1
|
Wu D, Lin Q, Hou S, Cui X, Shou N, Yuan X, Xu W, Fu K, Wang Q, Shi Z. Gut Microbiota and Its Metabolite Taurine- β-Muricholic Acid Contribute to Antimony- and/or Copper-Induced Liver Inflammation. Int J Mol Sci 2025; 26:3332. [PMID: 40244173 PMCID: PMC11989503 DOI: 10.3390/ijms26073332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Antimony and copper can contaminate vegetables and enter the human body through the digestive tract, inducing severe and extensive biotoxicity. However, the role of bile acids (BAs) in the pathogenesis of liver inflammation by antimony or copper has not been elucidated. Our results indicated that antimony and/or copper induced liver inflammation, causing the disruption of gut microbiota, with the down-regulation of probiotics and up-regulation of harmful bacteria closely correlated to liver inflammation. Targeted metabolomics of BAs showed that antimony and/or copper significantly up-regulated the levels of taurine-β-muricholic acid (T-β-MCA) in serum and liver, which was due to the reduction of Lactobacillus spp. A farnesoid X receptor (FXR) antagonist, T-β-MCA inhibited the FXR-SHP pathway in liver and FXR-FGF15 pathway in ileum, thereby promoting the transcription of cholesterol 7-alpha hydroxylase (CYP7A1) and increasing total bile acid concentrations, ultimately leading to liver inflammation. These findings provide new insights into the underlying mechanisms of antimony- and/or copper-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (D.W.); (Q.L.); (S.H.); (X.C.); (N.S.); (X.Y.); (W.X.); (K.F.); (Q.W.)
| |
Collapse
|
2
|
Ma B, Barathan M, Ng MH, Law JX. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int J Mol Sci 2025; 26:3148. [PMID: 40243936 PMCID: PMC11989138 DOI: 10.3390/ijms26073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) and gut microbiota are crucial factors influencing human health, each playing a significant role in the development and progression of chronic diseases. This review provides a comprehensive analysis of the complex interplay between these two factors, focusing on how an imbalance between reactive oxygen species (ROS) and antioxidants leads to OS, disrupting cellular homeostasis and contributing to a range of conditions, including metabolic disorders, cardiovascular diseases, neurological diseases, and cancer. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, is essential for regulating immune responses, metabolic pathways, and overall health. Dysbiosis, an imbalance in the gut microbiota composition, is closely associated with chronic inflammation, metabolic dysfunction, and various diseases. This review highlights how the gut microbiota influences and is influenced by OS, complicating the pathophysiology of many conditions. Furthermore, emerging evidence has identified extracellular vesicles (EVs) as critical facilitators of cellular crosstalk between the OS and gut microbiota. EVs also play a crucial role in signaling between the gut microbiota and host tissues, modulating immune responses, inflammation, and metabolic processes. The signaling function of EVs holds promise for the development of targeted therapies aimed at restoring microbial balance and mitigating OS. Personalized therapeutic approaches, including probiotics, antioxidants, and fecal microbiota transplantation-based strategies, can be used to address OS-related diseases and improve health outcomes. Nonetheless, further research is needed to study the molecular mechanisms underlying these interactions and the potential of innovative interventions to offer novel strategies for managing OS-related diseases and enhancing overall human health.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (B.M.); (M.B.); (M.H.N.)
| |
Collapse
|
3
|
Wang J, Xu Q, Lu C, Cao J, Zhuang L, Li Y, Li Z, Song Y, Zhou S, Zhong F, Zhang T, Luo X. Probiotics isolated from the fermented grains of Chinese baijiu alleviate alcohol-induced liver injury by regulating alcohol metabolism and the gut microbiota in mice. Food Funct 2025; 16:2545-2563. [PMID: 40034049 DOI: 10.1039/d4fo03094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alcoholic liver disease is one of the diseases with a high mortality rate worldwide, resulting from excessive and chronic alcohol consumption. With the rapid rise of intestinal microbial research, more and more researchers have begun to focus on the role of probiotics in preventing, alleviating or treating diseases. In this study, effects of lactic acid bacteria (LAB), a general type of probiotic, isolated from the fermented grains of Chinese baijiu, on alcohol-induced liver injury and alcohol metabolism were investigated, and the results showed that Lactiplantibacillus pentosus LTJ12, Pediococcus acidilactici LTJ28, Lactiplantibacillus plantarum LTJ30, and Pediococcus acidilactici LTJ32 could prevent drunkenness and sober up, and had a good protective effect on alcoholic liver injury. These LAB, especially Lactiplantibacillus, can reduce the drunken rate and mortality of drinking mice, shorten the sobriety time, decrease the content of ethanol in serum, reduce the activity or content of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG) and malondialdehyde (MDA), increase the activity or content of superoxide dismutase (SOD), glutathione (GSH) and nitric oxide (NO), and also improve the activity of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) of the liver. The LAB intervention basically reversed the changes in the mRNA levels of genes related to ethanol/drug metabolism (CYP2E1, ADH1 and ALDH2), antioxidant markers (SOD2 and CAT), cellular inflammation, apoptosis and proliferation (SIRT1, SMYD3 and BRD4) and lipid metabolism (SREBP1 and FASn). In addition, we have found that the regulatory effect of these probiotics may be related to the SMYD3/BRD4 pathway, which needs further detailed research. Besides, the probiotics increased the abundance of gut microbes, restored the imbalance of the intestinal flora caused by alcohol consumption, and regulated the changes in the intestinal short-chain fatty acid content caused by chronic alcohol consumption. These results suggested that these baijiu-derived probiotics can effectively prevent drunkenness and chronic alcoholic liver injury. It is of great significance to provide scientific basis for subsequent research and development of new anti-alcoholism health products based on probiotics and the intestinal microecological regulation mechanism.
