1
|
Wijerathna-Yapa A, Isaac KS, Combe M, Hume S, Sokolenko S. Re-imagining human cell culture media: Challenges, innovations, and future directions. Biotechnol Adv 2025; 81:108564. [PMID: 40101881 DOI: 10.1016/j.biotechadv.2025.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
The development of optimized culture media is pivotal to advancements in human cell culture, underpinning progress in regenerative medicine, cell therapies, and personalized medicine. While foundational formulations like Eagle's Minimum Essential Medium (MEM) and Dulbecco's Modified Eagle Medium (DMEM) have historically enabled significant biological research, these media were primarily designed for non-human cells and do not adequately address the unique metabolic and functional requirements of human cells. This review examines the evolution of cell culture media, identifying persistent challenges in reproducibility, scalability, and ethical concerns, particularly regarding the reliance on animal-derived components such as fetal bovine serum (FBS). We highlight innovations in serum-free and chemically defined media that offer promising alternatives by enhancing consistency, aligning with Good Manufacturing Practices, and addressing ethical concerns. Emerging approaches, including omics-based profiling, high-throughput screening, and artificial intelligence (AI)-driven media design, are reshaping media optimization by enabling precise tailoring to the needs of specific human cell types and patient-derived cells. Furthermore, we discuss economic and regulatory challenges, emphasizing the need for cost-effective and scalable solutions to facilitate clinical translation. Looking forward, integrating advanced biotechnological tools such as 3D bioprinting, organ-on-a-chip systems, and personalized media formulations presents a transformative opportunity for human cell culture. These innovations, aligned with ethical and clinical standards, can drive the development of human-specific media systems that ensure reproducibility, scalability, and enhanced therapeutic potential, thereby advancing both research and clinical applications.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kathy Sharon Isaac
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michelle Combe
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samuel Hume
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Secchia S, Beilinson V, Chen X, Gucwa M, Denson LA, Miraldi ER, Weirauch MT, Ikegami K. Starvation activates ECM-remodeling gene transcription and putative enhancers in fibroblasts despite inducing quiescence. Cell Rep 2025; 44:115896. [PMID: 40560730 DOI: 10.1016/j.celrep.2025.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 04/21/2025] [Accepted: 06/03/2025] [Indexed: 06/28/2025] Open
Abstract
Depletion of growth factors and nutrients induces cellular quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, such depletion occurs in pathological microenvironments in which fibroblasts are activated to orchestrate tissue remodeling. The relationship between fibroblast activation and growth factor and nutrient depletion remains unclear. Here, we report that serum depletion in cell culture, a model for growth factor and nutrient depletions, extensively activates transcription in fibroblasts despite inducing quiescence. Activated genes were enriched for extracellular matrix (ECM) structural components and proteases. ECM-related transcription accompanied the activation of putative distal enhancers but not promoters. The activated putative enhancers were enriched for non-coding variants associated with inflammatory bowel disease (IBD) risk, suggesting an alteration in the ECM-remodeling gene regulatory network in IBD. This study implicates nutrient and growth factor depletion in activating the ECM-remodeling gene program in fibroblasts, challenging the prevailing view linking such depletion to transcriptional dormancy.
Collapse
Affiliation(s)
- Stefano Secchia
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, Lund University, 22362 Lund, Sweden
| | - Vera Beilinson
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melanie Gucwa
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew T Weirauch
- Division of Allergy and Immunology, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Dykstra GD, Kawasaki M, Burbick CR, McConnel CS, Ambrosini YM. From in vitro development to accessible luminal interface of neonatal bovine-derived intestinal organoids. BMC Vet Res 2025; 21:319. [PMID: 40325425 PMCID: PMC12054211 DOI: 10.1186/s12917-025-04773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Intestinal organoids provide physiologically relevant in vitro models that bridge the gap between conventional cell culture and animal studies. Although these systems have been developed for adult cattle, their use in neonatal calves-who are particularly vulnerable to enteric disease-has not been well established. Neonatal diarrhea remains a major health concern in modern agriculture, yet age-appropriate models for studying its pathogenesis are lacking. Given that host-pathogen interactions vary with developmental stage, there is a need for culture systems that reflect the distinct biology of the neonatal gut. In this study, we developed intestinal organoids and organoid-derived monolayers from 14-day-old dairy calves to enable research on early-life intestinal function and disease. RESULTS Organoids were successfully established from five intestinal sections of 14-day-old dairy calves using customized growth media and characterized by immunofluorescence and gene expression analyses. They remained viable for over 300 days of cryopreservation and were serially passaged at least 15 times. Rectal organoid-derived monolayers were further assessed by electron microscopy and barrier function assays, demonstrating stable transepithelial electrical resistance and controlled paracellular permeability. CONCLUSIONS Optimized methods for adult bovine intestinal organoids and rectal organoid-derived monolayers are applicable to neonatal intestinal epithelial stem cells. Organoids cultured from 14-day-old calves captured key aspects of the multicellularity and functionality of the native epithelium. Future work should focus on adapting monolayer culture methods for additional gut regions, particularly the proximal gastrointestinal tract. Neonatal rectal monolayers represent a promising platform for advancing veterinary research, agricultural innovation, and studies of zoonotic disease.
Collapse
Affiliation(s)
- Gerald D Dykstra
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Minae Kawasaki
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Claire R Burbick
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.
