental pollutants. 2,4-Dinitroanisole (DNAN) is being phased in to replace 2,4,6-trinitrotoluene (TNT) in munitions. Here we demonstrate that only low levels of DNAN are detoxified in Arabidopsis, leaving it to remain as a substrate for monodehydroascorbate reductase 6 mediated chronic phytotoxicity. Enhancing the potential for environmental toxicity, DNAN is readily transported to the aerial tissues exposing this toxin to herbivores and the wider food chain.
Collapse
Affiliation(s)
- Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Edward R Nay
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Timothy J Cary
- Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Biogeochemical Sciences Branch, US Army Corps of Engineers, Hanover, NH, USA
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| |
Collapse
|
7
|
Marceau F, Lamothe-Sibold M, Farci S, Ouchane S, Cassier-Chauvat C, Chauvat F. First Characterization of a Cyanobacterial Xi-Class Glutathione S-Transferase in Synechocystis PCC 6803. Antioxidants (Basel) 2024; 13:1577. [PMID: 39765904 PMCID: PMC11673678 DOI: 10.3390/antiox13121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Glutathione S-transferases (GSTs) are evolutionarily conserved enzymes crucial for cell detoxication. They are viewed as having evolved in cyanobacteria, the ancient photosynthetic prokaryotes that colonize our planet and play a crucial role for its biosphere. Xi-class GSTs, characterized by their specific glutathionyl-hydroquinone reductase activity, have been observed in prokaryotes, fungi and plants, but have not yet been studied in cyanobacteria. In this study, we have analyzed the presumptive Xi-class GST, designated as Slr0605, of the unicellular model cyanobacterium Synechocystis PCC 6803. We report that Slr0605 is a homodimeric protein that has genuine glutathionyl-hydroquinone reductase activity. Though Slr0605 is not essential for cell growth under standard photoautotrophic conditions, it plays a prominent role in the protection against not only benzoquinone, but also cobalt-excess stress. Indeed, Slr0605 acts in defense against the cobalt-elicited disturbances of iron homeostasis, iron-sulfur cluster repair, catalase activity and the level of reactive oxygen species, which are all crucial for cell life.
Collapse
Affiliation(s)
| | | | | | | | | | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (F.M.); (M.L.-S.); (S.F.); (S.O.); (C.C.-C.)
| |
Collapse
|
8
|
Fandino ACA, Vigneron N, Alfonso E, Burdet JP, Remolif E, Cattani AM, Smit-Sadki T, Cluzet S, Valls-Fonayet J, Pétriacq P, Rienth M. Priming grapevines with oregano essential oil vapour results in a metabolomic shift eliciting resistance against downy mildew. BMC PLANT BIOLOGY 2024; 24:1180. [PMID: 39695378 DOI: 10.1186/s12870-024-05875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Priming plants with natural products is extensively studied in the agricultural field to reduce the use of synthetic and copper-based pesticides. Previous studies have shown that Oregano essential oil vapour (OEOV) is an effective priming agent against downy mildew (DM) in grapevine (Vitis vinifera L. cv. Chasselas), activating different transcriptomic regulated defence mechanisms. RESULTS In the present study, we complement transcriptomic data with metabolomic insights, confirming some previous regulating patterns and highlighting new mechanisms underlying OEOV-induced resistance. A significant modulation of the phenylpropanoid pathway was noted. The data also confirmed the induction of an oxidative stress response indicated by an up-regulation of reactive oxygen species (ROS)-related genes and a congruent depletion of putative L-glutathione. Interestingly, OEOV promoted the accumulation of organic metabolites such as terpenes and other potential phytoalexins, which could potentially contribute to grapevine innate immune response to Plasmopara viticola. CONCLUSION Overall, this study uncovered a diverse influence of OEOV on V. vinifera defence mechanisms against DM, enhancing our comprehension of the mode of action of essential oils. This insight offers various prospects for crafting innovative biocontrol products, fostering a more dynamic and sustainable approach to agriculture.
Collapse
Affiliation(s)
- Ana Cecilia Aliaga Fandino
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Nicolas Vigneron
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Esteban Alfonso
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Jean-Philippe Burdet
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Eric Remolif
- Agroscope, Plant Protection, Mycology, Route de Duillier 60, Nyon, 1260, Switzerland
| | - Amanda Malvessi Cattani
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Tara Smit-Sadki
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, F-33140, France
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, F-33140, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, 33140, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, Villenave d'Ornon, 33882, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, 33140, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland.
| |
Collapse
|
9
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
10
|
Yuan L, Dang J, Zhang J, Wang L, Zheng H, Li G, Li J, Zhou F, Khan A, Zhang Z, Hu X. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2989-3006. [PMID: 39324634 DOI: 10.1093/plphys/kiae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Salt stress adversely affects the growth and yield of crops. Glutathione S-transferases (GSTs) are involved in plant growth and responses to biotic and abiotic stresses. In this study, 400 mm NaCl stress significantly induced the expression of Glutathione S-transferase U43 (SlGSTU43) in the roots of the wild-type tomato (Solanum lycopersicum L.) plants. Overexpressing SlGSTU43 enhanced the ability of scavenging reactive oxygen species in tomato leaves and roots under NaCl stress, while SlGSTU43 knock-out mutants showed the opposite performance. RNA sequencing analysis revealed that overexpressing SlGSTU43 affected the expression of genes related to lignin biosynthesis. We demonstrated that SlGSTU43 can regulate the lignin content in tomato through its interaction with SlCOMT2, a key enzyme involved in lignin biosynthesis, and promote the growth of tomato plants under NaCl stress. In addition, SlMYB71 and SlWRKY8 interact each other, and can directly bind to the promoter of SlGSTU43 to transcriptionally activate its expression separately or in combination. When SlMYB71 and SlWRKY8 were silenced in tomato plants individually or collectively, the plants were sensitive to NaCl stress, and their GST activities and lignin contents decreased. Our research indicates that SlGSTU43 can enhance salt stress tolerance in tomato by regulating lignin biosynthesis, which is regulated by interacting with SlCOMT2, as well as SlMYB71 and SlWRKY8. This finding broadens our understanding of GST functions.