Collapse
Affiliation(s)
- Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chengshun Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jun Cao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Zhuang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yuechan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
He Z, Deng S, Wu Z, Cui Z, Mei H, Wang J, Wang K, Zhang Y. Angelica sinensis polysaccharide could alleviate the gastrointestinal damage in alcoholic fatty liver disease mice: Regulation of alcohol metabolism and enhancement of short-chain fatty acids utilization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119117. [PMID: 39551279 DOI: 10.1016/j.jep.2024.119117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dysfunction of the intestinal barrier was an important trigger for alcoholic liver damage and alcohol had brought about intestinal damage before causing liver damage. The root of Angelica sinensis (Oliv.) Diels, crucial traditional medicinal material, was widely utilized for its blood-invigorating, intestinal-lubricating and gynecological benefits. Angelica sinensis polysaccharide (ASP) was an essential natural active ingredient of Angelica sinensis and exhibited considerable potential for gastrointestinal protection. Nevertheless, the systematic research of ASP on the gastrointestinal tract remained insufficient. AIM OF THIS STUDY To systematically explore the protective effect and underlying mechanisms of ASP against alcohol-induced gastrointestinal injury, including the stomach, ileum and colon. MATERIALS AND METHODS The AFLD mice model was established via the intragastric administration of alcohol twice a day for one week. The protective effect of ASP on the representative segments of the gastrointestinal tract (stomach, ileum and colon) was subsequently studied after confirming its hepatoprotective activity. The impact of ASP on gastrointestinal alcohol metabolism was examined to explain its antioxidant and antiapoptotic activities. Furthermore, the effect of ASP on short-chain fatty acids (SCFA) in the colon and colonic contents was investigated to further enhance the understanding of the underlying mechanisms. RESULTS ASP could reduce oxidative stress and apoptosis in the gastrointestinal tract via regulating CYP2E1-mediated alcohol metabolism. Additionally, ASP could significantly increase the levels of FFAR2, FFAR3 and HCAR2 in colon, thereby promoting the utilization of SCFA. CONCLUSION ASP was proven for the first time to improve gastrointestinal damage caused by alcohol, indicating its enormous potential as a candidate medicine for the treatment of alcohol related gastrointestinal injury.
Collapse
Affiliation(s)
- Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Siyuan Deng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| |
Collapse
|
6
|
Wang C, Liu H, Zhang S, Ren C, Xu J, Chen J, Chen H, Wu W. Spirulina Supplementation Alleviates Intense Exercise-Induced Damage and Modulates Gut Microbiota in Mice. Nutrients 2025; 17:355. [PMID: 39861485 PMCID: PMC11768171 DOI: 10.3390/nu17020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Spirulina, which are filamentous cyanobacteria, have gained significant popularity in the food industry, medicine, and aquaculture. METHODS In this study, our objective was to explore the influence of Spirulina on the gut microbiota and exercise capacity of mice undergoing high-intensity exercise. Twenty-four male BALB/c mice were divided into four groups, with six mice in each group. These groups included the control group (Control, in which the mice received saline gavage and were permitted free movement), the exercise group (Running, in which the mice were gavaged with the same volume of saline and subjected to a structured exercise regimen), and the Spirulina intervention groups (including SpirulinaLow and SpirulinaHigh). In the Spirulina intervention groups, the mice were orally administered with Spirulina at doses of 100 and 300 mg/kg/day for four weeks while simultaneously participating in the exercise protocol. RESULTS The results illustrated that the Running group mice subjected to intense exercise exhibited reduced weight and tension, acute damage to muscle and liver tissues, oxidative stress, and an imbalance in the gut microbiota compared with that of the Control group. However, high-concentration Spirulina supplementation was found to increase the tensile strength of the exercise mice by 1.27 ± 0.19 fold (p < 0.05) and ameliorate muscle and liver damage. In the SpirulinaHigh group, the levels of certain indicators related to muscle oxidative stress, including reactive oxygen species, total superoxide dismutase, and catalase, were decreased by 39 ± 5.32% (p < 0.01) and increased by 1.11 ± 0.17 fold and 1.19 ± 0.22 fold (p < 0.01) compared to the Running group. Additionally, a correlation analysis reveals that the alterations in gut microbiota induced by Spirulina might be associated with the indicators of tension and oxidative stress. CONCLUSIONS Collectively, these findings point to the fact that Spirulina can effectively mitigate the acute damage to muscles and the liver induced by intense exercise in mice by enhancing antioxidant capacity and regulating the gut microbiota, thereby providing novel insights into the mechanism underlying the enhancement of exercise function.
Collapse
Affiliation(s)
- Chunxia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Huijuan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Shuyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chengyi Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Jiaming Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Kim JM, Lee HL, Go MJ, Kim HJ, Sung MJ, Heo HJ. Green Tea Attenuates the Particulate Matter (PM) 2.5-Exposed Gut-Brain Axis Dysfunction through Regulation of Intestinal Microenvironment and Hormonal Changes. J Microbiol Biotechnol 2024; 34:2492-2505. [PMID: 39572022 PMCID: PMC11729334 DOI: 10.4014/jmb.2409.09035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 12/31/2024]
Abstract
Chronic exposure to particulate matter (PM)2.5 causes brain damage through intestinal imbalance. This study was estimated to confirm the regulatory activity of green tea against chronic PM2.5 exposure-induced abnormal gut-brain axis (GBA) in BALB/c mice. The green tea, as an aqueous extract of matcha (EM), ameliorated the colon length, short chain fatty acid contents, antioxidant biomarkers, myeloperoxidase (MPO) activity, and serum inflammatory cytokines. EM regulated the gut microbiota related to tryptophan intake and hormone metabolism. EM showed regulatory effect of intestinal tight junction (TJ) protein, inflammatory response, and apoptotic biomarkers. In addition, EM improved PM2.5-induced tryptophan-related hormonal metabolic dysfunction in intestinal tissue and serum. Through the ameliorating effect on GBA function, the consumption of EM presented the protective effect against inflammatory effect, apoptosis, synaptic damage, and hormonal activity in cerebral tissue, and suppressed abnormal change of brain lipid metabolites. In particular, EM intake showed relatively excellent improvement effects on indicators including Bacteroides, Ruminococcus, Murinobaculaceae, Allopreyotella, cyclooxygenase-2 (COX-2), acetylcholinesterase (AChE), 11,12-dihydroxyeicosatrienoic acid (DHET), and intestinal acetate from the PM group. These findings indicate that the dietary intake of EM might provide a regulatory effect against PM2.5-exposed GBA dysfunction via the intestinal microbiota and hormonal changes.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mi Jeong Sung
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Sun J, Wei N, Yu C, Li C, Li W, Sun X, Zhang Y, Li Y, Xie J. Natural polysaccharides: The potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis. Int Immunopharmacol 2024; 143:113426. [PMID: 39461240 DOI: 10.1016/j.intimp.2024.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Diabetes mellitus, a chronic metabolic disorder, poses a significantly public health challenge. Extensive research highlights that contemporary dietary patterns, characterized by excessive intake of sugar, fat, and protein, are major contributors to the onset and progression of diabetes. The central element to this process is the aberrant activation of the advanced glycation end products (AGEs) - receptor for AGEs (RAGE) - oxidative stress axis, which plays a pivotal role in disrupting normal carbohydrate metabolism. This pathway presents a critical target for developing interventions aimed at mitigating diabetes and its complications. In recent years, natural polysaccharides have emerged as promising agents in the prevention and treatment of diabetes, due to their ability to inhibit AGE formation, regulate RAGE expression, and modulate the AGEs-RAGE-oxidative stress axis. In this paper, we explore the pathogenic mechanism of this axis and review the therapeutic potential of natural polysaccharides in managing diabetes and its complications. Our goal is to provide new insights for the effective management of diabetes and its associated health challenges.
