1
|
Alexiou S, Diakou A, Kachrimanidou M. The Role of Clostridioides difficile Within the One Health Framework: A Review. Microorganisms 2025; 13:429. [PMID: 40005794 PMCID: PMC11858594 DOI: 10.3390/microorganisms13020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. In recent years, the incidence of C. difficile infection (CDI) has increased globally, with a notable rise in community-associated CDI (CA-CDI). The presence of the microorganism in animals, the environment, and food suggests that these sources may contribute to the spread of the infection in the community. This review applies a One Health approach, integrating human, animal, and environmental health, to provide a comprehensive strategy for understanding and managing this pathogen. Findings reveal the widespread dissemination of C. difficile in animals, the environment, and food. The predominant PCR ribotypes identified were RTs 078 and 014/020, followed by RTs 126, 001, 002, 009, 010, and 033. C. difficile strains exhibited resistance to multiple antimicrobial agents, including clindamycin, erythromycin, fluoroquinolones, cephalosporins, and tetracyclines. Discriminative typing methods, such as whole-genome sequencing, revealed clonal relationships between C. difficile strains from humans and animals, indicating either direct transmission or a common environmental source of infection. The high genetic similarity between isolates from the environment and humans indicates potential environmental contamination. Additionally, clusters of C. difficile strains found in food and humans indicate a possible foodborne transmission route. This review summarizes the current knowledge on the role of Clostridioides difficile within the One Health framework.
Collapse
Affiliation(s)
- Sotiris Alexiou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Alshannaq AF, Kates AE, Keating JA, Mckinley LL, Dixon JW, Safdar N. Diverse Sources and Latent Reservoirs of Community-Associated Clostridioides difficile Infection. Clin Infect Dis 2025; 80:37-42. [PMID: 39215602 DOI: 10.1093/cid/ciae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a spore-forming, toxin-producing, anaerobic bacterium that infects the human gastrointestinal tract, causing diarrhea and life-threatening colitis. Clostridioides difficile epidemiology continues to evolve, and it is recognized as a major community-associated (CA) pathogen in addition to its established role in causing healthcare-associated (HA) infection. While current surveillance and prevention measures mainly focus on healthcare-associated C. difficile infections (HA-CDI), much less is known about the factors that drive CA-CDI. This review highlights the potential contribution of reservoirs, including asymptomatic carriers, to CA C. difficile transmission. The reservoirs discussed in this review provide potential avenues for research to better understand and reduce CA transmission of C. difficile.
Collapse
Affiliation(s)
- Ahmad F Alshannaq
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ashley E Kates
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Julie A Keating
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Linda L Mckinley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jonah W Dixon
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Nasia Safdar
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Sholeh M, Beig M, Kouhsari E, Rohani M, Katouli M, Badmasti F. Global insights into the genome dynamics of Clostridioides difficile associated with antimicrobial resistance, virulence, and genomic adaptations among clonal lineages. Front Cell Infect Microbiol 2025; 14:1493225. [PMID: 39882343 PMCID: PMC11774869 DOI: 10.3389/fcimb.2024.1493225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background Clostridioides difficile is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of C. difficile, focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA. Methods A total of 19,711 C. difficile genomes were retrieved from GenBank. Prokka was used for genome annotation, and multi-locus sequence typing (MLST) identified STs. Pan-genome analysis with Roary identified core and accessory genes. Antibiotic resistance genes, virulence factors, and toxins were detected using the CARD and VFDB databases, and the ABRicate software. Statistical analyses and visualizations were performed in R. Results Among 366 identified STs, ST1 (1,326 isolates), ST2 (1,141), ST11 (893), and ST42 (763) were predominant. Trends of genome streamlining included reductions in chromosomal length, gene count, protein-coding genes, and pseudogenes. Common antibiotic resistance genes-cdeA (99.46%), cplR (99.63%), and nimB (99.67%)-were nearly ubiquitous. Rare resistance genes like blaCTX-M-2, cfxA3, and blaZ appeared in only 0.005% of genomes. Vancomycin susceptibility-reducing vanG cluster genes were detected at low frequencies. Virulence factors showed variability, with highly prevalent genes such as zmp1 (99.62%), groEL (99.60%), and rpoB/rpoB2 (99.60%). Moderately distributed genes included cwp66 (54.61%) and slpA (79.02%). Toxin genes tcdE (91.26%), tcdC (89.67%), and tcdB (89.06%) were widespread, while binary toxin genes cdtA (26.19%) and cdtB (26.26%) were less common. Toxin gene prevalence, particularly tcdA and tcdB, showed a gradual decline over time, with sharper reductions for cdtA and cdtB. Gene presence patterns (GPP-1) for resistance, virulence, and toxin genes were primarily linked to ST2, ST42, and ST8. Conclusion This study highlights C. difficile's adaptability and genetic diversity. The decline in toxin genes reflects fewer toxigenic isolates, but the bacterium's increasing preserved resistance factors and virulence genes enable its rapid evolution. ST2, ST42, and ST8 dominate globally, emphasizing the need for ongoing monitoring.