Collapse
Affiliation(s)
- Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiayue Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Junxiao Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Bočaj V, Pongrac P, Fischer S, Likar M. Species-Specific and Pollution-Induced Changes in Gene Expression and Metabolome of Closely Related Noccaea Species Under Natural Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3149. [PMID: 39599358 PMCID: PMC11597696 DOI: 10.3390/plants13223149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Hyperaccumulators within the Noccaea genus possess many promising genetic and metabolic adaptations that could be potentially exploited to support phytoremediation efforts and/or crop improvement and biofortification. Although hyperaccumulation is very common in this genus, individual species display specific traits as they can accumulate different elements (e.g., zinc, cadmium, and/or nickel). Moreover, there appears to be some populational variability with natural selection increasing the metal tolerance in metallicolous populations. Therefore, employing robust methods, such as integrated analysis of the transcriptome and metabolome, is crucial for uncovering pivotal candidate genes and pathways orchestrating the response to metal stress in Noccaea hyperaccumulators. Our study highlights several species-specific traits linked to the detoxification of metals and metal-induced oxidative stress in hyperaccumulating N. praecox when compared to a closely related model species, N. caerulescens, when grown in the field. Transcriptome analysis revealed distinct differences between the three studied natural Noccaea populations. Notably, we observed several pathways frequently connected to metal stress, i.e., glutathione metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis, which were enriched. These differences were observed despite the relative evolutionary closeness of studied species, which emphasizes the importance of further expanding our knowledge on hyperaccumulators if we want to exploit their mechanisms for phytoremediation efforts or food quality improvements.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Sina Fischer
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
| |
Collapse
|
12
|
Kollayan BY, Cansiz D, Beler M, Unal I, Emekli-Alturfan E, Yalcinkaya SE. Effects of low-dose ionizing radiation on the molecular pathways linking neurogenesis and autism spectrum disorders in zebrafish embryos. Drug Chem Toxicol 2024; 47:960-973. [PMID: 38384198 DOI: 10.1080/01480545.2024.2318444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.
Collapse
Affiliation(s)
- Burcu Yeliz Kollayan
- Institute of Health Sciences, Department of Oral and Maxillofacial Radiology, Marmara University, Istanbul, Turkey
| | - Derya Cansiz
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ismail Unal
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Sebnem Ercalik Yalcinkaya
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
Zou Z, Chen X, Weng X, Guo Y, Guan Y, Zhang L. Rho4 interacts with BbGDI and is essential for the biocontrol potential of Beauveria bassiana by maintaining intracellular redox homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106145. [PMID: 39477598 DOI: 10.1016/j.pestbp.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 11/07/2024]
Abstract
Rho4 is a member of the Rho-family small GTPases. In this study, we revealed the function of Rho4 and explored its mechanism involved in intracellular redox homeostasis in Beauveria bassiana, one of the most widely utilized filamentous entomopathogenic fungi. The disruption of Rho4 in B. bassiana resulted in significant phenotypic changes, such as fungal virulence, growth rate on different media, thermotolerance, germination, and conidiation. Integrated analysis of proteomic and transcriptomic data unveiled differential expression patterns of various redox-related genes and proteins in Δrho4, including the down-regulation of GST shown in proteomic and transcriptomic data, and the down-regulated gene expression levels of NOX, SOD, CAT, and GR in the transcriptome. Based on the bi-omics analysis, we focused on the impact of Rho4 in maintaining intracellular redox homeostasis. A decreased ROS content observed in Δrho4 might be attributed to the reduced NOX activity, which subsequently affects the GSH-producing/consuming metabolisms, with the attenuated activities of GR and GST. The imbalanced redox homeostasis also resulted in the reduced enzyme activities of SOD and CAT. Exogenous oxides could partially complement the ROS level and rescue the growth defect in Δrho4 to a certain extent. Besides, BbGDI was initially identified as an interacting protein of Rho4 in entomopathogenic fungi. Our results provide a comprehensive understanding of the function and regulating mechanism of Rho4 in B. bassiana.
Collapse
Affiliation(s)
- Zhenyu Zou
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaonuo Chen
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaojun Weng
- Fuzhou Longxiang Shengke Technologies Limited, Fuzhou 350001, China.
| | - Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; National University of Singapore, Singapore 117544, Singapore.
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
14
|
Wang H, Chen Y, Liu L, Guo F, Liang W, Dong L, Dong P, Cheng J, Chen Y. Codonopsis pilosula seedling drought- responsive key genes and pathways revealed by comparative transcriptome. FRONTIERS IN PLANT SCIENCE 2024; 15:1454569. [PMID: 39544534 PMCID: PMC11561192 DOI: 10.3389/fpls.2024.1454569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Background Codonopsis pilosula (Campanulaceae) is a traditional herbal plant that is widely used in China, and the drought stress during the seedling stage directly affects the quality, ultimately impacting its yield. However, the molecular mechanisms underlying the drought resistance of C. pilosula seedlings remain unclear. Method Herein, we conducted extensive comparative transcriptome and physiological studies on two distinct C. pilosula cultivar (G1 and W1) seedlings subjected to a 4-day drought treatment. Results Our findings revealed that cultivar G1 exhibited enhanced retention of proline and chlorophyll, alongside a marked elevation in peroxidase activity, coupled with diminished levels of malondialdehyde and reduced leaf relative electrolyte leakage compared with cultivar W1. This suggested that cultivar G1 had relatively higher protective enzyme activity and ROS quenching capacity. We discerned a total of 21,535 expressed genes and identified 4,192 differentially expressed genes (DEGs) by RNA sequencing (RNA-seq). Our analysis revealed that 1,764 DEGs unique to G1 underwent thorough annotation and functional categorization utilizing diverse databases. Under drought conditions, the DEGs in G1 were predominantly linked to starch and sucrose metabolic pathways, plant hormone signaling, and glutathione metabolism. Notably, the drought-responsive genes in G1 were heavily implicated in hormonal modulation, such as ABA receptor3-like gene (PYL9), regulation by transcription factors (KAN4, BHLH80, ERF1B), and orchestration of drought-responsive gene expression. These results suggest that cultivar G1 possesses stronger stress tolerance and can better adapt to drought growing conditions. The congruence between qRT-PCR validation and RNA-seq data for 15 DEGs further substantiated our findings. Conclusion Our research provides novel insights into the physiological adaptations of C. pilosula to arid conditions and lays the groundwork for the development of new, drought-tolerant C. pilosula cultivars.