Collapse
Affiliation(s)
- Jie Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxi Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Yi Y, Yan Y, Zhan G, Deng W, Wei Y, Zhang Y, Gao J, Gong Q. Trilobatin, a Novel Naturally Occurring Food Additive, Ameliorates Alcoholic Liver Disease in Mice: Involvement of Microbiota-Gut-Liver Axis and Yap/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23819-23831. [PMID: 39169659 DOI: 10.1021/acs.jafc.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Trilobatin, a novel natural food additive, exerts a protective effect on acute liver injury. However, whether Trilobatin can protect against alcoholic liver disease (ALD) has not been elucidated. This research is intended to ascertain the impact of Trilobatin on ALD in mice and decipher the potential underlying mechanisms. Lieber-DeCarli liquid alcohol diet was used to induce ALD in mice, followed by administration of Trilobatin (10, 20, 40 mg·kg-1·d-1) for 15 days. The results suggested that Trilobatin significantly alleviated ethanol-induced hepatic injury in mice. Furthermore, RNA-Seq analysis revealed that yes-associated protein (YAP) downregulation occurred in the liver after Trilobatin treatment. Mechanistically, Trilobatin directly bound to YAP and hindered its nuclear translocation, which activated the Nrf2 pathway to reduce pro-inflammatory cytokines and oxidative stress. Intriguingly, 16S rDNA analysis results revealed that Trilobatin reshaped the gut microbiota, reducing harmful bacteria and increasing beneficial bacteria. It also enhanced tight junction proteins, defending against damage to the intestinal barrier. These findings not only highlight the microbiota-gut-liver axis and YAP/Nrf2 pathway as crucial potential targets to treat ALD but also reveal that Trilobatin effectively protects against ALD, at least partly, through modulating the microbiota-gut-liver axis and YAP/Nrf2 pathway.
Collapse
Affiliation(s)
- Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - You Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Guiyu Zhan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Weikun Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
10
|
Jayaprakash J, B. Gowda SG, K. Shukla P, Gowda D, Nath LR, Chiba H, Rao R, Hui SP. Sex-Specific Effect of Ethanol on Colon Content Lipidome in a Mice Model Using Nontargeted LC/MS. ACS OMEGA 2024; 9:16044-16054. [PMID: 38617688 PMCID: PMC11007720 DOI: 10.1021/acsomega.3c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Consumption of alcohol has widespread effects on the human body. The organs that are most significantly impacted are the liver and digestive system. When alcohol is consumed, it is absorbed in the intestines and processed by the liver. However, excessive alcohol use may affect gut epithelial integrity, microbiome composition, and lipid metabolism. Despite past studies investigating the effect of ethanol on hepatic lipid metabolism, the focus on colonic lipid metabolism has not been well explored. In this study, we investigated the sex-specific effect of ethanol on the colonic content lipidome in a mouse model using nontargeted liquid chromatography-mass spectrometry. Comprehensive lipidome analysis of colonic flush samples was performed using ethanol-fed (EF) and pair-fed (PF) mice of each sex. Partial least-squares discriminant analysis revealed that ethanol altered colonic lipid composition largely in male mice compared with female mice. A significant increase in free fatty acids, ceramides, and hexosylceramides and decreased phosphatidylglycerols (PG) was observed in the EF group compared to the PF group in male mice. Phosphatidylethanolamine (PE) levels were increased significantly in the EF group of both sexes compared to the PF group. The volcanic plot shows that PG (O-15:1/15:0) and PE (O-18:2/15:0) are common markers that are increased in both sexes of the EF group. In addition, decreased fatty acid esters of hydroxy fatty acids (FAHFA) were observed specifically in the EF group of female mice. Overall, a significant variation in the mice colonic content lipidome between the EF and PF groups was observed. Target pathways, such as sphingolipid metabolism in males, FAHFA in females, and PE metabolism in both sexes, were suggested. This study provides new insight into the sex-dependent lipid change associated with alcohol-induced gut-microbiota dysfunction and its potential health impacts.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Pradeep K. Shukla
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, 19 S Manassas, Memphis, Tennessee 38163, United States
| | - Divyavani Gowda
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Lipsa Rani Nath
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Hitoshi Chiba
- Department
of Nutrition, Sapporo University of Health
Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Radhakrishna Rao
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, 19 S Manassas, Memphis, Tennessee 38163, United States
| | - Shu-Ping Hui
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
11
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
12
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
14
|
Liu Z, Li Z, Zheng Z, Li N, Mu S, Ma Y, Zhou Z, Yan J, Lu C, Wang W, Zhang H. Effects of L-theanine on intestinal morphology, barrier function, and MAPK signaling pathways in diquat-challenged piglets. Anim Biotechnol 2023; 34:1112-1119. [PMID: 34904512 DOI: 10.1080/10495398.2021.2013857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the protective effects of L-theanine supplementation on the diquat-challenged weaned piglets. A total of 160 weaned piglets were randomly divided into 4 groups using a 2 × 2 two-factor design, there were 4 replicates per group and 10 pigs per replicate. Piglets were fed diets (with 1000 mg/kg L-theanine addition or not), then challenged with diquat or saline on day 7. 21 days after challenge, two pigs from each replicate were selected for sample collection. Results showed that supplement with 1000 mg/kg L-theanine down-regulated the diarrhea rate, serum D-lactate level, tumor necrosis factor-α, and phosphorylation of extracellular regulated protein kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling in pigs without diquat challenge (p < 0.05). While for diquat-challenged piglets, L-theanine addition increased average daily gain, jejunum villus height, and interferon-γ level (p < 0.05). Meanwhile, L-theanine addition decreased the diarrhea rates and mortality, serum D-lactate level, and phosphorylation of ERK and JNK in diquat-challenged pigs (p < 0.05). These results demonstrate that L-theanine pretreatment could alleviate diquat-induced oxidative stress and improve intestinal barrier function in diquat-challenged weaned piglets, which can be attributed to suppression of MAPK phosphorylation signaling pathways.