Collapse
Affiliation(s)
- Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Cerri FM, Basso RM, Pereira WAB, Silveira JMDS, Ferreira EDO, Haisi A, Araújo Júnior JP, Arroyo LG, de Castro YG, Silva ROS, Oliveira-Filho JPD, Borges AS. Fecal shedding of Clostridioides difficile in calves in Sao Paulo state, Brazil. Anaerobe 2024; 88:102861. [PMID: 38729514 DOI: 10.1016/j.anaerobe.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This study aimed to evaluate the fecal shedding of C. difficile in calves on farms in Sao Paulo State, Brazil. MATERIALS AND METHODS Fecal samples (n = 300) were collected from diarrheic (n = 78) and nondiarrheic (n = 222) calves less than 60 days of age from 20 farms. Fecal samples were inoculated into enrichment broth supplemented with taurocholate and cultured under anaerobic conditions. Colonies suspected to be C. difficile were harvested for DNA extraction and then multiplex PCR for the detection of genes encoding toxins A and B and binary toxins. All toxigenic isolates were ribotyped and tested for antimicrobial susceptibility, and five selected strains were subjected to whole-genome sequencing to determine their sequence type. RESULTS AND DISCUSSION C. difficile was isolated from 29.3 % (88/300) of the samples. All toxigenic isolates (17/88, 19.3 %) were classified as ribotypes RT046 (13/17-79.47 %, A+B+ CDT-) and RT126 (4/17 = 20.53 %, A+B+ CDT+). The sequenced strains from RT046 were classified as ST35 (Clade 1), while those from RT126 were classified as ST11 (Clade 5). No associations between the epidemiological factors in any of the groups and C. difficile isolation were observed. Most of the toxigenic isolates (16/17 = 94.41 %) were classified as multidrug-resistant. Calves can be an important source of toxigenic C. difficile strains, including multidrug-resistant isolates from ribotypes commonly observed in humans.
Collapse
Affiliation(s)
- Fabrício Moreira Cerri
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - Roberta Martins Basso
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | | | - Júlia Meireles da Silva Silveira
- Federal University of Rio de Janeiro (UFRJ), Paulo de Góes Institute of Microbiology (IMPG), Department of Medical Microbiology, UFRJ, Rio de Janeiro, Rio Janeiro, Brazil
| | - Eliane de Oliveira Ferreira
- Federal University of Rio de Janeiro (UFRJ), Paulo de Góes Institute of Microbiology (IMPG), Department of Medical Microbiology, UFRJ, Rio de Janeiro, Rio Janeiro, Brazil
| | - Amanda Haisi
- Sao Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Botucatu, Sao Paulo, Brazil
| | | | - Luis G Arroyo
- University of Guelph, Ontario Veterinary College, Department of Clinical Studies, Guelph, Ontario, Canada
| | - Yasmin Gonçalves de Castro
- Federal University of Minas Gerais (UFMG), School of Veterinary Medicine (EV), Belo Horizonte, Minas Gerais, Brazil
| | | | - José Paes de Oliveira-Filho
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil
| | - Alexandre Secorun Borges
- Sao Paulo State University (UNESP), School of Veterinary Medicine and Animal Science (FMVZ), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Rodriguez-Diaz C, Seyboldt C, Rupnik M. Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:329-350. [PMID: 38175482 DOI: 10.1007/978-3-031-42108-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, wastewater treatment plants, biogas plants, air, and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species, or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.