Collapse
Affiliation(s)
- Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Lanlan Liu
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Forestry Engineering, Guangxi Eco-engineering Vocational and Technical College, Nanning, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yongzhong Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Ma S, Qi Y, Ma J, Wang Y, Feng G, Huang L, Nie G, Zhang X. Functional characterization of TrGSTF15, a glutathione S-transferase gene family member, on the transport and accumulation of anthocyanins and proanthocyanidins in Trifolium repens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109038. [PMID: 39163651 DOI: 10.1016/j.plaphy.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.
Collapse
Affiliation(s)
- Sainan Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yali Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
17
|
Tzean Y, Wang KT, Lee PY, Wu TM. Assessing the impact of arsenite and arsenate on Sarcodia suae: a tale of two toxicities. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:937-947. [PMID: 39026049 DOI: 10.1007/s10646-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Inorganic arsenic (iAs), which predominantly occurs as arsenite (As3+) and arsenate (As5+) in natural water, is primarily accumulated by seaweed in marine environments. However, the detailed mechanisms through which As3+ and As5+ affect the physiological processes of these organisms remain largely unknown. This study focused on evaluating the toxicological effects of As3+ and As5+ on the seaweed Sarcodia suae. Exposure to As3+ and As5+ resulted in IC50 values of 401.5 ± 9.4 μg L-1 and 975.8 ± 13 μg L-1, respectively. Morphological alterations and a reduction in phycoerythrin content were observed, particularly under As3+ exposure, with increased lipid peroxidation as evidenced by higher malondialdehyde levels. Exposure to As3+ also elevated the production of superoxide radicals, while decreasing hydrogen peroxide levels specifically in the presence of As3+. The induction of antioxidative enzyme activities, namely superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase was observed, signaling an adaptive response to iAs-induced oxidative stress. Moreover, levels of the antioxidants ascorbate and glutathione were elevated post-exposure, especially in response to As3+. Additionally, bioaccumulation of arsenic was significantly higher in the As3+ compared to As5+. Collectively, the data suggest that As3+ imposes greater adverse effects and oxidative stress to S. suae, which responds by adjusting its antioxidative defense mechanisms to mitigate oxidative stress.
Collapse
Affiliation(s)
- Yuh Tzean
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Po-Yi Lee
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
18
|
Song H, Chen WJ, Chen SF, Zhu X, Mishra S, Ghorab MA, Bhatt P, Chen S. Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism. CHEMOSPHERE 2024; 366:143456. [PMID: 39393587 DOI: 10.1016/j.chemosphere.2024.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades. A variety of technologies have been developed to address this issue, including adsorption, aqueous chlorination, photodegradation, Fenton, photo-Fenton, ozonation, and biodegradation. After extensive studies, the biodegradation of chlorimuron-ethyl by microorganisms has now been recognized as an efficient and environmentally friendly degradation process. As research has progressed, a number of microbial strains associated with chlorimuron-ethyl degradation have been identified, such as Pseudomonas sp., Klebsiella sp., Rhodococcus sp., Stenotrophomonas sp., Aspergillus sp., Hansschlegelia sp., and Enterobacter sp. In addition, the enzymes and genes responsible for chlorimuron-ethyl biodegradation are also being investigated. These degradation genes include sulE, pnbA, carE, gst, Kj-CysJ, Kj-eitD-2267, Kj-kdpD-226, Kj-dxs-398, Kj-mhpC-2096, and Kj-mhpC-2289, among others. The degradation enzymes associated with chlorimuron-ethyl biodegradation includes esterases (SulE, PnbA, and E3), carboxylesterase (CarE), Cytochrome P450, flavin monooxygenase (FMO), and glutathione-S-transferase (GST). Regrettably, few reviews have focused on the microbial degradation and molecular mechanisms of chlorimuron-ethyl. Therefore, this review covers the microbial degradation of chlorimuron-ethyl and its degradation pathways, the molecular mechanism of the microbial degradation of chlorimuron-ethyl, and the outlook on the practical application of the microbial degradation of sulfonylurea herbicides are all covered in this review's overview of previous studies into the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xixian Zhu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Pankaj Bhatt
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Kim H, Hwang J, Park C, Park R. Redox system and ROS-related disorders in peroxisomes. Free Radic Res 2024; 58:662-675. [PMID: 39550761 DOI: 10.1080/10715762.2024.2427088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Vazzana G, Savojardo C, Martelli PL, Casadio R. Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules 2024; 29:4616. [PMID: 39407545 PMCID: PMC11478096 DOI: 10.3390/molecules29194616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
In order to shed light on the usage of protein language model-based alignment procedures, we attempted the classification of Glutathione S-transferases (GST; EC 2.5.1.18) and compared our results with the ARBA/UNI rule-based annotation in UniProt. GST is a protein superfamily involved in cellular detoxification from harmful xenobiotics and endobiotics, widely distributed in prokaryotes and eukaryotes. What is particularly interesting is that the superfamily is characterized by different classes, comprising proteins from different taxa that can act in different cell locations (cytosolic, mitochondrial and microsomal compartments) with different folds and different levels of sequence identity with remote homologs. For this reason, GST functional annotation in a specific class is problematic: unless a structure is released, the protein can be classified only on the basis of sequence similarity, which excludes the annotation of remote homologs. Here, we adopt an embedding-based alignment to classify 15,061 GST proteins automatically annotated by the UniProt-ARBA/UNI rules. Embedding is based on the Meta ESM2-15b protein language. The embedding-based alignment reaches more than a 99% rate of perfect matching with the UniProt automatic procedure. Data analysis indicates that 46% of the UniProt automatically classified proteins do not conserve the typical length of canonical GSTs, whose structure is known. Therefore, 46% of the classified proteins do not conserve the template/s structure required for their family classification. Our approach finds that 41% of 64,207 GST UniProt proteins not yet assigned to any class can be classified consistently with the structural template length.