Collapse
Affiliation(s)
- Zhengqun Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Center, Tianjin, China
| | - Zi Zheng
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Ning Li
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Shuqin Mu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Yong Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Zhijiang Zhou
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jun Yan
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Chemical Engineering, Tianjin University, Tianjin, China
| | - Chunlian Lu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenjie Wang
- Institute of Animal Science and Veterinary, Tianjin Academy of Agriculture Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Kim DH, Kim JS, Kwon JH, Kwun IS, Baek MC, Kwon GS, Rungratanawanich W, Song BJ, Kim DK, Kwon HJ, Cho YE. Ellagic Acid Prevented Dextran-Sodium-Sulfate-Induced Colitis, Liver, and Brain Injury through Gut Microbiome Changes. Antioxidants (Basel) 2023; 12:1886. [PMID: 37891965 PMCID: PMC10604018 DOI: 10.3390/antiox12101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) affects millions of people worldwide and is considered a significant risk factor for colorectal cancer. Recent in vivo and in vitro studies reported that ellagic acid (EA) exhibits important antioxidant and anti-inflammatory properties. In this study, we investigated the preventive effects of EA against dextran sulfate sodium (DSS)-induced acute colitis, liver, and brain injury in mice through the gut-liver-brain axis. Acute colitis, liver, and brain injury were induced by treatment with 5% (w/v) DSS in the drinking water for 7 days. Freshly prepared EA (60 mg/kg/day) was orally administered, while control (CON) group mice were treated similarly by daily oral administrations with a vehicle (water). All the mice were euthanized 24 h after the final treatment with EA. The blood, liver, colon, and brain samples were collected for further histological and biochemical analyses. Co-treatment with a physiologically relevant dose (60 mg/kg/day) of EA for 7 days significantly reduced the DSS-induced gut barrier dysfunction; endotoxemia; and inflammatory gut, liver, and brain injury in mice by modulating gut microbiota composition and inhibiting the elevated oxidative and nitrative stress marker proteins. Our results further demonstrated that the preventive effect of EA on the DSS-induced IBD mouse model was mediated by blocking the NF-κB and mitogen-activated protein kinase (MAPK) pathway. Therefore, EA co-treatment significantly attenuated the pro-inflammatory and oxidative stress markers by suppressing the activation of NF-κB/MAPK pathways in gut, liver, and brain injury. These results suggest that EA, effective in attenuating IBD in a mouse model, deserves further consideration as a potential therapeutic for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Dong-ha Kim
- Department of Molecular Medicine, School of Medicine, Cell & Matrix Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (D.-h.K.); (M.-C.B.)
| | - Ji-Su Kim
- Department of Food and Nutrition, Andong National University, Andong 1375, Republic of Korea; (J.-S.K.); (J.-H.K.); (I.-S.K.)
| | - Jae-Hee Kwon
- Department of Food and Nutrition, Andong National University, Andong 1375, Republic of Korea; (J.-S.K.); (J.-H.K.); (I.-S.K.)
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong 1375, Republic of Korea; (J.-S.K.); (J.-H.K.); (I.-S.K.)
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Cell & Matrix Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; (D.-h.K.); (M.-C.B.)
| | - Gi-Seok Kwon
- Department of Horticulture & Medicinal Plant, Andong National University, Andong 1375, Republic of Korea;
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 1375, Republic of Korea; (J.-S.K.); (J.-H.K.); (I.-S.K.)
| |
Collapse
|
16
|
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH, Lian WS. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol Nutr Food Res 2023; 67:e2200348. [PMID: 37118999 DOI: 10.1002/mnfr.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/19/2023] [Indexed: 04/30/2023]
Abstract
SCOPE miR-29a expression patterns influence numerous physiological phenomena. Of note, upregulation of miR-29a ameliorates high-fat diet (HFD)-induced liver dysfunctions in mice. However, the miR-29a effect on gut microbiome composition and HFD-induced gut microbiota changes during metabolic disturbances remains unclear. The study provides compelling evidence for the protective role of miR-29a in gut barrier dysfunction and steatohepatitis. METHODS AND RESULTS miR-29a overexpressed mice (miR-29aTg) are bred to characterize intestinal, serum biochemical, and fecal microbiota profiling features compared to wild-type mice (WT). Mice are fed an HFD for 8 months to induce steatohepatitis, and intestinal dysfunction is determined via histopathological analysis. miR-29aTg has better lipid metabolism capability that decreases total cholesterol and triglyceride levels in serum than WT of the same age. The study further demonstrates that miR-29aTg contributes to intestinal integrity by maintaining periodic acid Schiff positive cell numbers and diversity of fecal microorganisms. HFD-induced bacterial community disturbance and steatohepatitis result in more severe WT than miR-29aTg. Gut microorganism profiling reveals Lactobacillus, Ruminiclostridium_9, and Lachnoclostridium enrichment in miR-29aTg and significantly decreases interleukin-6 expression in the liver and intestinal tract. CONCLUSION This study provides new evidence that sheds light on the host genetic background of miR-29a, which protects against steatohepatitis and other intestinal disorders.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ying-Hsien Huang
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ming-Chao Tsai
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chien-Hung Chen
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
17
|
Wang Z, Luo C, Zhou EW, Sandhu AF, Yuan X, Williams GE, Cheng J, Sinha B, Akbar M, Bhattacharya P, Zhou S, Song BJ, Wang X. Molecular Toxicology and Pathophysiology of Comorbid Alcohol Use Disorder and Post-Traumatic Stress Disorder Associated with Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108805. [PMID: 37240148 DOI: 10.3390/ijms24108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) associated with traumatic brain injury (TBI) is a serious medical, economic, and social issue. However, the molecular toxicology and pathophysiological mechanisms of comorbid AUD and PTSD are not well understood and the identification of the comorbidity state markers is significantly challenging. This review summarizes the main characteristics of comorbidity between AUD and PTSD (AUD/PTSD) and highlights the significance of a comprehensive understanding of the molecular toxicology and pathophysiological mechanisms of AUD/PTSD, particularly following TBI, with a focus on the role of metabolomics, inflammation, neuroendocrine, signal transduction pathways, and genetic regulation. Instead of a separate disease state, a comprehensive examination of comorbid AUD and PTSD is emphasized by considering additive and synergistic interactions between the two diseases. Finally, we propose several hypotheses of molecular mechanisms for AUD/PTSD and discuss potential future research directions that may provide new insights and translational application opportunities.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Edward W Zhou
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron F Sandhu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Yuan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George E Williams
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jialu Cheng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Xie L, Rungratanawanich W, Yang Q, Tong G, Fu E, Lu S, Liu Y, Akbar M, Song BJ, Wang X. Therapeutic strategies of small molecules in the microbiota-gut-brain axis for alcohol use disorder. Drug Discov Today 2023; 28:103552. [PMID: 36907319 PMCID: PMC10298843 DOI: 10.1016/j.drudis.2023.103552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The microbiota-gut-brain axis (MGBA) is important in maintaining the structure and function of the central nervous system (CNS) and is regulated by the CNS environment and signals from the peripheral tissues. However, the mechanism and function of the MGBA in alcohol use disorder (AUD) are still not completely understood. In this review, we investigate the underlying mechanisms involved in the onset of AUD and/or associated neuronal deficits and create a foundation for better treatment (and prevention) strategies. We summarize recent reports focusing on the alteration of the MGBA in AUD. Importantly, we highlight the properties of small-molecule short-chain fatty acids (SCFAs), neurotransmitters, hormones, and peptides in the MGBA and discusses their usage as therapeutic agents against AUD.