Collapse
Affiliation(s)
- Cristina Rodriguez-Diaz
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
7
|
Blau K, Berger FK, Mellmann A, Gallert C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023; 11:2497. [PMID: 37894155 PMCID: PMC10608975 DOI: 10.3390/microorganisms11102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.
Collapse
Affiliation(s)
- Khald Blau
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| | - Fabian K. Berger
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, 66421 Homburg, Germany;
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
| | - Alexander Mellmann
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
8
|
Spigaglia P, Barbanti F, Faccini S, Vescovi M, Criscuolo EM, Ceruti R, Gaspano C, Rosignoli C. Clostridioides difficile in Pigs and Dairy Cattle in Northern Italy: Prevalence, Characterization and Comparison between Animal and Human Strains. Microorganisms 2023; 11:1738. [PMID: 37512910 PMCID: PMC10383565 DOI: 10.3390/microorganisms11071738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
It has been observed that novel strains of Clostridioides difficile can rapidly emerge and move between animal and human hosts. The aim of this study was to investigate the prevalence of C. difficile in pigs and dairy cattle in northern Italy and to characterize and compare C. difficile animal strains with those from patients from the same geographical area. The C. difficile strains were isolated from animals from farms and slaughterhouses (cross-sectional studies) and from neonatal animals with enteric disorders in routine diagnostic investigations (passive surveillance). Samples positive for C. difficile were found in 87% of the pig farms and in 40% of the cattle farms involved in the cross-sectional studies, with a 20% prevalence among suckling piglets and 6.7% prevalence in neonatal calves, with no significant difference between animals with and without diarrheal symptoms. The prevalence of C. difficile in older animal categories was significantly lower. This result suggests that young age is an important risk factor for C. difficile colonization. In cross-sectional studies at slaughterhouses, in both the heavy pigs and dairy cows examined, only 2% of the intestinal content samples were positive for C. difficile and no contamination was found on the surface of the carcasses. Considering passive surveillance, the prevalence rates of positive samples were 29% in piglets and 1.4% in calves. Overall, 267 strains of animal origin and 97 from humans were collected. In total, 39 ribotypes (RTs) were identified, with RT 078 and RT 018 being predominant among animals and humans, respectively. Several RTs overlapped between animals and patients. In particular, RT 569 was identified as an emergent type in our country. Resistance to erythromycin and moxifloxacin was widely diffused among C. difficile strains, regardless of origin. This study supports C. difficile as a pathogen of one-health importance and highlights the need for a collaborative approach between physicians and veterinarians to control and prevent infections that are able to cross species and geographical barriers.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Fabrizio Barbanti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | - Mariella Vescovi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | | | - Rossella Ceruti
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Clara Gaspano
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| |
Collapse
|
9
|
Marcos P, Glennon C, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. The effect of cold storage and cooking on the viability of Clostridioides difficile spores in consumer foods. Food Microbiol 2023; 112:104215. [PMID: 36906315 DOI: 10.1016/j.fm.2023.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
The increased detection of clinical cases of Clostridioides difficile coupled with the persistence of clostridial spores at various stages along the food chain suggest that this pathogen may be foodborne. This study examined C. difficile (ribotypes 078 and 126) spore viability in chicken breast, beef steak, spinach leaves and cottage cheese during refrigerated (4 °C) and frozen (-20 °C) storage with and without a subsequent sous vide mild cooking (60 °C, 1 h). Spore inactivation at 80 °C in phosphate buffer solution, beef and chicken were also investigated to provide D80°C values and determine if PBS was a suitable model system for real food matrices. There was no decrease in spore concentration after chilled or frozen storage and/or sous vide cooking at 60 °C. Non-log-linear thermal inactivation was observed for both C. difficile ribotypes at 80 °C in phosphate buffer solution (PBS), beef and chicken. The predicted PBS D80°C values of 5.72±[2.90, 8.55] min and 7.50±[6.61, 8.39] min for RT078 and RT126, respectively, were in agreement with the food matrices D80°C values of 5.65 min (95% CI range from 4.29 to 8.89 min) for RT078 and 7.35 min (95% CI range from 6.81 to 7.01 min) for RT126. It was concluded that C. difficile spores survive chilled and frozen storage and mild cooking at 60 °C but may be inactivated at 80 °C. Moreover thermal inactivation in PBS was representative of that observed in real food matrices (beef and chicken).