| |
Collapse
|
4
|
Malakpour-Permlid A, Rodriguez MM, Zór K, Boisen A, Oredsson S. Advancing humanized 3D tumor modeling using an open access xeno-free medium. FRONTIERS IN TOXICOLOGY 2025; 7:1529360. [PMID: 40206700 PMCID: PMC11979229 DOI: 10.3389/ftox.2025.1529360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Despite limitations like poor mimicry of the human cell microenvironment, contamination risks, and batch-to-batch variation, cell culture media with animal-derived components such as fetal bovine serum (FBS) have been used in vitro for decades. Moreover, a few reports have used animal-product-free media in advanced high throughput three-dimensional (3D) models that closely mimic in vivo conditions. To address these challenges, we combined a high throughput 3D model with an open access, FBS-free chemically-defined medium, Oredsson Universal Replacement (OUR) medium, to create a more realistic 3D in vitro drug screening system. To reach this goal, we report the gradual adaptation procedure of three cell lines: human HeLa cervical cancer cells, human MCF-7 breast cancer cells, and cancer-associated fibroblasts (CAFs) from FBS-supplemented medium to OUR medium, while closely monitoring cell attachment, proliferation, and morphology. Our data based on cell morphology studies with phase contrast and real-time live imaging demonstrates a successful adaptation of cells to proliferate in OUR medium showing sustained growth kinetics and maintaining population doubling time. The morphological analysis demonstrates that HeLa and MCF-7 cells displayed altered cell morphology, with a more spread-out cytoplasm and significantly lower circularity index, while CAFs remained unaffected when grown in OUR medium. 3D fiber scaffolds facilitated efficient cell distribution and ingrowth when grown in OUR medium, where cells expand and infiltrate into the depths of 3D scaffolds. Drug toxicity evaluation of the widely used anti-cancer drug paclitaxel (PTX) revealed that cells grown in 3D cultures with OUR medium showed significantly lower sensitivity to PTX, which was consistent with the FBS-supplemented medium. We believe this study opens the way and encourages the scientific community to use animal product-free cell culture medium formulations for research and toxicity testing.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- BioInnovation Institute Foundation, Copenhagen, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
5
|
Kaokaen P, Pangjantuk A, Kunhorm P, Promjantuek W, Chaicharoenaudomrung N, Noisa P. Conditioned medium of human umbilical cord-mesenchymal stem cells cultivated with human cord blood serum enhances stem cell stemness and secretome profiles. Toxicol In Vitro 2025; 103:105973. [PMID: 39561911 DOI: 10.1016/j.tiv.2024.105973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The proteins secreted by human umbilical cord mesenchymal stem cells (hUC-MSCs) may enhance tissue regeneration and wound healing. Traditional hUC-MSC cultures may not be enough since they undergo recurrent cellular senescence during large-scale production. This decreases the therapeutic ability of hUC-MSCs by altering genes and proteins that control stemness, proliferation, and protein release. Human cord blood serum (CBS) and the middle-density technique were used to evaluate hUC-MSC regeneration ability. To evaluate early-passage hMSCs for secretome-based therapies, they were expanded and secreted in vitro. After 4 days, hUC-MSCs cultivated at 3000 cells/cm2 and supplemented with 1 ng/ml CBS showed increased growth, cell proliferation, and a much lower population doubling time. CBS treatment reduced CD34, CD45, and HLA-DR levels in human umbilical cord mesenchymal stem cells (hUC-MSCs) by less than 2 %. Positive markers such CD73, CD90, and CD105 were found at >97 %, like control hUC-MSCs. Over extended culture, this combination culture can increase survival, proliferation, and stemness and postpone cell death and hUC-MSC senescence. The protein profile and hUC-MSC secretion were improved to make MSC secretion protein therapeutic. This improves cell-free treatment, proliferation, and wound healing in human skin cells. To improve cell-based transplantation or cosmeceutical manufacturing, this technique can boost hUC-MSC regeneration capacity.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
6
|
Strecanska M, Sekelova T, Smolinska V, Kuniakova M, Nicodemou A. Automated Manufacturing Processes and Platforms for Large-scale Production of Clinical-grade Mesenchymal Stem/ Stromal Cells. Stem Cell Rev Rep 2025; 21:372-389. [PMID: 39546186 PMCID: PMC11872983 DOI: 10.1007/s12015-024-10812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) hold immense potential for regenerative medicine due to their remarkable regenerative and immunomodulatory properties. However, their therapeutic application requires large-scale production under stringent regulatory standards and Good Manufacturing Practice (GMP) guidelines, presenting significant challenges. This review comprehensively evaluates automated manufacturing processes and platforms for the scalable production of clinical-grade MSCs. Various large-scale culture vessels, including multilayer flasks and bioreactors, are analyzed for their efficacy in MSCs expansion. Furthermore, automated MSCs production platforms, such as Quantum® Cell Expansion System, CliniMACS Prodigy®, NANT001/ XL, CellQualia™, Cocoon® Platform, and Xuri™ Cell Expansion System W25 are reviewed and compared as well. We also underscore the importance of optimizing culture media specifically emphasizing the shift from fetal bovine serum to humanized or serum-free alternatives to meet GMP standards. Moreover, advances in alternative cryopreservation methods and controlled-rate freezing systems, that offer promising improvements in MSCs preservation, are discussed as well. In conclusion, advancing automated manufacturing processes and platforms is essential for realizing the full potential of MSCs-based regenerative medicine and accomplishing the increasing demand for cell-based therapies. Collaborative initiatives involving industry, academia, and regulatory bodies are emphasized to accelerate the translation of MSCs-based therapies into clinical practice.
Collapse
Affiliation(s)
- Magdalena Strecanska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Tatiana Sekelova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia
| | - Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava, Bratislava, 811 08, Slovakia.
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, Piestany, 921 12, Slovakia.
- GAMMA-ZA, Kollarova 8, Trencin, 911 01, Slovakia.
| |
Collapse
|
7
|
Narasimha RB, Shreya S, Jayabal VA, Yadav V, Rath PK, Mishra BP, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK, Jena MK. Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review. Vet Sci 2025; 12:67. [PMID: 39852942 PMCID: PMC11768649 DOI: 10.3390/vetsci12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are unique, undifferentiated cells that have the ability to both replicate themselves and develop into specialized cell types. This dual capability makes them valuable in the development of regenerative medicine. Current development in stem cell research has widened their application in cell therapy, drug discovery, reproductive cloning in animals, and cell models for various diseases. Although there are substantial studies revealing the treatment of human degenerative diseases using stem cells, this is yet to be explored in livestock animals. Many diseases in livestock species such as mastitis, laminitis, neuromuscular disorders, autoimmune diseases, and some debilitating diseases are not covered completely by the existing drugs and treatment can be improved by using different types of stem cells like embryonic stem cells, adult stem cells, and induced pluripotent stem cells. This review mainly focuses on the use of stem cells for disease treatment in livestock animals. In addition to the diseases mentioned, the potential of stem cells can be helpful in wound healing, skin disease therapy, and treatment of some genetic disorders. This article explores the potential of stem cells from various sources in the therapy of livestock diseases and also their role in the conservation of endangered species as well as disease model preparation. Moreover, the future perspectives and challenges associated with the application of stem cells in livestock are discussed. Overall, the transformative impact of stem cell research on the livestock sector is comprehensively studied which will help researchers to design future research work on stem cells related to livestock diseases.
Collapse
Affiliation(s)
- Raghavendra B. Narasimha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Singireddy Shreya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| | - Vijay Anand Jayabal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213 Malmö, Sweden
| | - Prasana Kumar Rath
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Bidyut Prava Mishra
- College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India; (P.K.R.); (B.P.M.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, Haryana, India;
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut 250001, Uttar Pradesh, India;
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (R.B.N.); (S.S.)
| |
Collapse
|
8
|
徐 芊, 徐 吉, 沈 依, 张 晨, 沈 航, 黄 天, 陆 陈, 王 欣. [Application of delayed replantation of degloving skin preserved at 4 ℃ in treatment of limb degloving injuries]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2025; 39:95-99. [PMID: 39848723 PMCID: PMC11757951 DOI: 10.7507/1002-1892.202411057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Objective To investigate the effectiveness of delayed replantation of degloving skin preserved at 4℃ in treatment of limb degloving injuries. Methods Between October 2020 and October 2023, 12 patients with limb degloving injuries were admitted. All patients had severe associated injuries or poor wound conditions that prevented primary replantation. There were 7 males and 5 females; age ranged from 29 to 46 years, with an average of 39.2 years. The causes of injury included machine entanglement in 6 cases, traffic accidents in 5 cases, and sharp instrument cuts in 1 case. Time from injury to hospital admission was 0.5-3.0 hours, with an average of 1.3 hours. Injury sites included upper limbs in 7 cases and lower limbs in 5 cases. The range of degloving skin was from 5 cm×4 cm to 15 cm×8 cm, and all degloving skins were intact. The degloving skin was preserved at 4℃. After the patient's vital signs became stable and the wound conditions improved, it was trimmed into medium-thickness skin grafts for replantation. The degloving skin was preserved for 3 to 7 days. At 4 weeks after replantation, the viability of the degloving skin grafts was assessed, including color, elasticity, and sensation of pain. The Vancouver Scar Scale (VSS) was used to assess the scars of the skin grafts during follow-up. Results At 4 weeks after replantation, 8 cases of skin grafts completely survived and the color was similar with normal skin, with a survival rate of 66.67%. The elasticity of skin grafts (R0 value) ranged from 0.09 to 0.85, with an average of 0.55; moderate pain was reported in 4 cases, mild pain in 3 cases, and no pain in 5 cases. All patients were followed up 12 months. Over time, the VSS scores of all 12 patients gradually decreased, with a range of 4-11 at 12 months (mean, 6.8). Conclusion For limb degloving injuries that cannot be replanted immediately and do not have the conditions for deep low-temperature freezing preservation, the method of preserving the degloving skin at 4℃ for delayed replantation can be chosen.
