1
|
Ramachandran SP, Jayanthikumari VP, Kodavanthodi F, Saraladevi RM. Characterization of plant growth-promoting endophytic fungi from Aegle marmelos Corr. and their role in growth enhancement and yield in rice. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01254-8. [PMID: 40035918 DOI: 10.1007/s12223-025-01254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Plant growth-promoting endophytes (PGPE) are microorganisms which reside in plant tissues and are beneficial to the host in plant growth promotion and pathogen resistance. They are the eco-friendly and sustainable alternative to chemical fertilizers and pesticides. This study aimed to analyze the plant growth-promoting properties of the five endophytic fungal strains from the medicinal plant Aegle marmelos Corr. and evaluate their effects on Oryza sativa plants. Firstly, endophytes were isolated from the different parts of A. marmelos and identified by ITS sequencing. Phosphate solubilization ability was checked in Pikovskaya's agar medium, IAA secretion was measured by the Salkowski colourimetric method, and ACC deaminase activity was checked by Penrose's method. Four endophytic fungal strains with promising PGP activities were inoculated into rice seeds to check their growth promotion in rice. The strain Purpureocillium lilacinum (AMR2) enhanced the seed vigour of rice seeds and demonstrated excellent root colonization ability. Periconia byssoides (AML2) and Medicopsis romeroi (AMS3) were the most effective plant growth-promoting agents, leading to both crop yield improvement and enhanced plant morphological growth due to their great ability to solubilize inorganic phosphate, ACC deaminase activity and production of IAA and Gibberellin A3 (GA3). These endophytic strains could serve as microbial inoculants to enhance crop production, offering an eco-friendly alternative.
Collapse
Affiliation(s)
- Swetha Parakkulathil Ramachandran
- Post-Graduate and Research Department of Botany, Sree Neelakanta Government Sanskrit College, University of Calicut, Pattambi, Palakkad (Dt), Kerala, India
| | - Vivek Padmanabhan Jayanthikumari
- Post-Graduate and Research Department of Botany, Sree Neelakanta Government Sanskrit College, University of Calicut, Pattambi, Palakkad (Dt), Kerala, India
| | - Fasna Kodavanthodi
- Post-Graduate and Research Department of Botany, Sree Neelakanta Government Sanskrit College, University of Calicut, Pattambi, Palakkad (Dt), Kerala, India
| | - Resmi Mohankumar Saraladevi
- Post-Graduate and Research Department of Botany, Sree Neelakanta Government Sanskrit College, University of Calicut, Pattambi, Palakkad (Dt), Kerala, India.
| |
Collapse
|
2
|
Wang Z, Zhao F, Bao Q, Liu X, Guo C. Identification and Characterization of Three Epichloë Endophytes Isolated from Wild Barley in China. J Fungi (Basel) 2025; 11:142. [PMID: 39997436 PMCID: PMC11856403 DOI: 10.3390/jof11020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epichloë endophytes have been found in cool-season grasses and can produce alkaloids that are toxic to vertebrates and insects. Due to their beneficial effects, Epichloë can provide plants with resistance to some abiotic and biotic stresses. The biological and physiological characteristics of the endophytic strains XJE1, XJE2, and XJE3 isolated from wild barley were measured across a range of pH, salt concentrations, and growth values. The phylogenetic position of the Epichloë isolates was examined using the tefA and actG genes. The optimal pH values for mycelial growth of XJE1, XJE2, and XJE3 were 7-8, 6-7, and 8-9, respectively. The isolates grew significantly better at 0.3 mol/L NaCl than at 0.5 mol/L and 0.1 mol/L NaCl. Based on the conidiophore and conidia morphology, growth characteristics, and phylogenetic relationships, the endophyte isolated from wild barley is likely Epichloë bromicola. These isolates exhibited differences in mating types and alkaloid biosynthesis genes. Screening for salt tolerance and alkaloid biosynthetic genes in endophytic strains will provide new insights into useful traits to breed into new forage germplasms.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Economic Crop and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Feng Zhao
- Economic Crop and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Qijun Bao
- Economic Crop and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Xiaoning Liu
- Economic Crop and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Cheng Guo
- Plant Protection Research Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| |
Collapse
|
3
|
Case NT, Gurr SJ, Fisher MC, Blehert DS, Boone C, Casadevall A, Chowdhary A, Cuomo CA, Currie CR, Denning DW, Ene IV, Fritz-Laylin LK, Gerstein AC, Gow NAR, Gusa A, Iliev ID, James TY, Jin H, Kahmann R, Klein BS, Kronstad JW, Ost KS, Peay KG, Shapiro RS, Sheppard DC, Shlezinger N, Stajich JE, Stukenbrock EH, Taylor JW, Wright GD, Cowen LE, Heitman J, Segre JA. Fungal impacts on Earth's ecosystems. Nature 2025; 638:49-57. [PMID: 39910383 PMCID: PMC11970531 DOI: 10.1038/s41586-024-08419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/18/2024] [Indexed: 02/07/2025]
Abstract
Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
Collapse
Affiliation(s)
- Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah J Gurr
- Biosciences, University of Exeter, Exeter, UK
- University of Utrecht, Utrecht, The Netherlands
| | - Matthew C Fisher
- MRC Center for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - David S Blehert
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Christina A Cuomo
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Cameron R Currie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Iuliana V Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Aleeza C Gerstein
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Asiya Gusa
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bruce S Klein
- Departments of Pediatrics, Medicine and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Kabir G Peay
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Donald C Sheppard
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Neta Shlezinger
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Eva H Stukenbrock
- Christian Albrecht University of Kiel and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gerard D Wright
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Farrer EC, Kulick NK, Birnbaum C, Halbrook S, Bumby CR, Willis C. Environmental and host plant effects on taxonomic and phylogenetic diversity of root fungal endophytes. FEMS Microbiol Lett 2025; 372:fnaf030. [PMID: 40037603 PMCID: PMC11895511 DOI: 10.1093/femsle/fnaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025] Open
Abstract
Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes.