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Chloe Glennon
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Thomas R Rogers
- Clinical Microbiology, Trinity College Dublin, St James's Hospital Campus, Dublin 8, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin, D04 N2E5, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland.
| |
Collapse
|
10
|
Marcos P, Doyle A, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023; 11:1296. [PMID: 37317270 DOI: 10.3390/microorganisms11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to characterize C. difficile isolates from the farm, abattoir, and retail outlets in Ireland in terms of ribotype and antibiotic resistance (vancomycin, erythromycin, metronidazole, moxifloxacin, clindamycin, and rifampicin) using PCR and E-test methods, respectively. The most common ribotype in all stages of the food chain (including retail foods) was 078 and a variant (RT078/4). Less commonly reported (014/0, 002/1, 049, and 205) and novel (RT530, 547, and 683) ribotypes were also detected, but at lower frequencies. Approximately 72% (26/36 tested) of the isolates tested were resistant to at least one antibiotic, with the majority of these (65%; 17/26) displaying a multi-drug (three to five antibiotics) resistant phenotype. It was concluded that ribotype 078, a hypervirulent strain commonly associated with C. difficile infection (CDI) in Ireland, was the most frequent ribotype along the food chain, resistance to clinically important antibiotics was common in C. difficile food chain isolates, and there was no relationship between ribotype and antibiotic resistance profile.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Aoife Doyle
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
| |
Collapse
|
11
|
Blau K, Gallert C. Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Antibiotics (Basel) 2023; 12:antibiotics12010162. [PMID: 36671363 PMCID: PMC9855088 DOI: 10.3390/antibiotics12010162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is the most common pathogen causing antibiotic-associated intestinal diseases in humans and some animal species, but it can also be present in various environments outside hospitals. Thus, the objective of this study was to investigate the presence and the characteristics of toxin-encoding genes and antimicrobial resistance of C. difficile isolates from different environmental sources. C. difficile was found in 32 out of 81 samples (39.50%) after selective enrichment of spore-forming bacteria and in 45 samples (55.56%) using a TaqMan-based qPCR assay. A total of 169 C. difficile isolates were recovered from those 32 C. difficile-positive environmental samples. The majority of environmental C. difficile isolates were toxigenic, with many (88.75%) positive for tcdA and tcdB. Seventy-four isolates (43.78%) were positive for binary toxins, cdtA and cdtB, and 19 isolates were non-toxigenic. All the environmental C. difficile isolates were susceptible to vancomycin and metronidazole, and most isolates were resistant to ciprofloxacin (66.86%) and clindamycin (46.15%), followed by moxifloxacin (13.02%) and tetracycline (4.73%). Seventy-five isolates (44.38%) showed resistance to at least two of the tested antimicrobials. C. difficile strains are commonly present in various environmental sources contaminated by feces and could be a potential source of community-associated C. difficile infections.