Collapse
Affiliation(s)
- 芊芊 徐
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 吉海 徐
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 依俊 沈
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 晨曦 张
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 航崇 沈
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 天翔 黄
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 陈林 陆
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
| | - 欣 王
- 宁波大学医学部(浙江宁波 315211)Health Science Center, Ningbo University, Ningbo Zhejiang, 315211, P. R. China
- 宁波市第六医院手外科(浙江宁波 315042)Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo Zhejiang, 315042, P. R. China
| |
Collapse
|
9
|
Lim YT, Barathan M, Tan YL, Lee YT, Law JX. Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture. Life (Basel) 2024; 15:12. [PMID: 39859952 PMCID: PMC11766796 DOI: 10.3390/life15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human platelet lysate (HPL). Among these alternatives, fibrinogen-depleted HPL (FD-HPL) has gained attention due to its reduced thrombogenicity, which minimizes the risk of clot formation in cell cultures and enhances the safety of therapeutic applications. This study investigates two preparation methods for FD-HPL from human platelet concentrates: the calcium chloride method and a mechanical approach. The concentrations of critical growth factors, including vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and keratinocyte growth factor (KGF), were evaluated for both methods. Additionally, the impact of FD-HPL on the proliferation and morphology of umbilical cord-derived mesenchymal stem cells (UC-MSCs) was assessed. The findings revealed that the calcium chloride method produced significantly higher concentrations of all measured growth factors compared to the mechanical method. Moreover, UC-MSCs cultured in calcium chloride-prepared FD-HPL exhibited enhanced cellular characteristics, including increased cell size, elongation, and improved overall morphology compared to those cultured in mechanically processed FD-HPL. These results indicate that the preparation method significantly influences the biological properties of HPL and the effectiveness of UC-MSC culture. The calcium chloride method emerges as a superior technique for producing FD-HPL, offering a promising alternative to FBS in regenerative medicine applications. This study underscores the importance of preparation methods in optimizing HPL for cell culture and therapeutic uses.
Collapse
Affiliation(s)
| | | | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.T.L.); (M.B.); (Y.L.T.); (Y.T.L.)
| |
Collapse
|
10
|
Oeller M, Schally T, Zimmermann G, Lauth W, Schallmoser K, Rohde E, Laner-Plamberger S. Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:12589. [PMID: 39684301 DOI: 10.3390/ijms252312589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue. Our results demonstrate that heparin significantly alters miRNA expression, with distinct up- and downregulation patterns depending on the original tissue source of human stromal cells. Furthermore, our analyses indicate that these heparin-induced alterations in miRNA expression profiles influence critical cellular processes, including proliferation, apoptosis and differentiation. In conclusion, our study highlights that heparin not only fulfills its primary role as an efficient anticoagulant but can also modulate important regulatory pathways in stromal cells by influencing miRNA expression. This may alter cellular properties and thus influence stromal cell-based therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Michaela Oeller
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Tanja Schally
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Department of Artificial Intelligence and Human Interfaces, Faculty of Digital and Analytical Sciences, Paris Lodron University Salzburg, Jakob Haringer Straße 2, 5020 Salzburg, Austria
| | - Wanda Lauth
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
| | - Katharina Schallmoser
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Eva Rohde
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Kleymann AM, Zawadzki NA, Fong DL, Fink MK, Habenicht LM, Leszczynski JK, Anderson SM, Schurr MJ, Manuel CA. Corynebacterium bovis Growth in Tissue Culture Conditions and Media. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:655-661. [PMID: 39181706 PMCID: PMC11645875 DOI: 10.30802/aalas-jaalas-24-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
A common concern in preclinical cancer research is the introduction of Corynebacterium bovis into immunodeficient mouse colonies through cancer cell lines. C. bovis is a known contaminant of patient-derived xenograft tumors passaged horizontally between immunodeficient mice. However, it is unclear if C. bovis can grow in mammalian tissue culture conditions or tissue culture media. We hypothesized that C. bovis would not grow under tissue culture conditions or media, diminishing the risk of transmission from tumor cell lines cultured in vitro. Three C. bovis isolates, CUAMC1, HAC, and ATCC-7715, were used to test our hypothesis in 3 of the most common media used to grow human cancer cell lines including RPMI 1640 + 10% FBS (RPMI), DMEM/high glucose + 10% FBS (DMEM), and DMEM/F-12 + 10% FBS (DMEM/F12). Our results confirmed propagation of each C. bovis isolate in DMEM/F12 media under tissue culture conditions after 72 h. However, these results also demonstrate diminished viability of each C. bovis isolate in RPMI and DMEM after 72 h. To assess whether antibiotics could halt the growth of C. bovis under tissue culture conditions in DMEM/F12, penicillin-streptomycin (pen/strep) was added to the experimental media. This treatment was effective in eliminating all viable C. bovis in the culture system after 72 h. Our data suggest that C. bovis growth under tissue culture conditions is possible and growth in tissue culture media is nuanced. These results highlight the importance of pathogen surveillance for tumor cell lines propagated in vitro and demonstrate the need for further investigation into C. bovis growth requirements.
