1
|
Jiang W, Yan X, Lv Y. A critical review on the migration, transformation, sampling, analysis and environmental effects of microplastics in the environment. J Environ Sci (China) 2025; 154:645-664. [PMID: 40049905 DOI: 10.1016/j.jes.2024.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2025]
Abstract
As emerging pollutants, microplastics have recently received considerable attention owing to detection in various organisms and environments. Mass production and widespread use of plastic products increase their potential risks to humans owing to their persistent, mobile, and toxic properties. Numerous methods have been used to identify and quantify the various forms of microplastics, however, unified standards do not exist. In this review, we systematically summarize the sources, migration, transformation, and analytical methods for microplastics in diverse ecosystems, particularly the most recent sampling and identification techniques. Additionally, the environmental effects and health hazards of microplastics on aquatic and terrestrial systems, as well as human beings are discussed. We also present management strategies for reducing microplastics in a broader social and policy context. This review aims to provide an overview of the migration, transformation, sampling, analysis, and environmental effects of microplastics, which addresses knowledge gaps in microplastic pollution and provides proposals for key research gaps.
Collapse
Affiliation(s)
- Wen Jiang
- Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom; Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Ahmadi P, Doyle D, Mojarad N, Taherkhani S, Janzadeh A, Honardoost M, Gholami M. Effects of Micro- and Nanoplastic Exposure on Macrophages: A Review of Molecular and Cellular Mechanisms. Toxicol Mech Methods 2025:1-40. [PMID: 40323219 DOI: 10.1080/15376516.2025.2500546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Micro- and nanoplastics (MNPs), pervasive environmental pollutants, contaminate water, soil, air, and the food chain and ultimately accumulate in living organisms. Macrophages are the main immune cells that gather around MNPs and engulf them through the process of phagocytosis. This internalization triggers M1 polarization and the secretion of inflammatory cytokines, including IL-1, IL-18, IL-12, TNF-α, and IFN-γ. Furthermore, MNPs damage mitochondria and lysosomes, causing overactivation of iNOS and excessive production of ROS. This results in cellular stress and induce apoptosis, necroptosis, and, in some cases, metosis in macrophages. The internalization of MNPs also increases the expression of receptors, involving CD36, SR-A, LOX-1, and the macrophage receptor with a collagenous structure (MARCO) while decreasing ABCA-1 and ABCG-1. MNPs in adipose tissue macrophages trigger proinflammatory cytokine secretion, causing adipogenesis, lipid accumulation, insulin resistance, and the secretion of inflammatory cytokines in adipocytes. Various factors influence the rate of MNP internalization by macrophages, including size, charge, and concentration, which affect internalization through passive diffusion. Receptor-mediated phagocytosis of MNPs occurs directly via receptors like T-cell immunoglobulin and mucin domain containing 4 (TIM-4) and MARCO. The attachment of biomolecules, including proteins, antibodies, opsonins, or microbes to MNPs (forming corona structures) promotes indirect receptor-mediated endocytosis, as macrophages possess receptors like TLRs and FcγRIII. MNPs also cause gut dysbiosis, a risk factor for proinflammatory microenvironment and M1 polarization. Here, we review the mechanisms and consequences of MNP macrophage exposure, which is linked to autoimmunity, inflammation, and cardiometabolic syndrome manifestations, including atherosclerosis and obesity, highlighting the immunotoxicity of MNPs.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - David Doyle
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Breast Health and Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kogler L, Stellnberger S, Schwingenschlögl-Maisetschläger V, Aichinger L, Kopatz V, Teuschl-Woller AH, Kenner L, Pichler V. Production of detergent-free PET and biodegradable PBAT micro- and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138371. [PMID: 40273850 DOI: 10.1016/j.jhazmat.2025.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Microplastics comprise a heterogeneous group of polymer particles that vary in chemical properties, size, and shape, that may influence their environmental and in vivo behavior. Numerous in vitro and in vivo studies show induction of oxidative stress and metabolic disturbances. Valid critique regarding unrealistically high concentrations or additives within standard materials calls some results into question. Here, we present a novel protocol for the detergent-free production of polyethylene terephthalate (PET) and biodegradable poly(butylenadipat-co-terephthalat) (PBAT) micro- and nanoplastic particles (MNPs) as model microplastics for research. The particles were produced by dissolution precipitation from trifluoroacetic acid (TFA) for PET or tetrahydrofuran (THF)/ethanol for PBAT. Different PET sources were investigated for MNPs production. PET MNPs in the size range of 170-1000 nm with up to 80 % yield were produced from pellets as starting material. Particle size can be adjusted by ultrasounding. The non-toxic concentration range for two commonly used detergents was assessed by means of MTT assay. PET particles with a Zeta-potential of -45 were stable in aqueous suspension with and without detergents at neutral pH. Biodegradable PBAT particles in the micro- and nanometer range were produced by adapting the PET precipitation protocol. These high-yield production protocols provide additive-free authentic PET and PBAT MNPs for research.
Collapse
Affiliation(s)
- Lukas Kogler
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna 1090, Austria; Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Sarah Stellnberger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Verena Schwingenschlögl-Maisetschläger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Lisa Aichinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna 1090, Austria; Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria
| | - Verena Kopatz
- CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Department of Experimental and Translational Pathology, Institute of Clinical Pathology, Medical University of Vienna, Vienna 1090, Austria; CCC - Comprehensive Cancer Center, Vienna 1090, Austria; Department of Radiation Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Andreas H Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna 1200, Austria
| | - Lukas Kenner
- CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Department of Experimental and Translational Pathology, Institute of Clinical Pathology, Medical University of Vienna, Vienna 1090, Austria; Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; CCC - Comprehensive Cancer Center, Vienna 1090, Austria; University of Veterinary Medicine, Unit of Laboratory Animal Pathology, Vienna 1210, Austria; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden; Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna 1090, Austria.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria; CBmed GmbH Center for Biomarker Research in Medicine, Graz 8010, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), Vienna 1090, Austria.
| |
Collapse
|
4
|
Maldeniya MUS, Liu Y, Ma B, Yin J, Wen S, Yuan L, Luo P. Microplastic and nanoplastic exposure induced transcriptional and physiological alterations and triggered immune responses in the sea cucumber, Holothuria leucospilota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126291. [PMID: 40268045 DOI: 10.1016/j.envpol.2025.126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/19/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants widely distributed across aquatic ecosystems. They have gained significant attention due to their potential adverse effects on marine organisms. Many marine species, particularly sea cucumbers, inadvertently ingest these plastic particles due to their non-selective feeding behavior. In this study we carried out a 14-day exposure experiment and investigated the effects of polyethylene MPs and NPs on gene expression, oxidative stress, immune condition and histology of a tropical sea cucumber, Holothuria leucospilota, a most abundant sea cucumbers species in the world. The results showed that MPs and NPs dramatically altered gene expression in discrepant profiles. NPs caused down-regulation of the majority of genes related to metabolic processes. In contrast to the enrichment of GO terms which related to regulation, differentiation and development after being exposed to MPs, metabolome-related GO terms were significantly enriched in NPs exposure. The toxicity mechanism associated with the NPs and MPs exposure involves the activation of the antioxidant defense system and the disruption of immune balance. Furthermore, histological destruction of the respiratory tree in NP and MP groups provided robust evidence for the unstable physiological condition. Our study deepens the comprehension of size-dependent plastic toxicity on marine benthic invertebrates, thereby posing a potential hazard to marine ecosystems.