Collapse
|
12
|
Dost I, Abdel-Glil M, Schmoock G, Menge C, Berens C, González-Santamarina B, Wiegand E, Neubauer H, Schwarz S, Seyboldt C. Clostridioides difficile in South American Camelids in Germany: First Insights into Molecular and Genetic Characteristics and Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010086. [PMID: 36671289 PMCID: PMC9854998 DOI: 10.3390/antibiotics12010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Little is known about zoonotic pathogens and their antimicrobial resistance in South American camelids (SAC) in Germany including Clostridioides (C.) difficile. The aim of this study was to investigate prevalence, molecular characteristics and antimicrobial resistance of C. difficile in SAC. Composite SAC faecal samples were collected in 43 husbandries in Central Germany and cultured for C. difficile. Toxinotyping and ribotyping was done by PCR. Whole genome sequencing was performed with Illumina® Miseq™. The genomes were screened for antimicrobial resistance determinants. Genetic relatedness of the isolates was investigated using core genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism analysis. Antimicrobial susceptibility testing was done using the Etest® method. Eight C. difficile isolates were recovered from seven farms. The isolates belonged to different PCR ribotypes. All isolates were toxinogenic. cgMLST revealed a cluster containing isolates recovered from different farms. Seven isolates showed similar resistance gene patterns. Different phenotypic resistance patterns were found. Agreement between phenotypic and genotypic resistance was identified only in some cases. Consequently, SAC may act as a reservoir for C. difficile. Thus, SAC may pose a risk regarding zoonotic transmission of toxinogenic, potentially human-pathogenic and resistant C. difficile isolates.
Collapse
Affiliation(s)
- Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-804-2488
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Belén González-Santamarina
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Elisabeth Wiegand
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| |
Collapse
|
13
|
Mitchell M, Nguyen SV, Macori G, Bolton D, McMullan G, Drudy D, Fanning S. Clostridioides difficile as a Potential Pathogen of Importance to One Health: A Review. Foodborne Pathog Dis 2022; 19:806-816. [PMID: 36516404 DOI: 10.1089/fpd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile (basonym Clostridium) is a bacterial enteropathogen associated with cases of C. difficile infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, C. difficile was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, C. difficile spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products. Furthermore, evidence has emerged of hypervirulent ribotypes (RTs), such as RT078, similar to those cultured in asymptomatic carriers, also being identified in these environments. This finding may reflect on adaptations arising in these bacteria following selection pressures encountered in these niches, and which occurs due to an increase in antimicrobial usage in both clinical and veterinary settings. As C. difficile continues to adapt to new ecological niches, the taxonomy of this genus has also been evolving. To help understand the transmission and virulence potential of these bacteria of importance to veterinary public health, strategies applying multi-omics-based technologies may prove useful. These approaches may extend our current understanding of this recognized nosocomial pathogen, perhaps redefining it as a zoonotic bacterium. In this review, a brief background on the epidemiological presentation of C. difficile will be highlighted, followed by a review of C. difficile in food-producing animals and food products. The current state of C. difficile taxonomy will provide evidence of Clade 5 (ST11/RT078) delineation, as well as background on the genomic elements linked to C. difficile virulence and ongoing speciation. Recent studies applying second- and third-generation sequencing technologies will be highlighted, and which will further strengthen the argument made by many throughout the world regarding this pathogen and its consideration within a One Health dimension.
Collapse
Affiliation(s)
- Molly Mitchell
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,District of Columbia Department of Forensic Sciences, Public Health Laboratory, Washington, District of Columbia, USA
| | - Guerrino Macori
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | | - Geoff McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Clostridioides difficile in Foods with Animal Origins; Prevalence, Toxigenic Genes, Ribotyping Profile, and Antimicrobial Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4868409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clostridioides difficile is an important nosocomial pathogen and is considered as a reason of diarrhea and gastrointestinal infections. As a majority of community-originated C. difficile cases are not related to antibiotic prescription and hospitalization, the food portion as a vector of infection transmission has been raised. An existing survey was aimed evaluating the prevalence, antimicrobial resistance, profile of toxigenic genes, and ribotypes of C. difficile isolated from raw meat and carcass surface swab samples. In total, 485 raw meat and carcass surface swab samples were collected. C. difficile was isolated via culture and a diverse biochemical examination. The assessment of minimum inhibitory concentration (MIC) was addressed to evaluate the antibiotic resistance of isolates. Toxin genes detection and ribotyping were used for isolates characterization. The prevalence of C. difficile contamination in all examined samples was 3.71%. The bacterium was detected in 2.91% of raw meat and 4.48% of carcass surface swab samples. Raw sheep meat (5%) and sheep carcass swab (7.50%) samples harbored the highest C. difficile prevalence. The highest rate of antibiotic resistance was observed toward clindamycin (38.88%), ciprofloxacin (38.88%), metronidazole (44.44%), erythromycin (72.22%), and tetracycline (77.77%). C. difficile bacteria showed the minimum rate of resistance meropenem (16.66%) and chloramphenicol (16.66%). TcdA, tcdB, cdtA, and cdtB toxigenic genes were detected in 22.22%, 44.44%, and 16.66% of isolates, respectively. TcdB + tcdA (27.77%) were the most prevalent combined toxigenic gene profile. Both 027 and 078 ribotypes were identified in C. difficile isolates. The role of raw meat and carcass surface swab samples as toxigenic and antibiotic-resistant C. difficile strains vectors was signified. This study authorizes that food animals, particularly sheep and cattle, are C. difficile carriers at slaughter stages and ribotypes are equal in human cases. Subsequently, contamination of carcasses occurs inside the slaughterhouse.