Collapse
Affiliation(s)
- Alyssa M Kleymann
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Nicholas A Zawadzki
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Derek L Fong
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Michael K Fink
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Lauren M Habenicht
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Jori K Leszczynski
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Steven M Anderson
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
- University of Colorado Cancer Center, Aurora, Colorado
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Christopher A Manuel
- Office of Laboratory Animal Resources, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
12
|
Kumar R, Tripathi R, Sinha NR, Mohan RR. Transcriptomic landscape of quiescent and proliferating human corneal stromal fibroblasts. Exp Eye Res 2024; 248:110073. [PMID: 39243928 PMCID: PMC11532003 DOI: 10.1016/j.exer.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study analyzed the transcriptional changes in primary human corneal stromal fibroblasts (hCSFs) grown under quiescent (serum-free) and proliferating (serum-supplemented) culture conditions to identify genes, pathways, and protein‒protein interaction networks influencing corneal repair and regeneration. Primary hCSFs were isolated from donor human corneas and maintained in serum-free or serum-laden conditions. RNA was extracted from confluent cultures using Qiagen kit and subjected to RNA sequencing (RNAseq) analysis. Differential gene expression (DGE) and pathway enrichment analyses were conducted using DESeq2 and Gene Set Enrichment Analysis (GSEA), respectively. Protein‒protein interaction (PPI) networks were created exploiting the STRING database and analyzed with Cytoscape and the cytoHubba plugin. RNA-seq revealed 5,181 genes that were significantly differentially expressed/changed among the 18,812 annotated genes (p value ˂0.05). A cutoff value of a log2-fold change of ±1.5 or greater was used to identify 674 significantly upregulated and 771 downregulated genes between quiescent and proliferating hCSFs. Pathway enrichment analysis revealed significant changes in genes linked to cell cycle regulation, inflammatory, and oxidative stress response pathways, such as E2F Targets, G2M Checkpoint, and MYC Targets, TNFA signaling via NF-kB, and oxidative phosphorylation. Protein-protein interaction network analysis highlighted critical hub genes. The FGF22, CD34, ASPN, DPT, LUM, FGF10, PDGFRB, ECM2, DCN, VEGFD, OMD, OGN, ANGPT1, CDH5, and PRELP were upregulated, whereas genes linked to cell cycle regulation and mitotic progression, such as BUB1, TTK, KIF23, KIF11, BUB1B, DLGAP5, NUSAP1, CCNA2, CCNB1, BIRC5, CDK1, KIF20A, AURKB, KIF2C, and CDCA8, were downregulated. The RNA sequences and gene count files have been submitted to the Gene Expression Omnibus (accession # GSE260476). Our study provides a comprehensive information on the transcriptional and molecular changes in hCSFs under quiescent and proliferative conditions and highlights key pathways and hub genes.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
13
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
14
|
Koh EJ, Heo SY, Park A, Lee YJ, Choi WY, Heo SJ. Serum-Free Medium Supplemented with Haematococcus pluvialis Extracts for the Growth of Human MRC-5 Fibroblasts. Foods 2024; 13:3012. [PMID: 39335941 PMCID: PMC11431700 DOI: 10.3390/foods13183012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Experiments are increasingly performed in vitro; therefore, cell culture technology is essential for scientific progress. Fetal bovine serum (FBS) is a key cell culture supplement providing growth factors, amino acids, and hormones. However, FBS is not readily available on the market, has contamination risks, and has ethical concerns. This study aimed to investigate Haematococcus pluvialis extracts (HE) as a potential substitute for FBS. Therefore, we assessed the effects of HE on cell maintenance, growth, and cycle progression in human lung fibroblasts (MRC-5). Cell progression and monosaccharide, fatty acid, and free amino acid compositions were analyzed using cell cycle analysis, bio-liquid chromatography, gas chromatography, and high-performance liquid chromatography, respectively. The results of nutritional profiles showed that the extracts contained essential amino acids required for synthesizing non-essential amino acids and other metabolic intermediates. Furthermore, most of the components present in HE were consistent with those found in FBS. HE enhanced cell viability and regulated cell cycle phases. Additionally, the interaction between growth factor cocktails and HE significantly improved cell viability, promoted cell cycle progression, and activated key cell cycle regulators, such as cyclin A and cyclin-dependent kinases 1 (CDK1). Our findings suggest that HE have considerable potential to substitute FBS in MRC-5 cell cultures and have functional and ethical advantages.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
15
|
Burdzinska A, Szopa IM, Majchrzak-Kuligowska K, Roszczyk A, Zielniok K, Zep P, Dąbrowski FA, Bhale T, Galanty M, Paczek L. The Comparison of Immunomodulatory Properties of Canine and Human Wharton Jelly-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:8926. [PMID: 39201612 PMCID: PMC11354339 DOI: 10.3390/ijms25168926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFβ at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFβ in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha Str. 1B, 02-097 Warsaw, Poland;
| | - Paweł Zep
- Veterinary Clinic “ochWET”, Pruszkowska Str. 19/21, 02-119 Warsaw, Poland
| | - Filip Andrzej Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Education CMKP, Marymoncka Str. 99/103, 00-416 Warsaw, Poland;
| | - Tanushree Bhale
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Marek Galanty
- Department of Small Animal Diseases and Clinic, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Leszek Paczek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| |
Collapse
|
16
|
Yaneselli K, Ávila G, Rossi A, Rial A, Castro S, Estradé MJ, Suárez G, Algorta A. Impact of different formulations of platelet lysate on proliferative and immune profile of equine mesenchymal stromal cells. Front Vet Sci 2024; 11:1410855. [PMID: 39161460 PMCID: PMC11330840 DOI: 10.3389/fvets.2024.1410855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Platelet lysate (PL) is investigated as a potential replacement for fetal bovine serum (FBS) in cell culture. However, there is limited research on its impact on the immune profile of equine mesenchymal stromal cells (eMSCs). This study aimed to evaluate the effects of different PL formulations on the proliferative capacity, multipotentiality, and immune profile of equine adipose tissue-derived MSCs (eAD-MSCs). In vitro growth kinetics and trilineage differentiation of eAD-MSCs (n = 7) were assessed under three culture conditions: medium-concentration PL (MPL), high-concentration PL (HPL), and FBS as a control. The immune profile was evaluated by studying the expression of immunogenic receptors such as MHC I, MHC II, and immunomodulatory molecules IL-6, IL-10, and TNF-α, determined by gene expression, surface marker expression, and cytokine quantification. Both PL formulations, pooled from 5 donors, exhibited 3.3 and 6.5-fold higher platelet counts than baseline plasma for MPL and HPL, respectively. Higher concentrations of TGF-β and PDGF were found in both PL formulations compared to baseline. Furthermore, MPL and HPL subcultures demonstrated proliferative, clonogenic, and multipotent capacities similar to FBS. The immune profile of PL-cultured cells exhibited gene expression levels related to immunogenicity and immunomodulation similar to the reference condition, and the surface antigen presence of MHC II was also similar. However, HPL media exhibited higher IL-6, IL-10, and TNF-α concentrations in the culture supernatant. In conclusion, both PL media contained higher concentrations of growth factors compared to FBS, supporting the in vitro culture of eAD-MSCs with proliferative, clonogenic, and multipotent capacity similar to the reference medium. Nonetheless, PL usage led to a variation in the immunomodulatory cytokine microenvironment, with higher concentrations of IL-6, IL-10, and TNF-α in HPL media compared to MPL and FBS.
Collapse
Affiliation(s)
- Kevin Yaneselli
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Gimena Ávila
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Andrea Rossi
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Castro
- Unidad de Clínica y Cirugía de Equinos, Departamento de Clínica y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - María José Estradé
- Unidad de Reproducción Animal, Departamento de Producción Animal y Salud de los Sistemas Productivos, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Suárez
- Unidad de Farmacología y Terapéutica, Departamento de Clínicas y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Agustina Algorta
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Manning L. Responsible innovation: Mitigating the food safety aspects of cultured meat production. J Food Sci 2024; 89:4638-4659. [PMID: 38980973 DOI: 10.1111/1750-3841.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
There is much interest in cultured (cultivated) meat as a potential solution to concerns over the ecological and environmental footprint of food production, especially from animal-derived food products. The aim of this critical review is to undertake a structured analysis of existing literature to (i) identify the range of materials that could be used within the cultured meat process; (ii) explore the potential biological and chemical food safety issues that arise; (iii) identify the known and also novel aspects of the food safety hazard portfolio that will inform hazard analysis and risk assessment approaches, and (iv) position a responsible innovation framework that can be utilized to mitigate food safety concerns with specific emphasis on cultured meat. Although a number of potential food safety hazards are identified that need to be considered within a food safety plan, further research is required to validate and verify that these food safety hazards have been suitably controlled and, where possible, eliminated. The responsible innovation framework developed herein, which extends beyond hazard analysis and traditional risk assessment approaches, can be applied in multiple contexts, including this use case of cultured meat production.