Collapse
Affiliation(s)
- Lushuang Xie
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Guoqiang Tong
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Eric Fu
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shiguang Lu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA.
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
20
|
Gervasi T, Mandalari G. The Interplay Between Gut Microbiota and Central Nervous System. Curr Pharm Des 2023; 29:3274-3281. [PMID: 38062662 DOI: 10.2174/0113816128264312231101110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/14/2023] [Indexed: 01/26/2024]
Abstract
This review highlights the relationships between gastrointestinal microorganisms and the brain. The gut microbiota communicates with the central nervous system through nervous, endocrine, and immune signalling mechanisms. Our brain can modulate the gut microbiota structure and function through the autonomic nervous system, and possibly through neurotransmitters which directly act on bacterial gene expression. In this context, oxidative stress is one the main factors involved in the dysregulation of the gut-brain axis and consequently in neurodegenerative disorders. Several factors influence the susceptibility to oxidative stress by altering the antioxidant status or free oxygen radical generation. Amongst these, of interest is alcohol, a commonly used substance which can negatively influence the central nervous system and gut microbiota, with a key role in the development of neurodegenerative disorder. The role of "psychobiotics" as a novel contrast strategy for preventing and treating disorders caused due to alcohol use and abuse has been investigated.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina 98166, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina 98166, Italy
| |
Collapse
|
21
|
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness, endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol 2022; 59:102577. [PMID: 36528936 PMCID: PMC9792909 DOI: 10.1016/j.redox.2022.102577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme responsible for metabolizing toxic acetaldehyde to acetate and acts as a protective or defensive protein against various disease states associated with alcohol use disorder (AUD), including alcohol-related liver disease (ARLD). We hypothesized that Aldh2-knockout (KO) mice are more susceptible to binge alcohol-mediated liver injury than wild-type (WT) mice through increased oxidative stress, gut leakiness and endotoxemia. Therefore, this study aimed to investigate the protective role of ALDH2 in binge alcohol-induced gut permeability, endotoxemia, and acute inflammatory liver injury by exposing Aldh2-KO or WT mice to a single oral dose of binge alcohol 3.5, 4.0, or 5.0 g/kg. Our findings showed for the first time that ALDH2 deficiency in Aldh2-KO mice increases their sensitivity to binge alcohol-induced oxidative and nitrative stress, enterocyte apoptosis, and nitration of gut tight junction (TJ) and adherent junction (AJ) proteins, leading to their degradation. These resulted in gut leakiness and endotoxemia in Aldh2-KO mice after exposure to a single dose of ethanol even at 3.5 g/kg, while no changes were observed in the corresponding WT mice. The elevated serum endotoxin (lipopolysaccharide, LPS) and bacterial translocation contributed to systemic inflammation, hepatocyte apoptosis, and subsequently acute liver injury through the gut-liver axis. Treatment with Daidzin, an ALDH2 inhibitor, exacerbated ethanol-induced cell permeability and reduced TJ/AJ proteins in T84 human colon cells. These changes were reversed by Alda-1, an ALDH2 activator. Furthermore, CRISPR/Cas9-mediated knockout of ALDH2 in T84 cells increased alcohol-mediated cell damage and paracellular permeability. All these findings demonstrate the critical role of ALDH2 in alcohol-induced epithelial barrier dysfunction and suggest that ALDH2 deficiency or gene mutation in humans is a risk factor for alcohol-mediated gut and liver injury, and that ALDH2 could be an important therapeutic target against alcohol-associated tissue or organ damage.
Collapse
|
22
|
Kanlioz M, Ekici U, Ferhatoğlu MF. Total Gastrointestinal Flora Transplantation in the Treatment of Leaky Gut Syndrome and Flora Loss. Cureus 2022; 14:e31071. [DOI: 10.7759/cureus.31071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/05/2022] Open
|
23
|
Guo R, Zhu J, Chen L, Li J, Ding Q, Han Q, Zheng W, Li S. Dietary camellia seed oil attenuates liver injury in mice chronically exposed to alcohol. Front Nutr 2022; 9:1026740. [PMID: 36313120 PMCID: PMC9598421 DOI: 10.3389/fnut.2022.1026740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary fat composition is closely associated with the pathological development of alcoholic liver disease (ALD). Fat enriched with saturated fatty acids protects whereas with polyunsaturated fatty acids aggravates alcohol-induced liver injury. However, limited study has addressed how monounsaturated fatty acids (MUFAs) determines the pathological process of ALD. Our study was conducted to evaluate the effect of MUFAs-enriched-camellia seed oil (CSO) on alcohol-induced liver injury. The ALD model was established by feeding C57BL/6 mice with Lieber-DeCarli diet, and with either CSO or polyunsaturated fatty acids (PUFAs)-enriched-corn oil (CO) as fat source. After 4-week-intervention, CSO-feed rescued alcohol-induced liver injury compared to CO-feed, evidenced by measurements of plasma ALT activity, H&E stain, and hepatic cleaved-Caspase-3 expression. Besides, CSO-feed alleviated alcohol-induced oxidative stress, associated with NRF2 and Hif-1α expressions improvement. The reduction of F4/80 immunostaining and the decreased expressions of hepatic TNF-α and IL-6 suggested CSO-feed improved alcohol-induced inflammation. The mechanistic analysis showed that the inhibition of ASK1 and MAPKs might contribute to CSO-protected liver injury. Notably, we observed CSO-feed relieved the gut microbiota disturbance with the decreased Firmicutes and Turicibater, and the increased Bacteroidota, Alloprevotella, and Bacteroides, and reduced circulatory endotoxin level and lipolysis of adipose tissue, which are the known pathogenic factors in alcohol-induced liver injury. Unexpectedly, CSO induced more hepatic steatosis than CO-feed. In conclusion, CSO attenuated chronic alcohol consumption-induced liver injury but enhanced hepatic steatosis. CSO could be a potential dietary choice for alcoholic individuals with liver injury.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijun Zheng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Songtao Li
| |
Collapse
|
24
|
Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196642. [PMID: 36235178 PMCID: PMC9573515 DOI: 10.3390/molecules27196642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: S.K: (S.K.); (F.B.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: S.K: (S.K.); (F.B.)
