1
|
Escobar Marcillo DI, Privitera GF, Rollo F, Latini A, Giuliani E, Benevolo M, Giuliani M, Pichi B, Pellini R, Donà MG. Microbiome analysis in individuals with human papillomavirus oral infection. Sci Rep 2025; 15:2953. [PMID: 39848958 PMCID: PMC11757712 DOI: 10.1038/s41598-024-81607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025] Open
Abstract
Microbiome gained attention as a cofactor in cancers originating from epithelial tissues. High-risk (hr)HPV infection causes oropharyngeal squamous cell carcinoma but only in a fraction of hrHPV+ individuals, suggesting that other factors play a role in cancer development. We investigated oral microbiome in cancer-free subjects harboring hrHPV oral infection (n = 33) and matched HPV- controls (n = 30). DNA purified from oral rinse-and-gargles of HIV-infected (HIV+) and HIV-uninfected (HIV-) individuals were used for 16S rRNA gene V3-V4 region amplification and sequencing. Analysis of differential microbial abundance and differential pathway abundance was performed, separately for HIV+ and HIV- individuals. Significant differences in alpha (Chao-1 and Shannon indices) and beta diversity (unweighted UniFrac distance) were observed between hrHPV+ and HPV-negative subjects, but only for the HIV- individuals. Infection by hrHPVs was associated with significant changes in the abundance of Saccharibacteria in HIV+ and Gracilibacteria in HIV- subjects. At the genus level, the greatest change in HIV+ individuals was observed for Bulleidia, which was significantly enriched in hrHPV+ subjects. In HIV- individuals, those hrHPV+ showed a significant enrichment of Parvimonas and depletion of Alloscardovia. Our data suggest a possible interplay between hrHPV infection and oral microbiome, which may vary with the HIV status.
Collapse
Affiliation(s)
- David Israel Escobar Marcillo
- Section of Mechanisms, Biomarkers and Models, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Grete Francesca Privitera
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rollo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Alessandra Latini
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Eugenia Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Benevolo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Barbara Pichi
- Otolaryngology Head Neck Surgery Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Otolaryngology Head Neck Surgery Department, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
2
|
Leon-Gomez P, Romero VI. Human papillomavirus, vaginal microbiota and metagenomics: the interplay between development and progression of cervical cancer. Front Microbiol 2025; 15:1515258. [PMID: 39911706 PMCID: PMC11794528 DOI: 10.3389/fmicb.2024.1515258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) types, such as HPV 16 or 18, is a major factor in cervical cancer development. However, only a small percentage of infected women develop cancer, indicating that other factors are involved. Emerging evidence links vaginal microbiota with HPV persistence and cancer progression. Alterations in microbial composition, function, and metabolic pathways may contribute to this process. Despite the potential of metagenomics to explore these interactions, studies on the vaginal microbiota's role in cervical cancer are limited. This review systematically examines the relationship between cervical microbiota, HPV, and cervical cancer by analyzing studies from PubMed, EBSCO, and Scopus. We highlight how microbial diversity influences HPV persistence and cancer progression, noting that healthy women typically have lower microbiota diversity and higher Lactobacillus abundance compared to HPV-infected women, who exhibit increased Gardenella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., associated with dysbiosis. We discuss how microbial diversity is associated with HPV persistence and cancer progression, noting that studies suggest healthy women typically have lower microbiota diversity and higher Lactobacillus abundance, while HPV-infected women exhibit increased Gardnerella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., indicative of dysbiosis. Potential markers such as Gardnerella and Prevotella have been identified as potential microbiome biomarkers associated with HPV infection and cervical cancer progression. The review also discusses microbiome-related gene expression changes in cervical cancer patients. However, further research is needed to validate these findings and explore additional microbiome alterations in cancer progression.
Collapse
Affiliation(s)
- Paul Leon-Gomez
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vanessa I. Romero
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
3
|
Liu Z, Tsai T, Zuo B, Howe S, Farrar JE, Randolph CE, Maxwell CV, Zhao J. The sow vaginal and gut microbiota associated with longevity and reproductive performance. J Anim Sci Biotechnol 2025; 16:6. [PMID: 39762999 PMCID: PMC11705881 DOI: 10.1186/s40104-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sow longevity and reproductivity are essential in the modern swine industry. Although many studies have focused on the genetic and genomic factors for selection, little is known about the associations between the microbiome and sows with longevity in reproduction. RESULTS In this study, we collected and sequenced rectal and vaginal swabs from 48 sows, nine of which completed up to four parities (U4P group), exhibiting reproductive longevity. We first identified predictors of sow longevity in the rectum (e.g., Akkermansia) and vagina (e.g., Lactobacillus) of the U4P group using RandomForest in the early breeding stage of the first parity. Interestingly, these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids. Then, we tracked the longitudinal changes of the microbiome over four parities in the U4P sows. LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina (e.g., Streptococcus in Parity 1, Lactobacillus in Parity 2, Veillonella in Parity 4). We also identified patterns of bacterial change between the early breeding stage (d 0) and d 110, such as Streptococcus, which was decreased in all four parties. Furthermore, sows in the U4P group with longevity potential also showed better reproductive performance. Finally, we discovered bacterial predictors (e.g., Prevotellaceae NK3B31 group) for the total number of piglets born throughout the four parities in both the rectum and vagina. CONCLUSIONS This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduction changes within four parities. The identification of parity-associated, pregnancy-related, and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Tsungcheng Tsai
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Bin Zuo
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Samantha Howe
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Jason E Farrar
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | | | - Charles V Maxwell
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, USA.
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Peng L, Ai C, Dou Z, Li K, Jiang M, Wu X, Zhao C, Li Z, Zhang L. Altered microbial diversity and composition of multiple mucosal organs in cervical cancer patients. BMC Cancer 2024; 24:1154. [PMID: 39289617 PMCID: PMC11409810 DOI: 10.1186/s12885-024-12915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES The aim of this study was to characterize the microbiome of multiple mucosal organs in cervical cancer (CC) patients. METHODS We collected oral, gut, urinary tract, and vaginal samples from enrolled study participants, as well as tumor tissue from CC patients. The microbiota of different mucosal organs was identified by 16S rDNA sequencing and correlated with clinical-pathological characteristics of cervical cancer cases. RESULTS Compared with controls, CC patients had reduced α-diversity of oral and gut microbiota (pOral_Sob < 0.001, pOral_Shannon = 0.049, pOral_Simpson = 0.013 pFecal_Sob = 0.030), although there was an opposite trend in the vaginal microbiota (pVaginal_Pielou = 0.028, pVaginal_Simpson = 0.006). There were also significant differences in the β-diversity of the microbiota at each site between cases and controls (pOral = 0.002, pFecal = 0.037, pUrine = 0.001, pVaginal = 0.001). The uniformity of urine microbiota was lower in patients with cervical squamous cell carcinoma (pUrine = 0.036) and lymph node metastasis (pUrine_Sob = 0.027, pUrine_Pielou = 0.028, pUrine_Simpson = 0.021, pUrine_Shannon = 0.047). The composition of bacteria in urine also varied among patients with different ages (p = 0.002), tumor stages (p = 0.001) and lymph node metastasis (p = 0.002). In CC cases, Pseudomonas were significantly enriched in the oral, gut, and urinary tract samples. In addition, Gardnerella, Anaerococcus, and Prevotella were biomarkers of urinary tract microbiota; Abiotrophia and Lautropia were obviously enriched in the oral microbiota. The microbiota of tumor tissue correlated with other mucosal organs (except the gut), with a shift in the microflora between mucosal organs and tumors. CONCLUSIONS Our study not only revealed differences in the composition and diversity of the vaginal and gut microflora between CC cases and controls, but also showed dysbiosis of the oral cavity and urethra in cervical cancer cases.