Collapse
|
15
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
16
|
Zhang X, Yi X, Zhuang H, Deng Z, Ma C. Invited Review: Antimicrobial Use and Antimicrobial Resistance in Pathogens Associated with Diarrhea and Pneumonia in Dairy Calves. Animals (Basel) 2022; 12:ani12060771. [PMID: 35327168 PMCID: PMC8944629 DOI: 10.3390/ani12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial use (AMU) is the major driver of antimicrobial resistance (AMR) among bacteria in dairy herds. There have been numerous studies on AMU and AMR in dairy cows; however, studies on AMU and AMR in dairy calves are limited. A comprehensive overview of the current state of knowledge of AMU and AMR among pathogens in dairy calves is important for the development of scientifically supported and applicable measures to curb antimicrobial use and the increasing risk of AMR. Therefore, we performed a systematic review of research on AMU and AMR in dairy calves. A total of 75 publications were included, of which 19 studies reported AMU data for dairy calves and 68 described AMR profiles of the four most prevalent bacteria that are associated with calf diarrhea and calf pneumonia. Large variation in AMU was found among herds across different regions. There seems to be a positive association between exposure to antimicrobials and occurrence of resistance. Most AMU was accounted for by treatment of diseases, while a small proportion of AMU was prophylactic. AMU was more common in treating calf diarrhea than in treating pneumonia, and the resistance rates in bacteria associated with diarrhea were higher than those in pathogens related to pneumonia. Organic farms used significantly fewer antimicrobials to treat calf disease; however, the antimicrobial resistance rates of bacteria associated with calf diarrhea and pneumonia on both types of farms were comparable. Feeding waste or pasteurized milk was associated with a higher risk of AMR in pathogens. Altogether, this review summarizes AMU and AMR data for dairy calves and suggests areas for future research, providing evidence for the design of antimicrobial use stewardship programs in dairy calf farming.
Collapse
|
17
|
Comparison of Automated Ribotyping, spa Typing, and MLST in 108 Clinical Isolates of Staphylococcus aureus from Orthopedic Infections. Int J Mol Sci 2022; 23:ijms23031660. [PMID: 35163582 PMCID: PMC8835750 DOI: 10.3390/ijms23031660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
108 isolates of Staphylococcus aureus, belonging to six large ribogroups according to the automated Ribo-Printer® system, were studied with two highly used molecular methods for epidemiological studies, namely multi-locus sequence typing (MLST) and spa typing, followed by BURP and eBURST v3 analysis for clustering spa types and sequence (ST) types. The aim was to evaluate whether automated ribotyping could be considered a useful screening tool for identifying S. aureus genetic lineages with respect to spa typing and MLST. Clarifying the relationship of riboprinting with these typing methods and establishing whether ribogroups fit single clonal complexes were two main objectives. Further information on the genetic profile of the isolates was obtained from agr typing and the search for the mecA, tst genes, and the IS256 insertion sequence. Automated ribotyping has been shown to predict spa clonal complexes and MLST clonal complexes. The high cost and lower discriminatory power of automated ribotyping compared to spa and MSLT typing could be an obstacle to fine genotyping analyzes, especially when high discriminatory power is required. On the other hand, numerous advantages such as automation, ease and speed of execution, stability, typeability and reproducibility make ribotyping a reliable method to be juxtaposed to gold standard methods.