Collapse
Affiliation(s)
- Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
| | - Nelle K Kulick
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
| | - Christina Birnbaum
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
- School of Agriculture and Environmental Science, The University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Centre for Crop Health, The University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Centre for Sustainable Agricultural Systems, The University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Susannah Halbrook
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
| | - Caitlin R Bumby
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
| | - Claire Willis
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
5
|
Garces KR, Hanley TC, Deckert R, Noble A, Richards C, Gehring C, Hughes AR. Bacterial and fungal root endophytes alter survival, growth, and resistance to grazing in a foundation plant species. Oecologia 2024; 207:9. [PMID: 39658651 DOI: 10.1007/s00442-024-05650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Plants host an array of microbial symbionts, including both bacterial and fungal endophytes located within their roots. While bacterial and fungal endophytes independently alter host plant growth, response to stress and susceptibility to disease, their combined effects on host plants are poorly studied. To tease apart interactions between co-occurring endophytes on plant growth, morphology, physiology, and survival we conducted a greenhouse experiment. Different genotypes of Spartina alterniflora, a foundational salt marsh species, were inoculated with one bacterial endophyte, Kosakonia oryzae, one fungal endophyte, Magnaporthales sp., or co-inoculated. Within the greenhouse, an unplanned herbivory event occurred which allowed insight into the ways bacteria, fungi, and co-inoculation of both endophytic microbes alters plant defense chemicals and changes herbivory. Broadly, the individual inoculation of the bacterial endophyte increased survival, whereas the fungal endophyte increased plant growth traits. Following the herbivory event, the proportion of stems grazed was reduced when plants were inoculated with the individual endophytes and further reduced when both endophytes were present. Across genotypes, anti-herbivore defense chemicals varied by individual and co-inoculation of endophytes. Bacterial inoculation and genotype interactively affected above:below-ground biomass and S. alterniflora survival of ungrazed plants. Overall, our results highlight the variable outcomes of endophyte inoculation on Spartina growth, morphology, phenolics, and survival. This study furthers our understanding of the combined effects of symbionts and plant multitrophic interactions. Further, exploring intra and inter specific effects of plant--microbe symbiosis may be key in better predicting ecosystem level outcomes, particularly in response to global change.