Collapse
Affiliation(s)
- Lan Peng
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Conghui Ai
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Zhongyan Dou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Kangming Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Meiping Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Xingrao Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Chunfang Zhao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China.
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Xishan District, Kunming, 650118, China.
| |
Collapse
|
5
|
Wang T, Li W, Cai M, Ji S, Wang Y, Huang N, Jiang Y, Zhang Z. Human papillomavirus molecular prevalence in south China and the impact on vaginal microbiome of unvaccinated women. mSystems 2024; 9:e0073824. [PMID: 39120153 PMCID: PMC11407003 DOI: 10.1128/msystems.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
The vaginal microbiome (VM) is associated with human papillomavirus (HPV) infection and progression, but a thorough understanding of the relation between HPV infection, and VM needs to be elucidated. From August to December 2022, women who underwent routine gynecological examinations were screened for HPV infection. The distribution of HPV variants and clinical characteristics were collected. Then, a total of 185 participants were enrolled and divided into HPV-negative (HC), high-risk HPV (H), low-risk HPV (L), multiple high-risk HPV (HH), and mixed high-low risk HPV (HL) groups. Samples were collected from the mid-vagina of these 185 participants and sent for 16S rDNA sequencing (V3-V4 region). Among 712 HPV-positive women, the top 3 most frequently detected genotypes were HPV52, HPV58, and HPV16. Among 185 participants in the microbiology study, the β diversity of the HC group was significantly different from HPV-positive groups (P < 0.001). LEfSe analysis showed that Lactobacillus iners was a potential biomarker for H group, while Lactobacillus crispatus was for L group. Regarding HPV-positive patients, the α diversity of cervical lesion patients was remarkably lower than those with normal cervix (P < 0.05). Differential abundance analysis showed that Lactobacillus jensenii significantly reduced in cervical lesion patients (P < 0.001). Further community state type (CST) clustering displayed that CST IV was more common than other types in HC group (P < 0.05), while CST I was higher than CST IV in H group (P < 0.05). Different HPV infections had distinct vaginal microbiome features. HPV infection might lead to the imbalance of Lactobacillus spp. and cause cervical lesions. IMPORTANCE In this study, we first investigated the prevalence of different HPV genotypes in south China, which could provide more information for HPV vaccinations. Then, a total of 185 subjects were selected from HPV-negative, high-risk, low-risk, multiple hr-hr HPV infection, and mixed hr-lr HPV infection populations to explore the vaginal microbiome changes. This study displayed that HPV52, HPV58, and HPV16 were the most prevalent high-risk variants in south China. In addition, high-risk HPV infection was featured by Lactobacillus iners, while low-risk HPV infection was by Lactobacillus crispatus. Further sub-group analysis showed that Lactobacillus jensenii was significantly reduced in patients with cervical lesions. Finally, CST clustering showed that CST IV was the most common type in HC group, while CST I accounted the most in H group. In a word, this study for the first time systemically profiled vaginal microbiome of different HPV infections, which may add bricks to current knowledge on HPV infection and lay the foundation for novel treatment/prevention development.
Collapse
Affiliation(s)
- Tingting Wang
- School of Health, Quanzhou Medical College, Quanzhou, China
| | - Weili Li
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Mingya Cai
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Department of Clinical Laboratory, Jinjiang Hospital, Jinjiang, China
| | - Shushen Ji
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yufang Wang
- School of Health, Quanzhou Medical College, Quanzhou, China
| | - Nan Huang
- School of Health, Quanzhou Medical College, Quanzhou, China
| | - Yancheng Jiang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Romeo M, D’Urso F, Ciccarese G, Di Gaudio F, Broccolo F. Exploring Oral and Vaginal Probiotic Solutions for Women's Health from Puberty to Menopause: A Narrative Review. Microorganisms 2024; 12:1614. [PMID: 39203456 PMCID: PMC11356851 DOI: 10.3390/microorganisms12081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The vaginal microbiota (VMB) plays a crucial role in women's health from puberty to menopause. Traditional studies have focused on the microorganisms present within the vaginal environment and their roles in disease onset. However, the dynamic relationship between the VMB and its host remains underexplored. Common narratives emphasize the presence of Lactobacilli spp. as an indicator of vaginal health, yet this does not fully explain the occurrence of asymptomatic yet significant dysbiosis. Moreover, a wide array of bacterial types can inhabit the vaginal environment, suggesting that probiotic Lactobacilli could offer a natural, safe solution for balancing vaginal microbiota. This review examines the current literature on VMB, key factors affecting its composition, and the changes it undergoes during different life stages. Given the health-promoting potential of probiotics, we also examine their role in maintaining a healthy VMB and overall women's health throughout life.
Collapse
Affiliation(s)
- Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Fabiana D’Urso
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy;
| | - Giulia Ciccarese
- Section of Dermatology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Di Gaudio
- PROMISE, University of Palermo, Piazza delle Cliniche, 2, 90127 Palermo, Italy;
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Chromatography and Mass Spectrometry Section, Quality Control and Chemical Risk (CQRC), Via del Vespro, 133, 90127 Palermo, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
7
|
Supriya Y, Sivamalar S, Nallusamy D, Sureka V, Arunagirinathan N, Saravanan S, Balakrishnan P, Viswanathan D, Rajakumar G. Application of probiotics in cervical cancer infections to enhance the immune response. Microb Pathog 2024; 193:106764. [PMID: 38944216 DOI: 10.1016/j.micpath.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is the fourth most common cancer among female patients. The primary cause of all types of cervical cancer is human papillomavirus (HPV), which was projected to account for 5,70,000 reported cases in 2018. Two HPV strains (16 and 18) account for 70 % of cervical abnormalities and precancerous cervical cancers. CC is one of the main causes of the 17 % cancer-related death rate among Indian women between the ages of 30 and 69 is CC. The side effects of the currently approved treatments for cervical cancer could endanger the lives of women affected by the illness. Thus, probiotics may be extremely important in the management of CC. Numerous studies on probiotics and their potential for use in cancer diagnosis, prevention, and treatment have been conducted. This review describes the enhancement of the immune system, promotion of a balanced vaginal microbiome, and decreased risk of secondary infections, which have anti-inflammatory effects on the body. Probiotics have the potential to reduce inflammation, thereby adversely affecting cancer cell growth and metastasis. During the course of antibiotic therapy, they support a balanced vaginal microbiome. Oncogenic virus inactivation is possible with probiotic strains. In postmenopausal women, the use of vaginal probiotics helps lessen menopausal symptoms caused by Genitourinary Syndrome of Menopause (GSM). The antitumor effects of other medications can be enhanced by them as potential agents, because they can both promote the growth of beneficial bacteria and reduce the quantity of potentially harmful bacteria. The development of tumors and the proliferation of cancer cells may be indirectly affected by the restoration of the microbial balance. Probiotics may be able to prevent and treat cervical cancer, as they seem to have anticancer properties. To identify probiotics with anticancer qualities that can supplement and possibly even replace traditional cancer treatments, further investigation is required, including carefully planned clinical trials.