Collapse
Affiliation(s)
| | | | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| |
Collapse
|
21
|
Kim S, Kim TH. Identification of the Novel Small Compound Stress Response Regulators 1 and 2 That Affect Plant Abiotic Stress Signaling. Biomolecules 2024; 14:1177. [PMID: 39334943 PMCID: PMC11429841 DOI: 10.3390/biom14091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, limit plant growth and development, reducing crop yields. Therefore, a more comprehensive understanding of the signaling mechanisms and responses of plants to changing environmental conditions is crucial for improving sustainable agricultural productivity. Chemical screening was conducted to find novel small compounds that act as regulators of the abiotic stress signaling pathway using the ABA-inducible transgenic reporter line. Small molecules called stress response regulators (SRRs) were isolated by screening a synthetic library composed of 14,400 small compounds, affecting phenotypes such as seed germination, root growth, and gene expression in response to multiple abiotic stresses. Seeds pretreated with SRR compounds positively affected the germination rate and radicle emergence of Arabidopsis and tomato plants under abiotic stress conditions. The SRR-priming treatment enhanced the transcriptional responses of abiotic stress-responsive genes in response to subsequent salt stress. The isolation of the novel molecules SRR1 and SRR2 will provide a tool to elucidate the complex molecular networks underlying the plant stress-tolerant responses.
Collapse
Affiliation(s)
- Seojung Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Tae-Houn Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
- Department of Biotechnology, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
22
|
Shi YX, Bian DD, Liu X, Jiang JJ, Zhu XR, Zhang DZ, Liu QN, Tang BP, Dai LS. Transcriptome analysis provides new insight into the mechanism of Bombyx mori under zinc exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101320. [PMID: 39244797 DOI: 10.1016/j.cbd.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.
Collapse
Affiliation(s)
- Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
23
|
Barboza Bispo R, Teixeira do Amaral A, Pinto VB, de Oliveira Santos T, Jário de Lima V, Rohem Simão B, Fischer A, Naldrett MJ, Alvarez S. Unraveling the Mechanisms of Efficient Phosphorus Utilization in Popcorn ( Zea mays L. var. everta): Insights from Proteomic and Metabolite Analysis. J Proteome Res 2024; 23:3108-3123. [PMID: 38648199 PMCID: PMC11302424 DOI: 10.1021/acs.jproteome.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.
Collapse
Affiliation(s)
- Rosimeire Barboza Bispo
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Antônio Teixeira do Amaral
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório
de Biologia Celular e Tecidual (LBCT), UENF,
Centro de Biociências e Biotecnologia (CBB), 28.013-602, Campos dos Goytacazes, RJ, Brazil
| | - Talles de Oliveira Santos
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Valter Jário de Lima
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Bruna Rohem Simão
- Laboratório
de Melhoramento Genético Vegetal (LMGV), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro
de Ciências e Tecnologias Agropecuárias (CCTA), 28.013-602, Campos
dos Goytacazes, RJ, Brazil
| | - Anne Fischer
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| | - Michael J. Naldrett
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| | - Sophie Alvarez
- Proteomics
and Metabolomics Facility, Nebraska Center for Biotechnology, Beadle
Center, 1901 Vine St, University of Nebraska−Lincoln
(UNL), Lincoln, Nebraska 68588, United States
| |
Collapse
|
24
|
Jiang W, Wang T, Zhang M, Duan X, Chen J, Liu Y, Tao Z, Guo Q. Genome-Wide Identification of Glutathione S-Transferase Family from Dendrobium officinale and the Functional Characterization of DoGST5 in Cadmium Tolerance. Int J Mol Sci 2024; 25:8439. [PMID: 39126019 PMCID: PMC11313178 DOI: 10.3390/ijms25158439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Glutathione S-transferases (GSTs) are members of a protein superfamily with diverse physiological functions, including cellular detoxification and protection against oxidative damage. However, there is limited research on GSTs responding to cadmium (Cd) stress. This study classified 46 GST genes in Dendrobium officinale (D. officinale) into nine groups using model construction and domain annotation. Evolutionary analysis revealed nine subfamilies with diverse physical and chemical properties. Prediction of subcellular localization revealed that half of the GST members were located in the cytoplasm. According to the expression analysis of GST family genes responding to Cd stress, DoGST5 responded significantly to Cd stress. Transient expression of DoGST5-GFP in tobacco leaves revealed that DoGST5 was localized in the cytoplasm. DoGST5 overexpression in Arabidopsis enhanced Cd tolerance by reducing Cd-induced H2O2 and O2- levels. These findings demonstrate that DoGST5 plays a critical role in enhancing Cd tolerance by balancing reactive oxygen species (ROS) levels, offering potential applications for improving plant adaptability to heavy metal stress.
Collapse
Affiliation(s)
- Wu Jiang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (T.W.); (M.Z.)
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (X.D.); (J.C.); (Y.L.); (Z.T.)
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (T.W.); (M.Z.)
| | - Man Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (T.W.); (M.Z.)
| | - Xiaojing Duan
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (X.D.); (J.C.); (Y.L.); (Z.T.)
| | - Jiadong Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (X.D.); (J.C.); (Y.L.); (Z.T.)
| | - Yingying Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (X.D.); (J.C.); (Y.L.); (Z.T.)
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (X.D.); (J.C.); (Y.L.); (Z.T.)