Collapse
Affiliation(s)
- Kylea Rose Garces
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Torrance C Hanley
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT, 06825, USA
| | - Ron Deckert
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Allison Noble
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
- LSU Department of Oceanography and Coastal Sciences, 93 South Quad Drive, Baton Rouge, LA, 70803, USA
- Louisiana Universities Marine Consortium, 8124 LA-56, Chauvin, LA, 70344, USA
| | - Christina Richards
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - A Randall Hughes
- Marine Science Center, Northeastern University, 430 Nahant Rd, Nahant, MA, 01908, USA
| |
Collapse
|
6
|
Wróbel-Kwiatkowska M, Osika A, Liszka J, Lipiński M, Dymińska L, Piegza M, Rymowicz W. The Impact of a Non-Pathogenic Strain of Fusarium Oxysporum on Structural and Biochemical Properties of Flax Suspension Cultures. Int J Mol Sci 2024; 25:9616. [PMID: 39273563 PMCID: PMC11394997 DOI: 10.3390/ijms25179616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Flax (Linum usitatissimum L.) is an important crop plant with pharmaceutical significance. It is described in pharmacopoeias (the United States Pharmacopeia and the European Pharmacopoeia), which confirms that it (especially the seeds) is a valuable medicinal product. Similar to flax seeds, which accumulate bioactive compounds, flax in vitro cultures are also a rich source of flavonoids, phenolics, lignans and neolignans. In the present study, flax suspension cultures after treatment of the non-pathogenic Fusarium oxysporum strain Fo47 were established and analyzed. The study examined the suitability of Fo47 as an elicitor in flax suspension cultures and provided interesting data on the impact of these endophytic fungi on plant metabolism and physiology. Two flax cultivars (Bukoz and Nike) and two compositions of media for flax callus liquid cultures were tested. Biochemical analysis revealed enhanced levels of secondary metabolites (total flavonoid and total phenolic content) and photosynthetically active pigments in the flax callus cultures after treatment with the non-pathogenic fungal strain F. oxysporum Fo47 when compared to control, untreated cultures. In cultures with the selected, optimized conditions, FTIR analysis was performed and revealed changes in the structural properties of cell wall polymers after elicitation of cultures with F. oxysporum Fo47. The plant cell wall polymers were more strongly bound, and the crystallinity index (Icr) of cellulose was higher than in control, untreated samples. However, lignin and pectin levels were lower in the flax callus liquid cultures treated with the non-pathogenic strain of Fusarium when compared to the untreated control. The potential application of the non-pathogenic strain of F. oxysporum for enhancing the synthesis of desired secondary metabolites in plant tissue cultures is discussed.
Collapse
Affiliation(s)
- Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Aleksandra Osika
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Justyna Liszka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Mateusz Lipiński
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
7
|
Rigobelo EC, de Andrade LA, Santos CHB, Frezarin ET, Sales LR, de Carvalho LAL, Guariz Pinheiro D, Nicodemo D, Babalola OO, Verdi MCQ, Mondin M, Desoignies N. Effects of Trichoderma harzianum and Bacillus subtilis on the root and soil microbiomes of the soybean plant INTACTA RR2 PRO™. FRONTIERS IN PLANT SCIENCE 2024; 15:1403160. [PMID: 39258296 PMCID: PMC11383790 DOI: 10.3389/fpls.2024.1403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024]
Abstract
Introduction Soybean is a significant export product for several countries, including the United States and Brazil. There are numerous varieties of soybean. Among them, a genetically modified type known as INTACTA RR2 PRO™ has been designed to demonstrate resistance to glyphosate and to produce toxins that are lethal to several species of caterpillars. Limited information is available on the use of Trichoderma harzianum and Bacillus subtilis to promote plant growth and their impact on the plant microbiome. Methods This study aimed to evaluate the effects of these microorganisms on this soybean cultivar by analyzing parameters, such as root and shoot dry matter, nutritional status, and root and soil microbial diversity. Results The results indicated that treatments with B. subtilis alone or in combination with T. harzianum as seed or seed and soil applications significantly enhanced plant height and biomass compared to the other treatments and the control. No significant differences in phosphorus and nitrogen concentrations were detected across treatments, although some treatments showed close correlations with these nutrients. Microbial inoculations slightly influenced the soil and root microbiomes, with significant beta diversity differences between soil and root environments, but had a limited overall impact on community composition. Discussion The combined application of B. subtilis and T. harzianum particularly enhanced plant growth and promoted plant-associated microbial groups, such as Rhizobiaceae, optimizing plant-microbe interactions. Furthermore, the treatments resulted in a slight reduction in fungal richness and diversity.
Collapse
Affiliation(s)
- Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luana Alves de Andrade
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Carlos Henrique Barbosa Santos
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luziane Ramos Sales
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Nicodemo
- Faculty of Agrarian and Veterinary Sciences, State University of São Paulo (UNESP), Jaboticabal, Brazil
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Maria Caroline Quecine Verdi
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Mateus Mondin
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Nicolas Desoignies
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
- Phytopathology, Microbial and Molecular Farming Lab, Center D'Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| |
Collapse
|
8
|
George J, Glover JP, Perera OP, Reddy GVP. Role of Endophytic Entomopathogenic Fungi in Mediating Host Selection, Biology, Behavior, and Management of Tarnished Plant Bug, Lygus lineolaris (Hemiptera: Miridae). PLANTS (BASEL, SWITZERLAND) 2024; 13:2012. [PMID: 39124130 PMCID: PMC11313774 DOI: 10.3390/plants13152012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Non-insecticidal control strategies using entomopathogens, nematodes, and endophytes provide sustainable and safer alternatives for managing crop pests. This study investigated the potential of different fungal endophytes, specifically Beauveria bassiana strains, in colonizing cotton plants and their efficacy against tarnished plant bug, Lygus lineolaris. The effect of endophytes on plant growth parameters and cotton yield were measured during different plant growth stages. The entomopathogenicity of these fungi was studied in diet cup bioassays using L. lineolaris adults. The behavior of adult males and females toward endophytic cotton squares was analyzed using olfactometer assays. The experiments showed that the fungal endophytes colonized the plant structures of cotton plants, which resulted in an increase in the number of cotton squares, plant height, and weight compared to control plants. B. bassiana strains/isolates such as GHA, NI-8, and JG-1 caused significant mortality in Lygus adults compared to controls. Also, male and female Lygus adults exhibited repellence behavior towards endophytic cotton squares containing JG-1 isolate of B. bassiana and to other B. bassiana strains such as NI-8, GHA, and SPE-120. No differences were observed in the survival and development of L. lineolaris second-instar nymphs on endophytic cotton, and no yield differences were observed in the field experiments.