Collapse
Affiliation(s)
- M U S Maldeniya
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Yang Liu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Ma
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayue Yin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyang Wen
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Peng Luo
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Wu X, Leung T, Jima DD, Iyangbe M, Bang J. Developing a feasible fast-track testing method for developmental neurotoxicity studies: alternative model for risk assessment of micro- and nanoplastics. FRONTIERS IN TOXICOLOGY 2025; 7:1567225. [PMID: 40303462 PMCID: PMC12037614 DOI: 10.3389/ftox.2025.1567225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Micro- and nanoplastics (MNPs) are widespread environmental pollutants that pose significant health risks. They originate from industrial processes, consumer products, and environmental degradation, inducing oxidative stress through cellular dysfunctions such as membrane interaction, internalization, mitochondrial damage, inflammation, metal ion leaching, and impaired antioxidant defense. Despite increasing evidence of their toxicity-particularly developmental neurotoxicity (DNT) and mitochondrial impairment-our understanding remains limited due to the high costs of animal studies, which reduce the overall size of experimental data. This underscores the urgent need for alternative test methods that are cost-effective, rapid, and translational. This review examines new approach methodologies (NAMs) for DNT assessment, addressing the ethical, financial, and translational limitations of animal models. NAMs integrate three complementary non-animal models that enhance conventional testing. First, zebrafish models provide organismal insights into behavioral and neurodevelopmental outcomes at minimal cost. Second, neuronal organoids replicate human-specific neurodevelopmental processes in a 3D system, offering mechanistic insights. Lastly, human cell lines enable high-throughput screening, integrating findings from zebrafish and organoid studies. Establishing a new paradigm for DNT testing is crucial for faster and more efficient toxicity and risk assessments, ultimately protecting public health. Standardizing and gaining regulatory acceptance for NAMs will improve predictive accuracy and broaden their application in environmental toxicology. Advancing these methodologies is essential to addressing the risks of MNP exposure while promoting ethical and sustainable research practices.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - TinChung Leung
- The Julius L. Chambers Biomedical and Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, United States
| | - Dereje D. Jima
- Center for Human Health and Environments, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Majemite Iyangbe
- Intergrated Bioscience, Ph.D. Program, North Carolina Central University, Durham, NC, United States
| | - John Bang
- Department of Environmental, Earth, and Geospatial Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, United States
- Department of Pharmaceutical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
6
|
Dong L, Li X, Zhang Y, Liu B, Zhang X, Yang L. Urinary microplastic contaminants in primary school children: Associations with behavioral development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118097. [PMID: 40179802 DOI: 10.1016/j.ecoenv.2025.118097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Behavioral problems in children have been increasingly linked to environmental exposures. Microplastics (MPs), prevalent in urban environments, are emerging contaminants with potential neurodevelopmental effects. This study examines the relationship between urinary MPs and behavioral outcomes among primary school children in Shenyang, China. This study was conducted involving 1000 children aged 6-9 years from 40 schools across Shenyang. Urinary MPs, including polyamide (PA), polypropylene (PP), and polyvinyl chloride (PVC), were quantified using optical microscopy. Behavioral outcomes were assessed using the Strengths and Difficulties Questionnaire (SDQ). Mixed-effect negative binomial models evaluated associations between MPs and SDQ scores, adjusting for relevant covariates. The median urinary total microplastic concentration was 9 particles/100 mL. Increased particle counts of urinary MPs were positively associated with higher scores for emotional problems, conduct problems, hyperactivity, and peer problems. Total microplastic levels were linked to increased emotional symptoms (estimate: 0.128, 95 % CI: 0.065-0.198, p < 0.001), conduct problems (estimate: 0.231, 95 % CI: 0.140-0.323, p < 0.001), and hyperactivity (estimate: 0.168, 95 % CI: 0.101-0.235, p < 0.001). Peer relationship issues were also elevated with higher urinary microplastic levels (estimate: 0.206, 95 % CI: 0.133-0.271, p < 0.001). Conversely, prosocial behaviors declined with increased microplastic concentrations (estimate: -0.125, 95 % CI: -0.192 to -0.052, p = 0.001). Stratified analyses indicated no significant differences in these associations between boys and girls. Overall, urinary microplastic concentrations were significantly associated with adverse behavioral outcomes in children, highlighting the potential neurodevelopmental risks of microplastic exposure.
Collapse
Affiliation(s)
- Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bingying Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Liaoning Province, China.
| | - Xinzhong Zhang
- Third Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Amato A, Esposito R, Pinto B, Viel T, Glaviano F, Cocca M, Manfra L, Libralato G, Aflalo ED, Sagi A, Costantini M, Zupo V. First evidence of molecular response of the shrimp Hippolyte inermis to biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137069. [PMID: 39798304 DOI: 10.1016/j.jhazmat.2024.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
The increasing demand for sustainable alternatives to conventional plastics has propelled the interest in bioplastics. A few papers reported on the effects of plastics on crustaceans, but no indication about biodegradable polymers is available. Hippolyte inermis Leach, 1816 is a protandric shrimp commonly living on leaves of the seagrass Posidonia oceanica, in the Mediterranean Sea. This crustacean is typically chosen as a model to study sex differentiation processes. Here, we demonstrated its convenience as a model organism to study the effects of biodegradable polymers (BPs). Five BPs were studied: polybutylene succinate (PBS), polybutylene succinate-co-butylene adipate (PBSA), polycaprolactone (PCL), poly-3-hydroxybutyrates (PHB) and polylactic acid (PLA). Larvae of H. inermis were exposed to three concentrations of each BP (1, 5 and 10 mg/L, respectively) for ten days. After exposure, the expression levels of eighteen genes involved in stress response and detoxification processes, retrieved from a H. inermis transcriptomic library, were validated by Real Time qPCR. This study is the first using a molecular approach to detect H. inermis responses to contaminants and in particular to biodegradable polymers, through the evaluation of functional gene's pathways.
Collapse
Affiliation(s)
- Amalia Amato
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, Naples 80126, Italy; Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy
| | - Bruno Pinto
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy
| | - Francesca Glaviano
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei, 34, Pozzuoli, Napoli 80078, Italy
| | - Loredana Manfra
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, Naples 80126, Italy
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy
| |
Collapse
|
8
|
Fan Z, Khan MM, Wang K, Li Y, Jin F, Peng J, Chen X, Kong W, Lv X, Chen X, Qiu B, Wang X. Disruption of midgut homeostasis by microplastics in Spodoptera frugiperda: Insights into inflammatory and oxidative mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137262. [PMID: 39842122 DOI: 10.1016/j.jhazmat.2025.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Microplastics have evolved as widespread contaminants in terrestrial and aquatic environments, raising significant environmental concerns due to their persistence and bioaccumulation. In this study, we investigated the toxicity of polyethylene microplastics (PE-MPs) on the agricultural insect, Spodoptera frugiperda. Maize leaves containing three sizes (0.5 μm, 5 μm, and 50 μm) of PE-MPs were fed to fall armyworm larvae for 12 days at concentrations of 1.25 g/ L, 5 g/L, and 20 g/L. The results showed that smaller size and higher concentration of microplastics led to increased toxicity. Furthermore, different sizes and maximum concentrations of PE-MPs were selected for subsequent experiments to observe changes in histological and enzymatic biomarkers, midgut microbiome, and metabolic responses. Following PE-MPs exposure, inflammation signs and oxidative stress were detected in the midgut. Significant changes were also observed in midgut microbiota and metabolomes, most related with oxidative stress, inflammatory disorders, and energy metabolism. These results provide evidence of midgut damage and alterations in the microbiota and metabolome of S. frugiperda because of PE-MPs exposure, highlighting the harm that microplastics can inflict on agricultural insects. Additionally, the study lays a theoretical foundation for future research on the transmission of microplastics through the food chain in agricultural ecosystems.
Collapse
Affiliation(s)
- Zeyun Fan
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yihan Li
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Fengliang Jin
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Jing Peng
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xinyi Chen
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Weizhen Kong
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xiaolu Lv
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China.
| | - Xingmin Wang
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
9
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Coleman M, Khan PY, Linde L, Williams PCM, Marais BJ. Transgression of planetary boundaries and the effects on child health through an infectious diseases lens. Curr Opin Pediatr 2025; 37:124-136. [PMID: 39882682 DOI: 10.1097/mop.0000000000001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
PURPOSE OF REVIEW Life on earth, as we know it, is changing. The likelihood of more frequent pandemics and disease outbreaks is something that current global healthcare infrastructure is ill equipped to navigate. Human activity is forcing our planet into a new geologic epoch, the Anthropocene, which is typified by increased uncertainty resulting from human disruption of earth's life-giving ecosystems. Plagues and pandemics have always been unfortunate partners to periods of disruption, as they will be again if the frequency and severity of climate and conflict-mediated disasters increase in coming years. If we continue to exceed and degrade the planetary boundaries that protect human health, our children and their children will reap the consequences. RECENT FINDINGS Scientists have defined nine 'safe operating' planetary boundaries for life in all its glorious diversity to thrive on planet earth. Recent evidence suggests that six of these nine boundaries have already been transgressed, but the potential implications for these transgressions upon child health is not well articulated. We highlight how contravention of these boundaries will impact infectious disease risk and humans' ability to survive and thrive. We reflect specifically on how paediatricians are called upon to speak up for the most vulnerable members of our species, young children and as yet unborn future generations. SUMMARY Post COVID-19 initiatives to improve pandemic preparedness and response are certainly warranted, but pandemic prevention should include committed efforts not to exceed safe planetary boundaries. Willingly exceeding these boundaries has deep moral consequences that are poorly articulated by current ethical frameworks. Paediatricians are best placed to develop and champion the neglected 'third dimension' of medical ethics, recognizing the moral imperative to protect the long-term best interests of children and future generations.