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (T.W.); (M.Z.)
| |
Collapse
|
25
|
Tripathi J, Gautam S. Unravelling the key steps impairing the metabolic state of Xanthomonas cells undergoing programmed cell death. Int Microbiol 2024; 27:1285-1296. [PMID: 38190087 DOI: 10.1007/s10123-023-00471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Programmed cell death (PCD) has been reported in Xanthomonas axonopodis pv. glycines (Xag) wild type earlier and was indirectly shown to be induced by metabolic stress; however, deciphering the key proteins regulating the metabolic stress remained unrevealed. In this study, transcriptomic and proteomic analyses were performed to investigate the prominent pathways, having a role in the induction of metabolic stress in Xag cells undergoing PCD. A comprehensive analysis of transcriptome and proteome data revealed the major involvement of metabolic pathways related to branched chain amino acid degradation, such as acyl-CoA dehydrogenase and energy-yielding, ubiquinol:cytochrome c oxidoreductase complex, in Xag cells undergoing PCD. Consequently, oxidative stress response genes showed major upregulation in Xag cells in PCD-inducing medium; however, no such upregulation was observed at the protein level, indicative of depleted protein levels under excessive stress conditions. Activation of stress response and DNA repair proteins was also observed in Xag cells grown in PCD-inducing medium, which is indicative of excessive cellular damage. Thus, the findings indicate that programmed cell death in Xag is an outcome of metabolic stress in nutrient condition not suitable for a plant pathogen like Xanthomonas, which is more acclimatised with altogether a different nutritional requirement predominantly having an enriched carbohydrate source.
Collapse
Affiliation(s)
- Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
26
|
Bejaoui S, Chetoui I, Ghribi F, Belhassen D, Abdallah BB, Fayala CB, Boubaker S, Mili S, Soudani N. Exposure to different cobalt chloride levels produces oxidative stress and lipidomic changes and affects the liver structure of Cyprinus carpio juveniles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51658-51672. [PMID: 39117974 DOI: 10.1007/s11356-024-34578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The present investigation was undertaken to evaluate the toxic effects of CoCl2-induced hepatotoxicity and fatty acid changes in juvenile Cyprinus carpio. Fish were divided into six experimental groups in duplicate. The first group served as controls. The second group received the lowest exposure dose at 2.5 µg/L. In the third group, fish were exposed to 25 µg/L of CoCl2. The fourth group was exposed to 50 µg/L of CoCl2. The last two groups were exposed to the highest doses, 100 and 500 µg/L of CoCl2. Total antioxidant activities were estimated using a colorimetric method. Liver fatty acid compositions were analyzed by high-performance gas chromatography (GC). Hepatopathy was identified through microscopic analysis. Exposure of C. carpio to CoCl2 resulted in hepatotoxicity, indicated by increased levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), protein carbonyls (PCO), and alterations in the ferric reducing antioxidant power system (FRAP). Superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), metallothioneins (MTs), and low thiol levels (L-SH) significantly increased, particularly under exposure to the highest CoCl2 doses (100 and 500 µg/L). Acetylcholinesterase activity decreased significantly in C. carpio exposed to graded CoCl2 doses. Additionally, there was a decrease in polyunsaturated fatty acids (PUFA), primarily n-3 PUFA, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), while an increase in monounsaturated (MUFA) and saturated fatty acids (SFA), including palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), and oleic (C18:1) acids, was observed. Histopathological examination of the liver confirmed hepatopathy revealing characteristic tissue changes such as leucocyte infiltration, hepatic cell membrane degradation, vacuolization, and lipid inclusions. The study provided ethnophysiology insights into the responses of C. carpio to CoCl2-induced oxidative stress and lipidomic alteration, underscoring its potential as a bioindicator for assessing environmental impacts and metal contamination.
Collapse
Affiliation(s)
- Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- High Institute of Aquaculture and Fishing of Bizerte, BP15, 7080, Menzel Jemil, Tunisia
| | - Dalya Belhassen
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Boutheina Ben Abdallah
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Chaima Ben Fayala
- Unit of Pathological and Experimental Human Anatomy, Institute of Pasteur of Tunis, 1002, Tunis-Belvedere, Tunisia
| | - Samir Boubaker
- Unit of Pathological and Experimental Human Anatomy, Institute of Pasteur of Tunis, 1002, Tunis-Belvedere, Tunisia
| | - Sami Mili
- High Institute of Aquaculture and Fishing of Bizerte, BP15, 7080, Menzel Jemil, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
27
|
Zeeshan M, Sun C, Wang X, Hu Y, Wu H, Li S, Salam A, Zhu S, Khan AH, Holford P, Ali MA, Elshikh MS, Zhang Z, Zhang P. Insights into the ameliorative effect of ZnONPs on arsenic toxicity in soybean mediated by hormonal regulation, transporter modulation, and stress responsive genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1427367. [PMID: 39139724 PMCID: PMC11319271 DOI: 10.3389/fpls.2024.1427367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shengnan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Aamir Hamid Khan
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature conservation, University of Lodz, Lodz, Poland
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
28
|
Koenitzer JR, Gupta DK, Twan WK, Xu H, Hadas N, Hawkins FJ, Beermann ML, Penny GM, Wamsley NT, Berical A, Major MB, Dutcher SK, Brody SL, Horani A. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024; 9:e180198. [PMID: 39042459 PMCID: PMC11385084 DOI: 10.1172/jci.insight.180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Collapse
Affiliation(s)
| | - Deepesh Kumar Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang Kyaw Twan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Hadas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Berical
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Gatasheh MK, Shah AA, Kaleem M, Usman S, Shaffique S. Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC PLANT BIOLOGY 2024; 24:667. [PMID: 38997682 PMCID: PMC11245830 DOI: 10.1186/s12870-024-05359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Korea
| |
Collapse
|
30
|
Mishra SK, Chaudhary C, Baliyan S, Poonia AK, Sirohi P, Kanwar M, Gazal S, Kumari A, Sircar D, Germain H, Chauhan H. Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways. PLANT CELL REPORTS 2024; 43:172. [PMID: 38874775 DOI: 10.1007/s00299-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.