Collapse
Affiliation(s)
- Justin George
- Southern Insect Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA; (J.P.G.); (O.P.P.); (G.V.P.R.)
| | | | | | | |
Collapse
|
9
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Alijani Mamaghani N, Masiello M, Somma S, Moretti A, Saremi H, Haidukowski M, Altomare C. Endophytic Alternaria and Fusarium species associated to potato plants ( Solanum tuberosum L.) in Iran and their capability to produce regulated and emerging mycotoxins. Heliyon 2024; 10:e26385. [PMID: 38434378 PMCID: PMC10907534 DOI: 10.1016/j.heliyon.2024.e26385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Endophytic fungi live inside virtually every plant species, without causing any apparent disease or damage to the host. Nevertheless, under particular conditions, mutualistic lifestyle of endophytes may change to pathogenic. In this study, the biodiversity of Alternaria and Fusarium species, the two most abundant endophytic fungi isolated from healthy potato plants in two climatically different regions of Iran, Ardebil in the north-west and Kerman in the south-east, was investigated. Seventy-five Fusarium strains and 83 Alternaria strains were molecularly characterized by multi-locus gene sequencing. Alternaria strains were characterized by the sequences of gpd and caM gene fragments and the phylogenetic tree was resolved in 3 well-separated clades. Seventy-three strains were included in the clade A, referred as Alternaria section, 6 strains were included in clade B, referred as Ulocladioides section, and 4 strains were included in clade C, referred as Infectoriae section. Fusarium strains, identified by sequencing the translation elongation factor 1α (tef1), β-tubulin (tub2) and internal transcribed spacer (ITS) genomic regions, were assigned to 13 species, viz. F. brachygibosum, F. clavum, F. equiseti, F. flocciferum, F. incarnatum, F. nirenbergiae, F. nygamai, F. oxysporum, F. proliferatum, F. redolens, F. sambucinum, F. solani and F. thapsinum. Twenty-six selected strains, representative of F. equiseti, F. nirenbergiae, F. oxysporum, F. nygamai, F. proliferatum, and F. sambucinum, were also tested for production of the mycotoxins deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), T-2 toxin (T-2), beauvericin (BEA), enniatins (ENNs), fumonisins (FBs), fusaric acid (FA) and moniliformin (MON). None of the tested strains produced trichothecene toxins (DON, NIV, DAS and T-2). Two out of 2 F. equiseti isolates, 1/6 F. oxysporum, 1/3 F. proliferatum, and 1/9 F. nygamai did not produce any of the tested toxins; the rest of strains produced one or more BEA, ENNs, FBs, FA and MON toxins. The most toxigenic strain, F. nygamai ITEM-19012, produced the highest quantities of FBs (7946, 4693 and 4333 μg/g of B1, B2, and B3 respectively), along with the highest quantities of both BEA (4190 μg/g) and MON (538 μg/g). These findings suggest that contamination of potato tubers with mycotoxins in the field or at post-harvest, due to a change in lifestyle of endophytic microflora, should be carefully considered and furtherly investigated.
Collapse
Affiliation(s)
- Nasim Alijani Mamaghani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Hossein Saremi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| |
Collapse
|
11
|
Zenteno‐Alegría CO, Yarzábal Rodríguez LA, Ciancas Jiménez J, Álvarez Gutiérrez PE, Gunde‐Cimerman N, Batista‐García RA. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol 2024; 17:e14439. [PMID: 38478382 PMCID: PMC10936741 DOI: 10.1111/1751-7915.14439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 10/17/2024] Open
Abstract
Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.