Collapse
Affiliation(s)
- Mikaela Coleman
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- Institute of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University, Munich, Germany
| | - Palwasha Y Khan
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Lauren Linde
- Boston University School of Public Health, Boston, Massachusetts, USA
| | - Phoebe C M Williams
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases, Sydney Children's Hospital
- School of Public Health, Faculty of Medicine, University of Sydney
- Discipline of Paediatrics, School of Clinical Medicine, Faculty of Medicine and Health, UNSW
| | - Ben J Marais
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- WHO Collaborating Centre for Tuberculosis, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Chen Y, Zhang Z, Ji K, Zhang Q, Qian L, Yang C. Role of microplastics in the tumor microenvironment (Review). Oncol Lett 2025; 29:193. [PMID: 40041410 PMCID: PMC11877014 DOI: 10.3892/ol.2025.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/06/2025] Open
Abstract
Microplastics (MPs) are pervasive in several ecosystems and have the potential to infiltrate multiple aspects of human life through ingestion, inhalation and dermal exposure, thus eliciting substantial concerns regarding their potential implications for human health. Whilst initial research has documented the effects of MPs on disease development across multiple physiological systems, MPs may also facilitate tumor progression by influencing the tumor microenvironment (TME). This evolving focus underscores the growing interest in the role of MPs in tumorigenesis and their interactions within the TME. In the present review, the relationship between MPs and the TME is comprehensively assessed, providing a detailed analysis of their interactions with tumor cells, stromal cells (including macrophages, fibroblasts and endothelial cells), the extracellular matrix and inflammatory processes. Recommendations for future research directions and strategies to address and reduce microplastic pollution are proposed.
Collapse
Affiliation(s)
- Yunjie Chen
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zihang Zhang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kangming Ji
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lijun Qian
- Department of Geriatric Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
12
|
Kim D, Kim D, Kim HK, Jeon E, Sung M, Sung SE, Choi JH, Lee Y, Kang KK, Lee S, Lee S. Organ-specific accumulation and toxicity analysis of orally administered polyethylene terephthalate microplastics. Sci Rep 2025; 15:6616. [PMID: 39994411 PMCID: PMC11850764 DOI: 10.1038/s41598-025-91170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Microplastics (MPs), plastic particles with a diameter of < 5 mm, are intentionally produced or formed by the breakdown of a variety of larger plastics. Polyethylene terephthalate (PET) is a common source of MPs and PET-MPs are prevalent in the environment. Owing to their persistence, PET-MPs can enter ecosystems, air, and food sources, posing significant health risks. This study aimed to investigate the toxicological effects and in vivo accumulation of PET-MPs smaller than 10 µm. To track their biodistribution, fluorescently labeled PET-MPs were prepared. Particle size and morphology were confirmed using physical and chemical characterization. Following the oral administration of PET-MPs in ICR (CD-1®) outbred mice, accumulation occurred predominantly in lungs, as confirmed by IVIS spectrum CT analysis and in vivo and ex vivo imaging. Toxicity assays revealed the development of granulomatous inflammation in the lungs at medium and high doses, indicating a concentration-dependent response. The recorded no-observed-adverse-effect levels were 1.75 mg/kg for males and 7 mg/kg for females. This study highlights the potential of PET-MPs to induce persistent inflammation in respiratory tissues and reveals the need for further research to support the regulatory standards and long-term health effects of MP exposure.
Collapse
Affiliation(s)
- Dongseon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Dongmin Kim
- Korea Institute of Industrial Technology, Cheonan, 31056, Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03772, Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Eunyoung Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Yujeong Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Cheonan, 31056, Korea
| | - Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Korea.
| |
Collapse
|
13
|
Zangene S, Morovvati H, Anbara H, Bernabò N. Exposure to Polystyrene Microplastic Differentially Affects the Colon and Liver in Adult Male Mice. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39967350 DOI: 10.1002/tox.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) have emerged as novel environmental pollutant. Their ubiquity in natural environments and the global dissemination of plastic particles through food and drink have led to the oral ingestion of these particles by all kinds of living organism. In this investigation, male mice were subjected to exposure to 2 μm virgin PS-MPs for 6 weeks. To accomplish this, 36 adult male NMRI mice were gavaged with PS-MPs at concentrations of 0.01, 0.1, and 1 mg/kg body weight. A control group was also accounted for, which received 0.1 mL of distilled water. The results show that the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) decreased, while the level of malondialdehyde increased in colon and liver. Additionally, findings showed that PS-MPs can disrupt the integrity of the intestinal barrier and inhibit the secretion of intestinal mucus in mice, disrupt mucin secretion, and cause changes in the tissue structure of the colon and liver. Further information regarding the toxicity of MPs in a terrestrial organism was obtained through this study, which assist in the evaluation of the potential health hazards that PS-MPs may pose to living organisms.
Collapse
Affiliation(s)
- Somaye Zangene
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hojat Anbara
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nicola Bernabò
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
14
|
Wang S, Wang X, Liu Y, Yao Q. Single and Synergistic Effects of Microplastics and Difenoconazole on Oxidative Stress, Transcriptome, and Microbiome Traits in Honey Bees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3095-3105. [PMID: 39846512 DOI: 10.1021/acs.jafc.4c09141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Microplastics (MPs) and pesticides are identified as two environmental pollutants. In the present study, we showed evidence of toxic effects on honey bees from chronic oral exposure to food containing difenoconazole alone (Dif) and in a binary mixture with polystyrene (PS)-MPs (Dif + PS). We observed a disrupted gut microbial community structure in bees after difenoconazole exposure, and the gut microbiota structure richness increased at the phylum and genus levels in Dif + PS group. Transcriptomic analysis revealed that difenoconazole exposure caused 98 differentially expressed genes (DEGs), while 41 DEGs were identified in Dif + PS group. PS-MPs seemed to mitigate oxidative damage and changes in the transcriptome profile in honey bees caused by difenoconazole to some extent. However, coexposure increased the disordered microbial community composition. Our study highlights the importance of investigating possible additive and synergic activities between stressors to comprehensively understand the effects of pollutants on pollinating insects.
Collapse
Affiliation(s)
- Siwei Wang
- Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaonan Wang
- Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yanping Liu
- Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Qiong Yao
- Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| |
Collapse
|
15
|
Montano L, Raimondo S, Piscopo M, Ricciardi M, Guglielmino A, Chamayou S, Gentile R, Gentile M, Rapisarda P, Oliveri Conti G, Ferrante M, Motta O. First evidence of microplastics in human ovarian follicular fluid: An emerging threat to female fertility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117868. [PMID: 39947063 DOI: 10.1016/j.ecoenv.2025.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Several studies have assessed the presence of microplastics (MPs) in human biological fluids and tissues highlighting potential health risks associated to oxidative stress, inflammation, immune dysfunction, neurotoxicity and reprotoxicity. However, only few studies have evaluated MP presence and effects in ovarian tissues of mammalians and, to date, no studies have detected MPs in human ovarian follicular fluids. Based on these premises, in this study, 18 women (undergoing assisted reproductive treatment at In Vitro Fertilisation center in Salerno, Southern Italy) were selected to assess the presence of MPs in follicular fluid. Plastic particles < 10 µm were measured using Scanning Electron Microscopy (SEM) coupled with an EDX (X Energy Dispersion) detector. MPs (size <10 µm) were detected in 14 out of 18 samples of follicular fluid, with an average concentration of 2191 particles/mL (0-7181particles/mL) and with a mean diameter of 4.48 µm (3.18-5.54 µm). Moreover, a significant correlation between MP concentration in follicular fluid samples and Follicle-Stimulating Hormone (FSH) (p-value <0.05), as well as a weak (non-significant) correlation with Body Mass Index (BMI), age and 17β-estradiol (E2), was found. On the contrary, no correlation with anti-Müllerian Hormone (AMH), fertilization outcomes, miscarriages, or live birth was observed. Since several studies on animal models have demonstrated the negative effects of MPs on ovarian function, the present study, that verified for the first time the presence of MPs in human follicular fluid, is of great significance for the scientific community in terms of raising awareness of the impact that these increasingly pervasive emerging contaminants have on reproductive function and human health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-Food Fertility Project), "S. Francesco di Assisi Hospital", Oliveto Citra, SA 84020, Italy; PhD Program in Evolutionary Biology and Ecology, University of Rome "Tor Vergata", Rome 00133, Italy.
| | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, Naples 80126, Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, Fisciano, SA 84084, Italy
| | - Antonino Guglielmino
- Centro HERA-Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant'Agata li Battiati, Catania 95030, Italy
| | - Sandrine Chamayou
- Centro HERA-Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant'Agata li Battiati, Catania 95030, Italy
| | | | - Mariacira Gentile
- Residential Program in Laboratory medicine, Department of Medicine and Surgery, University of Milan "Bicocca", Milan, Italy
| | - Paola Rapisarda
- International Society of Doctors for Environments - ISDE, Catania Section, Italy; Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Public Health section no Catania Section Catania Section, Catania, Italy
| | - Gea Oliveri Conti
- International Society of Doctors for Environments - ISDE, Catania Section, Italy; Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Public Health section no Catania Section Catania Section, Catania, Italy
| | - Margherita Ferrante
- International Society of Doctors for Environments - ISDE, Catania Section, Italy; Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Public Health section no Catania Section Catania Section, Catania, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| |
Collapse
|
16
|
Zhang Q, Zheng S, Pei X, Zhang Y, Wang G, Zhao H. The effects of microplastics exposure on quail's hypothalamus: Neurotransmission disturbance, cytokine imbalance and ROS/TGF-β/Akt/FoxO3a signaling disruption. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110054. [PMID: 39442781 DOI: 10.1016/j.cbpc.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) have become a major focus of environmental toxicology, raising concerns about their potential adverse effects on animal organs and body systems. As these tiny particles infiltrate ecosystems, they may pose risks to the health of organisms across diverse species. In this study, we attempted to examine the neurotoxic effects of MPs exposure on avian hypothalamus by using an animal model-Japanese quail (Coturnix japonica). The quails of 7-day-old were exposed to 0.02 mg/kg, 0.4 mg/kg and 8 mg/kg polystyrene microplastic (PS-MPs) of environmental relevance for 35 days. The results showed PS-MPs exposure did damages to hypothalamic structure characterized by neuron malformation, irregular arrangement and cellular vacuolation after 5-week exposure. PS-MPs exposure also induced Nissl body reduction and dissolution in the hypothalamus. Moreover, the decrease of acetylcholinesterase (AchE) activity and increasing acetylcholine (Ach) indicated that PS-MPs exposure caused hypothalamic neurotransmission disturbance. PS-MPs exposure also led to neuroinflammation by disrupting the balance between proinflammatory and anti-inflammatory cytokines. Moreover, increasing reactive oxygen species (ROS) and malondialdehyde (MDA) generation with reducing antioxidants indicated PS-MPs led to hypothalamic oxidative stress. Additionally, RNA-Seq analysis found that both transforming growth factor-β (TGF-β) signaling and forkhead box O (FoxO) signaling were disturbed in the hypothalamus by PS-MPs exposure. Especially, the increasing ROS led to TGF-β activation and then induced hypothalamic inflammation by nuclear factor κB (NF-κB) activation. The present study concluded that oxidative stress might be an important mechanistic signaling involved in MPs neurotoxicology.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Siyuan Zheng
- Changwai Bilingual School, Changzhou, 213002, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Wang
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
17
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
18
|
Del Piano F, Mateu B, Coretti L, Borrelli L, Piccolo G, Addeo NF, Esposito S, Mercogliano R, Turco L, Meli R, Lembo F, Ferrante MC. Polystyrene microplastic exposure modulates gut microbiota and gut-liver axis in gilthead seabream (Sparus aurata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177857. [PMID: 39631330 DOI: 10.1016/j.scitotenv.2024.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) are a threat of growing concern for living organisms as they exist in all ecosystems. The bidirectional communication between the gut, its microbiota, and the liver, has been conceptualized as gut-liver axis and may be influenced by environmental factors. MPs can cause intestinal and hepatic injuries, but there is still limited research exploring their impact on gut-liver axis. The aim of this study was to assess the effects of MP ingestion on gut-liver axis balance in gilthead seabream (Sparus aurata) fed with a diet enriched with polystyrene (PS)-MPs (0, 25, or 250 mg/kg b.w./day) for 21 days. PS-MPs affected the composition of gut microbiota, enhancing the evenness of gut microbial species. We also observed the impoverishment of core microbiota, suggesting reduced stability and permanence of microbiota members. Furthermore, PS-MPs reduced predominant bacteria in the gut of gilthead seabreams, increasing low-abundance species, including potential harmful taxa. On the other hand, PS-MPs increased the gene expression of immune and inflammatory mediators (i.e., TLR2, TLR5, and COX-2) in the liver. PS-MP exposure also increased serum triglycerides and bile acids (BAs) without modifying cholesterol. Moreover, the hepatic BA metabolism was impacted by PS-MPs which increased the expression of genes involved in primary BA kinetic (i.e., CYP27A1 and LXRa), which in turn can modulate intestinal microbial community. Indeed, PICRUSt2 mapping of BA-related functions predicted the increase of factors involved in BA metabolism. Specifically, K01442 (choloylglycine hydrolase) and K00076 (7α-hydroxysteroid dehydrogenase) were augmented by PS-MPs, suggesting a possible adaptation or co-evolution of gut microbiota to the modified hepatic BA metabolism. Thus, the obtained results showed that ingested PS-MPs impact the gut microbiota architecture and functions, the hepatic innate immunity, and the BA metabolism, suggesting the involvement of the gut-liver axis in MP-induced toxicity.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
19
|
Chakraborty S, Banerjee M, Jayaraman G, Rajeswari V D. Evaluation of the health impacts and deregulation of signaling pathways in humans induced by microplastics. CHEMOSPHERE 2024; 369:143881. [PMID: 39631686 DOI: 10.1016/j.chemosphere.2024.143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This review assesses the diverse health risk factors associated with microplastic (MP) exposure and their impact on cellular signaling pathways. MPs induce chronic inflammation, oxidative stress, endocrine disruption, apoptosis, and immune dysregulation. They activate signaling pathways such as NF-κB, MAPK, and Nrf2, exacerbating inflammatory responses, oxidative damage, and hormonal imbalances. Understanding the interplay between MPs and signaling pathways is crucial for elucidating the mechanisms underlying MP-induced health effects. Effective risk assessment and management strategies are essential to mitigate the adverse health impacts of MPs on human populations. This research underscores the urgent need for interdisciplinary collaboration to safeguard human health and environmental sustainability in the face of rising MP pollution. In this paper, we also assess the risk factors caused by the microplastics in the pregnant women and the development of the fetus. This review explores the potential risks and challenges associated with MP exposure in newborn babies. It is quite concerning that microplastic particles were recently found in the placental tissue of newborn children for the first time. Although it is unclear how these tiny particles affect different organs, researchers believe that these tiny particles could potentially carry harmful chemicals or disrupt the developing immune system of the fetus. This review overall focuses on the impact of microplastic disrupting different signaling including reproductive health in humans.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gurunathan Jayaraman
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Kumar N, Lamba M, Pachar AK, Yadav S, Acharya A. Microplastics - A Growing Concern as Carcinogens in Cancer Etiology: Emphasis on Biochemical and Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3109-3121. [PMID: 39031249 DOI: 10.1007/s12013-024-01436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
In today's world, the widespread presence of microplastics is undeniable, with concentrations found in various environments, including up to 1000 particles per liter in seawater and up to 10 particles per cubic meter in the atmosphere. Originating from diverse sources, both intentional and unintentional, these minuscule fragments, measuring less than 5 mm, pose significant threats to environmental and human health. Recent research has uncovered a concerning link between microplastics and cancer, prompting urgent investigation. Studies demonstrate microplastics can infiltrate cells, disrupt biological processes, and potentially foster carcinogenic environments. From inducing DNA damage and oxidative stress to triggering inflammatory responses and dysregulating cellular pathways, microplastics exhibit a multifaceted capability in contributing to cancer development. Furthermore, microplastics act as carriers for a range of contaminants, compounding their impact on human health. Their accumulation within tissues and organs raises concerns for short and long-term health consequences, including chronic diseases, reproductive issues, and developmental abnormalities. This review explores the biochemical and molecular mechanisms underlying the interaction between microplastics and cellular systems, providing insights into routes of exposure and health effects, with a focus on lung, skin, and digestive system cancers. As we confront this pressing environmental and public health challenge, a deeper understanding of the microplastic-cancer relationship is crucial to safeguarding the well-being of present and future generations.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India.
| | - Mridul Lamba
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India
| | - Ashok Kumar Pachar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sonal Yadav
- Department of Zoology, School of Basic & Applied Science, Raffles University, Neemrana, 301705, Alwar, Rajasthan, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
21
|
Dewika M, Markandan K, Ruwaida JN, Sara YY, Deb A, Irfan NA, Khalid M. Integrating the quintuple helix approach into atmospheric microplastics management policies for planetary health preservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176063. [PMID: 39245389 DOI: 10.1016/j.scitotenv.2024.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Microplastic pollution has become a major global environmental issue, negatively impacting terrestrial and aquatic ecosystems as well as human health. Tackling this complex problem necessitates a multidisciplinary approach and collaboration among diverse stakeholders. Within this context, the Quintuple Helix framework, which highlights the involvement of academia, government, industry, civil society, and the environment, provides a comprehensive and inclusive perspective for formulating effective policies to manage atmospheric microplastics. This paper discusses each helix's roles, challenges, and opportunities and proposes strategies for collaboration and knowledge exchange among them. Furthermore, the paper highlights the importance of interdisciplinary research, innovative technologies, public awareness campaigns, regulatory frameworks, and corporate responsibility in achieving sustainable and resilient microplastic management policies. The Quintuple Helix approach can mitigate microplastics, safeguard ecosystems, and preserve planetary health by fostering collaboration and coordination among diverse stakeholders.