Collapse
Affiliation(s)
- Yatakona Supriya
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Sathasivam Sivamalar
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India.
| | - Duraisamy Nallusamy
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Varalakshmi Sureka
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Narasingam Arunagirinathan
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Shanmugam Saravanan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Dhivya Viswanathan
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India
| | - Govindasamy Rajakumar
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India.
| |
Collapse
|
8
|
Li X, Xiang F, Liu T, Chen Z, Zhang M, Li J, Kang X, Wu R. Leveraging existing 16S rRNA gene surveys to decipher microbial signatures and dysbiosis in cervical carcinogenesis. Sci Rep 2024; 14:11532. [PMID: 38773342 PMCID: PMC11109339 DOI: 10.1038/s41598-024-62531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
The presence of dysbiotic cervicovaginal microbiota has been observed to be linked to the persistent development of cervical carcinogenesis mediated by the human papillomavirus (HPV). Nevertheless, the characteristics of the cervical microbiome in individuals diagnosed with cervical cancer (CC) are still not well understood. Comprehensive analysis was conducted by re-analyzing the cervical 16S rRNA sequencing datasets of a total of 507 samples from six previously published studies. We observed significant alpha and beta diversity differences in between CC, cervical intraepithelial neoplasia (CIN) and normal controls (NC), but not between HPV and NC in the combined dataset. Meta-analysis revealed that opportunistic pernicious microbes Streptococcus, Fusobacterium, Pseudomonas and Anaerococcus were enriched in CC, while Lactobacillus was depleted compared to NC. Members of Gardnerella, Sneathia, Pseudomonas, and Fannyhessea have significantly increased relative abundance compared to other bacteria in the CIN group. Five newly identified bacterial genera were found to differentiate CC from NC, with an area under the curve (AUC) of 0.8947. Moreover, co-occurrence network analysis showed that the most commonly encountered Lactobacillus was strongly negatively correlated with Prevotella. Overall, our study identified a set of potential biomarkers for CC from samples across different geographic regions. Our meta-analysis provided significant insights into the characteristics of dysbiotic cervicovaginal microbiota undergoing CC, which may lead to the development of noninvasive CC diagnostic tools and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Tong Liu
- Department of Molecular Science, Uppsala Biocenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Zhang W, Yin Y, Jiang Y, Yang Y, Wang W, Wang X, Ge Y, Liu B, Yao L. Relationship between vaginal and oral microbiome in patients of human papillomavirus (HPV) infection and cervical cancer. J Transl Med 2024; 22:396. [PMID: 38685022 PMCID: PMC11059664 DOI: 10.1186/s12967-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yisha Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yangyang Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wentao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoya Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Ge
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gynecology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China.
| |
Collapse
|
10
|
Brennan C, Chan K, Kumar T, Maissy E, Brubaker L, Dothard MI, Gilbert JA, Gilbert KE, Lewis AL, Thackray VG, Zarrinpar A, Knight R. Harnessing the power within: engineering the microbiome for enhanced gynecologic health. REPRODUCTION AND FERTILITY 2024; 5:e230060. [PMID: 38513356 PMCID: PMC11046331 DOI: 10.1530/raf-23-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Abstract Although numerous studies have demonstrated the impact of microbiome manipulation on human health, research on the microbiome's influence on female health remains relatively limited despite substantial disease burden. In light of this, we present a selected review of clinical trials and preclinical studies targeting both the vaginal and gut microbiomes for the prevention or treatment of various gynecologic conditions. Specifically, we explore studies that leverage microbiota transplants, probiotics, prebiotics, diet modifications, and engineered microbial strains. A healthy vaginal microbiome for females of reproductive age consists of lactic acid-producing bacteria predominantly of the Lactobacillus genus, which serves as a protective barrier against pathogens and maintains a balanced ecosystem. The gut microbiota's production of short-chain fatty acids, metabolism of primary bile acids, and modulation of sex steroid levels have significant implications for the interplay between host and microbes throughout the body, ultimately impacting reproductive health. By harnessing interventions that modulate both the vaginal and gut microbiomes, it becomes possible to not only maintain homeostasis but also mitigate pathological conditions. While the field is still working toward making broad clinical recommendations, the current studies demonstrate that manipulating the microbiome holds great potential for addressing diverse gynecologic conditions. Lay summary Manipulating the microbiome has recently entered popular culture, with various diets thought to aid the microbes that live within us. These microbes live in different locations of our body and accordingly help us digest food, modulate our immune system, and influence reproductive health. The role of the microbes living in and influencing the female reproductive tract remains understudied despite known roles in common conditions such as vulvovaginal candidiasis (affecting 75% of females in their lifetime), bacterial vaginosis (25% of females in their lifetime), cervical HPV infection (80% of females in their lifetime), endometriosis (6-10% of females of reproductive age), and polycystic ovary syndrome (10-12% of females of reproductive age). Here, we review four different approaches used to manipulate the female reproductive tract and gastrointestinal system microbiomes: microbiota transplants, probiotics, prebiotics, and dietary interventions, and the use of engineered microbial strains. In doing so, we aim to stimulate discussion on new ways to understand and treat female reproductive health conditions.
Collapse
Affiliation(s)
- Caitriona Brennan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Kristina Chan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Tanya Kumar
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, USA
| | - Erica Maissy
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Linda Brubaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Marisol I Dothard
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Katharine E Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Amir Zarrinpar
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, USA
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, California, USA
- Institute of Diabetes and Metabolic Health, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Sofou E, Gkoliou G, Pechlivanis N, Pasentsis K, Chatzistamatiou K, Psomopoulos F, Agorastos T, Stamatopoulos K. High risk HPV-positive women cervicovaginal microbial profiles in a Greek cohort: a retrospective analysis of the GRECOSELF study. Front Microbiol 2023; 14:1292230. [PMID: 38098662 PMCID: PMC10720629 DOI: 10.3389/fmicb.2023.1292230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Increasing evidence supports a role for the vaginal microbiome (VM) in the severity of HPV infection and its potential link to cervical intraepithelial neoplasia. However, a lot remains unclear regarding the precise role of certain bacteria in the context of HPV positivity and persistence of infection. Here, using next generation sequencing (NGS), we comprehensively profiled the VM in a series of 877 women who tested positive for at least one high risk HPV (hrHPV) type with the COBAS® 4,800 assay, after self-collection of a cervico-vaginal sample. Starting from gDNA, we PCR amplified the V3-V4 region of the bacterial 16S rRNA gene and applied a paired-end NGS protocol (Illumina). We report significant differences in the abundance of certain bacteria compared among different HPV-types, more particularly concerning species assigned to Lacticaseibacillus, Megasphaera and Sneathia genera. Especially for Lacticaseibacillus, we observed significant depletion in the case of HPV16, HPV18 versus hrHPVother. Overall, our results suggest that the presence or absence of specific cervicovaginal microbial genera may be linked to the observed severity in hrHPV infection, particularly in the case of HPV16, 18 types.