Collapse
Affiliation(s)
- Claribel Orquídea Zenteno‐Alegría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | | | | | | | - Nina Gunde‐Cimerman
- Departament of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Ramón Alberto Batista‐García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
| |
Collapse
|
12
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
13
|
Shen F, Wang G, Liu X, Zhu S. Exogenous inoculation of endophyte Penicillium sp. alleviated pineapple internal browning during storage. Heliyon 2023; 9:e16258. [PMID: 37234623 PMCID: PMC10205634 DOI: 10.1016/j.heliyon.2023.e16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pineapple is ranked sixth in terms of global fruit production and the most traded tropical fruit worldwide. Internal browning (IB), a physiological disorder of pineapple fruit after harvest, limits the export and industry development of pineapple. Evidence confirmed that endophyte played a pivotal role in plant disease. This study investigated the relationship between endophyte fungi community structure, population abundance in healthy and IB pineapple fruit; as well as the effect of endophyte Penicillium sp. inoculation on pineapple IB. Intended to explore a new effective measure for controlling IB and reducing postharvest losses in pineapple by an economical and environmentally friendly approach. We found the abundance of endophyte fungi in healthy pineapple fruit was different from that in IB fruit by high-throughput sequencing. The results emphasized that the endophyte Penicillium sp. inoculation dramatically alleviated pineapple IB intensity and severity, delayed crown withering and fruit yellowing, and maintained the exterior quality traits during the postharvest period at 20 °C. Penicillium sp. retarded H2O2 accumulation and increased the total phenols level in pineapple. Application of Penicillium sp. also maintained the higher antioxidant capacity by increasing antioxidant enzyme activity and ascorbic acids levels, regulated of the homeostasis of endogenous hormones, and increased the abundance of Penicillium sp. in the fruit. In summary, Penicillium sp. retarded the occurrence of IB and enhanced the storability of pineapple at postharvest, and this economical and environmentally friendly technology is convenient to spread in agriculture.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Corresponding author. 483 Wushan Road, Tianhe District, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
14
|
Tang W, Gong W, Xiao R, Mao W, Zhao L, Song J, Awais M, Ji X, Li H. Endophytic Fungal Community of Stellera chamaejasme L. and Its Possible Role in Improving Host Plants' Ecological Flexibility in Degraded Grasslands. J Fungi (Basel) 2023; 9:jof9040465. [PMID: 37108919 PMCID: PMC10146894 DOI: 10.3390/jof9040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Stellera chamaejasme L. is a widely distributed poisonous plant in Chinese degraded grasslands. To investigate the role of endophytic fungi (EF) in S. chamaejasme's quick spread in grasslands, the endophytic fungal community of S. chamaejasme was studied through culture-dependent and culture-independent methods, and the plant-growth-promoting (PGP) traits of some culturable isolates were tested. Further, the growth-promoting effects of 8 isolates which showed better PGP traits were evaluated by pot experiments. The results showed that a total of 546 culturable EF were isolated from 1114 plant tissue segments, and the colonization rate (CR) of EF in roots (33.27%) was significantly higher than that in shoots (22.39%). Consistent with this, the number of specific types of EF was greater in roots (8 genera) than in shoots (1 genus). The same phenomenon was found in culture-independent study. There were 95 specific genera found in roots, while only 18 specific genera were found in shoots. In addition, the dominant EF were different between the two study methods. Cladosporium (18.13%) and Penicillium (15.93%) were the dominant EF in culture-dependent study, while Apiotrichum (13.21%) and Athelopsis (5.62%) were the dominant EF in culture-independent study. PGP trait tests indicated that 91.30% of the tested isolates (69) showed phosphorus solubilization, IAA production, or siderophores production activity. The benefit of 8 isolates on host plants' growth was further studied by pot experiments, and the results indicated that all of the isolates can improve host plants' growth. Among them, STL3G74 (Aspergillus niger) showed the best growth-promotion effect; it can increase the plant's shoot and root dry biomass by 68.44% and 74.50%, respectively, when compared with the controls. Our findings revealed that S. chamaejasme has a wide range of fungal endophytic assemblages, and most of them possess PGP activities, which may play a key role in its quick spread in degraded grasslands.
Collapse
Affiliation(s)
- Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Weijun Gong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruitong Xiao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Liangzhou Zhao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinzhao Song
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Muhammad Awais
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuling Ji
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
16
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
17
|
Nataraja KN, Dhanyalakshmi KH, Govind G, Oelmüller R. Activation of drought tolerant traits in crops: endophytes as elicitors. PLANT SIGNALING & BEHAVIOR 2022; 17:2120300. [PMID: 36373371 PMCID: PMC9665085 DOI: 10.1080/15592324.2022.2120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Drought challenges crop production worldwide. The issue is aggravated by frequent drought episodes and unpredictable rainfall patterns associated with global climate change. While the efforts to breed drought-resistant crop varieties are progressing, the need of the hour is immediate strategies to sustain the yields of existing ones. As per recent studies, stress adaptive traits can be activated using specific elicitors. Endophytes that inhabit host plants asymptomatically are natural elicitors/bio-stimulators capable of activating host gene expression, conferring several benefits to the hosts. This review discusses the scope of using trait-specific endophytes in activating drought adaptive traits in crop varieties.