Collapse
Affiliation(s)
- M Dewika
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Kalaimani Markandan
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - J Nor Ruwaida
- Air Resources Research Laboratory, Malaysia Japan International Institute of Technology, 54100 UTM Kuala Lumpur, Malaysia
| | - Y Y Sara
- Faculty of Civil Engineering & Technology, University Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, FI-00014, Finland
| | - N Ahmad Irfan
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
22
|
Hartmann C, Lomako I, Schachner C, El Said E, Abert J, Satrapa V, Kaiser AM, Walch H, Köppel S. Assessment of microplastics in human stool: A pilot study investigating the potential impact of diet-associated scenarios on oral microplastics exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175825. [PMID: 39197786 DOI: 10.1016/j.scitotenv.2024.175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
As emerging contaminants microplastic particles have become of particular relevance as they are widely present in the environment and of potential concern to human health. Humans are exposed through different routes, with oral intake and inhalation being the most significant. Dietary intake substantially contributes to oral exposure, although data is still lacking. This first-of-its-kind pilot study investigates the influence of different plastic use and food consumption scenarios (normal, low, high) on microplastic content in stool reflecting oral intake by performing an intervention study with fifteen volunteers. Stool samples were analyzed for ten different plastic types in three size fractions including 5-50 μm (qualitative), 50-500 μm and 500-5000 μm (quantitative). In all samples, microplastic particles were detected with median concentrations up to 3.5 particles/g stool in the size fraction 50-500 μm. Polyethylene was the most frequently detected polymer type. The different scenarios did not result in a consistent pattern of microplastics, however, the use of plastics for food packaging and preparation, and the consumption of highly processed food were statistically significantly associated with microplastics content in stool. These results provide initial findings that contribute to filling current knowledge gaps and pave the way for further research.
Collapse
Affiliation(s)
- Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria.
| | - Ievgeniia Lomako
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Carla Schachner
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Evelin El Said
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Julia Abert
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Vito Satrapa
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Helene Walch
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Sebastian Köppel
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| |
Collapse
|
23
|
Xia Q, Wei Y, Hu LJ, Zeng FM, Chen YW, Xu D, Sun Y, Zhao LW, Li YF, Pang GH, Peng W, He M. Inhalation of Microplastics Induces Inflammatory Injuries in Multiple Murine Organs via the Toll-like Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18603-18618. [PMID: 39389766 DOI: 10.1021/acs.est.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Collapse
Affiliation(s)
- Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Long-Ji Hu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Fan-Mei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yu-Wei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Lu-Wei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yi-Fei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Guan-Hua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang 110122, P. R. China
- Ministry of Education, China, Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Shenyang 110122, P. R. China
| |
Collapse
|
24
|
Goswami S, Adhikary S, Bhattacharya S, Agarwal R, Ganguly A, Nanda S, Rajak P. The alarming link between environmental microplastics and health hazards with special emphasis on cancer. Life Sci 2024; 355:122937. [PMID: 39103046 DOI: 10.1016/j.lfs.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Microplastic contamination is a burgeoning environmental issue that poses serious threats to animal and human health. Microplastics enter the human body through nasal, dermal, and oral routes to contaminate multiple organs. Studies have advocated the existence of microplastics in human breast milk, sputum, faeces, and blood. Microplastics can find their ways to the sub-cellular moiety via active and passive approaches. At cellular level, microplastics follow clathrin and caveolae-dependent pathways to invade the sub-cellular environment. These environmental contaminants modulate the epigenetic control of gene expression, status of inflammatory mediators, redox homeostasis, cell-cycle proteins, and mimic the endocrine mediators like estrogen and androgen to fuel carcinogenesis. Furthermore, epidemiological studies have suggested potential links between the exposure to microplastics and the onset of various chronic diseases. Microplastics trigger uncontrolled cell proliferation and ensue tissue growth leading to various cancers affecting the lungs, blood, breasts, prostate, and ovaries. Additionally, such contamination can potentially affect sub-cellular signaling and injure multiple organs. In essence, numerous reports have claimed microplastic-induced toxicity and tumorigenesis in human and model animals. Nonetheless, the underlying molecular mechanism is still elusive and warrants further investigations. This review provides a comprehensive analysis of microplastics, covering their sources, chemistry, human exposure routes, toxicity, and carcinogenic potential at the molecular level.
Collapse
Affiliation(s)
- Sohini Goswami
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | | | - Ruchika Agarwal
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, West Bengal, India.
| |
Collapse
|
25
|
Prattichizzo F, Ceriello A, Pellegrini V, La Grotta R, Graciotti L, Olivieri F, Paolisso P, D’Agostino B, Iovino P, Balestrieri ML, Rajagopalan S, Landrigan PJ, Marfella R, Paolisso G. Micro-nanoplastics and cardiovascular diseases: evidence and perspectives. Eur Heart J 2024; 45:4099-4110. [PMID: 39240674 PMCID: PMC11458152 DOI: 10.1093/eurheartj/ehae552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.
Collapse
Affiliation(s)
- Francesco Prattichizzo
- IRCCS MultiMedica, Polo Scientifico e Tecnologico, Via Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Polo Scientifico e Tecnologico, Via Fantoli 16/15, 20138 Milan, Italy
| | - Valeria Pellegrini
- IRCCS MultiMedica, Polo Scientifico e Tecnologico, Via Fantoli 16/15, 20138 Milan, Italy
| | - Rosalba La Grotta
- IRCCS MultiMedica, Polo Scientifico e Tecnologico, Via Fantoli 16/15, 20138 Milan, Italy
| | - Laura Graciotti
- Section of Experimental and Technical Sciences, Department of Biomedical Sciences and Public Health, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Pasquale Paolisso
- Department of University Cardiology, IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, The University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Sanjay Rajagopalan
- University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Chestnut Hill, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
- UniCamillus International Medical University, Rome, Italy
| |
Collapse
|
26
|
Shi Y, Miao H, Zhou S, Leng X, Wu Y, Huang Y. Visualized analysis of microplastics in residents' diets and regional investigation of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174166. [PMID: 38908578 DOI: 10.1016/j.scitotenv.2024.174166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Microplastics are widely distributed in ecosystems and are increasingly found in food. This poses a potential threat to human health. However, current detections of microplastic in food primarily focused on the simple matrices, such as water, milk, and beverages, with relatively few methods available for complex matrices. Due to the strong matrix interference, non-destructive detection of microplastics in food has always been challenging. Thus, in this study, infrared spectral imaging approach was employed in tandem with chemometrics to perform nondestructive and in-situ characterization of microplastics in twelve diverse Chinese diets including meat and seafood stuffs. Results demonstrate that the proposed method can efficiently characterize common microplastics, such as polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE), etc., in various complex matrices. The IR spectral imaging was subsequently applied to the detection of microplastics in seafood samples collected from 24 provinces across China. Results revealed the widespread presence of microplastics in seafood diets with significant regional variations. Overall, this study offers an innovative and applicable means for detecting microplastics in complex foods and provides a reference for the rapid detection of microplastics in various materials.
Collapse
Affiliation(s)
- Yizhi Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Shuang Zhou
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Sanya Institute of China Agricultural University, Hainan 572025, China; China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
27
|
Aloi N, Calarco A, Curcuruto G, Di Natale M, Augello G, Carroccio SC, Cerruti P, Cervello M, Cuttitta A, Colombo P, Longo V. Photoaging of polystyrene-based microplastics amplifies inflammatory response in macrophages. CHEMOSPHERE 2024; 364:143131. [PMID: 39168382 DOI: 10.1016/j.chemosphere.2024.143131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The continuous release of municipal and industrial products into the environment poses a growing concern for public health. Among environmental pollutants, polystyrene (PS) stands out as a primary constituent of environmental plastic waste, given its widespread use and high production rates owing to its durability and user-friendly properties. The detection of polystyrene microparticles (PS-MPs) in various living organisms has been well-documented, posing a serious threat due to their potential passage into the human ecosystem. In this manuscript, we aimed to study the toxicological effects of low concentrations of pristine and photoaged PS-MPs in a murine macrophage cell line. To this purpose, PS-MPs were photoaged by indoor exposure to visible light to simulate environmental weathering due to solar irradiation (PS-MPs3h). Physical characterization revealed that the irradiation treatment results in particle degradation and the possible release of nanoparticles. Monocultures of the RAW264.7 cell line were then exposed to PS-MPs and PS-MPs3h at concentrations comparable to experimental measurements from biological samples, to assess cytotoxicity, intracellular oxidative stress, primary genotoxicity, and inflammatory effects. Significant toxicity-related outcomes were observed in cells treated with both pristine PS-MPs and PS-MPs3h even at low concentrations (0,10 μg/ml and 1 μg/ml). PS-MPs3h exhibited greater adverse effects compared to PS-MPs, including reduced cell viability, increased ROS production, elevated DNA damage, and upregulation of IL-6 and NOS2 gene expression. Therefore, we can conclude that changes induced by environmental aging in the physicochemical composition of PS microplastics play a crucial role in the adverse health outcomes associated with microplastic exposure.