Collapse
Affiliation(s)
- Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Glykeria Gkoliou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Pasentsis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kimon Chatzistamatiou
- 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Akbari E, Milani A, Seyedinkhorasani M, Bolhassani A. HPV co-infections with other pathogens in cancer development: A comprehensive review. J Med Virol 2023; 95:e29236. [PMID: 37997472 DOI: 10.1002/jmv.29236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) cause various malignancies in the anogenital and oropharyngeal regions. About 70% of cervical and oropharyngeal cancers are caused by HPV types 16 and 18. Notably, some viruses including herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus along with various bacteria often interact with HPV, potentially impacting its replication, persistence, and cancer progression. Thus, HPV infection can be significantly influenced by co-infecting agents that influence infection dynamics and disease progression. Bacterial co-infections (e.g., Chlamydia trachomatis) along with bacterial vaginosis-related species also interact with HPV in genital tract leading to viral persistence and disease outcomes. Co-infections involving HPV and diverse infectious agents have significant implications for disease transmission and clinical progression. This review explores multiple facets of HPV infection encompassing the co-infection dynamics with other pathogens, interaction with the human microbiome, and its role in disease development.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Mao X, Chen H, Peng X, Zhao X, Yu Z, Xu D. Dysbiosis of vaginal and cervical microbiome is associated with uterine fibroids. Front Cell Infect Microbiol 2023; 13:1196823. [PMID: 37743857 PMCID: PMC10513091 DOI: 10.3389/fcimb.2023.1196823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Dysbiosis of the female reproductive tract is closely associated with gynecologic diseases. Here, we aim to explore the association between dysbiosis in the genital tract and uterine fibroids (UFs) to further provide new insights into UF etiology. We present an observational study to profile vaginal and cervical microbiome from 29 women with UFs and 38 healthy women, and 125 samples were obtained and sequenced. By comparing the microbial profiles between different parts of the reproductive tract, there is no significant difference in microbial diversity between healthy subjects and UF patients. However, alpha diversity of UF patients was negatively correlated with the number of fibroids. Increased Firmicutes were observed in both the cervical and vaginal microbiome of UF patients at the phylum level. In differential analysis of relative abundance, some genera were shown to be significantly enriched (e.g., Erysipelatoclostridium, Mucispirillum, and Finegoldia) and depleted (e.g., Erysipelotrichaceae UCG-003 and Sporolactobacillus) in UF patients. Furthermore, the microbial co-occurrence networks of UF patients showed lower connectivity and complexity, suggesting reduced interactions and stability of the cervical and vaginal microbiota in UF patients. In summary, our findings revealed the perturbation of microbiome in the presence of UFs and a distinct pattern of characteristic vaginal and cervical microbiome involved in UFs, offering new options to further improve prevention and management strategies.
Collapse
Affiliation(s)
- Xuetao Mao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuan Peng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xingping Zhao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dabao Xu
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Sun L, Li L, Xu W, Ma C. The Immunomodulation Role of Vaginal Microenvironment On Human Papillomavirus Infection. Galen Med J 2023; 12:e2991. [PMID: 38827643 PMCID: PMC11144026 DOI: 10.31661/gmj.v12i0.2991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Evidence suggests the role of the vaginal microbiome and microenvironment in the immunity state. The human papillomavirus (HPV) infection is widely dependent on the healthy vaginal microenvironment. Hence, this study aimed to investigate the role of the vaginal microenvironment in the rate of high-risk HPV (hr-HPV) infection. MATERIALS AND METHODS This cross-sectional study was performed on 512 women with hr-HPV positive (n=212) or negative (n=300) infection. The vaginal samples of women were examined regarding yeas and Gardnerella vaginalis infection. Also, Lactobacillus acidophilus, pH, and enzyme activity (such as catalase, proline aminopeptidase, and leucocyte esterase) were compared between the two groups. Also, the histopathological study was performed on the vaginal samples. RESULTS The higher rate of yeast and G. vaginalis infections as well as decreased L. acidophilus, were significantly observed in women with hr-HPV positive infection (P0.001). Also, histopathological findings indicated that cervical intraepithelial neoplasia grade I-III and cervical cancer lesions were markedly higher in hr-HPV positive group compared with control women. CONCLUSION The hr-HPV infection was markedly correlated to vaginal microenvironments, and it could a risk factor for the elevation of the rate of high-grade cervical lesions.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Obstetrics and Gynecology Laboratory, The First Affiliated Hospital of
Soochow University, Suzhou, Jiangsu 215000, China
| | - Li Li
- Department of Obstetrics and Gynecology Laboratory, The First Affiliated Hospital of
Soochow University, Suzhou, Jiangsu 215000, China
| | - Wenxin Xu
- Department of Obstetrics and Gynecology Laboratory, The First Affiliated Hospital of
Soochow University, Suzhou, Jiangsu 215000, China
| | - Cen Ma
- Department of Obstetrics and Gynecology Laboratory, The First Affiliated Hospital of
Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
16
|
Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett 2023; 25:153. [PMID: 36936020 PMCID: PMC10018329 DOI: 10.3892/ol.2023.13739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Cervical, ovarian and endometrial cancer are the three most common types of gynecologic cancer. As a hub, the vagina connects the site of gynecological cancer with the external environment. Lactobacilli participate in the formation of a healthy vaginal microenvironment as the first line of defense against pathogen invasion; a dysbiotic vaginal microenvironment loses its original protective function and is associated with the onset, metastasis, poor efficacy and poor prognosis of gynecological cancer. The early diagnosis of cancer is the key to improve the survival time of patients with cancer. The screening of Porphyromonas, Sneathia and Atopobium vaginae, and other microbial markers, can assist the diagnosis of gynecological cancer, and screen out the high-risk population as early as possible. With the in-depth study of the microbes in tumor tissues, reasearchers have analyzed the immunological associations of microorganisms in tumor tissues. Due to the structural-functional interconnection between the organ of gynecological tumorigenesis and the vagina, the present study aims to review the relationship between vaginal and tumor microorganisms and gynecological cancer in terms of occurrence, screening, treatment and prognosis.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Meng Ban
- Liaoning Microhealth Biotechnology Co., Ltd., Shenyang, Liaoning 110000, P.R. China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
- Correspondence to: Professor Junnan Xu, Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110000, P.R. China, E-mail:
| |
Collapse
|
17
|
Adapen C, Réot L, Menu E. Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding? FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:992176. [PMID: 36560972 PMCID: PMC9763629 DOI: 10.3389/frph.2022.992176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
The human vaginal microbiota has a central role in the regulation of the female reproductive tract (FRT) inflammation. Indeed, on one hand an optimal environment leading to a protection against sexually transmitted infections (STI) is associated with a high proportion of Lactobacillus spp. (eubiosis). On the other hand, a more diverse microbiota with a high amount of non-Lactobacillus spp. (dysbiosis) is linked to a higher local inflammation and an increased STI susceptibility. The composition of the vaginal microbiota is influenced by numerous factors that may lead to a dysbiotic environment. In this review, we first discuss how the vaginal microbiota composition affects the local inflammation with a focus on the cytokine profiles, the immune cell recruitment/phenotype and a large part devoted on the interactions between the vaginal microbiota and the neutrophils. Secondly, we analyze the interplay between STI and the vaginal microbiota and describe several mechanisms of action of the vaginal microbiota. Finally, the input of the NHP model in research focusing on the FRT health including vaginal microbiota or STI acquisition/control and treatment is discussed.