| |
Collapse
|
25
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
26
|
Zhao H, Kong L, Shao M, Liu J, Sun C, Li C, Wang Y, Chai X, Wang Y, Zhang Y, Li X. Protective effect of flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty liver disease through regulating intestinal flora and inhibiting TAK1/p38MAPK/p65NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115225. [PMID: 35341932 DOI: 10.1016/j.jep.2022.115225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The therapeutic properties of Hippophae rhamnoides L. were already known in ancient Greece as well as in Tibetan and Mongolian medicine. Modern studies have indicated that Hippophae rhamnoides L. fermentation liquid protected against alcoholic fatty liver disease (AFLD). However, the underlying mechanism of Hippophae rhamnoides L. flavonoids extract (HLF) treating AFLD remains elusive. AIM OF THE STUDY This study aimed to investigate the hepatoprotective effect of HLF in mice with AFLD and the interaction between AFLD and gut microbiota. MATERIALS AND METHODS Chemical constituents of HLF were analyzed by Liquid Chromatography-Ion Trap-ESI-Mass Spectrometry. The Hepatoprotective effect of HLF was evaluated in mice with AFLD induced by alcohol (six groups, n = 10) daily at doses of 0.1, 0.2, and 0.4 g/kg for 30 consecutive days. At the end of experiment, mice were sacrificed and the liver, serum and feces were harvested for analysis. The liver histological changes were observed by H&E staining and oil red O staining. Moreover, the alterations of fecal microflora were detected by 16S rRNA gene sequencing. The inflammatory related genes were determined by qRT-PCR and western blotting respectively. RESULTS The results showed that the oral administration of HLF remarkably alleviated hepatic lipid accumulation by decreasing the levels of ALT, AST, TG and TC. The levels of TNF-α, TGF-β, and IL-6 were also reduced after treatment with HLF. Meanwhile, the protein and mRNA expression of NF-kB p65, MAPK p38 and TAK-1 in the liver of mice with AFLD were all reduced by HLF compared with model group. Furthermore, the 16S rRNA gene sequencing analysis demonstrated that HLF treatment can help restore the imbalance of intestinal microbial ecosystem and reverse the changes in Fimicutes/Bacterodietes, Clostridiales, Lachnospiraceae, S24-7, and Prevotella in mice with AFLD. CONCLUSION HLF can effectively ameliorate liver injury in mice with AFLD, and regulate the composition of gut microbiota. Its regulatory mechanism may be related to TAK1/p38MAPK/p65NF-κB pathway. This study may provide novel insights into the mechanism of HLF on AFLD and a basis for promising clinical usage.
Collapse
Affiliation(s)
- Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Lingzhou Kong
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Mengting Shao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Jiayue Liu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changhai Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Changxu Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yanyan Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xue Chai
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China
| | - Xiaoliang Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
27
|
Lutein Can Alleviate Oxidative Stress, Inflammation, and Apoptosis Induced by Excessive Alcohol to Ameliorate Reproductive Damage in Male Rats. Nutrients 2022; 14:nu14122385. [PMID: 35745115 PMCID: PMC9228221 DOI: 10.3390/nu14122385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic excessive alcohol intake may lead to male reproductive damage. Lutein is a carotenoid compound with antioxidant activity. The purpose of this study was to observe the effect of lutein supplementation on male reproductive damage caused by excessive alcohol intake. In this study, an animal model of excessive drinking (12 mL/(kg.bw.d)) for 12 weeks was established and supplemented with different doses of lutein (12, 24, 48 mg/(kg.bw.d)). The results showed that the body weight, sperm quality, sex hormones (FSH, testosterone), and antioxidant markers (GSH-Px) decreased significantly, while MDA and inflammatory factors (IL-6, TNF-α) increased significantly in the alcohol model group when compared to the normal control group. After 12 weeks of high-dose lutein supplementation with 48mg/(kg.bw.d), the spermatogenic ability, testosterone level, and the activity of marker enzymes reflecting testicular injury were improved. In addition, high-dose lutein supplementation downregulated the NF-κB and the pro-apoptosis biomarkers (Bax, Cytc and caspase-3), whereas it upregulated the expression of Nrf2/HO-1 and the anti-apoptotic molecule Bcl-2. These findings were fully supported by analyzing the testicular histopathology and by measuring germ cell apoptosis. In conclusion, lutein protects against reproductive injury induced by excessive alcohol through its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
28
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
29
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
30
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
31
|
Preventive Potential of the Aqueous Extract of the Mixture of Bidens pilosa (Asteraceae) and Cymbopogon citratus (Poaceae) Aerial Parts on Hypertension Induced by a Chronic Salt and Alcohol Consumption on the Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1980622. [PMID: 35310038 PMCID: PMC8926541 DOI: 10.1155/2022/1980622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
High blood pressure (HBP) is currently one of the main risk factors for cardiovascular and kidney diseases. Nowadays, populations make extensive use of alternative medicine for their health problems. Bidens pilosa (B. pilosa) and Cymbopogon citratus (C. citratus) are used individually in the traditional treatment of cardiovascular disorders. This study assessed the effects of the mixture of these two plants aqueous extract on HBP in rats. Male rats (42) were divided into 7 groups of 6 rats each. Normotensive rats received only distilled water and formed group 1. The other animals received ethanol + salt preceded by distilled water (10 mL/kg; group 2) and spironolactone (10 mg/kg; group 3); the aqueous extracts of the mixture (100 and 200 mg/kg; groups 4 and 5) isolated plants B. pilosa (200 mg/kg; group 6) and C. citratus (200 mg/kg; group 7). Animals were treated for 7 weeks during which water consumption and urine volume were assessed; then, hemodynamic parameters were recorded, and rats were sacrificed. Serum and some organs (liver, kidney, heart, and aorta) were used to evaluate biochemical parameters. Ingestion of ethanol + salt leads to a significant increase in urinary volume and water intake that were significantly prevented by the extracts from the mixture and isolated plants. Ethanol + salt solution significantly increased the blood pressure, heart rate, triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-chol), very-low-density lipoprotein cholesterol (VLDL-chol), atherogenic indices, liver and kidney function parameters, and malondialdehyde (MDA) levels. However, the levels of high-density lipoprotein cholesterol (HDL-chol), albumin, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) activity were significantly reduced. The extracts of the mixture and isolated plants significantly prevented all these variations with a more pronounced action for the lowest dose of the mixture on the lipid profile, oxidative stress, and kidney function. These observations confirm the beneficial effects of B. pilosa and C. citratus to manage hypertension.