Collapse
Affiliation(s)
- Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Giusy Curcuruto
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Paolo Gaifami 18, 9, 95126, Catania, Italy
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean, National Research Council of Italy (ISMED-CNR), Via Filippo Parlatore 65, 90145, Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Sabrina Carola Carroccio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Paolo Gaifami 18, 9, 95126, Catania, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean, National Research Council of Italy (ISMED-CNR), Via Filippo Parlatore 65, 90145, Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
28
|
Xu X, He L, Huang F, Jiang S, Dai Z, Sun R, Li C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. CHEMOSPHERE 2024; 364:143112. [PMID: 39153532 DOI: 10.1016/j.chemosphere.2024.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160‒12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20‒1000 μm, larger MPs of 50-1000 μm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Collapse
Affiliation(s)
- Xiaohan Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fei Huang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
29
|
O'Callaghan L, Olsen M, Tajouri L, Beaver D, Hudson C, Alghafri R, McKirdy S, Goldsworthy A. Plastic induced urinary tract disease and dysfunction: a scoping review. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00709-3. [PMID: 39217203 DOI: 10.1038/s41370-024-00709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION In 2019 the World Health Organisation published a report which concluded microplastics in drinking water did not present a threat to human health. Since this time a plethora of research has emerged demonstrating the presence of plastic in various organ systems and their deleterious pathophysiological effects. METHODS A scoping review was undertaken in line with recommendations from the Johanna Briggs Institute. Five databases (PubMed, SCOPUS, CINAHL, Web of Science and EMBASE) were systematically searched in addition to a further grey literature search. RESULTS Eighteen articles were identified, six of which investigated and characterised the presence of microplastics and nanoplastics (MNPs) in the human urinary tract. Microplastics were found to be present in kidney, urine and bladder cancer samples. Twelve articles investigated the effect of MNPs on human cell lines associated with the human urinary tract. These articles suggest MNPs have a cytotoxic effect, increase inflammation, decrease cell viability and alter mitogen-activated protein kinases (MAPK) signalling pathways. CONCLUSION Given the reported presence MNPs in human tissues and organs, these plastics may have potential health implications in bladder disease and dysfunction. As a result, institutions such as the World Health Organisation need to urgently re-evaluate their position on the threat of microplastics to public health. IMPACT STATEMENT This scoping review highlights the rapidly emerging threat of microplastic contamination within the human urinary tract, challenging the World Health Organisation's assertion that microplastics pose no risk to public health. The documented cytotoxic effects of microplastics, alongside their ability to induce inflammation, reduce cell viability and disrupt signalling pathways, raise significant public health concerns relating to bladder cancer, chronic kidney disease, chronic urinary tract infections and incontinence. As a result, this study emphasises the pressing need for further research and policy development to address the challenges surrounding microplastic contamination.
Collapse
Affiliation(s)
- Liam O'Callaghan
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Matthew Olsen
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Dubai Police Scientists Council, Dubai Police, Dubai, United Arab Emirates
| | - Davinia Beaver
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Carly Hudson
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Rashed Alghafri
- International Centre for Forensic Sciences, Dubai Police, Dubai, United Arab Emirates
| | - Simon McKirdy
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Adrian Goldsworthy
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia.
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
30
|
Das N, Chowdhury GW, Siddique AB, Riya SC, Fazal MA, Sobhan F, Sarker S. The silent threat of plastics along the coastal frontiers of Bangladesh: Are we concerned enough? MARINE POLLUTION BULLETIN 2024; 205:116567. [PMID: 38875968 DOI: 10.1016/j.marpolbul.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Globally plastic pollution is posing a significant threat to the health and integrity of coastal ecosystems. This study aimed to provide a comprehensive overview of plastic pollution in the coastal areas of Bangladesh by examining land-based macroplastic distribution, exploring microplastic (MP) contamination in the coastal aquatic ecosystem and enhancing our understanding of the potential risks associated with MP contamination. Citizen science based monitoring approach using the android application was applied to understand the land-based plastic pollution in the coastal area of Bangladesh. From December 2022 to December 2023, a total of about 3600 photographs of plastic items from 215 citizen scientists were received from the coastal area of Bangladesh covering 580 km long coast line. Polymer Hazard Index (PHI) and Pollution Load Index (PLI) were also calculated to understand the risk of plastic pollution in sediment, water, aquatic organism, dried fish and sea salt. A total of 43 land-based plastic items reported from the coastal area of Bangladesh. Among these plastic items single use items contributed 58.2 % while disposable plastic items contributed 41.8 %. A strong spatial variability in the distribution of these plastic items was observed. PHI and PLI values suggested hazard category-I for MP contamination in sediment, sea salt, water, commercial fishery resources and dry fish. This study highlighted that coastal land area, sea salt, dried fish, water, sediment and organisms are contaminated with plastics which might have the potential threats to human health. Findings from this study will serve as reference data and also baseline for future research to combat the plastic pollution.
Collapse
Affiliation(s)
- Nabanita Das
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | | - Abu Bokkar Siddique
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shashowti Chowdhury Riya
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Azizul Fazal
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Faisal Sobhan
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Subrata Sarker
- Department of Oceanography, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
31
|
Harikrishnan T, Paramasivam P, Sankar A, Sakthivel M, Sanniyasi E, Raman T, Thangavelu M, Singaram G, Muthusamy G. Weathered polyethylene microplastics induced immunomodulation in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104478. [PMID: 38801845 DOI: 10.1016/j.etap.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Microplastics are pollutants of emerging concern and the aquatic biota consumes microplastics (MPs), which has a range of toxicological and environmental effects on aquatic organisms that are not the intended targets. The current study looked into how weathered polyethylene (wPE) MPs affected Danio albolineatus immunological and haematological markers. In this experiment, fish of both sexes were placed in control and exposure groups, and they were exposed for 40 d at the sublethal level (1 μg L-1) of fragmented wPE, which contained 1074 ± 52 MPs per litre. Similarly, fish exposed to wPE MPs showed significant modifications in lysozyme, antimicrobial, and antiprotease activity, as well as differential counts. Results of the present study show that the male fish were more susceptible than female fish after 40 d of chronic exposure. Further studies are needed to ascertain how the innate and humoral immune systems of the fish respond to MPs exposure.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Pandi Paramasivam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Anusuya Sankar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Madhavan Sakthivel
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Chennai 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept Polymer Nano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu 600106, India; INTI International University, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
32
|
Arribas Arranz J, Villacorta A, Rubio L, García-Rodríguez A, Sánchez G, Llorca M, Farre M, Ferrer JF, Marcos R, Hernández A. Kinetics and toxicity of nanoplastics in ex vivo exposed human whole blood as a model to understand their impact on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174725. [PMID: 39009158 DOI: 10.1016/j.scitotenv.2024.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.
Collapse
Affiliation(s)
- J Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - L Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - G Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - M Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - M Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - J F Ferrer
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, 46980 Paterna, Spain
| | - R Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - A Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
33
|
Chen T, Lin Q, Gong C, Zhao H, Peng R. Research Progress on Micro (Nano)Plastics Exposure-Induced miRNA-Mediated Biotoxicity. TOXICS 2024; 12:475. [PMID: 39058127 PMCID: PMC11280978 DOI: 10.3390/toxics12070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.
Collapse
Affiliation(s)
| | | | | | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (T.C.); (Q.L.); (C.G.)
| |
Collapse
|
34
|
Bao S, Yi J, Xian B, Rao C, Xiang D, Tang W, Fang T. Global analysis of the adverse effects of micro- and nanoplastics on intestinal health and microbiota of fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134157. [PMID: 38569337 DOI: 10.1016/j.jhazmat.2024.134157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The wide occurrence of micro- and nanoplastics (MPs/NPs) within aquatic ecosystems has raised increasing concerns regarding their potential effects on aquatic organisms. However, the effects of MPs/NPs on intestinal health and microbiota of fish remain controversial, and there is a lack of comprehensive understanding regarding how the impact of MPs/NPs is influenced by MPs/NPs characteristics and experimental designs. Here, we conducted a global analysis to synthesize the effects of MPs/NPs on 47 variables associated with fish intestinal health and microbiota from 118 studies. We found that MPs/NPs generally exerted obvious adverse effects on intestinal histological structure, permeability, digestive function, immune and oxidative-antioxidative systems. By contrast, MPs/NPs showed slight effects on intestinal microbial variables. Further, we observed that the responses of intestinal variables to MPs/NPs were significantly regulated by MPs/NPs characteristics and experimental designs. For instance, polyvinyl chloride plastics showed higher toxicity to fish gut than polyethylene and polystyrene did. Additionally, larval fish appeared to be more sensitive to MPs/NPs than juvenile fish. Collectively, this study highlights the potential impacts of MPs/NPs on intestinal health and microbiota of fish, and underscores the determinant role of MPs/NPs characteristics and experimental designs in MPs/NPs toxicity.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Yi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, China.