Collapse
Affiliation(s)
- Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Magadh University, BodhGaya, 824234, Bihar, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Snehi Gazal
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Annu Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
31
|
Parcharidou E, Dücker R, Beffa R. Genome-wide study of glutathione transferases and their regulation in flufenacet susceptible and resistant black-grass (Alopecurus myosuroides Huds.). PEST MANAGEMENT SCIENCE 2024; 80:3035-3046. [PMID: 38323683 DOI: 10.1002/ps.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Glutathione transferases (GSTs) are enzymes with a wide range of functions, including herbicide detoxification. Up-regulation of GSTs and their detoxification activity enables the grass weed black-grass (Alopecurus myosuroides Huds.) to metabolize the very-long-chain fatty acid synthesis inhibitor flufenacet and other herbicides leading to multiple herbicide resistance. However, the genomic organization and regulation of GSTs genes is still poorly understood. RESULTS In this genome-wide study the location and expression of 115 GSTs were investigated using a recently published black-grass genome. Particularly, the most abundant GSTs of class tau and phi were typically clustered and often followed similar expression patterns but possessed divergent upstream regulatory regions. Similarities were found in the promoters of the most up-regulated GSTs, which are located next to each other in a cluster. The binding motif of the E2F/DP transcription factor complex in the promoter of an up-regulated GST was identical in susceptible and resistant plants, however, adjacent sequences differed. This led to a stronger binding of proteins to the motif of the susceptible plant, indicating repressor activity. CONCLUSIONS This study constitutes the first analysis dealing with the genomic investigation of GST genes found in black-grass and their transcriptional regulation. It highlights the complexity of the evolution of GSTs in black-grass, their duplication and divergence over time. The large number of GSTs allows weeds to detoxify a broad spectrum of herbicides. Ultimately, more research is needed to fully elucidate the regulatory mechanisms of GST expression. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Evlampia Parcharidou
- Division of Plant Pathology and Crop Protection, Georg-August University Göttingen, Göttingen, Germany
| | - Rebecka Dücker
- Division of Plant Pathology and Crop Protection, Georg-August University Göttingen, Göttingen, Germany
| | - Roland Beffa
- Senior Scientist Consultant, Liederbach am Taunus, Germany
| |
Collapse
|
32
|
Hamed SM, Mohamed MYA, Alammari BS, AbdElgawad H. Insights into the growth and biochemical defense responses associated with fenitrothion toxicity and uptake by freshwater cyanobacteria. CHEMOSPHERE 2024; 358:141909. [PMID: 38593960 DOI: 10.1016/j.chemosphere.2024.141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The extensive use of fenitrothion (FNT) in agricultural practices induces its persistence in soil and waterways. Therefore, it is essential to implement effective management practices such as using cyanobacteria for FNT removal and accumulation, particularly under accidental contamination. To this end, we evaluated the responses of two freshwater cyanobacteria taxa, Nostoc muscorum and Anabaena laxa to mild (7.5 mg L-1) and high (15 mg L-1) levels of FNT over a period of 7 d. Compared to N. muscorum, A. laxa was more tolerant to FNT, exhibiting higher FNT uptake and removal efficiencies at mild (16.3%) and high (17.5%) levels. FNT induced a dose-dependent decrease in cell growth, Chl a, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities, which were more pronounced in N. muscorum. Moreover, FNT significantly increased oxidative damage markers i.e., increased lipid peroxidation (MDA), protein oxidation, H2O2 levels and NADPH oxidase enzyme activity, to more extent in N. muscorum. Compared to N. muscorum, A. laxa had high antioxidant capacity (FRAP), glutathione and increased activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase and superoxide dismutase, suggesting a robust antioxidant defense mechanism to mitigate FNT toxicity. However, N. muscorum devoted the induction of ascorbate content and the activity of catalase, peroxidase, monodehydroascorbate reductase, ascorbate peroxidase, and dehydroascorbate reductase enzymes. Although A. laxa had greater intracellular FNT, it experienced less FNT-induced oxidative stress, likely due to over production of antioxidants. Consequently, A. laxa is considered as a promising candidate for FNT phycoremediation. Our findings provide fundamental information on species-specific toxicity of FNT among cyanobacteria and the environmental risk of FNT toxicity in aquatic environments.
Collapse
Affiliation(s)
- Seham M Hamed
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia; Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175 El‒Orman, Egypt.
| | - Marwa Yousry A Mohamed
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia
| | - Badriah Saleh Alammari
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh 11623, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
34
|
Lv W, Zhu L, Tan L, Gu L, Wang H, Du X, Zhu B, Zeng T, Wang C. Genome-Wide Identification Analysis of GST Gene Family in Wild Blueberry Vaccinium duclouxii and Their Impact on Anthocyanin Accumulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1497. [PMID: 38891305 PMCID: PMC11174658 DOI: 10.3390/plants13111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species.
Collapse
Affiliation(s)
- Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifa Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (W.L.); (L.T.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
35
|
Li H, Liu Y, Wu J, Chang K, Zhang G, Zhao H, Qiu N, Bao Y. Overexpression of GhGSTF9 Enhances Salt Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2024; 15:695. [PMID: 38927631 PMCID: PMC11202711 DOI: 10.3390/genes15060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Soil salinization is a major abiotic stress factor that negatively impacts plant growth, development, and crop yield, severely limiting agricultural production and economic development. Cotton, a key cash crop, is commonly cultivated as a pioneer crop in regions with saline-alkali soil due to its relatively strong tolerance to salt. This characteristic renders it a valuable subject for investigating the molecular mechanisms underlying plant salt tolerance and for identifying genes that confer salt tolerance. In this study, focus was placed on examining a salt-tolerant variety, E991, and a salt-sensitive variety, ZM24. A combined analysis of transcriptomic data from these cotton varieties led to the identification of potential salt stress-responsive genes within the glutathione S-transferase (GST) family. These versatile enzyme proteins, prevalent in animals, plants, and microorganisms, were demonstrated to be involved in various abiotic stress responses. Our findings indicate that suppressing GhGSTF9 in cotton led to a notably salt-sensitive phenotype, whereas heterologous overexpression in Arabidopsis plants decreases the accumulation of reactive oxygen species under salt stress, thereby enhancing salt stress tolerance. This suggests that GhGSTF9 serves as a positive regulator in cotton's response to salt stress. These results offer new target genes for developing salt-tolerant cotton varieties.