Collapse
Affiliation(s)
- Louise Manning
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| |
Collapse
|
18
|
Mohamad A, Khemthong M, Trongwongsa P, Lertwanakarn T, Setthawong P, Surachetpong W. A New Cell Line from the Brain of Red Hybrid Tilapia ( Oreochromis spp.) for Tilapia Lake Virus Propagation. Animals (Basel) 2024; 14:1522. [PMID: 38891569 PMCID: PMC11171066 DOI: 10.3390/ani14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Tilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia (Oreochromis spp.). In this study, we successfully established a new cell line, RHTiB, from the red hybrid tilapia brain. RHTiB cells were cultured for 1.5 years through over 50 passages and demonstrated optimal growth at 25 °C in Leibovitz-15 medium supplemented with 10% fetal bovine serum at pH 7.4. Morphologically, RHTiB cells displayed a fibroblast-like appearance, and cytochrome oxidase I gene sequencing confirmed their origin from Oreochromis spp. Mycoplasma contamination testing yielded negative results. The revival rate of the cells post-cryopreservation was observed to be between 75 and 80% after 30 days. Chromosomal analysis at the 25th passage revealed a diploid count of 22 pairs (2n = 44). While no visible cytopathic effects were observed, both immunofluorescence microscopy and RT-qPCR analysis demonstrated successful TiLV propagation in the RHTiB cell line, with a maximum TiLV concentration of 107.82 ± 0.22 viral copies/400 ng cDNA after 9 days of incubation. The establishment of this species-specific cell line represents a valuable advancement in the diagnostic and isolation tools for viral diseases potentially impacting red hybrid tilapia.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
19
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
20
|
Abdallah AT, Peitz M, Konermann A. Revealing Genetic Dynamics: scRNA-seq Unravels Modifications in Human PDL Cells across In Vivo and In Vitro Environments. Int J Mol Sci 2024; 25:4731. [PMID: 38731950 PMCID: PMC11083143 DOI: 10.3390/ijms25094731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.
Collapse
Affiliation(s)
- Ali T. Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany;
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Interdisciplinary Center for Clinical Research, University Hospital RWTH, 52074 Aachen, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life and Brain Center, University Hospital Bonn, 53105 Bonn, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany
| |
Collapse
|
21
|
Frommer ML, Langridge BJ, Beedie A, Jasionowska S, Awad L, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Exploring Anti-Fibrotic Effects of Adipose-Derived Stem Cells: Transcriptome Analysis upon Fibrotic, Inflammatory, and Hypoxic Conditioning. Cells 2024; 13:693. [PMID: 38667308 PMCID: PMC11049044 DOI: 10.3390/cells13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Autologous fat transfers show promise in treating fibrotic skin diseases, reversing scarring and stiffness, and improving quality of life. Adipose-derived stem cells (ADSCs) within these grafts are believed to be crucial for this effect, particularly their secreted factors, though the specific mechanisms remain unclear. This study investigates transcriptomic changes in ADSCs after in vitro fibrotic, inflammatory, and hypoxic conditioning. High-throughput gene expression assays were conducted on ADSCs exposed to IL1-β, TGF-β1, and hypoxia and in media with fetal bovine serum (FBS). Flow cytometry characterized the ADSCs. RNA-Seq analysis revealed distinct gene expression patterns between the conditions. FBS upregulated pathways were related to the cell cycle, replication, wound healing, and ossification. IL1-β induced immunomodulatory pathways, including granulocyte chemotaxis and cytokine production. TGF-β1 treatment upregulated wound healing and muscle tissue development pathways. Hypoxia led to the downregulation of mitochondria and cellular activity.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Alexandra Beedie
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation and Rare Diseases, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
22
|
Wang T, Desmet J, Porte C. Protective role of fetal bovine serum on PLHC-1 spheroids exposed to a mixture of plastic additives: A lipidomic perspective. Toxicol In Vitro 2024; 96:105771. [PMID: 38182034 DOI: 10.1016/j.tiv.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of fetal bovine serum (FBS) in cell culture is being questioned for scientific and ethical reasons, prompting the exploration of alternative approaches. Nevertheless, the influence of FBS on cell functioning, especially in fish cells, has not been comprehensively examined. This study aims to evaluate the impact of FBS on the lipidome of PLHC-1 spheroids and investigate cellular and molecular responses to plastic additives in the presence/absence of FBS. Lipidomic analyses were conducted on PLHC-1 cell spheroids using liquid chromatography coupled with a high-resolution quadrupole time-of-flight mass spectrometer (HRMS-QToF). The removal of FBS from the culture medium for 24 h significantly changed the lipid profile of spheroids, resulting in a depletion of cholesterol esters (CEs), phosphatidylcholines (PCs) and lyso-phosphatidylcholines (LPCs), while ceramides and certain glycerophospholipids slightly increased. Additionally, the exclusion of FBS from the medium led to increased cytotoxicity caused by a mixture of plastic additives and increased lipidomic alterations, including an elevation of ceramides. This study emphasizes the protective role of serum components in fish liver spheroids against a mixture of plastic additives and underscores the importance of considering exposure conditions when studying metabolomic and lipidomic responses to toxicants.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; PhD student at the University of Barcelona, Barcelona. Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
23
|
Rossan Mathews MG, Subramaniam R, Venkatachalam S, Selvan Christyraj JRS, Yesudhason BV, Kalimuthu K, Mohan M, Selvan Christyraj JD. Biochemical and functional characterization of heat-inactivated coelomic fluid from earthworms as a potential alternative for fetal bovine serum in animal cell culture. Sci Rep 2024; 14:5606. [PMID: 38453984 PMCID: PMC10920628 DOI: 10.1038/s41598-024-56169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
Fetal bovine serum (FBS) plays a pivotal role in animal cell culture. Due to ethical and scientific issues, searching for an alternative, comprising the three R's (Refinement, Reduction and Replacement) gained global attention. In this context, we have identified the heat inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a potential alternative for FBS. Briefly, we formulated HI-CF (f-HICF) containing serum free medium which can aid the growth, attachment, and proliferation of adherent cells, similar to FBS. In this study, we investigated the biochemical characterization, sterility, stability, formulation, and functional analysis of HI-CF as a supplement in culturing animal cells. Notably, vitamins, micronutrients, proteins, lipids, and trace elements are identified and compared with FBS for effective normalization of the serum free media. HI-CF is tested to be devoid of endotoxin and mycoplasma contamination thus can qualify the cell culture grade. The f-HICF serum free media was prepared, optimised, and tested with A549, HeLa, 3T3, Vero and C2C12 cell lines. Our results conclude that f-HICF is a potential alternative to FBS, in accordance with ethical concern; compliance with 3R's; lack of unintended antibody interactions; presence of macro and micronutrients; simple extraction; cost-effectiveness and availability.