Collapse
Affiliation(s)
- Karaba N Nataraja
- Plant Molecular Biology Laboratory, Department of Crop Physiology, University of Agricultural Sciences Bangalore (UASB), GKVK Bengaluru, India
| | - KH Dhanyalakshmi
- Department of Plant Physiology, Regional Agricultural Research Station Pattambi, Kerala Agricultural University, Thrissur, Kerala, India
| | - Geetha Govind
- Department of Biotechnology, College of Agriculture, UASB, Hassan, India
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular, Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
18
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
20
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
21
|
Rivera-Vega LJ, Zhou W, Buchman LW, Valencia CU, Jack ALH, Castillo Lopez D, Sword GA. Plant-associated fungi affect above- and belowground pest responses to soybean plants. J Appl Microbiol 2022; 133:422-435. [PMID: 35352442 DOI: 10.1111/jam.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022]
Abstract
AIM The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines). METHODS AND RESULTS For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls. CONCLUSIONS We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum. SIGNIFICANCE AND IMPACT OF STUDY Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.
Collapse
Affiliation(s)
- Loren J Rivera-Vega
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Wenqing Zhou
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Leah W Buchman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Cesar U Valencia
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Allison L H Jack
- Indigo Ag Inc, Boston, Massachusetts, USA
- New Leaf Symbiotics, St. Louis., Missouri, USA
| | | | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
22
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
23
|
Shamseldin A. Future Outlook of Transferring Biological Nitrogen Fixation (BNF) to Cereals and Challenges to Retard Achieving this Dream. Curr Microbiol 2022; 79:171. [PMID: 35476236 DOI: 10.1007/s00284-022-02852-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
BNF is a fascinating phenomenon which contributes to protect the nature from environmental pollution that can be happened as a result of heavy nitrogen applications. The importance of BNF is due to its supply of the agricultural lands with about 200 million tons of N annually. In this biological process, a specific group of bacteria collectively called rhizobia fix the atmospheric N in symbiosis with legumes called symbiotic nitrogen fixation and others (free living) fix nitrogen gas from the atmosphere termed asymbiotic. Several trials were done by scientists around the world to make cereals more benefited from nitrogen gas through different approaches. The first approach is to engineer cereals to form nodulated roots. Secondly is to transfer nif genes directly to cereals and fix N without Rhizobium partner. The other two approaches are maximizing the inoculation of cereals with both of diazotrophs or endophytes. Recently, scientists solved some challenges that entangle engineering cereals with nif genes directly and they confirmed the suitability of mitochondria and plastids as a suitable place for better biological function of nif genes expression in cereals. Fortunately, this article is confirming the success of scientists not only to transfer synthetic nitrogenase enzyme to Escherichia coli that gave 50% of its activity of expression, but also move it to plants as Nicotiana benthamiana. This mini review aims at explaining the future outlook of BNF and the challenges limiting its transfer to cereals and levels of success to make cereals self nitrogen fixing.
Collapse
Affiliation(s)
- Abdelaal Shamseldin
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt.
| |
Collapse
|
24
|
Yang ZH, Xing Y, Ma JG, Li YM, Yang XQ, Wang XB. Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality. J Fungi (Basel) 2022; 8:237. [PMID: 35330239 PMCID: PMC8953515 DOI: 10.3390/jof8030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal endophytes have been extensively found in most terrestrial plants. This type of plant-microorganism symbiosis generates many benefits for plant growth by promoting nutrient availability, uptake, and resistance to environmental disease or stress. Recent studies have reported that fungal endophytes have a potential impact on plant litter decomposition, but the mechanisms behind its effect are not well understood. We proposed a hypothesis that the impacts of fungal endophytes on litter decomposition are not only due to a shift in the symbiont-induced litter quality but a shift in soil microenvironment. To test this hypothesis, we set-up a field trial by planting three locally dominant grass species (wild barley, drunken horse grass, and perennial ryegrass) with Epichloë endophyte-infected (E+) and -free (E-) status, respectively. The aboveground litter and bulk soil from each plant species were collected. The litter quality and the soil biotic and abiotic parameters were analyzed to identify their changes across E+ and E- status and plant species. While Epichloë endophyte status mainly caused a significant shift in soil microenvironment, plant species had a dominant effect on litter quality. Available nitrogen (N) and phosphorus (P) as well as soil organic carbon and microbial biomass in most soils with planting E+ plants increased by 17.19%, 14.28%, 23.82%, and 11.54%, respectively, in comparison to soils with planting E- plants. Our results confirm that fungal endophytes have more of an influence on the soil microenvironment than the aboveground litter quality, providing a partial explanation of the home-field advantage of litter decomposition.