Collapse
|
18
|
Antibiotic consumption is a major driver of antibiotic resistance in calves raised on Italian cow-calf beef farms. Res Vet Sci 2022; 145:71-81. [DOI: 10.1016/j.rvsc.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
|
19
|
Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. WATER 2021. [DOI: 10.3390/w13243551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With increasing concerns about public health and the development of molecular techniques, new detection tools and the combination of existing approaches have increased the abilities of pathogenic bacteria monitoring by exploring new biomarkers, increasing the sensitivity and accuracy of detection, quantification, and analyzing various genes such as functional genes and antimicrobial resistance genes (ARG). Molecular methods are gradually emerging as the most popular detection approach for pathogens, in addition to the conventional culture-based plate enumeration methods. The analysis of pathogens in wastewater and the back-estimation of infections in the community, also known as wastewater-based epidemiology (WBE), is an emerging methodology and has a great potential to supplement current surveillance systems for the monitoring of infectious diseases and the early warning of outbreaks. However, as a complex matrix, wastewater largely challenges the analytical performance of molecular methods. This review synthesized the literature of typical pathogenic bacteria in wastewater, types of biomarkers, molecular methods for bacterial analysis, and their recent advances in wastewater analysis. The advantages and limitation of these molecular methods were evaluated, and their prospects in WBE were discussed to provide insight for future development.
Collapse
|
20
|
Prevalence, Molecular Characterization and Antimicrobial Susceptibility of Clostridioides difficile Isolated from Pig Carcasses and Pork Products in Central Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111368. [PMID: 34769888 PMCID: PMC8583557 DOI: 10.3390/ijerph182111368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
In the last decade, the incidence and severity of Clostridioides difficile infections (CDIs) in humans have been increasing and community-associated infections have been described. For these reasons, the interest in C. difficile in food and in food animals has increased, suggesting other possible sources of C. difficile acquisition. This study evaluated the presence of C. difficile on pig carcasses at the slaughterhouse and in pork products in Central Italy. The contamination rate on pig carcasses was 4/179 (2.3%). Regarding food samples, a total of 216 pork products were tested (74 raw meat preparations and 142 ready-to-eat food samples made by cured raw meat). The real-time PCR screening was positive for 1/74 raw meat preparation (1.35%) and for 1/142 ready-to-eat food samples (0.7%) C. difficile was isolated only from the raw meat preparation (pork sausage). All the isolated strains were toxigenic and susceptible to all the tested antibiotics. Strains isolated from carcass samples displayed A+B+CDTa+CDTb+ profile, were toxinotype IV and belonged to the same ribotype arbitrary named TV93, while the one isolated from food samples displayed A+B+CDTa-CDTb- profile and it was not possible to determine ribotype and toxinotype, because it was lost after freeze storage. It was concluded that the prevalence of C. difficile in the pork supply chain is very low.
Collapse
|
21
|
Slozhenkina M, Gorlov I, Miroshnik A, Nikolaev D. Influence of the innovative prebiotic complex on physiological state of pigs and quality indicators of pork. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213204004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents an analysis of the use of antibiotic therapy in pig breeding and offered an alternative to them in the form of prebiotic supplements. Studies were conducted on the effect of probiotic drugs on the body of large white pigs in the farm-breeding plant Named after Lenin of Surovikinsky District of Volgograd Region and lasted until 180 days of age. For the experiment, 2 groups of Large White piglets of 2 months of age were formed. Each experimental group consisted of 15 pigs. Animals of the control group received standart farm animal diet (SD), analogs of the first experimental group SD + mixture of dietary supplements “LactuVet-1” and “Chlorelact” at a dosage of 0.2 mg / kg of live weight each. Deep studies were conducted on the effect of probiotic supplements to live weight gain, natural resistance, immunoglobulin reactivity, and slaughter indicators of piglets. Superiority of pigs from the experimental group in almost all the studied indicators over the peers of the control group was established.
Collapse
|