Collapse
Affiliation(s)
- Cindy Adapen
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Gao Y, Wang H, Xiao Y. The effect of cold-knife conization on pregnancy outcomes in patients with cervical lesions. PLoS One 2022; 17:e0278505. [PMID: 36454992 PMCID: PMC9714936 DOI: 10.1371/journal.pone.0278505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze the pregnancy outcomes of patients with cervical lesions treated by cold-knife conization (CKC). METHODS Clinical data of healthy pregnant women and pregnant women who underwent CKC in Dalian Women and Children's Medical Group from March 2010 to December 2019 were retrospectively analyzed. These patients were divided into a CKC group and a control group according to inclusion and exclusion criteria. Statistical methods were used to compare pregnancy and delivery outcomes between the two groups. RESULTS There were 400 patients in CKC group and control group, with 200 patients in each. There was no significant difference in the mode of delivery, abortion, ectopic pregnancy, in-hospital perinatal management, and cervical cerclage between the CKC group and the control group (P>0.05). The rates of preterm delivery, premature rupture of membranes, cesarean section, and neonatal admission in the CKC group were higher than those in the control group (P<0.05). In the CKC group, the incidence of premature rupture of membranes within six months postoperatively was higher than that after six months (P<0.05). The incidences of preterm delivery and premature rupture of membranes were not completely consistent in different conization ranges (P<0.05). CONCLUSION CKC increases the incidence of preterm delivery, premature rupture of membranes, and neonatal adverse outcomes. Conization height can predict the occurrence of preterm delivery. Delaying pregnancy after surgery can reduce the incidence of adverse outcomes during the perinatal period.
Collapse
Affiliation(s)
- Yue Gao
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, Liaoning, People’s Republic of China
| | - Huali Wang
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, Liaoning, People’s Republic of China
- * E-mail:
| | - Yunyun Xiao
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
19
|
Hu J, Wu Y, Quan L, Yang W, Lang J, Tian G, Meng B. Research of cervical microbiota alterations with human papillomavirus infection status and women age in Sanmenxia area of China. Front Microbiol 2022; 13:1004664. [PMID: 36312946 PMCID: PMC9608786 DOI: 10.3389/fmicb.2022.1004664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Human papillomavirus (HPV) infection is the leading cause of cervical cancer. More and more studies discovered that cervical microbiota (CM) composition correlated with HPV infection and the development of cervical cancer. However, more studies need to be implemented to clarify the complex interaction between microbiota and the mechanism of disease development, especially in a specific area of China. Materials and methods In this study, 16S rDNA sequencing was applied on 276 Thin-prep Cytologic Test (TCT) samples of patients from the Sanmenxia area. Systematical analysis of the microbiota structure, diversity, group, and functional differences between different HPV infection groups and age groups, and co-occurrence relationships of the microbiota was carried out. Results The major microbiota compositions of all patients include Lactobacillus iners, Escherichia coli, Enterococcus faecalis, and Atopobium vaginae at species level, and Staphylococcus, Lactobacillus, Gardnerella, Bosea, Streptococcus, and Sneathia in genus level. Microbiota diversity was found significantly different between HPV-positive (Chao1 index: 98.8869, p < 0.01), unique-268 infected (infections with one of the HPV genotype 52, 56, or 58, 107.3885, p < 0.01), multi-268 infected (infections with two or more of HPV genotype 52, 56, and 58, 97.5337, p = 0.1012), other1 (94.9619, p < 0.05) groups and HPV-negative group (83.5299). Women older than 60 years old have higher microbiota diversity (108.8851, p < 0.01, n = 255) than younger women (87.0171, n = 21). The abundance of Gardnerella and Atopobium vaginae was significantly higher in the HPV-positive group than in the HPV-negative group, while Burkholderiaceae and Mycoplasma were more abundant in the unique-268 group compared to the negative group. Gamma-proteobacteria and Pseudomonas were found more abundant in older than 60 patients than younger groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) analysis revealed the effects on metabolism by microbiota that the metabolism of cells, proteins, and genetic information-related pathways significantly differed between HPV-negative and positive groups. In contrast, lipid metabolism, signal transduction, and cell cycle metabolism pathway significantly differed between multi-268 and negative groups. Conclusion The HPV infection status and age of women were related to CM’s diversity and function pathways. The complex CM co-occurrent relationships and their mechanism in disease development need to be further investigated.
Collapse
Affiliation(s)
- Jintao Hu
- Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
- Genesis (Beijing) Co., Ltd., Beijing, China
| | - Yuhan Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Quan
- Department of Gynecology, Sanmenxia Central Hospital of Henan University of Science and Technology, Sanmenxia, Henan, China
| | | | | | - Geng Tian
- Genesis (Beijing) Co., Ltd., Beijing, China
- Geng Tian,
| | - Bo Meng
- Genesis (Beijing) Co., Ltd., Beijing, China
- *Correspondence: Bo Meng,
| |
Collapse
|
20
|
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022; 10:52. [PMID: 36135837 PMCID: PMC9503187 DOI: 10.3390/medsci10030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.
Collapse
Affiliation(s)
- Crystal G. Morales
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
21
|
BV associated bacteria specifically BVAB 1 and BVAB 3 as biomarkers for HPV risk and progression of cervical neoplasia. Infect Dis Obstet Gynecol 2022; 2022:9562937. [PMID: 35996693 PMCID: PMC9392619 DOI: 10.1155/2022/9562937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Bacterial vaginosis (BV) is associated with high-risk HPV (hrHPV) genotypes. There is a proposed bidirectional relationship between hrHPV and vaginal microbial diversity. This study investigated the association between BV associated bacteria in women co-infected with Human immunodeficiency virus (HIV) and hrHPV. Methods Stored cervical cytobrush samples were used for real time PCR detection of eight BV associated bacteria. Analysis of BV bacteria detected against HPV infection, socio-demographics and HIV data were conducted in R Statistical computing software of the R Core Team, 2020, version 3.6.3. Results A total of 190 samples were analysed. A. vaginae (p <0.001) BVAB 1 (p <0.001), BVAB 2 (p =0.428), BVAB 3 (p <0.001), Lactobacillus species (p =0.016) and S. sanguinegens (p =0.007) were associated with prevalent hrHPV. Increasing CIN severity was independently associated with detection of BVAB 1 OR 1.51(95% CI: 0.42-5.55), BVAB 3 OR 2.72(95% CI:0.90-8.55) and S. sanguinegens OR 1.02(95% CI:0.37-2.80). All HPV genotypes/groups, gravida <2, A. vaginae (p =0.002) and BVAB 1 (p =0.026) were significantly associated with HPV persistence. BVAB 3, p =0.010 and HPV 16 were significantly associated with HPV reinfection. Conclusion There is a significant association of A. vaginae, BVAB 1, BVAB 3, S. sanguinegens and Lactobacillus spp to prevalent hrHPV. BVAB 1, BVAB 3 and S. sanguinegens had an increased odds for increasing CIN severity. A vaginae, BVAB 1, gravida and all the HPV genotypes/groups were significantly associated with HPV persistence. Only BVAB 3 and HPV 16 were significantly associated with hrHPV reinfection at 1 year review. BVAB 1 and BVAB 3 are possible biomarkers for HPV infection and CIN progression.