Collapse
Affiliation(s)
- Zhen-Hui Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
| | - Ying Xing
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
| | - Jian-Guo Ma
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
| | - Yu-Man Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
| | - Xiao-Qian Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
| | - Xiao-Bo Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.-H.Y.); (Y.X.); (J.-G.M.); (Y.-M.L.); (X.-Q.Y.)
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
25
|
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 2022. [PMID: 35186412 DOI: 10.1080/215012031945699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
26
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
27
|
Ahlawat OP, Yadav D, Kashyap PL, Khippal A, Singh G. Wheat endophytes and their potential role in managing abiotic stress under changing climate. J Appl Microbiol 2021; 132:2501-2520. [PMID: 34800309 DOI: 10.1111/jam.15375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Wheat (Triticum aestivum L.) cultivation differs considerably in respect of soil type, temperature, pH, organic matter, moisture regime, etc. Among these, rising atmospheric temperature due to global warming is most important as it affects grain yield drastically. Studies have shown that for every 1°C rise in temperature above wheat's optimal growing temperature range of 20-25°C, there is a decrease in 2.8 days and 1.5 mg in the grain filling period and kernel weight, respectively, resulting in wheat yield reduction by 4-6 quintal per hectare. Growing demand for food and multidimensional issues of global warming may further push wheat crop to heat stress environments that can substantially affect heading duration, percent grain setting, maturity duration, grain growth rate and ultimately total grain yield. Considerable genetic variation exists in wheat gene pool with respect to various attributes associated with high temperature and stress tolerance; however, only about 15% of the genetic variability could be incorporated into cultivated wheat so far. Thus, alternative strategies have to be explored and implemented for sustainable, more productive and environment friendly agriculture. One of the feasible and environment friendly option is to look at micro-organisms that reside inside the plant without adversely affecting its growth, known as 'endophytes', and these colonize virtually all plant organs such as roots, stems, leaves, flowers and grains. The relationship between plant and endophytes is vital to the plant health, productivity and overall survival under abiotic stress conditions. Thus, it becomes imperative to enlist the endophytes (bacterial and fungal) isolated till date from wheat cultivars, their mechanism of ingression and establishment inside plant organs, genes involved in ingression, the survival advantages they confer to the plant under abiotic stress conditions and the potential benefits of their use in sustainable wheat cultivation.
Collapse
Affiliation(s)
| | - Dhinu Yadav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Khippal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
28
|
Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. BIORESOUR BIOPROCESS 2021; 8:63. [PMID: 34760435 PMCID: PMC8570317 DOI: 10.1186/s40643-021-00417-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/09/2021] [Indexed: 11/11/2022] Open
Abstract
The benefit of microorganisms to humans, animals, insects and plants is increasingly recognized, with intensified microbial endophytes research indicative of this realization. In the agriculture industry, the benefits are tremendous to move towards sustainable crop production and minimize or circumvent the use of chemical fertilizers and pesticides. The research leading to the identification of potential plant endophytes is long and arduous and for many researchers the challenge is ultimately in scale-up production. While many of the larger agriculture and food industries have their own scale-up and manufacturing facilities, for many in academia and start-up companies the next steps towards production have been a stumbling block due to lack of information and understanding of the processes involved in scale-up fermentation. This review provides an overview of the fermentation process from shake flask cultures to scale-up and the manufacturing steps involved such as process development optimization (PDO), process hazard analysis (PHA), pre-, in- and post-production (PIP) challenges and finally the preparation of a technology transfer package (TTP) to transition the PDO to manufacturing. The focus is on submerged liquid fermentation (SLF) and plant endophytes production by providing original examples of fungal and bacterial endophytes, plant growth promoting Penicillium sp. and Streptomyces sp. bioinoculants, respectively. We also discuss the concepts, challenges and future perspectives of the scale-up microbial endophyte process technology based on the industrial and biosafety research platform for advancing a massive production of next-generation biologicals in bioreactors.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
29
|
Rajulu MBG, Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Venkatesan G. Minor species of foliar fungal endophyte communities: do they matter? Mycol Prog 2021. [DOI: 10.1007/s11557-021-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
YE HAITAO, LUO SHIQIONG, YANG ZHANNAN, WANG YUANSHUAI, DING QIAN. Latent Pathogenic Fungi in the Medicinal Plant Houttuynia cordata Thunb. Are Modulated by Secondary Metabolites and Colonizing Microbiota Originating from Soil. Pol J Microbiol 2021; 70:359-372. [PMID: 34584530 PMCID: PMC8458996 DOI: 10.33073/pjm-2021-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022] Open
Abstract
Latent pathogenic fungi (LPFs) affect plant growth, but some of them may stably colonize plants. LPFs were isolated from healthy Houttuynia cordata rhizomes to reveal this mechanism and identified as Ilyonectria liriodendri, an unidentified fungal sp., and Penicillium citrinum. Sterile H. cordata seedlings were cultivated in sterile or non-sterile soils and inoculated with the LPFs, followed by the plants' analysis. The in vitro antifungal activity of H. cordata rhizome crude extracts on LPF were determined. The effect of inoculation of sterile seedlings by LPFs on the concentrations of rhizome phenolics was evaluated. The rates of in vitro growth inhibition amongst LPFs were determined. The LPFs had a strong negative effect on H. cordata in sterile soil; microbiota in non-sterile soil eliminated such influence. There was an interactive inhibition among LPFs; the secondary metabolites also regulated their colonization in H. cordata rhizomes. LPFs changed the accumulation of phenolics in H. cordata. The results provide that colonization of LPFs in rhizomes was regulated by the colonizing microbiota of H. cordata, the secondary metabolites in the H. cordata rhizomes, and the mutual inhibition and competition between the different latent pathogens.