Collapse
Affiliation(s)
- Huimin Li
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China;
| | - Yihui Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.L.); (K.C.); (H.Z.); (N.Q.)
| | - Jie Wu
- Cash Crop Research Institute of Jiangxi Province, Jiujiang 332105, China;
| | - Kexin Chang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.L.); (K.C.); (H.Z.); (N.Q.)
| | - Guangqiang Zhang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China;
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.L.); (K.C.); (H.Z.); (N.Q.)
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.L.); (K.C.); (H.Z.); (N.Q.)
| | - Ying Bao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (Y.L.); (K.C.); (H.Z.); (N.Q.)
| |
Collapse
|
36
|
Wang X, Dong J, Hu Y, Huang Q, Lu X, Huang Y, Sheng M, Cao L, Xu B, Li Y, Zong Y, Guo W. Identification and Characterization of the Glutathione S-Transferase Gene Family in Blueberry ( Vaccinium corymbosum) and Their Potential Roles in Anthocyanin Intracellular Transportation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1316. [PMID: 38794388 PMCID: PMC11125127 DOI: 10.3390/plants13101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry's chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries.
Collapse
Affiliation(s)
- Xuxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Jiajia Dong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yiting Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Qiaoyu Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Xiaoying Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yilin Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Mingyang Sheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Lijun Cao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Buhuai Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
37
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
38
|
Singh D, Maithreyi S, Taunk J, Singh MP. Physiological and proteomic characterization revealed the response mechanisms underlying aluminium tolerance in lentil (Lens culinaris Medikus). PHYSIOLOGIA PLANTARUM 2024; 176:e14298. [PMID: 38685770 DOI: 10.1111/ppl.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 05/02/2024]
Abstract
Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shubhra Maithreyi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
39
|
Shi T, Wang Y, Li Y, Sui X, Dong CH. Generation of selenium-rich wheat mutants and exploration of responsive genes for selenium accumulation. PLANT CELL REPORTS 2024; 43:132. [PMID: 38687389 DOI: 10.1007/s00299-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
KEY MESSAGE Salt tolerance, selenium accumulation and expression of the responsive genes were analyzed in the wheat high selenium mutants. Selenium is an essential trace element for the human body, and its deficiency can lead to various diseases such as Keshan disease and large bone disease. Wheat, being a major staple crop, plays a crucial role in providing dietary selenium supplementation to combat this deficiency. Despite progress in understanding the molecular regulation of selenium accumulation in certain crops, the molecular mechanisms governing selenium accumulation-related gene expression in wheat plants remain poorly understood. In this study, three mutant wheat lines with elevated selenium content were identified. Under the treatment of Na2SeO3 or NaCl, the selenium-rich wheat mutants exhibited decreased sensitivity to both selenium and NaCl compared to the wild type. Additionally, there was an increase in the activities of SOD and POD, while the content of MDA decreased. Through qRT-PCR analysis, the expression of selenium-related genes was affected, revealing that some of these genes not only regulate the response of wheat to salt stress, but also play a role in the process of selenium accumulation. The transcriptome results revealed that the important genes encoding glutathione S-transferases, peroxidases, superoxide dismutases, and UDP-glucosyltransferases may function in the regulation of salt tolerance and selenium accumulation in wheat. These findings significantly contribute to the current understanding of the molecular regulation of selenium accumulation in wheat crops, while also offering novel germplasm resources for cultivating selenium-rich and salt-tolerant wheat lines.
Collapse
Affiliation(s)
- Tengteng Shi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanrong Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
40
|
Tounsi S, Giorgi D, Kuzmanović L, Jrad O, Farina A, Capoccioni A, Ben Ayed R, Brini F, Ceoloni C. Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1378186. [PMID: 38766466 PMCID: PMC11099908 DOI: 10.3389/fpls.2024.1378186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Debora Giorgi
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Anna Farina
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Alessandra Capoccioni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, Hammam-lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
41
|
Attia H, Alamer KH. Supplementation of Jasmonic acid Mitigates the Damaging Effects of Arsenic Stress on Growth, Photosynthesis and Nitrogen Metabolism in Rice. RICE (NEW YORK, N.Y.) 2024; 17:31. [PMID: 38671283 PMCID: PMC11052983 DOI: 10.1186/s12284-024-00709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Experiments were conducted to evaluate the role of exogenously applied jasmonic acid (JA; 0.1 and 0.5 µM) in alleviating the toxic effects of arsenic (As; 5 and 10 µM) stress in rice. Plants treated with As showed considerable decline in growth attributes like height, fresh and dry weight of plant. Arsenic stress reduced the content of δ-amino livulenic acid (δ-ALA), glutamate 1-semialdehyde (GSA), total chlorophylls and carotenoids, with more reduction evident at higher (10 µM) As concentrations, however exogenously supplied JA alleviated the decline to considerable extent. Arsenic stress mediated decline in photosynthetic gas exchange parameters, Fv/Fm (PSII activity) and Rubisco activity was alleviated by the exogenous treatment of JA. Arsenic stress caused oxidative damage which was evident as increased lipid peroxidation, lipoxygenase activity and hydrogen peroxide concentrations however, JA treatment declined these parameters. Treatment of JA improved the activity of nitrate reductase and glutamate synthase under unstressed conditions and also alleviated the decline triggered by As stress. Activity of antioxidant enzymes assayed increased due to As stress, and the supplementation of JA caused further increase in their activities. Moreover, the content of proline, free amino acids and total phenols increased significantly due to JA application under stressed and unstressed conditions. Treatment of JA increased the content of nitrogen and potassium while as reduced As accumulation significantly.