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: frenemies within the gut. Front Public Health 2024; 12:1285186. [PMID: 38799688 PMCID: PMC11116734 DOI: 10.3389/fpubh.2024.1285186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution is a critical concern of modern society for its heterogeneous effects on human health, despite a widespread lack of awareness. Environmental pollutants promote several pathologies through different molecular mechanisms. Pollutants can affect the immune system and related pathways, perturbing its regulation and triggering pro-inflammatory responses. The exposure to several pollutants also leads to alterations in gut microbiota with a decreasing abundance of beneficial microbes, such as short-chain fatty acid-producing bacteria, and an overgrowth of pro-inflammatory species. The subsequent intestinal barrier dysfunction, together with oxidative stress and increased inflammatory responses, plays a role in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, pollutants encourage the inflammation-dysplasia-carcinoma sequence through various mechanisms, such as oxidative stress, dysregulation of cellular signalling pathways, cell cycle impairment and genomic instability. In this narrative review, we will describe the interplay between pollutants, gut microbiota, and the immune system, focusing on their relationship with inflammatory bowel diseases and colorectal cancer. Understanding the biological mechanisms underlying the health-to-disease transition may allow the design of public health policies aimed at reducing the burden of disease related to pollutants.
Collapse
Affiliation(s)
| | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
37
|
Mohan AV, Raja S. Unveiling the Tiny Invaders: A deep dive into microplastics in shrimp - Occurrence, detection and unraveling the ripple effects. Saudi J Biol Sci 2024; 31:103981. [PMID: 38595960 PMCID: PMC11002877 DOI: 10.1016/j.sjbs.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Aquaculture is a rapidly expanding food sector worldwide; it is the farming of fish, shellfish, and other marine organisms. Microplastics (MPs) are small pieces of plastic with a diameter of less than 5 mm that end up in the marine environment. MPs are fragments of large plastics that take years to degrade but can frustrate into small pieces, and some commercially available MPs are used in the production of toothpaste, cosmetics, and aircraft. MPs are emerging contaminants; they are ingested by marine species. These MPs have effects on marine species such as growth retardation and particle translocation to other parts of the body. Recently, MPs accumulation has been observed in shrimps, as well as in a wide range of other scientific reports. So, in this study, we review the presence, accumulation, and causes of MPs in shrimp. These plastics can trophic transfer to other organisms, changes in plastic count, effects on the marine environment, and impacts of MPs on human health were also discussed. It also improves our understanding of the importance of efficient plastic waste management in the ocean, as well as the impact of MPs on marine biota and human health.
Collapse
Affiliation(s)
- Amrutha Vellore Mohan
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sudhakaran Raja
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
38
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
39
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
40
|
Rosellini M, Omer EA, Schulze A, Ali NT, Boulos JC, Marini F, Küpper JH, Efferth T. Impact of plastic-related compounds on the gene expression signature of HepG2 cells transfected with CYP3A4. Arch Toxicol 2024; 98:525-536. [PMID: 38160208 PMCID: PMC10794370 DOI: 10.1007/s00204-023-03648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The presence of plastic and microplastic within the oceans as well as in marine flora and fauna have caused a multitude of problems that have been the topic of numerous investigations for many years. However, their impact on human health remains largely unknown. Such plastic and microplastic particles have been detected in blood and placenta, underlining their ability to enter the human body. Plastics also contain other compounds, such as plasticizers, antioxidants, or dyes, whose impact on human health is currently being studied. Critical enzymes within the metabolism of endogenous molecules, especially of xenobiotics, are the cytochrome P450 monooxygenases (CYPs). Although their importance in maintaining cellular balance has been confirmed, their interactions with plastics and related products are poorly understood. In this study, the possible relationship between different plastic-related compounds and CYP3A4 as one of the most important CYPs was analyzed using hepatic cells overexpressing this enzyme. Beginning with virtual compound screening and molecular docking of more than 1000 plastic-related compounds, several candidates were identified to interact with CYP3A4. In a second step, RNA-sequencing was used to study in detail the transcriptome-wide gene expression levels affected by the selected compounds. Three candidate molecules ((2,2'-methylenebis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane, and 2,2'-methylenebis(6-cyclohexyl-4-methylphenol)) had an excellent binding affinity to CYP3A4 in-silico as well as cytotoxic effects and interactions with several metabolic pathways in-vitro. We identified common pathways influenced by all three selected plastic-related compounds. In particular, the suppression of pathways related to mitosis and 'DNA-templated DNA replication' which were confirmed by cell cycle analysis and single-cell gel electrophoresis. Furthermore, several mis-regulated metabolic and inflammation-related pathways were identified, suggesting the induction of hepatotoxicity at different levels. These findings imply that these compounds may cause liver problems subsequently affecting the entire organism.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
| | - Nadeen T Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046, Senftenberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
41
|
Massardo S, Verzola D, Alberti S, Caboni C, Santostefano M, Eugenio Verrina E, Angeletti A, Lugani F, Ghiggeri GM, Bruschi M, Candiano G, Rumeo N, Gentile M, Cravedi P, La Maestra S, Zaza G, Stallone G, Esposito P, Viazzi F, Mancianti N, La Porta E, Artini C. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. ENVIRONMENT INTERNATIONAL 2024; 184:108444. [PMID: 38281449 DOI: 10.1016/j.envint.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
There is a growing concern within the medical community about the potential burden of microplastics on human organs and tissues. In this study, we investigated by microRaman spectroscopy the presence of microplastics in human kidneys and urine. Moreover, an open-access software was developed and validated for the project, which enabled the comparison between the investigated spectra and a self-created spectral database, thus enhancing the ability to characterize polymers and pigments in biological matrices. Healthy portions of ten kidneys obtained from nephrectomies, as well as ten urine samples from healthy donors were analyzed: 26 particles in both kidney and urine samples were identified, with sizes ranging from 3 to 13 μm in urine and from 1 to 29 μm in kidneys. The most frequently determined polymers are polyethylene and polystyrene, while the most common pigments are hematite and Cu-phthalocyanine. This preclinical study proves the presence of microplastics in renal tissues and confirms their presence in urine, providing the first evidence of kidney microplastics deposition in humans.
Collapse
Affiliation(s)
- Sara Massardo
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Claudia Caboni
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | | | - Enrico Eugenio Verrina
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Lugani
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Rumeo
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Micaela Gentile
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Paolo Cravedi
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University/Hospital of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University/Hospital of Foggia, Foggia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Mancianti
- Department of Emergency-Urgency and Transplantation, Nephrology, Dialysis and Transplantation Unit, University Hospital of Siena, Siena, Italy
| | - Edoardo La Porta
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy; UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Cristina Artini
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy; Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, CNR-ICMATE, Genoa, Italy
| |
Collapse
|
42
|
Yan L, Yao X, Wang P, Zhao C, Zhang B, Qiu L. Effect of polypropylene microplastics on virus resistance in spotted sea bass (Lateolabrax maculatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123054. [PMID: 38043770 DOI: 10.1016/j.envpol.2023.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 μm and 10-30 μm) at concentrations of 500 and 5000 μg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Xiaoxiao Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
43
|
Zhang Q, Zhang Y, Jing L, Zhao H. Microplastics induced inflammation in the spleen of developmental Japanese quail (Coturnix japonica) via ROS-mediated p38 MAPK and TNF signaling pathway activation 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122891. [PMID: 37951530 DOI: 10.1016/j.envpol.2023.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) have been found in virtually every environment on earth and become a source of pollution around the world. The toxicology of microplastics on immunity is an emerging area of research, and more studies are needed to fully understand the effects of microplastics exposure on animal health. Therefore, we tried to determine the immunotoxic effects of microplastics on avian spleen by using an animal model- Japanese quail (Coturnix japonica). One-week chicks were exposed to environmentally relevant concentrations of 0.02 mg/kg, 0.4 mg/kg and 8 mg/kg polystyrene microplastics in the feed for 5 weeks. The results demonstrated that microplastics induced microstructural injuries featured by cell disarrangement and vacuolation indicating splenic inflammation. Ultrastructural damages including membrane lysis and mitochondrial vacuolation also suggested inflammatory responses in the spleen by microplastics exposure. Meanwhile, increasing reactive oxygen species (ROS) and Malondialdehyde (MDA) while the inactivation of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) indicated oxidative stress in the spleen. Moreover, the increasing level of proinflammatory cytokines including Tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6) and decreasing level of anti-inflammatory cytokine interleukin-10 (IL-10) implied splenic inflammation. Furthermore, transcriptomic analysis showed that microplastics induced inflammatory responses in the spleen through p38 mitogen-activated protein kinases (p38 MAPK) pathway activation and tumor necrosis factor (TNF) signaling stimulation. The signaling stimulation also aggravated cell apoptosis in the spleen. The present study may benefit to understand potential mechanisms of developmental immunotoxicology of microplastics.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
44
|
Vattanasit U, Kongpran J, Ikeda A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166745. [PMID: 37673257 DOI: 10.1016/j.scitotenv.2023.166745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There has been growing evidence showing the widespread of airborne microplastics (AMPs) in many regions of the world, raising concerns about their impact on human health. This review aimed to consolidate recent literature on AMPs regarding their physical and chemical characteristics, deposition in the human respiratory tract, translocation, occurrence from human studies, and toxic effects determined in vitro and in vivo. The physical characteristics influence interactions with cell membranes, cellular internalization, accumulation, and cytotoxicity resulting from cell membrane damage and oxidative stress. In addition, prolonged exposure to AMP-associated toxic chemicals might lead to significant health effects. Most toxicological assessments of AMPs in vitro and in vivo have demonstrated that oxidative stress and inflammation are major mechanisms of action for their toxic effects. Elevated reactive oxygen species production could lead to mitochondrial dysfunction, inflammatory responses, and subsequent apoptosis in experimental models. To date, there has been some evidence suggesting exposure in humans. However, the data are still insufficient, and adverse human health effects need to be investigated. Future research on the existence, exposure, and health effects of AMPs is required for developing preventive and mitigation measures to protect human health.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Jira Kongpran
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
45
|
Romero-Andrada I, Lacoma A, Hernández A, Domínguez J. Environmental Pollutants: Micro and Nanoplastics in Immunity and Respiratory Infections. Arch Bronconeumol 2023; 59:709-711. [PMID: 37487771 DOI: 10.1016/j.arbres.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Iris Romero-Andrada
- Institut d'Investigació Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, Barcelona, Spain
| | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER), CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Alba Hernández
- Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, Barcelona, Spain
| | - José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Badalona, Spain; Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER), CIBER Enfermedades Respiratorias, Barcelona, Spain.