Collapse
Affiliation(s)
- HAI-TAO YE
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - SHI-QIONG LUO
- School of Life Science, Guizhou Normal University, Guiyang Guizhou, China
| | - ZHAN-NAN YANG
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - YUAN-SHUAI WANG
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| | - QIAN DING
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China
| |
Collapse
|
31
|
The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants. Microorganisms 2021; 9:microorganisms9081729. [PMID: 34442808 PMCID: PMC8398416 DOI: 10.3390/microorganisms9081729] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Endophytic microorganisms present inside the host plant play an essential role in host fitness, nutrient supply and stress tolerance. Endophytes are often used in sustainable agriculture as biofertilizers, biopesticides and as inoculants to mitigate abiotic stresses including salinity, drought, cold and pH variation in the soil. In changing climatic conditions, abiotic stresses create global challenges to achieve optimum crop yields in agricultural production. Plants experience stress conditions that involve endogenous boosting of their immune system or the overexpression of their defensive redox regulatory systems with increased reactive oxygen species (ROS). However, rising stress factors overwhelm the natural redox protection systems of plants, which leads to massive internal oxidative damage and death. Endophytes are an integral internal partner of hosts and have been shown to mitigate abiotic stresses via modulating local or systemic mechanisms and producing antioxidants to counteract ROS in plants. Advancements in omics and other technologies have been made, but potential application of endophytes remains largely unrealized. In this review article, we will discuss the diversity, population and interaction of endophytes with crop plants as well as potential applications in abiotic stress management.
Collapse
|
32
|
A Symbiotic Approach to Generating Stress Tolerant Crops. Microorganisms 2021; 9:microorganisms9050920. [PMID: 33922997 PMCID: PMC8145319 DOI: 10.3390/microorganisms9050920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Studies were undertaken to determine if fungal endophytes from plants in stressful habitats could be commercialized to generate climate resilient crop plants. Fungal endophytes were isolated from weedy rice plants and grasses from South Korea and the USA, respectively. Endophytes (Curvularia brachyspora and Fusarium asiaticum) from weedy rice plants from high salt or drought stressed habitats in South Korea conferred salt and drought stress tolerance to weedy rice and commercial varieties reflective of the habitats from which they were isolated. Fungal endophytes isolated from grasses in arid habitats of the USA were identified as Trichoderma harzianum and conferred drought and heat stress tolerance to monocots and eudicots. Two T. harzianum isolates were exposed to UV mutagenesis to derive strains resistant to fungicides in seed treatment plant protection packages. Three strains that collectively had resistance to commonly used fungicides were used for field testing. The three-strain mixture (ThSM3a) increased crop yields proportionally to the level of stress plants experienced with average yields up to 52% under high and 3–5% in low stress conditions. This study demonstrates fungal endophytes can be developed as viable commercial tools for rapidly generating climate resilient crops to enhance agricultural sustainability.
Collapse
|
33
|
Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martinez-Medina A. Untapping the potential of plant mycobiomes for applications in agriculture. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102034. [PMID: 33827007 DOI: 10.1016/j.pbi.2021.102034] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 05/20/2023]
Abstract
Plant-fungal interactions are widespread in nature, and their multiple benefits for plant growth and health have been amply demonstrated. Endophytic and epiphytic fungi can significantly increase plant resilience, improving plant nutrition, stress tolerance and defence. Although some of these interactions have been known for decades, the relevance of the plant mycobiome within the plant microbiome has been largely underestimated. Our limited knowledge of fungal biology and their interactions with plants in the broader phytobiome context has hampered the development of optimal biotechnological applications in agrosystems and natural ecosystems. Exciting recent technical and knowledge advances in the context of molecular and systems biology open a plethora of opportunities for developing this field of research.
Collapse
Affiliation(s)
- Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Iñigo Zabalgogeazcoa
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Beatriz R Vazquez de Aldana
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|