Collapse
Affiliation(s)
- Houneida Attia
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
42
|
Jócsák I, Csima F, Somfalvi-Tóth K. Alterations of Photosynthetic and Oxidative Processes Influenced by the Presence of Different Zinc and Cadmium Concentrations in Maize Seedlings: Transition from Essential to Toxic Functions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1150. [PMID: 38674559 PMCID: PMC11055138 DOI: 10.3390/plants13081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The study examined the impact of varying the concentrations of zinc (Zn) on plant responses, particularly on photosynthetic and oxidative metabolic processes. This investigation aimed to distinguish between the beneficial and harmful effects of Zn on plants, highlighting significant nutrient supply concerns. METHODS The investigation methods were centered around non-invasive methods, such as biophoton emission (delayed fluorescence-DF, ultra-weak bioluminescence-UWLE), fluorescence induction (Fv/Fm) measurements, chlorophyll content estimation (SPAD) and vegetation index (NDVI) determination. Furthermore, the analytical determination of lipid oxidation (MDA level) and antioxidant capacity (FRAP) as well as gene expression studies of the antioxidative enzymes glutathione reductase (GR), glutathione S-transferase (GST) and lipoxygenase (LOX) for essential Zn and nonessential cadmium (Cd) were also carried out in order to clarify toxic symptoms through different Zn investigation approaches. RESULTS It was possible to identify a metabolic enhancement from 1000 µM; however, stress symptoms from the 2000 µM Zn treatment were noted for both the investigated photosynthetic and oxidative processes. The outcomes of this research contribute to the improvement of Zn mineral-supplementation technology, which is essential for maize growth, and the optimization of agricultural practices.
Collapse
Affiliation(s)
- Ildikó Jócsák
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary; (F.C.); (K.S.-T.)
| | | | | |
Collapse
|
43
|
Wang SY, Wang YX, Yue SS, Shi XC, Lu FY, Wu SQ, Herrera-Balandrano DD, Laborda P. G-site residue S67 is involved in the fungicide-degrading activity of a tau class glutathione S-transferase from Carica papaya. J Biol Chem 2024; 300:107123. [PMID: 38417796 PMCID: PMC10958117 DOI: 10.1016/j.jbc.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024] Open
Abstract
Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Sheng-Shuo Yue
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Yi Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Si-Qi Wu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
44
|
Dutta P, Prasad P, Indoilya Y, Gautam N, Kumar A, Sahu V, Kumari M, Singh S, Asthana AK, Bag SK, Chakrabarty D. Unveiling the molecular mechanisms of arsenic tolerance and resilience in the primitive bryophyte Marchantia polymorpha L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123506. [PMID: 38360385 DOI: 10.1016/j.envpol.2024.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 μM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.
Collapse
Affiliation(s)
- Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Prasad
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yuvraj Indoilya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Gautam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vinay Sahu
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Monica Kumari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Kumar Asthana
- Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Sumit Kumar Bag
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
46
|
Naderi S, Maali-Amiri R, Sadeghi L, Hamidi A. Physio-biochemical and DNA methylation analysis of the defense response network of wheat to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108516. [PMID: 38537384 DOI: 10.1016/j.plaphy.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
In the present work, physio-biochemical and DNA methylation analysis were conducted in wheat (Triticum aestivum L.) cultivars "Bolani" (drought-tolerant) and "Sistan" (drought-sensitive) during drought treatments: well-watered (at 90% field capacity (FC)), mild stress (at 50% FC, and severe stress (at 25% FC). During severe stress, O2•- and H2O2 content in cultivar Sistan showed significant increase (by 1.3 and 2.5-fold, respectively) relative to cultivar Bolani. In Bolani, the increased levels of radical scavenging activity (by 32%), glycine betaine (GB) (by 11.44%), proline (4-fold), abscisic acid (by 63.76%), and more stability of relative water content (RWC) (2-fold) were observed against drought-induced oxidative stress. Methylation level significantly decreased from 70.26% to 60.64% in Bolani and from 69.06% to 59.85% in Sistan during stress, and higher decreased tendency was related to CG and CHG in Bolani but CG in Sistan under severe stress. Methylation patterns showed that the highest polymorphism in Bolani was mainly as CG. As the intensity of stress increased, the enhanced physio-biochemical responses of Bolani cultivar were accompanied by a more decrease in the number of unchanged bands. According to heat map analysis, the highest difference (84.38%) in methylation patterns was observed between control and severe stress. Multivariate analysis using principal component analysis (PCA) showed a cultivar-specific methylation during stress and that methylation changes between cultivars are much higher than that of within a cultivar. Higher methylation to demethylation in Bolani (30.06 vs. 22.12%) compared to that of cultivar Sistan (23.21 vs. 30.15%) indicated more demethylation did not induce tolerance responses in Sistan. Sequencing differentially methylated fragments along with qRT-PCR analysis showed the efficient role of various DNA fragments, including demethylated fragments such as phosphoenol pyruvate carboxylase (PEPC), beta-glucosidase (BGlu), glycosyltransferase (GT), glutathione S-transferase (GST) and lysine demethylase (LSD) genes and methylated fragments like ubiquitin E2 enzyme genes in the development of drought tolerance. These results suggested the specific roles of DNA methylation in development of drought tolerance in wheat landrace.
Collapse
Affiliation(s)
- Salehe Naderi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Leila Sadeghi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| | - Aidin Hamidi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| |
Collapse
|
47
|
Ren XY, Zheng YL, Liu ZL, Duan GL, Zhu D, Ding LJ. Exploring ecological effects of arsenic and cadmium combined exposure on cropland soil: from multilevel organisms to soil functioning by multi-omics coupled with high-throughput quantitative PCR. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133567. [PMID: 38271874 DOI: 10.1016/j.jhazmat.2024.133567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.
Collapse
Affiliation(s)
- Xin-Yue Ren
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
48
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
49
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
50
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|