Collapse
Affiliation(s)
- Melinda Grace Rossan Mathews
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravichandran Subramaniam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Manikandan Mohan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, USA
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
24
|
Wu Y, Iwasaki K, Hashimoto Y. Induction of mesenchymal stem cell (MSC) differentiation from iPS cells using MSC medium. Dent Mater J 2024; 43:20-27. [PMID: 38008439 DOI: 10.4012/dmj.2023-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Mesenchymal stem cells (MSCs) and induced pluripotent stem (iPS) cells have great potential as cell sources for tissue engineering and regenerative medicine. This study aimed to investigate whether iPS cells can be differentiated into MSCs using MSCGM, a commercially available MSC culture system. The cells were characterized by flow cytometry, immunostaining, and gene expression analyses. We also examined their potential to differentiate into osteoblasts and chondrocytes. Our results showed that iPS cells cultured in MSCGM (iPS-MSCGM) exhibited a fibroblast-like morphology and expressed CD73 and CD90 genes, as well as positive markers for CD73, CD90, and CD105. Moreover, iPS-MSCGM cells demonstrated the ability to differentiate into osteoblasts and chondrocytes in vitro. This study demonstrates a new and simple method for inducing the differentiation of iPS cells to MSCs using MSCGM.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Biomaterials, Osaka Dental University
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medical Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University
| | | |
Collapse
|
25
|
Dubau M, Tripetchr T, Mahmoud L, Kral V, Kleuser B. Advancing skin model development: A focus on a self-assembled, induced pluripotent stem cell-derived, xeno-free approach. J Tissue Eng 2024; 15:20417314241291848. [PMID: 39502328 PMCID: PMC11536386 DOI: 10.1177/20417314241291848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
The demand for skin models as alternatives to animal testing has grown due to ethical concerns and the need for accurate substance evaluation. These alternatives, known as New Approach Methodologies (NAMs), are increasingly used for regulatory decisions. Current skin models from primary human cells often rely on bovine collagen, raising ethical issues. This study explores self-assembled skin models (SASM) as a new method, utilizing hair follicle-derived keratinocytes reprogrammed into induced pluripotent stem cells (iPSC) and differentiated into fibroblasts and keratinocytes. The model relies on the ability of fibroblasts to secrete collagen to produce a xeno-free dermal layer and on the differentiation of keratinocytes to create a functional epidermal layer. These layers exhibited confirmed metabolic activity and the capability to withstand test substances. The successful development of SASM underscores the significance of accurate alternatives in dermatological research, providing an ethical and reliable option for substance evaluation and regulatory testing.
Collapse
Affiliation(s)
| | | | - Lava Mahmoud
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Vivian Kral
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Koch TG, Kuzma-Hunt AG, Russell KA. Overview of Equine Stem Cells: Sources, Practices, and Potential Safety Concerns. Vet Clin North Am Equine Pract 2023; 39:461-474. [PMID: 37574382 DOI: 10.1016/j.cveq.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Over the past 2 decades, equine veterinarians are turning increasingly to stem cell therapies to repair damaged tissues or to promote healing through modulation of the immune system. Research is ongoing into optimizing practices associated with stem cell product transport, dosage, and administration. Culture-expanded equine mesenchymal stem cell therapies seem safe, even when used allogeneically, but various safety concerns should be considered. Stem cells and cellular reprogramming tools hold great promise for future equine therapies.
Collapse
Affiliation(s)
- Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexander G Kuzma-Hunt
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
27
|
Schnabel LV, Koch DW. Use of mesenchymal stem cells for tendon healing in veterinary and human medicine: getting to the "core" of the problem through a one health approach. J Am Vet Med Assoc 2023; 261:1435-1442. [PMID: 37643722 PMCID: PMC11027114 DOI: 10.2460/javma.23.07.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The purpose of this manuscript, which is part of the Currents in One Health series, is to take a comparative approach to stem cell treatment for tendon injury and consider how the horse might inform treatment in other veterinary species and humans. There is increasing experimental and clinical evidence for the use of bone marrow-derived mesenchymal stem cells to treat tendon injuries in the horse. The same evidence does not currently exist for other species. This manuscript will review why the equine superficial digital flexor tendon core lesion might be considered optimal for stem cell delivery and stem cell interaction with the injury environment and will also introduce the concept of stem cell licensing for future evaluation. The companion Currents in One Health by Koch and Schnabel, AJVR, October 2023, addresses in detail what is known about stem cell licensing for the treatment of other diseases using rodent models and how this information can potentially be applied to tendon healing.
Collapse
Affiliation(s)
- Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
28
|
Petrović DJ, Jagečić D, Krasić J, Sinčić N, Mitrečić D. Effect of Fetal Bovine Serum or Basic Fibroblast Growth Factor on Cell Survival and the Proliferation of Neural Stem Cells: The Influence of Homocysteine Treatment. Int J Mol Sci 2023; 24:14161. [PMID: 37762465 PMCID: PMC10531752 DOI: 10.3390/ijms241814161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the obtained results. Here, we compared the effects of homocysteine (Hcy), a molecule involved in neurodegeneration, on immature cells of the nervous system cultivated in basal medium or media supplemented by either fetal bovine serum or basic fibroblast growth factor. The number of cells in basal media supplemented with basic fibroblast growth factor (bFGF) was 2.5 times higher in comparison to the number of cells in basal media supplemented with fetal bovine serum (FBS). We also found that the neuron-specific β-3-tubulin protein expression dose dependently decreased with increasing Hcy exposure. Interestingly, bFGF exerts a protective effect on β-3-tubulin protein expression at a concentration of 1000 µM Hcy compared to FBS-treated neural stem cells on Day 7. Supplementation with bFGF increased SOX2 protein expression two-fold compared to FBS supplementation. GFAP protein expression increased five-fold on Day 3 in FBS-treated neural stem cells, whereas on Day 7, bFGF increased GFAP expression two-fold compared to FBS-treated neural stem cells. Here, we have clearly shown that the selection of culturing media significantly influences various cellular parameters, which, in turn, can lead to different conclusions in experiments based on in vitro models of pathological conditions.
Collapse
Affiliation(s)
- Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Glycoscience Research Laboratory, Genos Ltd., 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jure Krasić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Laboratory for Neurogenomics and In Situ Hybridization, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nino Sinčić
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers (epiMark), Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Parvin Nejad S, Lecce M, Mirani B, Machado Siqueira N, Mirzaei Z, Santerre JP, Davies JE, Simmons CA. Serum- and xeno-free culture of human umbilical cord perivascular cells for pediatric heart valve tissue engineering. Stem Cell Res Ther 2023; 14:96. [PMID: 37076906 PMCID: PMC10116794 DOI: 10.1186/s13287-023-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Constructs currently used to repair or replace congenitally diseased pediatric heart valves lack a viable cell population capable of functional adaptation in situ, necessitating repeated surgical intervention. Heart valve tissue engineering (HVTE) can address these limitations by producing functional living tissue in vitro that holds the potential for somatic growth and remodelling upon implantation. However, clinical translation of HVTE strategies requires an appropriate source of autologous cells that can be non-invasively harvested from mesenchymal stem cell (MSC)-rich tissues and cultured under serum- and xeno-free conditions. To this end, we evaluated human umbilical cord perivascular cells (hUCPVCs) as a promising cell source for in vitro production of engineered heart valve tissue. METHODS The proliferative, clonogenic, multilineage differentiation, and extracellular matrix (ECM) synthesis capacities of hUCPVCs were evaluated in a commercial serum- and xeno-free culture medium (StemMACS™) on tissue culture polystyrene and benchmarked to adult bone marrow-derived MSCs (BMMSCs). Additionally, the ECM synthesis potential of hUCPVCs was evaluated when cultured on polycarbonate polyurethane anisotropic electrospun scaffolds, a representative biomaterial for in vitro HVTE. RESULTS hUCPVCs had greater proliferative and clonogenic potential than BMMSCs in StemMACS™ (p < 0.05), without differentiation to osteogenic and adipogenic phenotypes associated with valve pathology. Furthermore, hUCPVCs cultured with StemMACS™ on tissue culture plastic for 14 days synthesized significantly more total collagen, elastin, and sulphated glycosaminoglycans (p < 0.05), the ECM constituents of the native valve, than BMMSCs. Finally, hUCPVCs retained their ECM synthesizing capacity after 14 and 21 days in culture on anisotropic electrospun scaffolds. CONCLUSION Overall, our findings establish an in vitro culture platform that uses hUCPVCs as a readily-available and non-invasively sourced autologous cell population and a commercial serum- and xeno-free culture medium to increase the translational potential of future pediatric HVTE strategies. This study evaluated the proliferative, differentiation and extracellular matrix (ECM) synthesis capacities of human umbilical cord perivascular cells (hUCPVCs) when cultured in serum- and xeno-free media (SFM) against conventionally used bone marrow-derived MSCs (BMMSCs) and serum-containing media (SCM). Our findings support the use of hUCPVCs and SFM for in vitro heart valve tissue engineering (HVTE) of autologous pediatric valve tissue. Figure created with BioRender.com.