Collapse
|
32
|
Lin B, Zhao F, Liu Y, Wu X, Feng J, Jin X, Yan W, Guo X, Shi S, Li Z, Liu L, Chen H, Wang H, Wang S, Lu Y, Wei Y. Randomized Clinical Trial: Probiotics Alleviated Oral-Gut Microbiota Dysbiosis and Thyroid Hormone Withdrawal-Related Complications in Thyroid Cancer Patients Before Radioiodine Therapy Following Thyroidectomy. Front Endocrinol (Lausanne) 2022; 13:834674. [PMID: 35350100 PMCID: PMC8958007 DOI: 10.3389/fendo.2022.834674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thyroid hormone withdrawal (THW) in postoperative thyroid cancer patients who need always accompanied by complications (e.g., dyslipidemia and constipation). At present, there are no effective and safe means to alleviate these complications. PURPOSE We aimed to assess the oral-gut microbiota profiles in THW patients then investigate whether probiotics could alleviating alleviate THW related complications and investigate whether these therapeutic effects were associated with the oral-gut microbiota state. METHODS Fifty eligible thyroid carcinoma patients undergoing thyroidectomy were randomly assigned to receive probiotics or placebo during THW. Complications were assessed through validated questionnaires and plasma lipid indicators. The complex probiotics preparation was composed of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus. RESULTS Probiotics alleviated lack of energy, constipation, weight gain, and dry mouth and decreased the levels of fecal/serum LPS and plasma lipid indicators (total cholesterol, triglycerides, low-density lipoprotein, and apolipoprotein A) (P < 0.05). Gut and oral microbial diversity were significantly decreased after THW, while an increased microbial dysbiosis index (MDI) was observed. Probiotics distinctly restored the gut and oral microbial diversity. Increased Holdemanella, Enterococcus, and Coprococcus_2, while decreased Fusobacterium, Eubacterium_ruminantium_group, Ruminococcus_1, and Parasutterella in the gut were found after probiotics intervention. Lack of energy, constipation, weight gain, and dyslipidemia were seen to be related to the above microbiota. In addition, probiotics reduced oral Prevotella_9, Haemophilus, Fusobacterium, and Lautropia, which were positively correlated with the occurrence of dry mouth. CONCLUSION Probiotics reduce the incidence of complications in patients after THW, which may be related to modifying the oral and gut microbiota. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/], identifier America Clinical Trial Registry NCT03574051.
Collapse
Affiliation(s)
- Baiqiang Lin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fuya Zhao
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China
| | - Xin Wu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shang Shi
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyong Li
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lujia Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongye Chen
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Wang
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Lu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China
- *Correspondence: Yunwei Wei,
| |
Collapse
|
33
|
Yang HT, Liu JK, Xiu WJ, Tian TT, Yang Y, Hou XG, Xie X. Gut Microbiome-Based Diagnostic Model to Predict Diabetes Mellitus. Bioengineered 2021; 12:12521-12534. [PMID: 34927535 PMCID: PMC8810174 DOI: 10.1080/21655979.2021.2009752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine the diversity of intestinal microflora and its correlation with clinical parameters in diabetic patients and healthy subjects and to assess the importance of intestinal flora in patients with diabetes. Forty-four patients with diabetes were included. The control group included 47 healthy people. Their data, biochemical indicators and results from 16S rRNA sequencing of their fecal samples were collected. Compared with the healthy population, the intestinal flora of the diabetic patients was obviously abnormal. Within the diabetes group, the abundances of the genera Faecalibacterium, Prevotella, and Roseburia were higher, and the abundances of the genera Shigella and Bifidobacterium were lower. In the correlation analysis between bacteria and clinical indicators, it was found that the genera Veillonella and unclassified_Enterobacteriaceae were negatively related to blood glucose, while the genera Phascolarctobacterium, unidentified_Bacteroidales and Prevotella were significantly positively correlated with fasting blood glucose. Twelve microbial markers were detected in the random forest model, and the area under the curve (AUC) was 84.1%. This index was greater than the diagnostic effect of fasting blood glucose. This was also supported by the joint diagnostic model of microorganisms and clinical indicators. In addition, the intestinal flora significantly improved the diagnosis of diabetes. In conclusion, it can be concluded from these results that intestinal flora is essential for the occurrence and development of diabetes, which seems to be as important as blood glucose itself. Abbreviations: PCoA: principal coordinate analysis; NMDS: non econometric multidimensional scaling analysis; LEfSe: linear discriminant analysis effect size; LDA: linear discriminant analysis; POD: probability of disease; BMI: body mass index; DCA: decision curve analysis
Collapse
Affiliation(s)
- Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing-Kun Liu
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wen-Juan Xiu
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Ting-Ting Tian
- College of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
34
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
35
|
Alkaline Reduced Water Attenuates Oxidative Stress-Induced Mitochondrial Dysfunction and Innate Immune Response Triggered by Intestinal Epithelial Dysfunction. Processes (Basel) 2021. [DOI: 10.3390/pr9101828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Redox imbalance in intestinal epithelial cells is critical in the early phases of intestinal injury. Dysfunction of the intestinal barrier can result in immunological imbalance and inflammation, thus leading to intestinal syndromes and associated illnesses. Several antioxidants have been discovered to be beneficial in resolving intestinal barrier dysfunction. Of these antioxidants, the effects of alkaline reduced water (ARW) in oxidative stress of intestinal epithelial cells and its immunokine modulation in vitro is unknown. In this study, we utilized ARW-enriched media to investigate its cytoprotective effect against H2O2-induced oxidative stress in DLD1 cells. We found that ARW rescued DLD1 from oxidative stress by diluting the influence of H2O2 on oxidative stress-activated MAPK signaling and mitochondrial dysfunction. Further, intestinal oxidative stress significantly affects immunokine profiles of Raw 264.7 cells (IL-6, IL-10, MCP, TNF-a, RANTES), which can be reversed by ARW. Collectively, ARW shields intestinal epithelial cells from oxidative stress, reducing the immunological mayhem caused by barrier failure.