Collapse
|
22
|
Cheng YY, Park TH, Seong H, Kim TJ, Han NS. Biological characterization of D-lactate dehydrogenase responsible for high-yield production of D-phenyllactic acid in Sporolactobacillus inulinus. Microb Biotechnol 2022; 15:2717-2729. [PMID: 35921426 PMCID: PMC9618312 DOI: 10.1111/1751-7915.14125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023] Open
Abstract
PLA (3‐D‐phenyllactic acid) is an ideal antimicrobial and immune regulatory compound present in honey and fermented foods. Sporolactobacillus inulinus is regarded as a potent D‐PLA producer that reduces phenylpyruvate (PPA) with D‐lactate dehydrogenases. In this study, PLA was produced by whole‐cell bioconversion of S. inulinus ATCC 15538. Three genes encoding D‐lactate dehydrogenase (d‐ldh1, d‐ldh2, and d‐ldh3) were cloned and expressed in Escherichia coli BL21 (DE3), and their biochemical and structural properties were characterized. Consequently, a high concentration of pure D‐PLA (47 mM) was produced with a high conversion yield of 88%. Among the three enzymes, D‐LDH1 was responsible for the efficient conversion of PPA to PLA with kinetic parameters of Km (0.36 mM), kcat (481.10 s−1), and kcat/Km (1336.39 mM−1 s−1). In silico structural analysis and site‐directed mutagenesis revealed that the Ile307 in D‐LDH1 is a key residue for excellent PPA reduction with low steric hindrance at the substrate entrance. This study highlights that S. inulinus ATCC 15538 is an excellent PLA producer, equipped with a highly specific and efficient D‐LDH1 enzyme.
Collapse
Affiliation(s)
- Ya-Yun Cheng
- Brain Korea 21 Center for Bio-Health Industry, Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Korea
| | - Tae Hyeon Park
- Brain Korea 21 Center for Bio-Health Industry, Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Health Industry, Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Korea
| | - Tae-Jip Kim
- Brain Korea 21 Center for Bio-Health Industry, Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
23
|
Mei Z, Li D. The role of probiotics in vaginal health. Front Cell Infect Microbiol 2022; 12:963868. [PMID: 35967876 PMCID: PMC9366906 DOI: 10.3389/fcimb.2022.963868] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics have been widely used in the treatment of intestinal diseases, but the effect of probiotics on female reproductive tract health is still controversial. Lactobacillus is the most abundant microorganism in the vagina, which is related to the vaginal mucosal barrier. Lactobacillus adheres to the vaginal epithelium and can competitively antagonize the colonization of pathogens. The factors produced by Lactobacillus, such as bacteriocin and hydrogen peroxide (H2O2), can inhibit the growth of pathogenic microorganisms and maintain the low pH environment of the vagina. Probiotics play an important role in maintaining the stability of vaginal microenvironment, improving immune defense and blocking the progression of cervical cancer. We review the research progress of probiotics represented by Lactobacillus in gynecological diseases such as human papilloma virus (HPV) infection, bacterial vaginosis (BV) and Genitourinary Syndrome of Menopause (GSM), so as to provide basis for further exerting the role of probiotics in women’s health.
Collapse
Affiliation(s)
- Zhaojun Mei
- Luzhou Maternal and Child Health Hospital, Luzhou Second People’s Hospital, Luzhou, China
| | - Dandan Li
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dandan Li,
| |
Collapse
|
24
|
Wu M, Li H, Yu H, Yan Y, Wang C, Teng F, Fan A, Xue F. Disturbances of Vaginal Microbiome Composition in Human Papillomavirus Infection and Cervical Carcinogenesis: A Qualitative Systematic Review. Front Oncol 2022; 12:941741. [PMID: 35903684 PMCID: PMC9316588 DOI: 10.3389/fonc.2022.941741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmerging evidence has demonstrated a close association between perturbations in vaginal microbiota composition in women and human papillomavirus (HPV) infection, cervical lesions, and cervical cancer (Ca); however, these findings are highly heterogeneous and inconclusive.AimTo perform a comprehensive systematic review of the global disturbance in the vaginal microbiota, specifically in women with HPV-associated cervical diseases, and to further conduct within- and across-disease comparisons.MethodTwenty-two records were identified in a systematic literature search of PubMed, Web of Science, and Embase up to February 28, 2022. We extracted microbial changes at the community (alpha and beta diversity) and taxonomic (relative abundance) levels. Within- and across-disease findings on the relative abundance of taxonomic assignments were qualitatively synthesized.ResultsGenerally, significantly higher alpha diversity was observed for HPV infection, cervical lesions, and/or cancer patients than in controls, and significant differences within beta diversity were observed for the overall microbial composition across samples. In within-disease comparisons, the genera Gardnerella, Megasphaera, Prevotella, Peptostreptococcus, and Streptococcus showed the greatest abundances with HPV infection; Sneathia and Atopobium showed inconsistent abundance with HPV infection, and Staphylococcus was observed in Ca. Across diseases, we find increased levels of Streptococcus and varying levels of Gardnerella were shared across HPV infections, high-grade squamous intraepithelial lesions, and Ca, whereas Lactobacillus iners varied depending on the HPV-related disease subtype.ConclusionsThis systematic review reports that vaginal microbiome disturbances are correlated to the depletion of Lactobacillus, enrichment of anaerobes, and increased abundance of aerobic bacteria in HPV infection and related cervical diseases. Moreover, L. iners may exert either protective or pathogenic effects on different HPV-related diseases.
Collapse
Affiliation(s)
- Ming Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfei Yu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Fengxia Xue,
| |
Collapse
|
25
|
Ntuli L, Mtshali A, Mzobe G, Liebenberg LJP, Ngcapu S. Role of Immunity and Vaginal Microbiome in Clearance and Persistence of Human Papillomavirus Infection. Front Cell Infect Microbiol 2022; 12:927131. [PMID: 35873158 PMCID: PMC9301195 DOI: 10.3389/fcimb.2022.927131] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cervical cancer disproportionately affects women of reproductive age, with 80% of cases occurring in low- and middle-income countries. Persistent infection with high-risk human papillomavirus (HPV) genotypes has been described as the most common non-systemic biological risk factor for the development of cervical cancer. The mucosal immune system plays a significant role in controlling HPV infection by acting as the first line of host defense at the mucosal surface. However, the virus can evade host immunity using various mechanisms, including inhibition of the antiviral immune response necessary for HPV clearance. Pro-inflammatory cytokines and the vaginal microbiome coordinate cell-mediated immune responses and play a pivotal role in modulating immunity. Recently, diverse vaginal microbiome (associated with bacterial vaginosis) and genital inflammation have emerged as potential drivers of high-risk HPV positivity and disease severity in women. The potential role of these risk factors on HPV recurrence and persistence remains unclear. This article reviews the role of cellular or cytokine response and vaginal microbiome dysbiosis in the clearance, persistence, and recurrence of HPV infection.