Collapse
Affiliation(s)
- Shouka Parvin Nejad
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Monica Lecce
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Bahram Mirani
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Nataly Machado Siqueira
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Zahra Mirzaei
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - J Paul Santerre
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
- Tissue Regeneration Therapeutics, Toronto, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Reichstein IS, König M, Wojtysiak N, Escher BI, Henneberger L, Behnisch P, Besselink H, Thalmann B, Colas J, Hörchner S, Hollert H, Schiwy A. Replacing animal-derived components in in vitro test guidelines OECD 455 and 487. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161454. [PMID: 36638987 DOI: 10.1016/j.scitotenv.2023.161454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.
Collapse
Affiliation(s)
- Inska S Reichstein
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | | | | | - Julien Colas
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Hörchner
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| | - Andreas Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| |
Collapse
|
31
|
Lisiak N, Dzikowska P, Wisniewska U, Kaczmarek M, Bednarczyk-Cwynar B, Zaprutko L, Rubis B. Biological Activity of Oleanolic Acid Derivatives HIMOXOL and Br-HIMOLID in Breast Cancer Cells Is Mediated by ER and EGFR. Int J Mol Sci 2023; 24:5099. [PMID: 36982173 PMCID: PMC10048893 DOI: 10.3390/ijms24065099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is one of the most frequently observed malignancies worldwide and represents a heterogeneous group of cancers. For this reason, it is crucial to properly diagnose every single case so a specific and efficient therapy can be adjusted. One of the most critical diagnostic parameters evaluated in cancer tissue is the status of the estrogen receptor (ER) and epidermal growth factor receptor (EGFR). Interestingly, the expression of the indicated receptors may be used in a personalized therapy approach. Importantly, the promising role of phytochemicals in the modulation of pathways controlled by ER and EGFR was also demonstrated in several types of cancer. One such biologically active compound is oleanolic acid, but due to poor water solubility and cell membrane permeability that limits its use, alternative derivative compounds were developed. These are HIMOXOL and Br-HIMOLID, which were demonstrated to be capable of inducing apoptosis and autophagy or diminishing the migratory and invasive potential of breast cancer cells in vitro. In our study, we revealed that proliferation, cell cycle, apoptosis, autophagy, and also the migratory potential of HIMOXOL and Br-HIMOLID in breast cancer cells are mediated by ER (MCF7) and EGFR (MDA-MB-231) receptors. These observations make the studied compounds interesting in the context of anticancer strategies.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Patrycja Dzikowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Urszula Wisniewska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
32
|
Jammes M, Contentin R, Cassé F, Galéra P. Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies. Front Vet Sci 2023; 10:1115774. [PMID: 36846261 PMCID: PMC9950114 DOI: 10.3389/fvets.2023.1115774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that eventually leads to the complete degradation of articular cartilage. Articular cartilage has limited intrinsic capacity for self-repair and, to date, there is no curative treatment for OA. Humans and horses have a similar articular cartilage and OA etiology. Thus, in the context of a One Health approach, progress in the treatment of equine OA can help improve horse health and can also constitute preclinical studies for human medicine. Furthermore, equine OA affects horse welfare and leads to significant financial losses in the equine industry. In the last few years, the immunomodulatory and cartilage regenerative potentials of mesenchymal stromal cells (MSCs) have been demonstrated, but have also raised several concerns. However, most of MSC therapeutic properties are contained in their secretome, particularly in their extracellular vesicles (EVs), a promising avenue for acellular therapy. From tissue origin to in vitro culture methods, various aspects must be taken into consideration to optimize MSC secretome potential for OA treatment. Immunomodulatory and regenerative properties of MSCs can also be enhanced by recreating a pro-inflammatory environment to mimic an in vivo pathological setting, but more unusual methods also deserve to be investigated. Altogether, these strategies hold substantial potential for the development of MSC secretome-based therapies suitable for OA management. The aim of this mini review is to survey the most recent advances on MSC secretome research with regard to equine OA.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | | | | | | |
Collapse
|
33
|
Transcription Factors STAT3 and MYC Are Key Players of Human Platelet Lysate-Induced Cell Proliferation. Int J Mol Sci 2022; 23:ijms232415782. [PMID: 36555426 PMCID: PMC9781157 DOI: 10.3390/ijms232415782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Human platelet lysate (HPL) is an efficient alternative for animal serum supplements, significantly enhancing stromal cell proliferation. However, the molecular mechanism behind this growth-promoting effect remains elusive. The aim of this study was to investigate the effect of HPL on cell cycle gene expression in different human stromal cells and to identify the main key players that mediate HPL's growth-enhancing effect. RT-qPCR and an antibody array revealed significant upregulation of cell cycle genes in stromal cells cultured in HPL. As HPL is rich in growth factors that are ligands of tyrosine kinase receptor (TKR) pathways, we used TKR inhibitors and could significantly reduce cell proliferation. Genome profiling, RT-qPCR and Western blotting revealed an enhanced expression of the transcription factors signal transducer and activator of transcription 3 (STAT3) and MYC, both known TKR downstream effectors and stimulators of cell proliferation, in response to HPL. In addition, specifically blocking STAT3 resulted in reduced cell proliferation and expression of cell cycle genes. Our data indicate that HPL-enhanced cell proliferation can, at least in part, be explained by the TKR-enhanced expression of STAT3 and MYC, which in turn induce the expression of genes being involved in the promotion and control of the cell cycle.