| |
Collapse
|
46
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
47
|
El Gazzar WB, Sliem RE, Bayoumi H, Nasr HE, Shabanah M, Elalfy A, Radwaan SE, Gebba MA, Mansour HM, Badr AM, Amer MF, Ashour SS, Morsi H, Aboelkomsan ESAF, Baioumy B, Sayed AEDH, Farag AA. Melatonin Alleviates Intestinal Barrier Damaging Effects Induced by Polyethylene Microplastics in Albino Rats. Int J Mol Sci 2023; 24:13619. [PMID: 37686424 PMCID: PMC10488227 DOI: 10.3390/ijms241713619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There have been concerns about the potential health risks posed by microplastics (MP). The detection of MP in a variety of food products revealed that humans are ingesting MP. Nevertheless, there is a paucity of data about their impacts, as well as their uptake, on intestinal barrier integrity. This study examined the toxic effects of oral administration of two doses of polyethylene microplastics (PE-MP) (3.75 or 15 mg/kg/day for 5 weeks; mean particle size: 4.0-6.0 µm) on the intestinal barrier integrity in rats. Moreover, the effect of melatonin treatment with MP exposure was also assessed. The PE-MP particle uptake, histopathological changes, Alcian blue staining, Muc2 mRNA, proinflammatory cytokines (IL-1β and TNF-α), and cleaved caspase-3, as well as tight junction proteins (claudin-1, myosin light-chain kinase (MLCK), occludin, and zonula occludens-1 (ZO-1)) were assessed. Oral administration of PE-MP resulted in apparent jejunal histopathological alterations; significantly decreased mucin secretion, occludin, ZO-1, and claudin-1 expression; and significantly upregulated MLCK mRNA, IL-1β concentration, and cleaved caspase-3 expression. Melatonin reversed these altered parameters and improved the PE-MP-induced histopathological and ultrastructure changes. This study highlighted the PE-MP's toxic effect on intestinal barrier integrity and revealed the protective effect of melatonin.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Rania E. Sliem
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Manar Shabanah
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Amira Elalfy
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Shaimaa E. Radwaan
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Heba M. Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12573, Egypt;
| | - Amul M. Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Marwa Fathy Amer
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Sara S. Ashour
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Heba Morsi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | | | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
| | | | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| |
Collapse
|
48
|
Urrutia-Pereira M, Guidos-Fogelbach G, Chong-Neto HJ, Solé D. Microplastics exposure and immunologic response. Allergol Immunopathol (Madr) 2023; 51:57-65. [PMID: 37695231 DOI: 10.15586/aei.v51i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To assess the impact of microplastics (MPs) on human health. DATA SOURCE The authors conducted a non-systematic review of articles published in English, Portuguese, French, and Spanish in the last decade in the following databases: PubMed, Google Scholar, EMBASE, and SciELO. The keywords used were: microplastics OR nanoplastics OR marine litter OR toxicology OR additives AND human health OR children OR adults. DATA SUMMARY MPs are a group of emerging contaminants that have attracted scientific interest and societal attention in the last decade due to their ubiquitous detection in all environments. Humans can primarily be exposed to MPs and nanoplastics via oral and inhalation routes, but dermal contact cannot be overlooked, especially in young children. The possible toxic effects of plastic particles are due to their potential toxicity, often combined with that of leachable additives and adsorbed contaminants. CONCLUSIONS Unless the plastic value chain is transformed over the next two decades, the risks to species, marine ecosystems, climate, health, economy, and communities will be unmanageable. However, along with these risks are the unique opportunities to help transition to a more sustainable world.
Collapse
Affiliation(s)
| | | | - Herberto José Chong-Neto
- Department of Pediatrics, Divison of Allergy and Pneumology, Federal University of Paraná, Curitiba, Paraná, Brazil;
| | - Dirceu Solé
- Department of Pediatrics, Division of Allergy, Clinical Immunology and Rheumatology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Rosellini M, Schulze A, Omer EA, Ali NT, Marini F, Küpper JH, Efferth T. The Effect of Plastic-Related Compounds on Transcriptome-Wide Gene Expression on CYP2C19-Overexpressing HepG2 Cells. Molecules 2023; 28:5952. [PMID: 37630204 PMCID: PMC10459118 DOI: 10.3390/molecules28165952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the food chain and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or lubricants, whose impact on human health is also under investigation. At the cellular level, the most important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450 monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular balance, their interactions with plastic and related products are unexplored. In this study, the possible interactions between several plastic-related compounds and one of the most important cytochromes, CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to more than 1000 commercially available plastic-related compounds, we identified candidates that are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three candidate molecules were identified, i.e., 2,2'-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2'-methylene bis(6-cyclohexyl-4-methylphenol)), which bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and interacted with several metabolic pathways, of which the 'cholesterol biosynthesis process' was the most affected. In addition, other affected pathways involved mitosis, DNA replication, and inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related compounds could damage the liver by affecting several molecular pathways.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Senftenberg, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| |
Collapse
|
50
|
Guillén-Watson R, Arias-Andres M, Rojas-Jimenez K, Wehrtmann IS. Microplastics in feed cause sublethal changes in the intestinal microbiota and a non-specific immune response indicator of the freshwater crayfish Procambarus clarkii (Decapoda: Cambaridae). Front Microbiol 2023; 14:1197312. [PMID: 37533827 PMCID: PMC10390773 DOI: 10.3389/fmicb.2023.1197312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Microplastics (MP) are a hazardous pollutant of global concern that threatens aquatic ecosystems and public health. We used the invasive, cosmopolitan, and environmentally versatile red swamp crayfish Procambarus clarkii as a model to study the effects of MP on the intestinal microbiome. Crayfish collected from the environment were compared with specimens exposed to recycled Polyethylene terephthalate (rPET) MP in feed (30%) for 96 h in the laboratory and a control group. We analyzed the 16S rRNA of the intestinal bacteria by PCR-DGGE and high-throughput sequencing. MP exposure caused dysbiosis of the intestinal microbiota, with an increase in Alphaproteobacteria and Actinobacteria. We detected higher abundance of opportunistic genera such as Klebsiella, Acinetobacter, Hydromonas, Pseudomonas, Gemmobacter, and Enterobacter on MP fed organisms. Moreover, MP exposure reduced the abundance of Clostridia and Bateroidetes, which are important for immune system development and pathogen prevention. Furthermore, MP exposure decreased the phenoloxidase (PO) immune response in crayfish. There was a significant difference in the richness of intestinal bacterial communities after consumption of food contaminated with MP, likely increasing the abundance of opportunistic bacteria in the intestinal microbiota. Our results suggest that MP alter the gut microbial composition and impair the health of P. clarkii.
Collapse
Affiliation(s)
- Rossy Guillén-Watson
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Maria Arias-Andres
- Laboratorio ECOTOX, Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | | | - Ingo S. Wehrtmann
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|