Collapse
Affiliation(s)
- Lungelo Ntuli
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Gugulethu Mzobe
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Lenine JP Liebenberg
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Sinaye Ngcapu,
| |
Collapse
|
26
|
McClymont E, Albert AY, Wang C, Dos Santos SJ, Coutlée F, Lee M, Walmsley S, Lipsky N, Loutfy M, Trottier S, Smaill F, Klein MB, Yudin MH, Harris M, Wobeser W, Hill JE, Money DM. Vaginal microbiota associated with oncogenic HPV in a cohort of HPV-vaccinated women living with HIV. Int J STD AIDS 2022; 33:847-855. [PMID: 35775280 PMCID: PMC9388949 DOI: 10.1177/09564624221109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Women living with HIV (WLWH) experience higher rates of human papillomavirus
(HPV) infection and cervical cancer than women without HIV. Changes in the
vaginal microbiome have been implicated in HPV-related disease processes
such as persistence of high-risk HPV infection but this has not been well
defined in a population living with HIV. Methods Four hundred and 20 girls and WLWH, age ≥9, across 14 clinical sites in
Canada were enrolled to receive three doses of quadrivalent HPV vaccine for
assessment of vaccine immunogenicity. Blood, cervical cytology, and
cervico-vaginal swabs were collected. Cervico-vaginal samples were tested
for HPV DNA and underwent microbiota sequencing. Results Principal component analysis (PCA) and hierarchical clustering generated
community state types (CSTs). Relationships between taxa and CSTs with HPV
infection were examined using mixed-effects logistic regressions, Poisson
regressions, or generalized linear mixed-effects models, as appropriate.
Three hundred and fifty-six cervico-vaginal microbiota samples from 172
women were sequenced. Human papillomavirus DNA was detected in 211 (59%)
samples; 110 (31%) contained oncogenic HPV. Sixty-five samples (18%) were
taken concurrently with incident oncogenic HPV infection and 56 (16%) were
collected from women with concurrent persistent oncogenic HPV infection. Conclusions No significant associations between taxa, CST, or microbial diversity and
HPV-related outcomes were found. However, we observed weak associations
between a dysbiotic microbiome and specific species, including
Gardnerella, Porphyromonas, and
Prevotella species, with incident HPV infection.
Collapse
Affiliation(s)
- Elisabeth McClymont
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada.,469220Canadian HIV Trials Network, Vancouver, BC, Canada
| | | | - Christine Wang
- Faculty of Medicine, 12358University of British Columbia, Vancouver, BC, Canada
| | - Scott J Dos Santos
- Department of Veterinary Microbiology, 70399University of Saskatchewan, Saskatoon, SK, Canada
| | - François Coutlée
- Département de Microbiologie Médicale et Infectiologie, 5622l'Université de Montréal, Montréal, QC, Canada
| | - Marette Lee
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada
| | - Sharon Walmsley
- Toronto General Hospital Research Institute, University of Toronto, 7989University Health Network, Toronto, ON, Canada.,Dalla Lana School of Public Health, 274071University of Toronto, Toronto, ON, Canada
| | - Nancy Lipsky
- 574117Women's Health Research Institute, Vancouver, BC, Canada
| | - Mona Loutfy
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sylvie Trottier
- Infectious Diseases Research Centre, 4440Université Laval, Québec City, QC, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, 3710McMaster University, Hamilton, ON, Canada
| | - Marina B Klein
- 54473McGill University Health Centre, Montreal, QC, Canada
| | - Mark H Yudin
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, 574538St. Michael's Hospital, Toronto, ON, Canada
| | - Marianne Harris
- Faculty of Medicine, 12358University of British Columbia, Vancouver, BC, Canada.,198129British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Wendy Wobeser
- Departments of Public Health and Molecular & Biomedical Sciences, 4257Queen's University, Kingston, ON, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, 70399University of Saskatchewan, Saskatoon, SK, Canada
| | - Deborah M Money
- Department of Obstetrics and Gynecology, 8166University of British Columbia, Vancouver, BC, Canada.,574117Women's Health Research Institute, Vancouver, BC, Canada
| | | |
Collapse
|
27
|
Fang B, Li Q, Wan Z, OuYang Z, Zhang Q. Exploring the Association Between Cervical Microbiota and HR-HPV Infection Based on 16S rRNA Gene and Metagenomic Sequencing. Front Cell Infect Microbiol 2022; 12:922554. [PMID: 35800388 PMCID: PMC9253761 DOI: 10.3389/fcimb.2022.922554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between the cervico-vaginal microbiome and high-risk human papillomavirus (HR-HPV) is well observed. However, there is a lack of adequate research regarding the cervical microbiota in HR-HPV infection. Most published research results have used 16S rRNA gene sequencing technology; this technology only focuses on marker sequences, resulting in incomplete gene information acquisition. Metagenomic sequencing technology can effectively compensate for the deficiency of 16S rRNA gene sequencing, thus improving the analysis of microbiota function. Cervical swab samples from 20 females with HR-HPV infection and 20 uninfected (Control) women were analyzed through 16S rRNA gene and metagenomic sequencing. Our results indicated that the composition and function of the cervical microbiota of HR-HPV infection differed notably from that of control women. Compared with control women, Firmicutes was decreased during HR-HPV infection, whereas Actinobacteria was increased. At the genus level, Lactobacillus was enriched in control women, while levels of Gardnerella and Bifidobacterium were lower. At the species level, Lactobacillus crispatus, L. jensenii, and L. helveticus were enriched in control women; these were the top three species with biomarker significance between the two groups. Eight pathways and four KEGG orthologies of the cervical microbiota of statistical differences were identified between the HR-HPV infection and control women. Collectively, our study described the cervical microbiota and its potential function during HR-HPV infection. Biomarkers of cervical microbiota and the changed bacterial metabolic pathways and metabolites can help clarify the pathogenic mechanism of HR-HPV infection, making them promising targets for clinical treatment and intervention for HR-HPV infection and cervical carcinoma.