Collapse
|
34
|
De Becker A, Heestermans R, De Brouwer W, Bockstaele K, Maes K, Van Riet I. Genetic profiling of human bone marrow mesenchymal stromal cells after in vitro expansion in clinical grade human platelet lysate. Front Bioeng Biotechnol 2022; 10:1008271. [DOI: 10.3389/fbioe.2022.1008271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded ex vivo. In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL). We investigated in this study the impact of the culture supplement on gene expression of MSCs. Human bone marrow derived MSCs were expanded in vitro in FCS and PL supplemented medium. We found that MSCs expanded in PL-containing medium (PL-MSCs) express typical MSC immunomorphological features and can migrate, as their counterparts expanded in FCS-containing medium, through a layer of endothelial cells in vitro. Additionally, they show an increased proliferation rate compared to MSCs expanded in FCS medium (FCS-MSCs). RNA sequencing performed for MSCs cultured in both types of expansion medium revealed a large impact of the choice of growth supplement on gene expression: 1974 genes were at least twofold up- or downregulated. We focused on impact of genes involved in apoptosis and senescence. Our data showed that PL-MSCs express more anti-apoptotic genes and FCS-MSCs more pro-apoptotic genes. FCS-MSCs showed upregulation of senescence-related genes after four passages whereas this was rarer in PL-MSCs at the same timepoint. Since PL-MSCs show higher proliferation rates and anti-apoptotic gene expression, they might acquire features that predispose them to malignant transformation. We screened 10 MSC samples expanded in PL-based medium for the presence of tumor-associated genetic variants using a 165 gene panel and detected only 21 different genetic variants. According to our analysis, none of these were established pathogenic mutations. Our data show that differences in culture conditions such as growth supplement have a significant impact on the gene expression profile of MSCs and favor the use of PL over FCS for expansion of MSCs.
Collapse
|
35
|
Even KM, Gaesser AM, Ciamillo SA, Linardi RL, Ortved KF. Comparing the immunomodulatory properties of equine BM-MSCs culture expanded in autologous platelet lysate, pooled platelet lysate, equine serum and fetal bovine serum supplemented culture media. Front Vet Sci 2022; 9:958724. [PMID: 36090170 PMCID: PMC9453159 DOI: 10.3389/fvets.2022.958724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Joint injury often leads to cartilage damage and posttraumatic inflammation, which drives continued extracellular matrix degradation culminating in osteoarthritis. Mesenchymal stem cells (MSCs) have been proposed as a biotherapeutic to modulate inflammation within the joint. However, concerns have been raised regarding the immunogenicity of MSCs cultured in traditional fetal bovine serum (FBS) containing media, and the potential of xenogenic antigens to activate the immune system causing rejection and destruction of the MSCs. Xenogen-free alternatives to FBS have been proposed to decrease MSC immunogenicity, including platelet lysate (PL) and equine serum. The objective of this study was to compare the immunomodulatory properties of BM-MSCs culture-expanded in media supplemented with autologous PL (APL), pooled PL (PPL), equine serum (ES) or FBS. We hypothesized that BM-MSCs culture expanded in media with xenogen-free supplements would exhibit superior immunomodulatory properties to those cultured in FBS containing media. Bone marrow-derived MSCs (BM-MSCs) were isolated from six horses and culture expanded in each media type. Blood was collected from each horse to isolate platelet lysate. The immunomodulatory function of the BM-MSCs was assessed via a T cell proliferation assay and through multiplex immunoassay quantification of cytokines, including IL-1β, IL-6, IL-8, IL-10, and TNFα, following preconditioning of BM-MSCs with IL-1β. The concentration of platelet-derived growth factor BB (PDGF-BB), IL-10, and transforming growth factor-β (TGF-β) in each media was measured via immunoassay. BM-MSCs cultured in ES resulted in significant suppression of T cell proliferation (p = 0.02). Cell culture supernatant from preconditioned BM-MSCs cultured in ES had significantly higher levels of IL-6. PDGF-BB was significantly higher in APL media compared to FBS media (p = 0.016), while IL-10 was significantly higher in PPL media than ES and FBS (p = 0.04). TGF-β was highest in APL media, with a significant difference in comparison to ES media (p = 0.03). In conclusion, expansion of equine BM-MSCs in ES may enhance their immunomodulatory abilities, while PL containing media may have some inherent therapeutic potential associated with higher concentrations of growth factors. Further studies are needed to elucidate which xenogen-free supplement optimizes BM-MSC performance.
Collapse
Affiliation(s)
| | | | | | | | - Kyla F. Ortved
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| |
Collapse
|
36
|
Mehri M, Gheitasi R, Pourbagher R, Ranaee M, Nayeri K, Rahimi SM, Khorasani HR, Hossein-Nattaj H, Sabour D, Akhavan-Niaki H, Fattahi S, Kalali B, Mostafazadeh A. Ninety-six-hour starved peripheral blood mononuclear cell supernatant inhibited LA7 breast cancer stem cells induced tumor via reduction in angiogenesis and alternations in Gch1 and Spr expressions. Front Immunol 2022; 13:1025933. [PMID: 36908807 PMCID: PMC9996193 DOI: 10.3389/fimmu.2022.1025933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 02/25/2023] Open
Abstract
Introduction The microenvironment of solid tumors such as breast cancer is heterogeneous and complex, containing different types of cell, namely, cancer stem cells and immune cells. We previously reported the immunoregulatory behavior of the human immune cell in a solid tumor microenvironment-like culture under serum starvation stress for 96 h. Here, we examined the effect of this culture-derived solution on breast cancer development in rats. Method Ninety-six-hour starved PBMCs supernatant (96 h-SPS) was collected after culturing human PBMCs for 96 h under serum starvation condition. Breast cancer stem cells, LA7 cell line, was used for in vitro study by analyzing gene expression status and performing cytotoxicity, proliferation, scratch wound healing assays, followed by in vivo tumor induction in three groups of mature female Sprague Dawley rats. Animals were treated with 96 h-SPS or RPMI and normal saline as control, n = 6 for each group. After biochemical analysis of iron, lactate, and pH levels in the dissected tumors, Ki67 antigen expression, angiogenesis, and necrosis evaluation were carried out. Metabolic-related gene expression was assessed using RT-qPCR. Moreover, 96 h-SPS composition was discovered by Nano-LC-ESI-MS/MS. Results 96 h-SPS solution reduced the LA7 cell viability, proliferation, and migration and Gch1 and Spr genes expression in vitro (p< 0.05), whereas stemness gene Oct4 was upregulated (p< 0.01). The intracellular lactate was significantly decreased in the 96 h-SPS treated group (p = 0.007). In this group, Gch1 and Spr were significantly downregulated (p< 0.05), whereas the Sox2 and Oct4 expression was not changed significantly. The number of vessels and mitosis (Ki67+ cells) in the 96 h-SPS-treated group was significantly reduced (p = 0.024). The increased rate of necrosis in this group was statistically significant (p = 0.04). Last, proteomics analysis revealed candidate effectors' components of 96 h-SPS solution. Conclusion 96 h-SPS solution may help to prevent cancer stem cell mediated tumor development. This phenomenon could be mediated through direct cytotoxic effects, inhibition of cell proliferation and migration in association with reduction in Gch1 and Spr genes expression, angiogenesis and mitosis rate, and necrosis augmentation. The preliminary data obtained from the present study need to be investigated on a larger scale and can be used as a pilot for further studies on the biology of cancer development.
Collapse
Affiliation(s)
- Maryam Mehri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Reza Gheitasi
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich Schiller University, Jena, Germany
| | - Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ranaee
- Department of Pathology, School of Medicine, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mostafa Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hadi Hossein-Nattaj
- Immunology Department, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Behnam Kalali
- Department of Medicine II, Klinikum Grosshadern, Ludwig Maximilian University (LMU) University, Munich, Germany
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|