Collapse
|
36
|
Polutchko SK, Glime GNE, Demmig-Adams B. Synergistic Action of Membrane-Bound and Water-Soluble Antioxidants in Neuroprotection. Molecules 2021; 26:5385. [PMID: 34500818 PMCID: PMC8434335 DOI: 10.3390/molecules26175385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Prevention of neurodegeneration during aging, and support of optimal brain function throughout the lifespan, requires protection of membrane structure and function. We review the synergistic action of different classes of dietary micronutrients, as well as further synergistic contributions from exercise and stress reduction, in supporting membrane structure and function. We address membrane-associated inflammation involving reactive oxygen species (ROS) that produce immune regulators from polyunsaturated fatty acids (PUFAs) of membrane phospholipids. The potential of dietary micronutrients to maintain membrane fluidity and prevent chronic inflammation is examined with a focus on synergistically acting membrane-soluble components (zeaxanthin, lutein, vitamin E, and omega-3 PUFAs) and water-soluble components (vitamin C and various phenolics). These different classes of micronutrients apparently operate in a series of intertwined oxidation-reduction cycles to protect membrane function and prevent chronic inflammation. At this time, it appears that combinations of a balanced diet with regular moderate exercise and stress-reduction practices are particularly beneficial. Effective whole-food-based diets include the Mediterranean and the MIND diet (Mediterranean-DASH Intervention for Neurodegenerative Delay diet, where DASH stands for Dietary Approaches to Stop Hypertension).
Collapse
Affiliation(s)
| | | | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (S.K.P.); (G.N.E.G.)
| |
Collapse
|
37
|
Kim DH, Sim Y, Hwang JH, Kwun IS, Lim JH, Kim J, Kim JI, Baek MC, Akbar M, Seo W, Kim DK, Song BJ, Cho YE. Ellagic Acid Prevents Binge Alcohol-Induced Leaky Gut and Liver Injury through Inhibiting Gut Dysbiosis and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10091386. [PMID: 34573017 PMCID: PMC8465052 DOI: 10.3390/antiox10091386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major liver disease worldwide and can range from simple steatosis or inflammation to fibrosis/cirrhosis, possibly through leaky gut and systemic endotoxemia. Many patients with alcoholic steatohepatitis (ASH) die within 60 days after clinical diagnosis due to the lack of an approved drug, and thus, synthetic and/or dietary agents to prevent ASH and premature deaths are urgently needed. We recently reported that a pharmacologically high dose of pomegranate extract prevented binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Herein, we investigate whether a dietary antioxidant ellagic acid (EA) contained in many fruits, including pomegranate and vegetables, can protect against binge alcohol-induced leaky gut, endotoxemia, and liver inflammation. Pretreatment with a physiologically-relevant dose of EA for 14 days significantly reduced the binge alcohol-induced gut barrier dysfunction, endotoxemia, and inflammatory liver injury in mice by inhibiting gut dysbiosis and the elevated oxidative stress and apoptosis marker proteins. Pretreatment with EA significantly prevented the decreased amounts of gut tight junction/adherent junction proteins and the elevated gut leakiness in alcohol-exposed mice. Taken together, our results suggest that EA could be used as a dietary supplement for alcoholic hepatitis patients.
Collapse
Affiliation(s)
- Dong-ha Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Yejin Sim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jin-hyeon Hwang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jae-Hwan Lim
- Department of Biological Science, Andong National University, Andong 36729, Korea;
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jee-In Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA;
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda, Bethesda, MD 20892, USA
- Correspondence: (B.-J.S.); (Y.-E.C.)
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
- Correspondence: (B.-J.S.); (Y.-E.C.)
| |
Collapse
|
38
|
Implementing PSO-ELM Model to Approximate Trolox Equivalent Antioxidant Capacity as One of the Most Important Biological Properties of Food. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3805748. [PMID: 34395613 PMCID: PMC8355959 DOI: 10.1155/2021/3805748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
In this paper, the Trolox equivalent antioxidant capacity (TEAC) is estimated through a robust machine-learning algorithm known as the Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) model. For this purpose, a large dataset from previously published reports was gathered. Various analyses were performed to evaluate the proposed model. The results of the statistical analysis showed that this model can predict the actual values with high accuracy, so that the calculated R2 and RMSE values were equal to 0.973 and 3.56, respectively. Sensitivity analysis was also performed on the effective input parameters. The leverage technique was also performed to check the accuracy of real data, and the results showed that the majority of data are reliable. This simple yet accurate model can be very powerful in predicting the Trolox equivalent antioxidant capacity values and can be a good alternative to laboratory data.
Collapse
|
39
|
CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int J Mol Sci 2021; 22:ijms22158221. [PMID: 34360999 PMCID: PMC8348366 DOI: 10.3390/ijms22158221] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.
Collapse
|
40
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
41
|
Santos JVDO, Porto ALF, Cavalcanti IMF. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics (Basel) 2021; 10:antibiotics10050520. [PMID: 34063213 PMCID: PMC8147472 DOI: 10.3390/antibiotics10050520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antibiotic monotherapy may become obsolete mainly due to the continuous emergence of resistance to available antimicrobials, which represents a major uncertainty to human health. Taking into account that natural products have been an inexhaustible source of new compounds with clinical application, lectins are certainly one of the most versatile groups of proteins used in biological processes, emerging as a promising alternative for therapy. The ability of lectins to recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of activities. Currently the number of antimicrobials in research and development does not match the rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance, and highlight the potential of lectins to modulate the host immune response against oxidative stress.
Collapse
Affiliation(s)
- João Victor de Oliveira Santos
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology Animal, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil;
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
- Academic Center of Vitória (CAV), Laboratory of Microbiology and Immunology, Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Correspondence: ; Tel.: + 55-81-2101-2501
| |
Collapse
|