Collapse
Affiliation(s)
- Bingyan Fang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qun Li
- Graduate Collaborative Training Base of Guangdong Second Provincial General Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zixian Wan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhenbo OuYang
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiushi Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Qiushi Zhang,
| |
Collapse
|
28
|
López-Filloy M, Cortez FJ, Gheit T, Cruz y Cruz O, Cruz-Talonia F, Chávez-Torres M, Arteaga-Gómez C, Mancilla-Herrera I, Montesinos JJ, Cortés-Morales VA, Aguilar C, Tommasino M, Pinto-Cardoso S, Rocha-Zavaleta L. Altered Vaginal Microbiota Composition Correlates With Human Papillomavirus and Mucosal Immune Responses in Women With Symptomatic Cervical Ectopy. Front Cell Infect Microbiol 2022; 12:884272. [PMID: 35656032 PMCID: PMC9152460 DOI: 10.3389/fcimb.2022.884272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cervical ectopy is a benign condition of the lower genital tract that is frequently detected in women of reproductive age. Although cervical ectopy is regarded as a physiological condition, some women experience symptoms such as leucorrhoea, persistent bleeding and recurrent vaginal infections that require medical intervention. Cervical ectopy has not been linked to cervical cancer, but it is thought to facilitate the acquisition of sexually transmitted diseases (STDs), like Human Papillomavirus (HPV) infection, as it provides a favorable microenvironment for virus infection and dissemination. We and others have described the presence of oncogenic HPV types in women with symptomatic cervical ectopy. The relevance of this finding and the impact of symptomatic cervical ectopy on the cervicovaginal microenvironment (vaginal microbiota, immune and inflammatory responses) are currently unknown. To shed some light into the interplay between HPV, the vaginal microbiota and mucosal immune and inflammatory responses in the context of this condition, we enrolled 156 women with symptomatic cervical ectopy and determined the presence of HPV using a type-specific multiplex genotyping assay. Overall, HPV was detected in 54.48% women, oncogenic HPV types were found in more than 90% of HPV-positive cases. The most prevalent HPV types were HPV16 (29.4%), HPV31 (21.17%) and HPV18 (15.29%). Next, we evaluated the vaginal microbial composition and diversity by 16S rDNA sequencing, and quantified levels of cytokines and chemokines by flow cytometry using bead-based multiplex assays in a sub-cohort of 63 women. IL-21 and CXCL9 were significantly upregulated in HPV-positive women (p=0.0002 and p=0.013, respectively). Women with symptomatic cervical ectopy and HPV infection had increased diversity (p<0.001), and their vaginal microbiota was enriched in bacterial vaginosis-associated anaerobes (Sneathia, Shuttleworthia, Prevotella, and Atopobium) and depleted in Lactobacillus spp. Furthermore, the vaginal microbiota of women with symptomatic cervical ectopy and HPV infection correlated with vaginal inflammation (IL-1β, rho=0.56, p=0.0004) and increased mucosal homeostatic response (IL-22, rho=0.60, p=0.0001). Taken together, our results suggest that HPV infection and dysbiotic vaginal communities could favor a vaginal microenvironment that might delay the recovery of the cervical epithelium in women with symptomatic cervical ectopy and favor STDs acquisition.
Collapse
Affiliation(s)
- Mariana López-Filloy
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Flor J. Cortez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Tarik Gheit
- International Agency for Research on Cancer, Lyon, France
| | - Omar Cruz y Cruz
- Clínica de Colposcopia Fundación “Cruz Talonia”, Ciudad de Mexico, Mexico
| | | | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Cristina Arteaga-Gómez
- Deparatamento de Oncología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Juan J. Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Víctor Adrián Cortés-Morales
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Cecilia Aguilar
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
29
|
Mei L, Wang T, Chen Y, Wei D, Zhang Y, Cui T, Meng J, Zhang X, Liu Y, Ding L, Niu X. Dysbiosis of vaginal microbiota associated with persistent high-risk human papilloma virus infection. J Transl Med 2022; 20:12. [PMID: 34980148 PMCID: PMC8722078 DOI: 10.1186/s12967-021-03201-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The status of vaginal microbiota in persistent high-risk human papilloma virus (HR-HPV) infection is unclear. The present work aimed to identify the vaginal microbiota of persistent HPV infection and explore the possible underlying microbiota factors. METHODS A total of 100 women were recruited in this study, of which 28 presented HR-HPV persistent infection (P group), 30 showed clearance of any subtype of HR-HPV (C group), and 42 had no history of any HR-HPV infection (NC group). The vaginal microbiota and the community structure of the three groups were compared based on the 16S rRNA sequencing of the V3-V4 region. The microbiota diversity and differential analysis were carried out to detect the potential factors associated with HR-HPV infection. RESULTS P and C groups showed an increase of Firmicutes and Actinobacteriota but a decrease in Proteobacteria compared to the NC group. The Chao1 index indicated that the microbial richness of the NC group was greater than C group (P < 0.05).The principal co-ordinate analysis(PCoA) revealed differences between the NC and P/C groups.The linear discriminant analysis effect size (LEfSe) method indicated that Proteobacteria phylum was significantly different in the mean relative abundance in the NC group,but the P and C groups did not show such indicative taxa. The Wilcox rank-sum test indicated that the Bifidobacterium (P = 0.002) and Lactobacillus (P = 0.005) of the C group were in a high mean relative abundance compared to the NC group. CONCLUSIONS The persistent HR-HPV infection is associated with dysbiosis of the vaginal microbiota. Microbiome regulation with Bifidobacteria and Lactobacillus may affect the clearance of HPV.
Collapse
Affiliation(s)
- Ling Mei
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yueyue Chen
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Dongmei Wei
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yueting Zhang
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Tao Cui
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jian Meng
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Xiaoli Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yuqing Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Lisha Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Xiaoyu Niu
- Department of Gynecology, Sichuan University West China Second University Hospital, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China.
| |
Collapse
|
30
|
Manzanares-Leal GL, Coronel-Martínez JA, Rodríguez-Morales M, Rangel-Cuevas I, Bustamante-Montes LP, Sandoval-Trujillo H, Ramírez-Durán N. Preliminary Identification of the Aerobic Cervicovaginal Microbiota in Mexican Women With Cervical Cancer as the First Step Towards Metagenomic Studies. Front Cell Infect Microbiol 2022; 12:838491. [PMID: 35186803 PMCID: PMC8847610 DOI: 10.3389/fcimb.2022.838491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is considered a public health problem. Recent studies have evaluated the possible relationship between the cervicovaginal microbiome and gynecologic cancer but have not studied the relationship between aerobic bacterial communities and neoplasia. The study aimed to identify the cultivable aerobic bacterial microbiota in women with cervical cancer as a preliminary approach to the metagenomic study of the cervicovaginal microbiome associated with cervical cancer in Mexican women. An observational cross-sectional study was conducted, including 120 women aged 21-71 years, divided into two study groups, women with locally advanced CC (n=60) and women without CC (n=60). Sociodemographic, gynecological-obstetric, sexual, and habit data were collected. Cervicovaginal samples were collected by swabbing, from which standard microbiological methods obtained culturable bacteria. The strains were genetically characterized by PCR-RFLP of the 16S rRNA gene and subsequently identified by sequencing the same gene. Variables regularly reported as risk factors for the disease were found in women with CC. Differences were found in the prevalence and number of species isolated in each study group. Bacteria commonly reported in women with aerobic vaginitis were identified. There were 12 species in women with CC, mainly Corynebacterium spp. and Staphylococcus spp.; we found 13 bacterial species in the group without cancer, mainly Enterococcus spp. and Escherichia spp. The advanced stages presented a more significant number of isolates and species. This study provided a preliminary test for cervicovaginal metagenomic analysis, demonstrating the presence of aerobic cervicovaginal dysbiosis in women with CC and the need for more in-depth studies.
Collapse
Affiliation(s)
- Gauddy Lizeth Manzanares-Leal
- Laboratory of Medical and Environmental Microbiology, School of Medicine, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | | | | | - Iván Rangel-Cuevas
- Gynecology Department, Maternal and Child Hospital, Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Mexico
| | | | - Horacio Sandoval-Trujillo
- Department of Biological Systems, Universidad Autonoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, School of Medicine, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
- *Correspondence: Ninfa Ramírez-Durán,
| |
Collapse
|
31
|
Kudela E, Liskova A, Samec M, Koklesova L, Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg D, Kubatka P, Biringer K. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J 2021; 12:199-220. [PMID: 34194585 PMCID: PMC8192654 DOI: 10.1007/s13167-021-00244-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.
Collapse
Affiliation(s)
- Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Jessenius Faculty of Medicine, Biomedical Centre Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Busselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| |
Collapse
|